Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 18 lutego 2026 17:22
  • Data zakończenia: 18 lutego 2026 17:36

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który z przedstawionych symboli graficznych oznacza tranzystor MOSFET ze wzbogaconym kanałem typu n?

Ilustracja do pytania
A. Symbol 4.
B. Symbol 3.
C. Symbol 2.
D. Symbol 1.
Wybór innego symbolu niż Symbol 3 może wynikać z nieporozumienia dotyczącego oznaczeń tranzystorów MOSFET. Każdy z pozostałych symboli może przedstawiać różne typy tranzystorów, ale brak w nich poprawnych cech, które definiują tranzystor MOSFET ze wzbogaconym kanałem typu n. Niezrozumienie symboliki może prowadzić do zastosowania niewłaściwych komponentów w projektach, co w efekcie może skutkować nieprawidłowym działaniem całego układu. Często zdarza się, że osoby projektujące obwody mylą tranzystory typu n z tranzystorami typu p, co może wynikać z niedostatecznej znajomości podstawowych cech tych komponentów. Przykładowo, tranzystory typu p mają strzałki skierowane do wnętrza kanału, co odzwierciedla ich odmienny charakter. Kluczowym aspektem, który należy wziąć pod uwagę, jest także charakterystyka elektryczna zastosowanego tranzystora, która różni się w zależności od typu i może mieć wpływ na wydajność obwodu. Dlatego ważne jest, aby inżynierowie mieli solidną wiedzę na temat symboliki oraz właściwości tranzystorów MOSFET, aby uniknąć typowych błędów, które mogą prowadzić do awarii systemów. Zrozumienie, jak interpretować symbole i jakie mają implikacje dla projektowania układów, jest niezbędne w praktyce inżynierskiej.

Pytanie 2

Oblicz (korzystając z podanego wzoru) powierzchnię czynną tłoka siłownika, który wytwarza siłę czynną 1600 N przy ciśnieniu 1 MPa i współczynniku sprawności 0,8.

Wzór: \( F = \eta \cdot p_e \cdot A \)

Oznaczenia:
\( [N] = [Pa \cdot m^2] \)

A. 3000 \( \text{mm}^2 \)
B. 1500 \( \text{mm}^2 \)
C. 1000 \( \text{mm}^2 \)
D. 2000 \( \text{mm}^2 \)
Aby obliczyć powierzchnię czynną tłoka siłownika, należy zastosować wzór, który uwzględnia siłę czynną, ciśnienie oraz współczynnik sprawności. W tym przypadku, siła czynna wynosi 1600 N, ciśnienie wynosi 1 MPa (co odpowiada 1 N/mm²), a współczynnik sprawności to 0,8. Obliczenia polegają na podzieleniu siły przez iloczyn ciśnienia i współczynnika sprawności: S = F / (p * η). Po podstawieniu danych do wzoru otrzymujemy S = 1600 N / (1 N/mm² * 0,8) = 2000 mm². Taka powierzchnia czynna jest kluczowa w projektowaniu siłowników hydraulicznych, ponieważ pozwala na efektywne przenoszenie siły i minimalizację strat energetycznych. W praktyce, odpowiednia kalkulacja powierzchni czynnnej tłoka jest istotna dla zapewnienia właściwego działania maszyn i urządzeń, w których siłowniki są stosowane, na przykład w systemach automatyki przemysłowej, robotyce czy w budowie maszyn. Dlatego też, znajomość zasad obliczania tej powierzchni oraz umiejętność zastosowania ich w praktyce jest niezbędna w branży inżynieryjnej.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Do czego służy stabilizator napięcia?

A. do przekształcania napięcia przemiennego w napięcie stałe
B. do utrzymywania stałego napięcia niezależnie od zmian natężenia prądu obciążenia oraz zmian napięcia wejściowego
C. do wygładzania napięcia po prostowaniu przez prostownik
D. do konwersji napięcia przemiennego na napięcie przemienne o innej częstotliwości oraz innej wartości skutecznej
Stabilizator napięcia jest urządzeniem, które ma za zadanie utrzymywanie stałego napięcia na wyjściu, niezależnie od zmian natężenia prądu obciążenia oraz fluktuacji napięcia wejściowego. W praktyce oznacza to, że gdy obciążenie zmienia się, a także gdy napięcie zasilające ulega zmianie (na przykład w wyniku wahań w sieci energetycznej), stabilizator zapewnia, że napięcie na wyjściu pozostaje na pożądanym poziomie. Przykładem zastosowania stabilizatorów napięcia są zasilacze do urządzeń elektronicznych, takich jak komputery czy telewizory, które wymagają stałego napięcia do prawidłowego działania. W branży elektronicznej oraz elektrycznej, stosowanie stabilizatorów napięcia jest zgodne z dobrymi praktykami, które mają na celu zapewnienie niezawodności i bezpieczeństwa urządzeń. Stabilizatory mogą również chronić sprzęt przed uszkodzeniami spowodowanymi nadmiernym wzrostem napięcia lub jego spadkiem. Warto zaznaczyć, że stabilizatory mogą działać w różnych trybach, w tym jako liniowe lub impulsowe, w zależności od zastosowania i wymagań dotyczących efektywności energetycznej.

Pytanie 5

Na którym rysunku przedstawiono proces gięcia stali przez przeciąganie?

Ilustracja do pytania
A. Na rysunku 4.
B. Na rysunku 2.
C. Na rysunku 3.
D. Na rysunku 1.
Gięcie stali przez przeciąganie, przedstawione na rysunku 4, jest kluczowym procesem w obróbce metali, który polega na formowaniu materiału poprzez jego przeciąganie przez narzędzie. W tym przypadku narzędzie ma kształt litery 'V', co pozwala na uzyskanie precyzyjnego zakrzywienia. Tego rodzaju proces jest szeroko stosowany w przemyśle, zwłaszcza w produkcji elementów konstrukcyjnych, takich jak belki czy ramy. Gięcie przez przeciąganie jest efektywne, ponieważ pozwala na zachowanie integralności materiału oraz osiągnięcie wysokiej jakości powierzchni. Warto również wspomnieć, że zgodnie z normami ISO dla obróbki blach, techniki gięcia muszą uwzględniać nie tylko geometrię, ale również właściwości mechaniczne materiału, co ma bezpośredni wpływ na trwałość i funkcjonalność finalnego produktu. Przykładem zastosowania tej metody może być produkcja części dla branży motoryzacyjnej, gdzie precyzyjne gięcie stali jest niezbędne do zapewnienia odpowiedniego dopasowania i wytrzymałości elementów.

Pytanie 6

Jaką czynność należy przeprowadzić, aby zwiększyć średnicę otworu i umożliwić osadzenie w nim łba śruby?

A. Rozwiercanie
B. Pogłębianie
C. Wiercenie wtórne
D. Wiercenie
Wiercenie to proces robienia otworów, ale w tym przypadku to nie jest najlepszy wybór do powiększania średnicy otworu. Ono bardziej nadaje się do tworzenia nowych otworów, a nie do zmiany tych, które już są. Wiercenie wtórne też nie jest idealne, bo koncentruje się na uzupełnianiu istniejących otworów, a my potrzebujemy coś więcej. Rozwiercanie może działać w tej sytuacji, ale jest trudniejsze i może uszkodzić materiał, bo wymaga większej precyzji. Kiedy wybierasz metodę obróbcą, musisz brać pod uwagę wymagania projektu i materiał, z którego zrobiony jest element. Wiele osób myśli, że można te metody stosować zamiennie, a to prowadzi do problemów jak źle dobrane średnice otworów, co może zrujnować konstrukcję lub utrudnić montaż.

Pytanie 7

Należy przekształcić energię sprężonej cieczy roboczej w ruch obrotowy o bardzo niskiej i stabilnej prędkości obrotowej, jak również znacznym momencie obrotowym. Elementem wykonawczym jest hydrauliczny

A. silnik zębaty
B. siłownik teleskopowy
C. siłownik nurnikowy
D. silnik tłokowy
Wybór silnika zębatego, siłownika nurnikowego lub siłownika teleskopowego jako alternatywy dla silnika tłokowego jest niewłaściwy z kilku powodów. Silnik zębaty, choć efektywny w kontekście prędkości obrotowych, nie jest przystosowany do generowania dużego momentu obrotowego przy niskich prędkościach, co jest kluczowe w wielu zastosowaniach hydraulicznych. Z kolei siłownik nurnikowy, będący elementem o liniowym ruchu, nie przekształca energii cieczy w ruch obrotowy, co wyklucza go z rozważanej funkcji. Siłownik teleskopowy, mimo że może oferować pewne korzyści w zakresie kompaktowości i wydajności, również nie generuje ruchu obrotowego, co czyni go nieodpowiednim w kontekście tego pytania. Typowe błędy myślowe, które mogą prowadzić do wyboru tych elementów, obejmują mylenie zastosowań silników i siłowników oraz nieadekwatne rozumienie ich podstawowych zasad działania. Kluczowe jest zrozumienie, że każdy z tych elementów ma swoje specyficzne zastosowania i ograniczenia, a wybór niewłaściwego komponentu może prowadzić do obniżenia efektywności całego systemu hydraulicznego. W kontekście przemysłowym, normy takie jak ISO 4414 stanowią wytyczne dotyczące stosowania hydrauliki, co podkreśla znaczenie doboru odpowiednich typów napędów w zależności od specyficznych wymagań aplikacji.

Pytanie 8

Jakim przyrządem mierzy się czas trwania skoku siłownika elektrycznego?

A. miliwoltomierzem
B. stoperem
C. mikrometrem
D. czujnikiem zegarowym
Czas wykonania skoku siłownika elektrycznego mierzy się za pomocą stopera, ponieważ jest to narzędzie umożliwiające dokładne i precyzyjne określenie czasu trwania określonego zdarzenia. W przypadku siłowników elektrycznych, które są często wykorzystywane w automatyce i robotyce, czas reakcji oraz czas skoku mają kluczowe znaczenie dla efektywności pracy całego systemu. Stoper pozwala na mierzenie czasu z wysoką dokładnością, co jest niezbędne w procesach, gdzie synchronizacja ruchów jest istotna. W praktyce, w laboratoriach oraz w zakładach produkcyjnych, zastosowanie stopera w badaniach wydajności siłowników elektrycznych pozwala na optymalizację pracy maszyn oraz zwiększenie ich niezawodności. Takie pomiary mogą być również wykorzystywane do analizy wpływu różnych parametrów, takich jak obciążenie, napięcie zasilania czy rodzaj zastosowanej mechaniki, na czas odpowiedzi siłownika. Dzięki temu można wprowadzać usprawnienia oraz dostosowywać parametry pracy do specyficznych wymagań procesów technologicznych.

Pytanie 9

Jaką metodę należy wykorzystać do połączenia szkła z metalem?

A. Nitowanie
B. Zgrzewanie
C. Klejenie
D. Spawanie
Klejenie to najskuteczniejsza metoda łączenia szkła z metalem ze względu na różnice w ich właściwościach fizycznych i chemicznych. Szkło jest materiałem kruchym, a metal - plastycznym, co sprawia, że tradycyjne metody, takie jak zgrzewanie czy spawanie, mogą prowadzić do uszkodzenia szkła. Klejenie wykorzystuje specjalistyczne kleje, które tworzą mocne, elastyczne połączenie, a także mogą dostosować się do różnic w rozszerzalności cieplnej obu materiałów. W praktyce, odpowiednie kleje epoksydowe lub akrylowe są często stosowane do takich aplikacji, umożliwiając trwałe i estetyczne łączenie. W branży budowlanej i w przemyśle, klejenie szkła do metalowych elementów jest powszechnie stosowane w oknach strukturalnych, elewacjach oraz w produkcji mebli. Dobrą praktyką jest również stosowanie gruntów, które poprawiają adhezję kleju do powierzchni, co zwiększa trwałość i odporność połączenia na różne czynniki zewnętrzne. Takie podejście jest zgodne z normami ISO dotyczących klejenia i pozwala na uzyskanie wysokiej jakości połączeń.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Ile minimalnie 8 bitowych portów we/wy powinien posiadać mikrokontroler PIC wyposażony w szeregowy
8-bitowy przetwornik analogowo-cyfrowy oznaczony ADC0831, aby można było zrealizować układ mechatroniczny przedstawiony na rysunku?

Ilustracja do pytania
A. 3 porty.
B. 2 porty.
C. 4 porty.
D. 5 portów.
Wybór większej liczby portów we/wy, niż dwa, świadczy o pewnym nieporozumieniu dotyczącym zasad komunikacji z przetwornikiem ADC0831 oraz sterowaniem silnikiem krokowym. Przy uwzględnieniu, że ADC0831 przesyła dane szeregowo, wystarczy jeden port do odbioru 8-bitowego sygnału cyfrowego. Wiele osób może błędnie przyjąć, że każdy sygnał sterujący wymaga oddzielnego portu, co nie jest prawdą. Zastosowanie jednego portu wyjściowego do przesyłania kombinacji sygnałów sterujących jest powszechną praktyką, która znacznie upraszcza projektowanie systemów mechatronicznych. Możliwe jest również zaimplementowanie dodatkowych sygnałów kontrolnych w ramach jednego portu poprzez odpowiednie kodowanie, co pozwala na dalszą oszczędność zasobów. Często w inżynierii zbyt duża liczba portów prowadzi do złożoności systemu, co może negatywnie wpływać na jego niezawodność i koszt produkcji. Ponadto, w kontekście projektów automatyki i robotyki, efektywne zarządzanie portami we/wy jest kluczowe, aby uniknąć sytuacji, w której system staje się nieefektywny i trudny do debugowania. Z tego względu, założenie większej liczby portów, jak np. 3, 4 czy 5, jest nieuzasadnione i niezgodne z dobrymi praktykami w projektowaniu układów mechatronicznych.

Pytanie 12

Wskaż na podstawie tabeli wymiary wpustu pryzmatycznego, który można osadzić na wale o średnicy 12 mm.

Wałek – d mmWpust
ponaddob x h mm
682 x 2
8103 x 3
10124 x 4
12175 x 5
17226 x 6
22308 x 7
A. 5 x 5 mm
B. 6 x 6 mm
C. 3 x 3 mm
D. 4 x 4 mm
Najczęściej popełnianym błędem przy wyborze wymiarów wpustu pryzmatycznego jest nieprawidłowe dopasowanie jego rozmiaru do średnicy wału. Wiele osób może pomyśleć, że wymiary 3 x 3 mm, 5 x 5 mm lub 6 x 6 mm będą odpowiednie dla wału o średnicy 12 mm, co jest błędne. Takie rozumowanie wynika często z niepełnego zrozumienia podstawowych zasad projektowania połączeń mechanicznych. W rzeczywistości, każdy wpust jest projektowany według określonych norm, które określają, jakie wymiary powinny być stosowane dla różnych średnic wałów. Zastosowanie zbyt małych wymiarów, takich jak 3 x 3 mm, prowadzi do niewystarczającego przenoszenia momentu obrotowego, co może skutkować ich uszkodzeniem oraz niestabilnością całego mechanizmu. Podobnie, zbyt duże wymiary, takie jak 5 x 5 mm lub 6 x 6 mm, mogą uniemożliwić odpowiednie osadzenie wpustu na wale, co również prowadzi do luzów i potencjalnych uszkodzeń. Kluczowym aspektem jest zrozumienie, że dobór wymiarów wpustu nie jest tylko kwestią estetyki, ale jest to fundamentalna zasada konstrukcji mechanicznych, która ma bezpośredni wpływ na efektywność i bezpieczeństwo urządzeń. Dlatego tak ważne jest, aby stosować się do tabel i specyfikacji producentów, aby dokonać właściwego wyboru wymiarów wpustu pryzmatycznego.

Pytanie 13

Który siłownik przedstawiony na ilustracjach, należy zamontować w układzie w miejscu oznaczonym cyfrą 5.

Ilustracja do pytania
A. Siłownik 2.
B. Siłownik 3.
C. Siłownik 1.
D. Siłownik 4.
Wybór siłownika, który nie pasuje do wymagań z schematu, może prowadzić do różnych problemów. Te siłowniki, które są niepoprawne, mają różne właściwości, które nie zgadzają się z tym, co potrzeba w układzie. Na przykład siłownik 2 może działać w innym zakresie ciśnienia albo mieć różne parametry skoku, co bardzo wpływa na to, jak będzie działać. Siłowniki 1, 2 i 3 pewnie nie będą generować wystarczającej siły lub będą miały złą charakterystykę ruchu, co w efekcie może doprowadzić do problemów z całym systemem. Często ludzie nie rozumieją różnic między siłownikami liniowymi a obrotowymi, co prowadzi do złych wyborów. Ważne jest, aby wiedzieć, że nie każdy siłownik pasuje do każdego miejsca w układzie hydraulicznym. Zły wybór siłownika może powodować, że system nie będzie działać efektywnie, a nawet mogą się pojawić uszkodzenia, co wiąże się z dużymi kosztami napraw i przestojów. Żeby tego uniknąć, warto dokładnie analizować specyfikacje techniczne i rozumieć, jakie parametry siłowników wpływają na ich działanie. Dobrze jest też trzymać się standardów branżowych, które pomagają w optymalnym doborze i zapewniają niezawodność systemów hydraulicznych.

Pytanie 14

Co może się zdarzyć, gdy w trakcie montażu silnika trójfazowego nastąpi przerwanie przewodu ochronnego PE?

A. przeciążenia instalacji elektrycznej, co może skutkować pożarem
B. awarii stojana silnika
C. wzrostu temperatury silnika podczas pracy, co może prowadzić do zapalenia się silnika
D. pojawienia się napięcia na obudowie silnika, co grozi porażeniem prądem elektrycznym
Odpowiedź dotycząca pojawienia się napięcia na obudowie silnika oraz ryzyka porażenia prądem elektrycznym jest prawidłowa, ponieważ przewód ochronny PE (ochronny) ma kluczowe znaczenie w zapewnieniu bezpieczeństwa użytkowania urządzeń elektrycznych. W przypadku przerwania tego przewodu, obudowa silnika może znaleźć się pod napięciem, ponieważ nie będzie możliwości odprowadzenia prądów upływowych do ziemi. Taki stan stwarza zagrożenie dla osób pracujących w pobliżu, gdyż kontakt z obudową, która jest na potencjale elektrycznym, może prowadzić do porażenia prądem. W praktyce, aby zminimalizować ryzyko tego typu zdarzeń, zaleca się stosowanie systemów detekcji uszkodzeń izolacji oraz regularne przeglądy instalacji elektrycznej. Ponadto, zgodnie z normą PN-EN 61140, urządzenia powinny być wyposażone w odpowiednie zabezpieczenia, takie jak wyłączniki różnicowoprądowe, które mogą zareagować na niebezpieczne różnice napięcia i wyłączyć zasilanie w sytuacji awaryjnej.

Pytanie 15

Napięcie testowe, strata dielektryczna, maksymalne napięcie, opór izolacji, temperatury współczynnik pojemności - to parametry znamionowe

A. kondensatora
B. solenoidu
C. rezystora
D. diody pojemnościowej
Kondensator jest elementem elektronicznym, który gromadzi ładunek elektryczny, a jego zachowanie jest określane przez szereg parametrów znamionowych, takich jak napięcie probiercze, stratność dielektryczna, dopuszczalna wartość napięcia, rezystancja izolacji oraz temperaturowy współczynnik pojemności. Napięcie probiercze odnosi się do maksymalnego napięcia, które kondensator może wytrzymać bez uszkodzeń. Stratność dielektryczna jest miarą strat energii w dielektryku, co wpływa na efektywność kondensatora. Dopuszczalna wartość napięcia to maksymalne napięcie robocze, przy którym kondensator działa prawidłowo. Rezystancja izolacji jest istotna dla przewodności dielektryka, a temperaturowy współczynnik pojemności wskazuje, jak wartość pojemności zmienia się w funkcji temperatury. W praktyce kondensatory są wykorzystywane w filtrach, układach czasowych, oraz w stabilizacji napięcia w zasilaczach, co czyni je niezbędnymi w wielu zastosowaniach elektronicznych. W branży istnieją normy, takie jak IEC 60384, które definiują wymagania dotyczące jakości i bezpieczeństwa kondensatorów.

Pytanie 16

W powyższym układzie stycznik K1 włącza się tylko wtedy, gdy przycisk S1 jest wciśnięty. Zwolnienie przycisku S1 nie wyłącza K1. Przyczyną błędnego działania układu jest

Ilustracja do pytania
A. błędne podłączenie cewki stycznika K1.
B. uszkodzony przycisk S1.
C. uszkodzony stycznik K1.
D. błędne podłączenie styku zwiernego K1.
Wybór tej odpowiedzi pokazuje, że zrozumiałeś, jak ważne jest odpowiednie podłączenie styku zwiernego K1. To naprawdę kluczowa rzecz dla działania całego układu. Kiedy mówimy o styczniku K1, to pamiętaj, że musi być on wyposażony w styk podtrzymujący. Dzięki temu, nawet jak zwolnisz przycisk S1, układ nadal działa. Tak to działa: styk zwierny K1 powinien być połączony równolegle z przyciskiem S1, a to zapewnia, że w momencie wciśnięcia przycisku, cewka stycznika jest zasilana. Po zwolnieniu przycisku styk zwierny przejmuje kontrolę, więc cewka nadal jest zasilana. W automatyce to popularne rozwiązanie, które sprawia, że obwody działają niezawodnie. Oczywiście, w sytuacjach awaryjnych musimy też pamiętać o normach bezpieczeństwa i stosować odpowiednie elementy, żeby wszystko działało jak należy. Jak widzisz, zastosowanie tej koncepcji w praktyce naprawdę wpływa na stabilność i zminimalizowanie błędów.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Do czego służy narzędzie przedstawione na rysunku?

Ilustracja do pytania
A. Cięcia przewodów pneumatycznych.
B. Gięcia przewodów elektrycznych.
C. Usuwania izolacji z przewodów elektrycznych.
D. Łączenia przewodów hydraulicznych.
Narzędzie przedstawione na rysunku to nożyk do przewodów z tworzyw sztucznych, które są powszechnie wykorzystywane w instalacjach pneumatycznych. Jego konstrukcja umożliwia precyzyjne cięcie różnych typów przewodów pneumatycznych, co jest niezwykle istotne w branży automatyki i pneumatyki. Przewody te często stosowane są w systemach transportu sprężonego powietrza, gdzie ich integralność i odpowiednie dopasowanie mają kluczowe znaczenie dla sprawności całego układu. Dzięki zastosowaniu tego narzędzia, możliwe jest uzyskanie gładkich krawędzi bez uszkodzenia struktury materiału, co minimalizuje ryzyko przecieków i awarii. Warto zwrócić uwagę, że zgodnie z najlepszymi praktykami w branży, cięcie przewodów powinno być przeprowadzane w sposób zabezpieczający przed odkształceniem ich końców, co zapewnia prawidłowe działanie systemów pneumatycznych. Dobrej jakości nożyk do przewodów jest niezbędnym wyposażeniem każdego technika zajmującego się instalacjami pneumatycznymi.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Ilustracja przedstawia proces

Ilustracja do pytania
A. wiercenia.
B. frezowania.
C. nitowania.
D. gwintowania.
Odpowiedź "nitowania" to strzał w dziesiątkę! Ilustracja dobrze pokazuje, jak ten proces działa. Nitowanie jest naprawdę popularne w takich branżach jak lotnictwo, motoryzacja czy budownictwo, gdzie odporne połączenia są super ważne. Cała robota z nitowaniem zaczyna się od włożenia nitu w otwory elementów, które chcemy połączyć. Potem używamy odpowiedniego narzędzia, żeby uformować końcówkę nitu, co sprawia, że połączenie jest mocne. Na końcu zgniecione zostaje drugie końcówka nitu, co zapewnia trwałe złączenie. W praktyce często wybiera się nitowanie, bo spawanie czasem może osłabić materiał. Warto znać te techniki, żeby inżynierowie i technicy mogli zadbać o bezpieczeństwo i trwałość konstrukcji.

Pytanie 22

Jaki rodzaj czujnika, montowanego na metalowym cylindrze siłownika pneumatycznego, powinno się wykorzystać do monitorowania położenia tłoka?

A. Czujnik tensometryczny
B. Czujnik optyczny
C. Czujnik indukcyjny
D. Czujnik magnetyczny
Czujniki optyczne, indukcyjne i tensometryczne mają swoje specyficzne zastosowania, ale nie są odpowiednie do monitorowania położenia tłoka w metalowym cylindrze siłownika pneumatycznego. Czujniki optyczne wykorzystują promieniowanie świetlne do detekcji obiektów, co może być skuteczne w warunkach, gdzie nie ma przeszkód oraz działań środowiskowych mogących wpływać na sygnał, ale w przypadku tłoka w siłowniku pneumatycznym, mogą napotykać trudności, np. z zabrudzeniem soczewek lub przesłonięciem sygnału. Czujniki indukcyjne, z drugiej strony, są przeznaczone do wykrywania metalowych obiektów, jednak nie zapewniają one informacji o położeniu konkretnego tłoka, a jedynie detekcję obecności metalu. Mogą być używane w aplikacjach, gdzie istnieje potrzeba wykrycia przeszkód, lecz ich zastosowanie w pozycjonowaniu tłoka jest ograniczone. Tensometryczne czujniki mierzą odkształcenie, co sprawia, że są one bardziej odpowiednie do monitorowania siły lub obciążenia, a nie do detekcji położenia. Użycie tych czujników do kontroli pozycji tłoka w siłowniku mogłoby prowadzić do mylnej interpretacji danych, co z kolei może skutkować błędami w procesie sterowania. W praktyce, nieprawidłowy wybór czujnika do konkretnego zastosowania może prowadzić do nieefektywności w systemach automatyki, co jest sprzeczne z najlepszymi praktykami branżowymi, które zalecają dobór czujników zgodnie z ich specyfiką oraz wymaganiami aplikacji.

Pytanie 23

Czujnik indukcyjny zbliżeniowy

A. reaguje, gdy do sensora zbliżają się obiekty nieprzezroczyste
B. informuje o odległości od zbliżającego się obiektu
C. informuje o kontakcie z zewnętrznym przedmiotem
D. reaguje, gdy do sensora zbliżają się obiekty metalowe
Indukcyjne sensory zbliżeniowe są często mylone z innymi rodzajami czujników, co prowadzi do nieporozumień. Na przykład, sugerowanie, że sensor informuje o zetknięciu się z przedmiotem zewnętrznym, jest błędne, ponieważ indukcyjne czujniki nie wymagają kontaktu z obiektem, by zareagować. Działają one w oparciu o pole elektromagnetyczne, więc ich funkcjonalność opiera się na detekcji zasięgu, a nie na fizycznym zetknięciu. Również koncepcja reagowania na elementy nieprzezroczyste jest myląca. Indukcyjne sensory są zaprojektowane specjalnie do wykrywania metali, a nie do ogólnego wykrywania wszelkich przedmiotów. Wspomnienie o informowaniu o odległości od zbliżanego przedmiotu również wprowadza w błąd, ponieważ te sensory nie mierzą odległości, a jedynie stwierdzają obecność obiektu w swoim zasięgu działania. Często błędne myślenie o tych sensorach wynika z nieznajomości ich zasad działania oraz różnic między nimi a innymi typami czujników, takimi jak ultradźwiękowe czy optyczne, które mogą mieć inne zastosowania i mechanizmy działania. Dlatego kluczowe jest zrozumienie specyfiki każdego typu sensora oraz jego odpowiednich zastosowań, aby uniknąć nieporozumień i błędów w aplikacjach przemysłowych.

Pytanie 24

Na przedstawionym diagramie sygnał Y odpowiada funkcji logicznej

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Podane odpowiedzi, które nie są zgodne z odpowiedzią D, mogą wynikać z nieporozumienia dotyczącego podstaw funkcji logicznych. W przypadku odpowiedzi A, B i C, mogą być one błędnie zinterpretowane jako możliwe reprezentacje sygnału Y. Jednakże, kluczowe jest, aby zrozumieć, że sygnał Y w analizowanym diagramie ma jednoznaczne warunki: musi być wysoki tylko wtedy, gdy oba sygnały A i B są w stanie wysokim. Inne odpowiedzi mogą sugerować np. funkcje typu OR czy NOR, które działają na zasadzie, że przynajmniej jeden z sygnałów wejściowych musi być wysoki, co jest sprzeczne z opisanym stanem sygnału Y. Często mylnie sądzimy, że różne kombinacje sygnałów mogą wystarczyć do uzyskania stanu wysokiego, co jest typowym błędem myślowym. To pojęcie można rozwinąć, odwołując się do praktycznych zastosowań, takich jak projektowanie układów zabezpieczeń, gdzie logika AND jest wykorzystywana do weryfikacji, czy wszystkie wymagane warunki są spełnione przed podjęciem działania. Pamiętaj, że w inżynierii logicznej kluczowe jest precyzyjne rozumienie i stosowanie zasad funkcji logicznych, co pozwala uniknąć błędów w projektach i realizacjach systemów cyfrowych.

Pytanie 25

Jaka jest objętość oleju w cylindrze siłownika o powierzchni roboczej 20,3 cm2 oraz skoku 200 mm?

A. 4,06 cm3
B. 40,60 cm3
C. 406,00 cm3
D. 4060,00 cm3
Poprawna odpowiedź to 406,00 cm3, co wynika z obliczenia objętości cylindra siłownika hydraulicznego. Wzór na objętość cylindra to V = A * h, gdzie A to powierzchnia podstawy cylindra, a h to jego wysokość lub skok. W tym przypadku powierzchnia wynosi 20,3 cm2, a skok 200 mm, co po przeliczeniu daje 20 cm. Zatem objętość wynosi: V = 20,3 cm2 * 20 cm = 406,00 cm3. Praktyczne zastosowanie tej wiedzy jest nieocenione w hydraulice, gdzie precyzyjne obliczenia objętości pozwalają na właściwe dobranie siłowników do zadań, co wpływa na efektywność systemów mechanicznych. Dobrze dobrany siłownik zapewnia optymalne parametry pracy urządzenia, a także zwiększa trwałość i niezawodność systemów hydraulicznych. W przemyśle, w którym często wykorzystywane są siłowniki, zrozumienie zasad obliczania objętości jest kluczowe dla zapewnienia efektywności energetycznej i bezpieczeństwa pracy maszyn.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Czujnik zbliżeniowy powinien być podłączony do cyfrowego wejścia sterownika PLC przy użyciu

A. szczypiec
B. lutownicy
C. wkrętaka
D. klucza
Odpowiedź "wkrętaka" jest poprawna, ponieważ narzędzie to jest niezbędne do dokręcania lub luzowania śrub, które często są używane do mocowania złączy i elementów w instalacjach elektrycznych, w tym w podłączaniu czujników do systemów PLC. W przypadku czujników zbliżeniowych, które mogą być montowane w różnych konfiguracjach, ważne jest, aby zapewnić solidne połączenie elektryczne. Użycie wkrętaka pozwala na precyzyjne i bezpieczne przymocowanie przewodów do zacisków sterownika PLC, co jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa i niezawodności połączeń elektrycznych. Niewłaściwe lub luźne połączenia mogą prowadzić do błędnych odczytów czujnika oraz innych problemów w systemie automatyki. W praktyce, często stosuje się wkrętaki o wymiennej końcówce, co umożliwia łatwe dostosowanie narzędzia do różnych typów śrub i zacisków, co zwiększa efektywność pracy na placu budowy czy w zakładzie produkcyjnym. Właściwa metoda podłączenia gwarantuje także dłuższą żywotność komponentów oraz ich prawidłowe działanie w różnych warunkach środowiskowych.

Pytanie 28

Tensomer foliowy powinien być zamocowany do podłoża

A. nitem
B. zszywką
C. śrubą
D. klejem
Tensomer foliowy to naprawdę ważny materiał w budownictwie i przemyśle, więc jego mocowanie do podłoża za pomocą kleju ma sens z kilku powodów. Klej tworzy trwałe i elastyczne połączenie, co jest mega istotne, bo folia może się kurczyć lub rozciągać w zależności od temperatury czy wilgotności. Ważne, żeby używać odpowiednich klejów – najlepiej takich, które są dopasowane do folii i podłoża. Na przykład, kleje poliuretanowe czy akrylowe dobrze się sprawdzają, bo mają dobrą przyczepność i są odporne na warunki atmosferyczne. Przy klejeniu trzeba też dobrze przygotować powierzchnię – czyli usunąć kurz i tłuszcz, żeby to wszystko trzymało się jak należy. Generalnie, mocowanie folii klejem to norma w branży, bo to zapewnia długotrwałą stabilność, co się później opłaca, jeżeli chodzi o koszty.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

W instalacji pneumatycznej przedstawionej na rysunku przewód główny, do którego podłącza się m.in. kolejne układy sterowania pneumatycznego zainstalowany, jest ze spadkiem 1% w celu

Ilustracja do pytania
A. przyspieszenia przepływu.
B. poprawy szczelności.
C. spowolnienia przepływu.
D. umożliwienia spływu kondensatu.
Spadek przewodu głównego w instalacji pneumatycznej, taki na poziomie 1%, to naprawdę ważna rzecz, jeśli chodzi o sprawne odprowadzanie kondensatu, który powstaje z chłodzenia sprężonego powietrza. Jak wiadomo, para wodna w sprężonym powietrzu skrapla się i potem gromadzi w dolnych częściach przewodu. To może być naprawdę problematyczne, bo może prowadzić do korozji i zanieczyszczenia różnych elementów w systemie pneumatycznym. Dlatego trzeba zadbać o to, żeby kondensat miał gdzie spływać, na przykład do zespołu przygotowania powietrza. To zgodne z dobrymi praktykami, które mówią, że każda instalacja pneumatyczna powinna mieć dobrze zaprojektowane systemy do odprowadzania skroplin. Z tego, co widzę, to pomaga utrzymać system w dobrym stanie i zmniejsza ryzyko awarii. A to przecież jest kluczowe, żeby procesy przemysłowe mogły działać bez zakłóceń. No i nie można zapominać, że regularne kontrole i konserwacja tych systemów są absolutnie niezbędne, żeby wszystko działało jak należy i spełniało normy bezpieczeństwa.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Jak należy nastawić amperomierz, aby zmierzyć prąd w układzie pokazanym na rysunku?

Ilustracja do pytania
A. AC, zakres 10 A
B. AC, zakres 5 A
C. DC, zakres 5 A
D. DC, zakres 10 A
Aby prawidłowo zmierzyć prąd w układzie zasilanym napięciem przemiennym, należy ustawić amperomierz na zakres AC, co oznacza, że mierzymy prąd przemienny. Wybór zakresu 10 A jest kluczowy, ponieważ prąd w gospodarstwach domowych często oscyluje w okolicy kilku amperów, a ustawienie z zapasem pozwala uniknąć uszkodzenia przyrządu. W praktyce, stosowanie amperomierzy do pomiaru prądu przemiennego jest powszechne w instalacjach elektrycznych, w tym w diagnostyce i konserwacji urządzeń. Ważne jest, aby przed pomiarem upewnić się, że amperomierz posiada odpowiednie oznaczenia oraz certyfikaty, które potwierdzają jego zdolność do pomiaru prądu przemiennego. Zrozumienie, jak prawidłowo ustawić przyrząd, jest nie tylko kwestą techniczną, ale także kluczowym elementem bezpieczeństwa, co jest szczególnie istotne w kontekście użytkowania urządzeń elektrycznych w naszych domach.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Rezystancja którego z podanych czujników zmniejsza się w miarę wzrostu temperatury?

A. Termopary J
B. Termistora NTC
C. Termopary K
D. Termistora PTC
Termopary J i K to typy czujników temperatury, które działają na zasadzie efektu Seebecka. Oznacza to, że w wyniku różnicy temperatur pomiędzy dwoma różnymi metalami generowany jest napięcie, które można przekształcić na wartość temperatury. W przypadku tych czujników ich rezystancja nie zmienia się w sposób znaczący w odpowiedzi na zmiany temperatury, co prowadzi do mylnych wniosków dotyczących ich działania. Ponadto termistory PTC (Positive Temperature Coefficient) zachowują się odwrotnie niż termistory NTC – ich rezystancja wzrasta wraz ze wzrostem temperatury. Zrozumienie różnicy między tymi technologiami jest kluczowe, ponieważ może to prowadzić do błędnych wyborów w projektowaniu systemów pomiarowych. Wybór niewłaściwego czujnika do aplikacji może skutkować nieprawidłowymi pomiarami, co z kolei może prowadzić do awarii systemów lub obniżenia ich efektywności. Istotne jest, aby przed podjęciem decyzji o wyborze określonego czujnika, przeanalizować wymagania aplikacji, a także zrozumieć zasady działania stosowanych technologii. Dobrze dobrany czujnik wpływa na jakość i niezawodność systemu, co jest zgodne z najlepszymi praktykami branżowymi w zakresie automatyzacji i monitorowania procesów.

Pytanie 35

Jakie znaczenie mają parametry zaworu pneumatycznego rozdzielającego: Gl/8; 550 Nl/min; 12 V AC; 3 VA w podanej kolejności?

A. przyłącze walcowe, przepływ nominalny powietrza, napięcie zmienne cewki, moc pozorna cewki
B. przyłącze walcowe, ciśnienie nominalne powietrza, napięcie stałe cewki, moc czynna cewki
C. przyłącze stożkowe, przepływ nominalny powietrza, napięcie zmienne cewki, moc czynna cewki
D. przyłącze stożkowe, ciśnienie nominalne powietrza, napięcie stałe cewki, moc pozorna cewki
Analizując błędne odpowiedzi, warto zwrócić uwagę na kilka kluczowych nieporozumień. Przyłącze stożkowe, które sugeruje część niepoprawnych odpowiedzi, nie jest typowe dla zaworów pneumatycznych o parametrach podanych w pytaniu. W praktyce, przyłącza walcowe są szeroko stosowane ze względu na ich łatwość montażu oraz kompatybilność z większością systemów. Z kolei pojęcie 'ciśnienia nominalnego powietrza' jest mylące w kontekście podanych parametrów, ponieważ bardziej odpowiednim określeniem w tym przypadku jest 'przepływ nominalny', który bezpośrednio odnosi się do wydajności zaworu. Napięcie 'stałe', zaproponowane w jednej z odpowiedzi, również jest błędne; parametry wskazują, że zawór działa na napięciu zmiennym, co jest istotne w kontekście zastosowań, w których wykorzystuje się zasilanie AC. Dodatkowo, moc pozorna cewki powinna być zrozumiana jako wartość, która wskazuje, ile energii jest potrzebne do pracy zaworu, a nie jako moc czynna, jak sugeruje jedna z odpowiedzi. Te nieporozumienia mogą prowadzić do niewłaściwego doboru komponentów, co z kolei może mieć negatywne konsekwencje dla efektywności i bezpieczeństwa całego systemu pneumatycznego. Właściwe zrozumienie specyfikacji technicznych zaworów i ich parametrów jest kluczowe dla projektowania oraz eksploatacji systemów automatyki przemysłowej.

Pytanie 36

Który z podanych materiałów znajduje zastosowanie w konstrukcjach spawanych?

A. Żeliwo białe
B. Stal niskowęglowa
C. Żeliwo szare
D. Stal wysokowęglowa
Stal niskowęglowa to jeden z najpopularniejszych materiałów, jeśli chodzi o konstrukcje spawane. Ma świetne właściwości mechaniczne i jest łatwa do spawania. Niska zawartość węgla sprawia, że jest elastyczna i nie pęka tak łatwo podczas spawania. Dzięki tym zaletom, stal niskowęglowa znajduje różne zastosowania - w budownictwie, przemyśle stoczniowym czy motoryzacyjnym. Na przykład, używa się jej do produkcji belek, rur czy ram, gdzie potrzebna jest solidność i wytrzymałość na obciążenia. Zresztą, normy takie jak EN 10025 dokładnie określają wymagania dla stali konstrukcyjnych, co tylko potwierdza jej znaczenie w przemyśle. Z mojego doświadczenia, stal niskowęglowa jest lepszym wyborem niż stal wysokowęglowa, bo ma lepsze właściwości spawalnicze i mniejsze ryzyko wystąpienia naprężeń wewnętrznych, co jest mega istotne w konstrukcjach spawanych.

Pytanie 37

Którego z wymienionych narzędzi należy użyć do odkręcenia śruby przedstawionej na ilustracji?

Ilustracja do pytania
A. Wkrętaka z końcówką krzyżową.
B. Klucza płaskiego.
C. Wkrętaka z końcówką torx.
D. Klucza imbusowego.
Wkrętak z końcówką torx jest narzędziem idealnie przystosowanym do pracy z śrubami torx, które mają sześcioramienną główkę. Jego konstrukcja pozwala na doskonałe dopasowanie do kształtu śruby, co z kolei minimalizuje ryzyko poślizgu i uszkodzenia zarówno narzędzia, jak i samej śruby. Wkrętak torx zapewnia również lepszy moment obrotowy w porównaniu do standardowych wkrętaków, co pozwala na skuteczniejsze odkręcanie lub przykręcanie śrub. W zastosowaniach przemysłowych i technicznych, śruby torx są często preferowane ze względu na ich wytrzymałość i zdolność do przenoszenia większych obciążeń. Dobór odpowiedniego narzędzia jest kluczowy dla efektywności prac montażowych czy serwisowych, a stosowanie wkrętaka torx w przypadku śrub tego typu jest zgodne z branżowymi standardami, co wpływa na jakość i bezpieczeństwo wykonywanych prac.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Aby możliwa była prawidłowa praca pompy membranowej przedstawionej na rysunku do zasilania, należy zastosować

Ilustracja do pytania
A. sprężarkę ze zbiornikiem na sprężone powietrze.
B. zasilacz elektryczny napięcia stałego.
C. przemiennik częstotliwości.
D. zasilacz hydrauliczny.
Użycie przemiennika częstotliwości do zasilania pompy membranowej to niezła pomyłka, chyba nie do końca rozumiesz, o co w tym chodzi. Przemiennik częstotliwości służy przede wszystkim do regulacji prędkości silników elektrycznych, a w przypadku pomp elektrycznych to ma sens, ale nie przy pneumatycznych. Zasilacz elektryczny napięcia stałego? To też nie to, bo pompy membranowe potrzebują sprężonego powietrza, a nie energii elektrycznej. To prowadzi do nieefektywności i problemów z działaniem. A zasilacz hydrauliczny? Totalnie błędny wybór, bo to dotyczy systemów hydraulicznych, a pompy pneumatyczne działają zupełnie inaczej. Tak naprawdę, nie możesz zasilać pompy membranowej z układów hydraulicznych, bo one pracują na sprężonym powietrzu, a nie na cieczy hydraulicznej. Jak wybierzesz złe źródło zasilania, to może to prowadzić do uszkodzeń czy zwiększenia kosztów działania. Dlatego warto zrozumieć, jak to wszystko działa i dostosować systemy do ich wymagań.

Pytanie 40

Które elementy przedstawiono na rysunku?

Ilustracja do pytania
A. Akumulatory hydrauliczne.
B. Pojemniki na sprężone powietrze.
C. Sondy pomiarowe.
D. Obciążniki do układów hydraulicznych.
Akumulatory hydrauliczne to naprawdę ważne elementy w różnych układach hydraulicznych. Działają jak magazyny energii, przechowując ciecz pod ciśnieniem. Ich główna rola to kompensowanie wahań ciśnienia, co pomaga utrzymać stabilną pracę całego systemu. W praktyce używa się ich często w maszynach budowlanych, takich jak dźwigi czy koparki, gdzie szybkie zarządzanie energią ma kluczowe znaczenie. Poza tym, te akumulatory pomagają tłumić pulsacje, co chroni przed uszkodzeniami i poprawia komfort pracy. Z tego co pamiętam, standardy takie jak ISO 4413 zwracają uwagę na ich znaczenie dla bezpieczeństwa i efektywności systemów hydraulicznych. Akumulatory mogą też pełnić rolę awaryjną, dostarczając energię, gdy ciśnienie nagle spada. To naprawdę istotne dla niezawodności całego układu.