Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 11 grudnia 2025 22:01
  • Data zakończenia: 11 grudnia 2025 22:07

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakiego narzędzia należy użyć, aby zidentyfikować instrukcję, która wywołuje nieprawidłowe działanie programu?

A. Deasemblerem
B. Kompilatorem
C. Asemblerem
D. Debuggerem
Debugger to naprawdę przydatne narzędzie dla programistów, bo pozwala im dokładnie śledzić, co się dzieje w kodzie. Jego główną funkcją jest to, że można zobaczyć, jak program działa krok po kroku, co bardzo pomaga w zrozumieniu zmian w zmiennych i logice aplikacji. Na przykład, gdy coś nie działa jak powinno albo występuje błąd, można wstrzymać program w danym momencie, żeby sprawdzić, co poszło nie tak. Programista ma wtedy możliwość zbadać wartości zmiennych, zobaczyć, które instrukcje już się wykonały i gdzie leży problem. To bardzo cenne w pracy, bo pozwala na szybsze znalezienie błędów i ich naprawę, co jest zgodne z tym, co mówią najlepsi w branży – testowanie i debugowanie kodu to klucz do sukcesu. Używając debuggera, można również ustawić punkty przerwania, które zatrzymują działanie programu w określonym miejscu. Dzięki temu łatwiej jest znaleźć problemy, szczególnie w bardziej skomplikowanych aplikacjach.

Pytanie 2

Jaką z poniższych czynności konserwacyjnych można przeprowadzić podczas pracy silnika prądu stałego?

A. Zmierzyć prędkość obrotową metodą stroboskopową
B. Przeczyścić elementy wirujące silnika za pomocą odpowiednich środków
C. Zamienić szczotki komutatora
D. Oczyścić łopatki wentylatora
Wyczyścić łopatki wentylatora, wymienić szczotki komutatora oraz przeczyścić elementy wirujące silnika to działania konserwacyjne, które w większości przypadków powinny być przeprowadzane tylko po wyłączeniu silnika. Wykonywanie takich zabiegów podczas jego pracy stwarza niebezpieczeństwo zarówno dla technika, jak i dla samego urządzenia. Bezpośrednia interwencja w mechanizm silnika, jak wymiana szczotek komutatora, wiąże się z ryzykiem zwarcia elektrycznego oraz uszkodzenia elementów silnika, które są w ruchu. Dodatkowo, czyszczenie wirników może prowadzić do niekontrolowanego usunięcia elementów, które mogą wpłynąć na równowagę i stabilność pracy silnika. Stosowanie niewłaściwych metod konserwacji może również prowadzić do degradacji sprzętu i obniżenia wydajności energetycznej. W każdym przypadku, kluczowe jest przestrzeganie zasad bezpieczeństwa oraz procedur producenta, co powinno być fundamentem wszelkich działań konserwacyjnych. Zrozumienie różnicy między działaniami, które można wykonać w trakcie pracy urządzenia a tymi, które wymagają zatrzymania silnika, jest esencjonalne dla optymalizacji procesów konserwacyjnych i zapewnienia długoterminowej sprawności silników prądu stałego.

Pytanie 3

Jakie powinno być natężenie przepływu oleju dla silnika hydraulicznego o pojemności jednostkowej 5 cm3/obr., aby wałek wyjściowy osiągnął prędkość 1200 obr./min?

A. 6,0 dm3/min
B. 0,1 dm3/min
C. 1,2 dm3/min
D. 0,6 dm3/min
Wybór niewłaściwej odpowiedzi na to pytanie może wynikać z kilku typowych błędów myślowych, które często pojawiają się podczas analizy problemów związanych z przepływem oleju w silnikach hydraulicznych. Na przykład, odpowiedzi wskazujące na 1,2 dm3/min, 0,6 dm3/min oraz 0,1 dm3/min mogą wynikać z nieprawidłowego zrozumienia zależności między prędkością obrotową a chłonnością jednostkową. Często zdarza się, że osoby przyjmują zbyt niskie wartości, ignorując fakt, że każdy obrót wymaga określonej ilości oleju. Podczas obliczeń warto pamiętać, że chłonność jednostkowa oznacza, ile oleju silnik potrzebuje na jeden obrót, a nie na całą prędkość obrotową. Z tego powodu wszystkie niskie wartości są mylące, ponieważ nie uwzględniają one rzeczywistego zapotrzebowania na olej przy tak wysokiej prędkości. Kolejnym błędem może być nieprawidłowe przeliczenie jednostek, co również może prowadzić do zaniżenia wartości przepływu. W praktyce hydraulicznej kluczowe jest nie tylko zrozumienie teorii, ale również umiejętność zastosowania jej w rzeczywistych obliczeniach, co ma zasadnicze znaczenie w kontekście projektowania i eksploatacji systemów hydraulicznych, gdzie precyzja wydajności ma bezpośredni wpływ na sprawność oraz żywotność urządzeń.

Pytanie 4

Jakie polecenie w środowisku programowania sterowników PLC pozwala na przesłanie programu z urządzenia do komputera?

A. Download
B. Chart Status
C. Upload
D. Single Read
Polecenie Upload jest kluczowym elementem pracy z programowalnymi sterownikami logicznymi (PLC) i pozwala na przesyłanie programu z urządzenia do komputera. Dzięki temu inżynierowie mają możliwość archiwizacji, analizy i modyfikacji programów, co jest niezbędne w kontekście efektywnego zarządzania systemami automatyki. Przykładowo, w przypadku konieczności aktualizacji programu, operator może przesłać aktualną wersję na komputer, aby zachować wszelkie wprowadzone zmiany w bezpiecznym miejscu. Również w sytuacjach awaryjnych, gdy nastąpią nieprawidłowości w działaniu maszyny, przesyłanie programu może umożliwić szybszą diagnozę problemu. Zgodnie z dobrymi praktykami branżowymi, regularne wykonywanie operacji Upload jest niezbędne do zapewnienia bezpieczeństwa i niezawodności systemów automatyki, umożliwiając powrót do stabilnych wersji oprogramowania oraz umożliwiając zespołom inżynierskim analizowanie rozwoju projektu.

Pytanie 5

Jaką czynność projektową można uznać za niemożliwą do zrealizowania w programie CAM?

A. Przygotowania dokumentacji technologicznej produktu
B. Realizowania symulacji obróbki elementu w środowisku wirtualnym
C. Przygotowania instrukcji (G-CODE) dla urządzeń Rapid Prototyping
D. Stworzenia kodu dla maszyny CNC
Opracowanie dokumentacji technologicznej wyrobu jest procesem, który zazwyczaj wymaga zastosowania oprogramowania CAD (Computer-Aided Design). Oprogramowanie CAM (Computer-Aided Manufacturing) jest natomiast skoncentrowane na aspektach produkcji, takich jak generowanie kodów maszynowych dla obrabiarek CNC oraz symulacja procesów obróbczych. Przy pomocy CAM można efektywnie przygotować programy do obróbki, co jest kluczowe w zautomatyzowanej produkcji. Przykładem praktycznym może być wykorzystanie oprogramowania CAM do zaprogramowania maszyny CNC w celu wytworzenia konkretnego detalu, co pozwala na precyzyjnie zdefiniowane operacje, ich czas i sekwencję. Dzięki symulacjom można również przewidzieć ewentualne problemy przed rozpoczęciem rzeczywistej produkcji, co znacznie zwiększa wydajność i redukuje koszty. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie dokumentacji w procesach technologicznych, jednak nie obejmują one działań związanych z przygotowaniem szczegółowej dokumentacji wyrobu, które są domeną CAD.

Pytanie 6

W systemie mechatronicznym planowane jest użycie sieci polowej AS-i w wersji 2.0. Jaką maksymalną ilość urządzeń podrzędnych jedno urządzenie główne (master) może obsługiwać?

A. 64 urządzenia
B. 32 urządzenia
C. 24 urządzenia
D. 31 urządzeń
Odpowiedź 31 urządzeń jest prawidłowa, ponieważ standard AS-i w wersji 2.0 rzeczywiście pozwala na podłączenie maksymalnie 31 urządzeń podporządkowanych do jednego urządzenia nadrzędnego (master). Taki system jest powszechnie stosowany w automatyce przemysłowej, gdzie istnieje potrzeba efektywnego zarządzania dużą liczbą elementów wykonawczych i czujników. W praktyce, to oznacza, że jedno urządzenie master może obsługiwać różnorodne aplikacje, takie jak kontrola oświetlenia, monitorowanie procesów czy zarządzanie napędami. Ponadto, standard AS-i zapewnia łatwość konfiguracji i integracji z innymi systemami automatyki, co czyni go popularnym wyborem w złożonych instalacjach. Zrozumienie możliwości sieci AS-i oraz jej ograniczeń jest kluczowe dla inżynierów, projektantów systemów i techników zajmujących się automatyzacją, aby móc skutecznie projektować i wdrażać rozwiązania w różnych warunkach przemysłowych.

Pytanie 7

Modulacja PWM (Pulse-Width Modulation), wykorzystywana w elektrycznych impulsowych systemach sterowania i regulacji, polega na modyfikacji

A. szerokości sygnału.
B. amplitudy sygnału.
C. fazy sygnału.
D. częstotliwości sygnału.
Wybór odpowiedzi dotyczącej amplitudy impulsu, częstotliwości impulsu lub fazy impulsu odzwierciedla pewne nieporozumienia dotyczące zasad działania modulacji PWM. Modulacja amplitudy polega na zmianie wysokości impulsów w sygnale, co jest zupełnie inną techniką, która nie zapewnia taką samą efektywność w regulacji mocy. Z kolei modulacja częstotliwości polega na zmianie liczby impulsów w jednostce czasu, co również nie odpowiada idei PWM, gdzie kluczowe jest zachowanie stałej częstotliwości i zmiana szerokości impulsów. Wybór fazy impulsu mógłby sugerować, że modulacja polega na synchronizacji impulsów, co w kontekście PWM również jest błędne. Zrozumienie różnicy między tymi koncepcjami jest kluczowe: PWM polega na regulacji wypełnienia impulsów, a nie ich amplitudy, częstotliwości czy fazy. Te błędne odpowiedzi mogą wynikać z mylnego utożsamiania różnych technik modulacji, co jest częstym problemem w nauce o elektronice. Aby unikać takich błędów, warto zwrócić uwagę na konkretne definicje i zastosowania każdej z tych metod w praktyce.

Pytanie 8

Urządzenia mechatroniczne, które jako napędy wykorzystują silniki komutatorowe, nie powinny być stosowane w

A. pomieszczeniach narażonych na wybuch
B. pomieszczeniach z klimatyzacją
C. pomieszczeniach o niskich temperaturach
D. zadaszonej hali produkcyjnej
Silniki komutatorowe są powszechnie stosowane w aplikacjach mechatronicznych, jednak ich użycie w pomieszczeniach zagrożonych wybuchem jest niebezpieczne. Generowane przez nie iskry mogą stanowić bezpośrednie źródło zapłonu w obecności łatwopalnych gazów i pyłów, co jest zgodne z normami bezpieczeństwa, takimi jak ATEX (Dyrektywa Unii Europejskiej dotycząca sprzętu przeznaczonego do pracy w atmosferze wybuchowej). W praktyce, w takich środowiskach wybiera się silniki bezkomutatorowe lub inne konstrukcje zabezpieczone przed wybuchem, co minimalizuje ryzyko zapłonu. Warto zwrócić uwagę, że w przemyśle chemicznym, naftowym czy gazowym, użycie odpowiednich silników zgodnych z normami IECEx jest kluczowe dla zapewnienia bezpieczeństwa operacji. Prawidłowy dobór urządzeń napędowych w tych warunkach nie tylko spełnia wymogi prawne, ale także zabezpiecza ludzi i mienie przed poważnymi zagrożeniami.

Pytanie 9

Aby prawidłowo zidentyfikować element wykonawczy na schemacie instalacji pneumatycznej, należy podać numer elementu oraz użyć odpowiadającego mu symbolu literowego

A. A
B. Z
C. V
D. S
Wybór niewłaściwego symbolu literowego do opisu elementu wykonawczego w układzie pneumatycznym może prowadzić do poważnych nieporozumień oraz błędów w projektowaniu i eksploatacji systemu. Symbole literowe są standardem w inżynierii pneumatycznej, a ich stosowanie ma na celu ułatwienie komunikacji pomiędzy inżynierami, technikami oraz innymi uczestnikami procesu projektowania. W przypadku odpowiedzi S, V czy Z, istnieje ryzyko, że użytkownik myli zastosowanie tych symboli. Symbol 'S' zazwyczaj odnosi się do elementów związanych z regulacją ciśnienia, takich jak zawory sterujące, co nie jest odpowiednie w przypadku elementu wykonawczego. Symbol 'V' jest często używany do oznaczania zaworów, a 'Z' może być mylony z różnymi innymi komponentami w zamkniętym obiegu pneumatycznym. Tego rodzaju błędy mogą prowadzić do nieprawidłowego działania całego systemu, a także do trudności w identyfikacji i lokalizacji usterek. Kluczowe jest, aby inżynierowie i technicy byli dobrze zaznajomieni z odpowiednimi symbolami oraz ich zastosowaniem zgodnie z obowiązującymi normami branżowymi, takimi jak ISO 1219. Zrozumienie i stosowanie odpowiednich symboli jest fundamentem skutecznej komunikacji technicznej oraz zapewnienia sprawności operacyjnej układów pneumatycznych.

Pytanie 10

Jaki program służy do gromadzenia informacji o procesie przemysłowym, ich przedstawiania oraz archiwizacji?

A. SCADA
B. CAD/CAM
C. Linker
D. Kompilator
SCADA, czyli System Control and Data Acquisition, to kluczowy program używany w przemyśle do zbierania, monitorowania oraz archiwizacji danych procesowych. Dzięki SCADA operatorzy mogą uzyskiwać w czasie rzeczywistym informacje na temat pracy maszyn oraz efektywności procesów przemysłowych. System ten umożliwia wizualizację danych w formie graficznych interfejsów, co ułatwia identyfikację problemów i szybką reakcję na nie. Przykładem zastosowania SCADA może być zarządzanie systemem wodociągowym, gdzie program monitoruje ciśnienie, przepływ wody oraz stan zbiorników. Standardy takie jak ISA-95 czy ISA-88 definiują ramy, w których SCADA operuje, co zapewnia interoperacyjność z innymi systemami automatyki przemysłowej. Wiele nowoczesnych instalacji przemysłowych korzysta z SCADA, aby zwiększyć efektywność operacyjną, poprawić jakość produkcji oraz zminimalizować przestoje, co przekłada się na oszczędności finansowe i lepszą jakość produktów.

Pytanie 11

Jakiego typu czujnik powinno się użyć do pomiaru masy?

A. Triangulacyjny
B. Optyczny
C. Pojemnościowy
D. Tensometryczny
Wybór czujników, które nie nadają się do pomiaru masy, to często skutek tego, że nie za bardzo rozumiemy, jak one działają. Na przykład czujniki triangulacyjne służą do mierzenia odległości, więc nadają się bardziej do lokalizacji obiektów niż do ważeń. Używanie ich do pomiaru masy to błąd, bo one nie potrafią przetwarzać sił działających na przedmioty. Czujniki optyczne z kolei opierają się na analizie światła i są fajne do wykrywania obiektów, ale jeśli chodzi o wagę, to nie mają większego sensu. Tak samo czujniki pojemnościowe, które działają na zmianach pojemności elektrycznej, są używane w innych przypadkach, jak na przykład w ekranach dotykowych, ale nie w pomiarze masy. Użycie złego czujnika może naprawdę źle wpłynąć na pomiary, co potem przekłada się na jakość produkcji i ogólną efektywność. Warto zrozumieć, że każdy czujnik ma swoje konkretne przeznaczenie i powinien być zgodny z zasadami fizyki oraz wymaganiami danego pomiaru. Ignorowanie tego może prowadzić do różnych pomyłek, które kosztują czas i pieniądze.

Pytanie 12

Jakie ciśnienie powinno być zastosowane do przeprowadzenia testu szczelności systemu hydraulicznego?

A. Maksymalnym ciśnieniu, które występuje w trakcie pracy
B. Większym o 10% od ciśnienia roboczego
C. Ciśnieniu testowemu 6 bar
D. Mniejszym od maksymalnego ciśnienia, które występuje w trakcie pracy o 50%
Wybór ciśnienia próbnego na poziomie 6 bar jest niewłaściwy, ponieważ nie uwzględnia specyfiki konkretnego układu hydraulicznego. Takie podejście może prowadzić do błędnych wniosków dotyczących szczelności, zwłaszcza w aplikacjach, gdzie standardowe ciśnienie robocze przekracza tę wartość. Bezwzględne poleganie na wartości ciśnienia próbnego, które nie jest oparte na maksymalnym ciśnieniu roboczym, może prowadzić do zjawiska, w którym układ wydaje się sprawny, mimo że nie jest w stanie wytrzymać rzeczywistych warunków pracy. Odpowiedź sugerująca zwiększenie ciśnienia o 10% może wydawać się logiczna, jednak nie zapewnia żadnej gwarancji, że układ będzie w stanie poradzić sobie z maksymalnym ciśnieniem, które występuje w czasie eksploatacji. Ponadto, maksymalne ciśnienie robocze ma kluczowe znaczenie dla oceny integralności układów hydraulicznych, co jest zgodne z najlepszymi praktykami w branży. Ustalanie próbnej wartości ciśnienia mniejszej o 50% od maksymalnego ciśnienia roboczego jest również błędne, ponieważ nie daje pełnego obrazu potencjalnych problemów z nieszczelnościami, które mogą wystąpić w rzeczywistych warunkach pracy. W związku z tym, niewłaściwe dobranie ciśnienia próbnego może prowadzić do niezgodności z normami bezpieczeństwa oraz niebezpiecznych sytuacji w trakcie użytkowania układów hydraulicznych.

Pytanie 13

Jakiego czujnika powinno się użyć w systemie pomiarowym do określenia naprężeń mechanicznych?

A. Wiskozymetr
B. Rotametr
C. Tensometr
D. Pirometr
Wybór niewłaściwego czujnika do pomiaru naprężeń mechanicznych może prowadzić do błędnych wniosków oraz zagrożeń w praktycznych zastosowaniach. Rotametr, który jest odpowiedzialny za pomiar przepływu cieczy lub gazów, nie ma zastosowania w kontekście pomiaru naprężeń. Przykładowo, zastosowanie rotametru w sytuacji, gdzie wymagane jest monitorowanie naprężeń, może skutkować nieprawidłowym oszacowaniem wytrzymałości materiału, co w konsekwencji może prowadzić do awarii konstrukcji. Wiskozymetr, z kolei, służy do określania lepkości płynów, co jest zupełnie inną dziedziną pomiarową. Jego użycie w kontekście naprężeń mechanicznych jest błędne, ponieważ nie dostarcza informacji o odkształceniach czy siłach działających na materiał. Pirometr, natomiast, ma zastosowanie w pomiarze temperatury, co również jest dalekie od tematu pomiaru naprężeń. Użycie pirometru w tej sytuacji może prowadzić do mylnych interpretacji, zwłaszcza w kontekście materiałów, które zmieniają swoje właściwości pod wpływem zmiany temperatury. Kluczowym błędem w myśleniu jest nieodróżnianie czujników o różnych przeznaczeniach; każdy z nich ma swoją specyfikę i należy je stosować zgodnie z ich funkcją, aby zapewnić prawidłowe wyniki oraz bezpieczeństwo w zastosowaniach inżynieryjnych.

Pytanie 14

Które polecenie umożliwi przeniesienie programu z komputera do sterownika PLC?

A. Erase Memory
B. Download
C. Upload
D. Write
Operacja 'Download' jest kluczowym procesem w programowaniu sterowników PLC, ponieważ umożliwia przesłanie zdefiniowanego programu z komputera do pamięci sterownika. W kontekście automatyki przemysłowej, połączenie komputera z PLC zazwyczaj odbywa się za pomocą interfejsów komunikacyjnych, takich jak Ethernet, RS-232 czy USB. Proces ten może obejmować różne etapy, w tym kompilację kodu źródłowego w programie inżynierskim, co jest standardową praktyką. Operatorzy muszą być świadomi, że po zakończeniu programowania i przetestowaniu logiki na symulatorze, bezpośrednie przesłanie programu do PLC jest kluczowe do wdrożenia rozwiązań automatyzacyjnych w rzeczywistym środowisku. Dobry program inżynierski będzie zawierał również funkcje walidacji, aby upewnić się, że przesyłany kod jest zgodny z wymaganiami systemu. Warto również dodać, że po dokonaniu operacji 'Download', użytkownik powinien monitorować działanie PLC, aby upewnić się, że program działa zgodnie z założeniami operacyjnymi. Zrozumienie tego procesu to fundament skutecznego zarządzania systemami automatyzacji.

Pytanie 15

Jakiej z wymienionych aktywności nie powinien wykonywać operator pras hydraulicznych sterowanych przez sterownik PLC?

A. Weryfikować stan osłon urządzenia
B. Uruchamiać programu sterującego
C. Modernizować urządzenia
D. Konfigurować parametrów urządzenia
Poprawna odpowiedź to "modernizować urządzenia". Pracownik obsługujący prasę hydrauliczną sterowaną za pośrednictwem sterownika PLC nie powinien podejmować się modernizacji tych urządzeń, ponieważ działania te wymagają specjalistycznej wiedzy i umiejętności, które posiadają jedynie wykwalifikowani inżynierowie lub technicy zajmujący się modernizacją maszyn. Zmiany w konstrukcji lub oprogramowaniu mogą mieć istotny wpływ na bezpieczeństwo i funkcjonowanie całego systemu. Dlatego zgodnie z normami branżowymi, takimi jak ISO 12100, które dotyczą bezpieczeństwa maszyn, wszelkie modyfikacje powinny być przeprowadzane przez osoby posiadające odpowiednie kwalifikacje. Tego rodzaju zmiany mogą obejmować aktualizacje oprogramowania sterującego, co jest kluczowe dla poprawy wydajności oraz funkcjonalności maszyny. Odpowiedzialne podejście do takich działań pomaga w minimalizacji ryzyka awarii oraz zapewnienia ciągłości produkcji.

Pytanie 16

Który z elektrycznych silników ma następujące parametry znamionowe: ∆/Y 230/400 V; 2/1,15 A; 0,37 kW; cosφ 0,71; 1350 min-1?

A. Silnik szeregowy prądu stałego
B. Silnik skokowy z wirnikiem czynnym
C. Silnik klatkowy prądu przemiennego
D. Silnik synchroniczny prądu przemiennego
Silnik klatkowy prądu przemiennego to naprawdę popularny wybór w przemyśle. Jest prosty w obsłudze, niezawodny i nie kosztuje wiele w eksploatacji. Z tego, co widzę, podane dane, czyli napięcie 230/400 V, prąd 2/1,15 A, moc 0,37 kW oraz prędkość obrotowa 1350 min⁻¹, świetnie pasują do standardowych parametrów tego typu silników. Zazwyczaj zasilane są z sieci trójfazowej, co pozwala im działać wydajnie, mimo że nie są duże. Widziałem je w akcji w różnych sprzętach, jak pompy, wentylatory czy kompresory, które potrzebują stałej prędkości. Dlatego ważne jest, aby znać te parametry i umieć je interpretować, bo to pomaga dobrać odpowiedni silnik do konkretnego zadania. To z kolei wpływa na efektywność i oszczędność energii. Pamiętaj też o cos φ, współczynniku mocy, który powinien wynosić przynajmniej 0,7, żeby wykorzystanie energii elektrycznej było efektywne.

Pytanie 17

Jaką z podanych zależności logicznych należy uwzględnić w programie kontrolnym, aby można było każdorazowo sygnalizować aktywność tylko jednego z trzech czujników podłączonych do kolejnych wejść sterownika?

A. Koniunkcję
B. Alternatywę
C. Alternatywę wykluczającą
D. Równowartość
Zrozumienie logiki, która rządzi działaniem sensorów, jest kluczowe dla projektowania efektywnych systemów sterowniczych, jednak niektóre koncepcje mogą wydawać się mylące. Koniunkcja, jako logiczna operacja, wskazuje na sytuację, w której wszystkie warunki muszą być spełnione jednocześnie. W kontekście sensorów, oznaczałoby to, że wszystkie sensory muszą być aktywne, co jest sprzeczne z wymaganiem, by zasygnalizować tylko jeden z sensorów. Takie podejście prowadzi do sytuacji, w której nie jesteśmy w stanie zidentyfikować, który sensor powinien zasygnalizować zadziałanie, co jest sprzeczne z podstawowym założeniem tego pytania. Równowartość z kolei, która jest stosowana do porównywania dwóch wyrażeń, również nie jest odpowiednia w naszym przypadku, ponieważ nie możemy porównywać statusu sensorów w sposób, który pozwoli na ich jednoznaczne rozróżnienie. Wprowadzenie alternatywy w tej sytuacji może wydawać się kuszące, jednak prowadzi to do możliwości aktywacji wielu sensorów w tym samym czasie, co jest niepożądane. Tego typu błędy myślowe wynikają z niepełnego zrozumienia zasad logiki boolowskiej oraz ich praktycznych zastosowań w systemach automatyki. Kluczowe jest zatem, aby w projektowaniu systemów sterowniczych priorytetowo traktować alternatywę wykluczającą, która skutecznie eliminuje ryzyko jednoczesnego aktywowania więcej niż jednego sensora.

Pytanie 18

Jakie ciśnienie powietrza powinno panować w komorze siłownika jednostronnego działania o powierzchni tłoka A = 0,005 m2 oraz sprawności η = 0,7, aby siła przenoszona przez tłoczysko wynosiła F = 2100 N? (F = η· p · A)

A. 6 bar
B. 7 bar
C. 8 bar
D. 5 bar
Odpowiedź 6 bar jest poprawna, ponieważ zgodnie z równaniem F = η·p·A możemy obliczyć ciśnienie powietrza w komorze siłownika. W naszym przypadku mamy siłę F równą 2100 N, sprawność η równą 0,7 oraz powierzchnię tłoka A równą 0,005 m². Podstawiając te wartości do wzoru, otrzymujemy p = F / (η·A) = 2100 N / (0,7·0,005 m²) = 6 bar. Dzięki tym obliczeniom możemy stwierdzić, że ciśnienie 6 bar jest wystarczające do przeniesienia zadanego obciążenia. Takie obliczenia są kluczowe w projektowaniu układów hydraulicznych, gdzie precyzyjne oszacowanie ciśnienia roboczego pozwala na zapewnienie efektywności oraz bezpieczeństwa działania siłowników. W praktyce, odpowiednie ciśnienie ma wpływ na dynamikę ruchu oraz na żywotność komponentów systemu, a także na oszczędność energii.

Pytanie 19

Jakiego typu wyjście powinien mieć sterownik PLC, aby w systemie sterowania wykorzystującym ten sterownik możliwa była modulacja szerokości impulsu – PWM?

A. Analogowe napięciowe
B. Binarne przekaźnikowe
C. Analogowe prądowe
D. Binarne tranzystorowe
Wybór niewłaściwego typu wyjścia w kontekście modulacji szerokości impulsu (PWM) wynika często z niepełnego zrozumienia zasad działania różnych typów wyjść w sterownikach PLC. Wyjścia binarne przekaźnikowe, mimo że są popularne w wielu zastosowaniach, mają ograniczenia w kontekście szybkości przełączania i precyzji kontroli czasu trwania impulsu. Przekaźniki mechaniczne mogą wolno reagować na sygnały, co powoduje problemy z generowaniem prawidłowego sygnału PWM, który wymaga bardzo szybkich zmian stanu. Z kolei wyjścia analogowe prądowe i napięciowe, mimo że mogą wykorzystywać sygnały analogowe do regulacji, nie są przeznaczone do generowania sygnałów PWM, które bazują na cyklicznych zmianach stanu „włączony-wyłączony”. Typowe błędy myślowe prowadzą do mylenia sygnałów analogowych z cyfrowymi. PWM jest techniką cyfrową, co oznacza, że wymaga wyjść, które mogą włączanie i wyłączanie w odpowiednich odstępach czasu, co jest możliwe tylko w przypadku wyjść binarnych tranzystorowych. W praktyce, zrozumienie tych różnic jest kluczowe dla prawidłowego projektowania systemów automatyki, a ignorowanie tych zasad może prowadzić do nieefektywności w działaniu układu oraz trudności w jego dalszej diagnostyce i serwisowaniu.

Pytanie 20

Jaką metodę pomiaru zastosowano w celu zmierzenia temperatury pracy urządzenia mechatronicznego, przy użyciu elementu pomiarowego Pt100?

A. Bezkontaktową termowizyjną
B. Bezkontaktową pirometryczną
C. Kontaktową termoelektryczną
D. Kontaktową rezystancyjną
Wybór nieprawidłowej metody pomiaru może prowadzić do wielu błędów w interpretacji danych dotyczących temperatury. Odpowiedzi związane z metodami termoelektrycznymi, takie jak kontaktowa termoelektryczna i bezkontaktowa termoelektryczna, opierają się na zasadzie wykorzystania zjawiska Seebecka, które polega na generowaniu napięcia w wyniku różnicy temperatur między dwoma różnymi metalami. W przypadku urządzeń mechatronicznych, które wymagają stałego monitorowania temperatury, ta metoda może być mniej precyzyjna, zwłaszcza gdy źródło ciepła jest niestabilne. Metody bezkontaktowe, jak termowizyjna czy pirometryczna, są przydatne w sytuacjach, gdzie nie można zastosować czujników kontaktowych, jednak w kontekście pomiaru temperatury urządzeń mechatronicznych mogą prowadzić do błędnych wyników z powodu odbicia ciepła, promieniowania oraz otoczenia, w którym wykonywany jest pomiar. W kontekście standardów przemysłowych, pomiar kontaktowy zapewnia wyższą dokładność i mniejsze ryzyko błędów, co czyni go bardziej odpowiednim w zastosowaniach wymagających precyzyjnego monitorowania temperatury. Dlatego ważne jest, aby zrozumieć różnice między tymi metodami i odpowiednio dobierać je do specyfikacji danego zadania pomiarowego.

Pytanie 21

Jaką rozdzielczość ma przetwornik A/C o 10-bitowej głębokości w sterowniku PLC, gdy zakres pomiarowy wynosi 0÷10 V?

A. 49,4 mV/bit
B. 1,1 mV/bit
C. 100,5 mV/bit
D. 9,8 mV/bit
Wybrane odpowiedzi, takie jak 49,4 mV/bit, 1,1 mV/bit oraz 100,5 mV/bit, są błędne i wynikają z różnych nieporozumień dotyczących sposobu obliczania rozdzielczości przetwornika A/C. Odpowiedź 49,4 mV/bit sugeruje, że zakładano inny zakres pomiarowy, co jest nieprawidłowe, ponieważ dla 10 V i 10 bitów rozdzielczość powinna wynosić 9,8 mV/bit. Z kolei odpowiedź 1,1 mV/bit może sugerować mylne założenie o znacznie większej liczbie bitów lub innej wartości zakresu, co jest technicznie niepoprawne. Odpowiedź 100,5 mV/bit ukazuje błędne zrozumienie zasad dotyczących konwersji analogowo-cyfrowej, gdzie ignoruje się istotny wpływ liczby bitów na podział zakresu. Typowe błędy myślowe obejmują nieuwzględnienie podstawowych zasad matematyki dotyczących potęg oraz niewłaściwe rozumienie, jak zakres pomiarowy wpływa na rozdzielczość. Zrozumienie tego zagadnienia jest kluczowe, ponieważ niewłaściwa interpretacja wyników pomiarów prowadzi do błędnych decyzji w projektowaniu systemów automatyki, co może wpłynąć na całkowitą efektywność i bezpieczeństwo operacji przemysłowych.

Pytanie 22

Oprogramowanie komputerowe, które monitoruje procesy w systemach i posiada kluczowe funkcje takie jak gromadzenie, wizualizacja oraz archiwizacja danych, a także alarmowanie i kontrolowanie przebiegu procesu, to oprogramowanie

A. SCADA
B. CAM
C. CAD
D. CNC
Oprogramowanie SCADA (Supervisory Control and Data Acquisition) jest kluczowym narzędziem w nowoczesnych systemach automatyki przemysłowej. Jego główną funkcją jest nadzorowanie i zarządzanie procesami przemysłowymi poprzez zbieranie, wizualizację i archiwizację danych w czasie rzeczywistym. SCADA umożliwia operatorom monitorowanie różnych parametrów procesów, takich jak temperatura, ciśnienie czy poziom substancji, co pozwala na szybkie podejmowanie decyzji oraz reagowanie na potencjalne awarie. Przykłady zastosowania SCADA obejmują przemysł energetyczny, wodociągi, zakłady chemiczne oraz produkcję. Dzięki integracji z systemami alarmowymi, SCADA informuje o nieprawidłowościach i niebezpieczeństwach, umożliwiając automatyczne lub manualne korekty w czasie rzeczywistym. Warto również zwrócić uwagę, że zgodność z międzynarodowymi standardami, takimi jak ISA-95, zapewnia interoperacyjność i skuteczność systemów SCADA w złożonych środowiskach przemysłowych.

Pytanie 23

Rozpoczynając konserwację instalacji światłowodowej, co należy wykonać w pierwszej kolejności?

A. podłączyć reflektometr
B. podłączyć mikroskop ręczny z monitorem LCD
C. zajrzeć do otworu z wiązką lasera w modemie
D. zajrzeć do otworu z wiązką lasera w kablu
Odpowiedzi, które sugerują, żeby patrzeć w otwór ze światłem lasera w modemie lub kablu, a także podłączać reflektometr, nie są najlepsze na początek konserwacji instalacji światłowodowej. Patrzenie w otwór lasera, zarówno w modemie, jak i w kablu, wcale nie mówi nic o stanie włókien światłowodowych. Poza tym, promieniowanie lasera jest niebezpieczne dla wzroku i nie powinno być traktowane jako metoda inspekcji. Reflektometr to ważne narzędzie, ale używa się go do pomiarów po tym, jak zrobimy inspekcję wizualną. Łączenie reflektometru bez wcześniejszej oceny wizualnej prowadzi do błędnych wniosków, bo problemy jak zanieczyszczenia czy uszkodzenia nie będą od razu widoczne w wynikach pomiarów. W praktyce, konserwacja powinna zaczynać się od inspekcji wizualnej, co jest zgodne z normami branżowymi. Takie podejście może prowadzić do nieefektywnej diagnostyki i zbędnych wydatków, co stawia techników i operatorów w trudnej sytuacji. Właściwe podejście do konserwacji nie tylko zwiększa efektywność pracy, ale też poprawia jakość usług, które dostawcy internetu oferują.

Pytanie 24

W trakcie konserwacji układu przekaźników, który jest zabezpieczony bezpiecznikiem topikowym, należy przeprowadzić inspekcję układu, oczyścić go oraz

A. wymienić przewody elektryczne w układzie i nałożyć cienką warstwę wazeliny na złącza
B. zweryfikować stan połączeń elektrycznych i stan izolacji podłączonych przewodów
C. przeanalizować jego działanie oraz skontrolować działanie bezpiecznika topikowego
D. pomalować obudowę farbą i skontrolować momenty dokręcania połączeń śrubowych
Wybór odpowiedzi zakładającej pomalowanie obudowy farbą czy sprawdzanie momentów dokręcenia połączeń śrubowych jest niewłaściwy, ponieważ te czynności nie należą do podstawowych działań konserwacyjnych układów elektrycznych. Pomalowanie obudowy może wprowadzać niepożądane zmiany w przewodnictwie cieplnym i elektrycznym, a także zasłonić ewentualne uszkodzenia, co może prowadzić do poważnych awarii. W kontekście konserwacji, kluczowe jest niezawodne połączenie przewodów oraz ich odpowiednia izolacja, co minimalizuje ryzyko zwarcia czy przegrzewania. Wymiana przewodów i pokrycie złączy wazeliną również budzi wątpliwości; wazelina może działać jako izolator, co w przypadku połączeń elektrycznych jest niepożądane. Takie działanie może prowadzić do nieprzewidywalnych reakcji chemicznych oraz degradacji materiałów, co może skutkować awarią całego układu. Sprawdzanie działania układu i bezpiecznika topikowego to niewłaściwe podejście, ponieważ nie eliminuje potencjalnych problemów związanych z uszkodzeniami izolacji i połączeń. W praktyce, kluczowe jest zrozumienie, że odpowiednia konserwacja to nie tylko diagnostyka, ale także zapewnienie, że wszystkie komponenty są w optymalnym stanie, co pozwoli na długotrwałą i bezawaryjną pracę systemów elektrycznych.

Pytanie 25

Podczas inspekcji zauważono zbyt głośną pracę silnika indukcyjnego pierścieniowego. Aby zredukować hałas, konieczna jest wymiana

A. łożysk tocznych
B. uszczelek pierścieniowych
C. pierścieni ślizgowych
D. sprężyn dociskających
Wybór pierścieni ślizgowych, uszczelek pierścieniowych czy sprężyn dociskających w kontekście nadmiernego hałasu silnika indukcyjnego pierścieniowego jest niewłaściwy, ponieważ te elementy nie mają bezpośredniego wpływu na generowanie hałasu w wyniku działania silnika. Pierścienie ślizgowe są stosowane w konstrukcjach, gdzie następuje kontakt z wirującymi częściami, ale ich funkcja polega na zapewnieniu odpowiedniej szczelności i nie wpływa na poziom hałasu wynikający z tarcia w łożyskach. Uszczelki pierścieniowe mają za zadanie zminimalizować wycieki oleju, lecz ich wymiana nie wpłynie na hałas generowany podczas pracy silnika. Natomiast sprężyny dociskające, które są stosowane w różnorodnych mechanizmach, nie mają związku z redukcją hałasu silnika indukcyjnego. Typowe błędy myślowe, jakie mogą pojawić się w tym kontekście, to mylenie roli poszczególnych elementów konstrukcyjnych silnika oraz bagatelizowanie znaczenia stanu technicznego łożysk. W praktyce, silnik z uszkodzonymi łożyskami będzie generował hałas nie tylko z powodu ich zużycia, ale także z powodu dodatkowego obciążenia innych elementów konstrukcji, co może prowadzić do ich szybszego uszkodzenia oraz podwyższonego zużycia energii.

Pytanie 26

Przegląd konserwacji napędów elektrycznych nie uwzględnia

A. sprawdzania napięć silnika
B. sprawdzania połączeń elektrycznych
C. czyszczenia żeber radiatorów
D. wymiany zabrudzonego komutatora wirnika
Wybrana przez Ciebie odpowiedź sugerująca, że przegląd konserwacyjny obejmuje wymianę zabrudzonego komutatora wirnika, pokazuje pewne nieporozumienie. Przegląd konserwacyjny ma na celu zapewnienie, że wszystko działa w optymalnych warunkach, a nie robienie dużych napraw, jak wymiana kluczowych części. Wymiana komutatora to proces dość skomplikowany, wymaga demontażu silnika, a nie prostej czynności jak czyszczenie radiatorów czy sprawdzanie napięć. Często można się spotkać z sytuacją, że osoby zajmujące się konserwacją mylnie myślą, że wymiana zużytych części powinna być częścią ich rutynowych zadań, co może prowadzić do marnotrawstwa czasu i zasobów. Dlatego warto dobrze wiedzieć, co naprawdę powinno się robić w ramach rutynowych przeglądów, a które zadania wymagają więcej przygotowania i specjalistycznej wiedzy.

Pytanie 27

Silniki komutatorowe jako urządzenia napędowe w urządzeniach mechatronicznych nie powinny być stosowane w

A. pomieszczeniach o niskiej temperaturze
B. pomieszczeniach klimatyzowanych
C. pomieszczeniach zagrożonych wybuchem
D. zadaszonej hali produkcyjnej
Silniki komutatorowe to urządzenia, które w procesie pracy generują łuk elektryczny. Ten zjawisko jest szczególnie niebezpieczne w warunkach, gdzie obecne są substancje łatwopalne lub wybuchowe. W pomieszczeniach zagrożonych wybuchem, takich jak te, w których magazynowane są gazy, opary palnych cieczy lub pyły, użycie silników komutatorowych może prowadzić do poważnych wypadków. Standardy i wytyczne, takie jak ATEX (dyrektywa Unii Europejskiej dotycząca urządzeń przeznaczonych do stosowania w atmosferach wybuchowych), jednoznacznie wskazują na konieczność stosowania alternatywnych napędów, które nie generują łuków elektrycznych. W praktyce w takich środowiskach zaleca się użycie silników bezkomutatorowych lub innych technologii, które eliminują ryzyko zapłonu. Dlatego ważne jest, aby projektanci i inżynierowie, którzy pracują w obszarach zagrożonych wybuchem, dokładnie przestrzegali norm i standardów bezpieczeństwa, aby zminimalizować ryzyko wypadków.

Pytanie 28

Jaki typ czujnika powinien być wykorzystany do nieprzerwanego pomiaru poziomu cieczy w zbiorniku?

A. Kontaktronowy
B. Indukcyjny
C. Optyczny
D. Ultradźwiękowy
Ultradźwiękowy czujnik poziomu cieczy to naprawdę dobry wybór do monitorowania poziomu w zbiornikach. Działa to na zasadzie emisji fal dźwiękowych, które odbijają się od powierzchni cieczy. Dzięki temu można na bieżąco określić, jak wysoki jest poziom cieczy. No i to daje bardzo dokładne i powtarzalne wyniki. Takie czujniki są stosowane w różnych branżach – od przemysłu chemicznego po oczyszczalnie ścieków, gdzie ważne jest, żeby wiedzieć, co się dzieje z poziomem cieczy na żywo. Fajnie, że są odporne na zmiany temperatury i ciśnienia, co sprawia, że są niezawodne w różnych warunkach. Użycie ultradźwiękowych czujników to coś, co każdy powinien brać pod uwagę, bo precyzyjne pomiary są przecież kluczowe dla efektywności i bezpieczeństwa w przemyśle.

Pytanie 29

Zmierzyliśmy rezystancję pomiędzy czterema końcówkami 1, 2, 3, 4 uzwojeń transformatora napięcia 230 V/24 V i otrzymaliśmy następujące wartości: R12 = ∞, R13 = 0,05 Ω, R14 = ∞, R23 = ∞, R24 = 0,85 Ω, R34 = ∞. Które końcówki powinny być użyte do podłączenia napięcia 230 V?

A. 2, 4
B. 1, 3
C. 1, 2
D. 2, 3
Prawidłowa odpowiedź to 1, 2, ponieważ rezystancje pomiędzy końcówkami 2 i 4 oraz 1 i 3 wskazują, że te kombinacje stanowią uzwojenia, które można zasilać napięciem 230 V. Rezystancje R<sub>12</sub> i R<sub>14</sub> są nieskończone, co sugeruje brak połączenia między tymi końcówkami, jednak R<sub>13</sub> wynosi 0,05 Ω, co wskazuje na bezpośrednie połączenie między końcówkami 1 i 3. Ponadto, R<sub>24</sub> wynosi 0,85 Ω, co również sugeruje, że między końcówkami 2 i 4 istnieje niskoresystancyjne połączenie. W praktyce, aby efektywnie zasilać transformator, należy podłączyć go do końcówek, które wykazują odpowiednie połączenia niskoresystancyjne, co zminimalizuje straty energii i zapewni odpowiednie działanie transformatora. W tym przypadku, końcówki 1, 3 oraz 2, 4 są odpowiednie do podłączenia napięcia. W standardzie IEC 60076 dotyczącym transformatorów mocy, podłączenia te są kluczowe dla zapewnienia stabilności i bezpieczeństwa operacji elektrycznych.

Pytanie 30

Przegląd instalacji hydraulicznej urządzenia mechatronicznego obejmuje

A. oczyszczenie filtra oleju w układzie
B. sprawdzenie stanu przewodów
C. wymianę rozdzielacza
D. zmierzenie natężenia prądu w obciążeniu pompy
Odpowiedź "sprawdzenie stanu przewodów" jest prawidłowa, ponieważ oględziny instalacji hydraulicznej są kluczowym etapem zapewnienia bezpieczeństwa i efektywności urządzeń mechatronicznych. Podczas tych oględzin istotne jest, aby dokładnie ocenić stan przewodów, ponieważ to one odpowiadają za transport medium, takiego jak olej hydrauliczny. Uszkodzenia, przecieki czy zanieczyszczenia w przewodach mogą prowadzić do poważnych awarii, co skutkuje kosztownymi naprawami i przestojami w pracy urządzenia. Przykładem zastosowania tej wiedzy może być audyt stanu technicznego maszyn w zakładzie produkcyjnym, gdzie regularne kontrole przewodów hydraulicznych są częścią procedur utrzymania ruchu i zgodności z normami bezpieczeństwa, takimi jak ISO 9001. Dbanie o ich kondycję pozwala na uniknięcie nieprzewidzianych awarii oraz zwiększa żywotność całego systemu hydraulicznego.

Pytanie 31

Jaki program jest używany do gromadzenia wyników pomiarów, ich wizualizacji, zarządzania procesem, alarmowania oraz archiwizacji danych?

A. WinCC
B. KiCAD
C. InteliCAD
D. AutoCAD
WinCC, czyli Windows Control Center, jest zaawansowanym systemem SCADA (Supervisory Control and Data Acquisition) zaprojektowanym do monitorowania i kontrolowania procesów przemysłowych. Jego główną funkcjonalnością jest zbieranie danych z różnych źródeł, takich jak czujniki czy urządzenia pomiarowe, które następnie są wizualizowane w przystępny sposób na ekranach komputerowych. Dzięki WinCC można nie tylko śledzić wyniki pomiarów w czasie rzeczywistym, ale także zarządzać alarmami, co jest kluczowe w kontekście zapewnienia bezpieczeństwa procesów przemysłowych. System ten pozwala na archiwizowanie danych, co jest zgodne z najlepszymi praktykami w zakresie zarządzania jakością oraz zgodności z normami, takimi jak ISO 9001. Przykładowo, w zakładach produkcyjnych WinCC może być używany do monitorowania parametrów procesów, takich jak temperatura, ciśnienie czy poziom cieczy, co pozwala na szybkie podejmowanie decyzji w przypadku wykrycia nieprawidłowości.

Pytanie 32

W jakich częściach sieci SFC wykorzystuje się oznaczenia literowe N, S, D?

A. W opisach zmiennych.
B. W symbolach kroków.
C. W kwalifikatorach działania.
D. W oznaczeniach tranzycji.
Odpowiedź wskazująca na symbole kroków, oznaczenia tranzycji lub opisy zmiennych nie uwzględnia kluczowej roli kwalifikatorów działania w strukturze SFC. Symbole kroków są używane do reprezentowania poszczególnych etapów procesu, jednak nie odzwierciedlają one warunków aktywacji tych kroków. Z kolei oznaczenia tranzycji dotyczą relacji między krokami, definiując, kiedy jeden krok może przejść do następnego. Odpowiedzi te mogą wydawać się logiczne, lecz nie uchwyciły istoty działania symboli N, S i D. Istnieje także tendencja do mylenia opisów zmiennych z kwalifikatorami działania; zmienne są elementami, które mogą przechowywać dane, ale same w sobie nie definiują warunków przejścia czy aktywacji. Zrozumienie różnic między tymi pojęciami jest kluczowe dla skutecznego modelowania procesów w SFC. Każdy z tych elementów ma swoje specyficzne zastosowanie i funkcję, a pominięcie tego może prowadzić do błędnych wniosków i problemów w projektowaniu systemów automatyki. Ważne jest, aby przy projektowaniu rozwiązań sterujących, szczególnie w kontekście zgodności z normami branżowymi, mieć pełne zrozumienie wszystkich elementów i ich interakcji.

Pytanie 33

Najwyższą precyzję pomiaru rezystancji uzwojenia silnika elektrycznego zapewnia metoda

A. pomiaru bezpośredniego omomierzem cyfrowym
B. pośrednia przy użyciu woltomierza oraz amperomierza
C. pomiaru bezpośredniego omomierzem analogowym
D. mostkowa przy zastosowaniu mostka Wheatstone'a lub Thomsona
Metoda mostkowa, wykorzystująca mostek Wheatstone'a lub Thomsona, zapewnia najwyższą dokładność pomiaru rezystancji uzwojeń silnika elektrycznego. Dzięki tej metodzie możliwe jest efektywne zniwelowanie wpływu oporności przewodów pomiarowych oraz błędów systematycznych, które mogą zaburzać wyniki pomiarów. Mostek Wheatstone'a, na przykład, działa na zasadzie równoważenia dwóch gałęzi obwodu, co pozwala na precyzyjne określenie rezystancji nieznanej poprzez porównanie jej z rezystancjami znanymi. W praktyce, metoda ta jest szczególnie przydatna w laboratoriach badawczych oraz w serwisach, gdzie wymagana jest wysoka dokładność i powtarzalność pomiarów. Standardy takie jak IEC 60364 i IEC 61557 podkreślają znaczenie precyzyjnych pomiarów w kontekście bezpieczeństwa i efektywności urządzeń elektrycznych. Użycie mostków pomiarowych w takich zastosowaniach jest zgodne z najlepszymi praktykami inżynieryjnymi, co dokumentuje ich szerokie zastosowanie w branży. Dlatego właśnie metoda mostkowa jest uznawana za najlepszy wybór w kontekście pomiaru rezystancji uzwojeń silnika elektrycznego.

Pytanie 34

Która z wymienionych metod jest stosowana podczas przeprowadzania początkowego testowania programu stworzonego dla robota przemysłowego?

A. Ręczne odtwarzanie ruchów, krok po kroku z prędkością ruchu ustawioną na 100%
B. Automatyczne odtwarzanie ruchów, z prędkością ruchu ustawioną na 20%
C. Ręczne odtwarzanie ruchów, krok po kroku z prędkością ruchu ustawioną na 20%
D. Automatyczne odtwarzanie ruchów z prędkością ruchu ustawioną na 100%
Ręczne odtwarzanie ruchów krok po kroku z prędkością ruchu ustawioną na 20% jest kluczowym etapem w procesie testowania programów dla robotów przemysłowych. Taki sposób testowania umożliwia inżynierom dokładne obserwowanie zachowania robota w kontrolowanym środowisku, co pozwala na wczesne wykrywanie ewentualnych błędów w programie. Przy tak niskiej prędkości można zminimalizować ryzyko uszkodzenia robota oraz otoczenia, co jest szczególnie ważne w kontekście bezpieczeństwa. W praktyce, manualne testowanie ruchów umożliwia także dostosowanie programu do specyficznych wymagań zadania, a także optymalizację trajektorii ruchu robota. W przypadku wykrycia błędów, inżynierowie mogą łatwo wprowadzić zmiany w programie, a następnie przetestować je w tym samym trybie. Takie podejście jest zgodne z najlepszymi praktykami w branży automatyzacji przemysłowej, które zalecają przeprowadzanie testów w sposób sekwencyjny przed przejściem do pełnej automatyzacji.

Pytanie 35

Aby dokładnie ustalić kątową pozycję, przemieszczenie oraz zliczyć obroty silnika w systemie mechatronicznym, używa się

A. czujnik ultradźwiękowy
B. akcelerometr
C. enkoder
D. licznik
Enkoder jest urządzeniem, które odgrywa kluczową rolę w pomiarze pozycji kątowej oraz zliczaniu obrotów silników w systemach mechatronicznych. Działa na zasadzie konwersji ruchu mechanicznego na sygnał elektryczny, który może być interpretowany przez systemy sterujące. Przykładem zastosowania enkoderów jest w automatyce przemysłowej, gdzie precyzyjne pozycjonowanie elementów roboczych jest niezbędne, na przykład w robotach przemysłowych czy maszynach CNC. Enkodery można podzielić na inkrementalne i absolutne, z których każdy typ ma swoje unikalne zastosowania. Standardy takie jak IEC 61131-2 definiują wymagania dla urządzeń pomiarowych, w tym enkoderów, co zapewnia ich interoperacyjność i niezawodność w systemach automatyki. Dobrą praktyką jest regularne kalibrowanie enkoderów, aby zapewnić ich dokładność i stabilność działania w długoterminowych zastosowaniach. Warto również zwrócić uwagę na dobór odpowiednich enkoderów w zależności od wymagań aplikacji, co może znacząco wpłynąć na wydajność całego układu.

Pytanie 36

Aby zweryfikować, czy w uzwojeniu cewki nie wystąpiła przerwa, należy przeprowadzić pomiar

A. rezystancji uzwojenia cewki
B. napięcia na zaciskach cewki
C. dobroci cewki
D. rezystancji izolacji cewki
Pomiar rezystancji w cewce to naprawdę ważna sprawa, jeśli chodzi o sprawdzanie, w jakim stanie ona jest. Kiedy cewka działa jak powinna, to rezystancja uzwojenia powinna pokazywać określoną wartość, zgodną z tym, co podaje producent. Jeśli natomiast cewka ma przerwę, to ta rezystancja może być bliska zeru albo nawet bardzo niska, co oznacza, że coś jest nie tak z obwodem. Z mojego doświadczenia, technicy często robią takie pomiary w trakcie rutynowych kontroli, żeby mieć pewność, że wszystko działa jak należy, zanim się zacznie używać cewki. Normy branżowe, jak IEC 60076, sugerują, że testowanie rezystancji uzwojenia powinno być stałym punktem w procedurach konserwacyjnych sprzętu elektrycznego. Te działania naprawdę mogą pomóc uniknąć poważniejszych problemów, które mogłyby prowadzić do awarii i kosztownych przestojów w pracy.

Pytanie 37

W systemie Komputerowo Zintegrowanego Wytwarzania (CIM) za co odpowiada moduł RDP?

A. komputerowe wspomaganie produkcji
B. rejestrowanie danych procesowych
C. komputerowo wspomagane projektowanie
D. organizowanie i zarządzanie produkcją
Planowanie i kierowanie produkcją to procesy, które mają na celu zapewnienie efektywnego przebiegu działalności produkcyjnej, jednak nie są głównymi funkcjami modułu RDP. Odpowiedzi sugerujące, że RDP zajmuje się planowaniem produkcji, mogą prowadzić do mylnego przekonania, że zbieranie danych jest równoznaczne z planowaniem, co jest nieprawidłowe. RDP koncentruje się na rejestrowaniu danych już istniejących, a nie na ich prognozowaniu lub alokacji zasobów. Komputerowo wspomagane projektowanie oraz komputerowe wspomaganie wytwarzania to zupełnie inne obszary, które skupiają się na tworzeniu i realizowaniu projektów oraz procesów produkcyjnych, ale nie na samym zbieraniu danych procesowych. Odpowiedzi te mogą wynikać z nieporozumienia dotyczącego zakresu funkcji, jakie pełni moduł RDP w kontekście systemów CIM. Często mylone są też różne aspekty zarządzania produkcją; podejścia te skupiają się na innych elementach, takich jak planowanie produkcji czy optymalizacja projektów, co nie jest zgodne z rzeczywistym działaniem RDP. Ważne jest, aby zrozumieć, że skuteczne zarządzanie procesami produkcyjnymi wymaga znajomości ról i funkcji poszczególnych modułów, aby unikać błędnych wniosków, które mogą prowadzić do nieoptymalnych decyzji w zarządzaniu produkcją.

Pytanie 38

W mechatronicznym urządzeniu uszkodzony został sterownik LOGO 12/24RC. W tabeli przedstawiono producenta informacje dotyczące stosowanych oznaczeń. Które dane odpowiadają uszkodzonemu sterownikowi?

 — 12/24: zasilanie napięciem 12/24 V DC
 — 230: zasilanie napięciem 115 ÷ 240 V AC/DC
 — R: wyjścia przekaźnikowe (brak symbolu R - wyjścia tranzystorowe)
 — C: wbudowany zegar tygodniowy
 — o: wersja bez wyświetlacza (LOGO! Pure)
 — DM: binarny moduł rozszerzenia
 — AM: analogowy moduł rozszerzenia
 — CM: komunikacyjny moduł zewnętrzny (np. moduły EIB/KNX)
 — TD: Panel tekstowy
A. Napięcie zasilania 12 V lub 24 V DC, wyjścia przekaźnikowe, wbudowany zegar tygodniowy, wersja z wyświetlaczem.
B. Napięcie zasilania 115 ÷ 240 V AC, wyjścia przekaźnikowe, analogowy moduł rozszerzenia, wersja bez wyświetlacza.
C. Napięcie zasilania 115 ÷ 240 V AC, wyjścia tranzystorowe, wbudowany zegar tygodniowy, wersja bez wyświetlacza.
D. Napięcie zasilania 12 V lub 24 V AC, wyjścia tranzystorowe, binarny moduł rozszerzenia, wersja z wyświetlaczem.
Wybrana odpowiedź jest poprawna, ponieważ dokładnie odzwierciedla specyfikację sterownika LOGO 12/24RC. Ten model rzeczywiście działa na napięciu 12 V lub 24 V DC, co jest kluczowe dla jego prawidłowego funkcjonowania w różnych aplikacjach automatyki. Wyjścia przekaźnikowe pozwalają na sterowanie obwodami z większymi obciążeniami, co jest niezbędne w wielu projektach mechatronicznych. Wbudowany zegar tygodniowy umożliwia programowanie zaawansowanych harmonogramów pracy, co zwiększa efektywność energetyczną systemów oraz pozwala na automatyzację procesów zgodnie z wymaganiami użytkownika. Wersja z wyświetlaczem ułatwia monitorowanie i diagnostykę, co jest nieocenione w praktyce inżynieryjnej. Dobrym przykładem zastosowania może być automatyka budynkowa, gdzie sterownik ten kontroluje oświetlenie i systemy grzewcze zgodnie z zaprogramowanym harmonogramem. Zrozumienie specyfikacji sterowników, takich jak LOGO, jest kluczowe dla inżynierów zajmujących się automatyką, ponieważ pozwala na ich prawidłowy dobór i zastosowanie w praktyce.

Pytanie 39

Jakie środki ochrony osobistej powinien założyć pracownik przy uruchamianiu prasy pneumatycznej przeznaczonej do nitowania?

A. Szelki bezpieczeństwa
B. Hełm ochronny
C. Obuwie izolacyjne
D. Okulary ochronne
Okulary ochronne są niezbędnym środkiem ochrony indywidualnej podczas pracy z prasą pneumatyczną do nitowania, ponieważ odpowiednio chronią oczy pracownika przed potencjalnymi zagrożeniami, takimi jak odpryski materiałów, pył czy metalowe drobiny. W przypadku pracy w środowiskach przemysłowych, gdzie odbywają się operacje związane z obróbką metali, użycie okularów ochronnych zgodnych z normami EN 166 jest kluczowe. Te normy określają wymagania dotyczące odporności na uderzenia, a także właściwości optyczne soczewek. Pracownicy powinni również zwracać uwagę na odpowiednią konserwację okularów, aby zapewnić ich skuteczność. Ponadto, w kontekście bezpieczeństwa, stosowanie okularów ochronnych w połączeniu z innymi środkami ochrony, takimi jak hełmy czy rękawice, staje się podstawą bezpiecznego środowiska pracy. Przykłady zastosowania obejmują prace w warsztatach, fabrykach czy na placach budowy, gdzie ryzyko uszkodzenia wzroku jest znaczne. Dlatego też, w każdej sytuacji potencjalnego zagrożenia dla oczu, użycie okularów ochronnych powinno być standardem.

Pytanie 40

Wymiana danych pomiędzy urządzeniami w sieci komunikacyjnej o danej topologii wymaga zaangażowania wszystkich urządzeń sieciowych.

A. drzewa
B. gwiazdy
C. pierścienia
D. magistrali
Odpowiedź "pierścienia" jest poprawna, ponieważ w topologii sieciowej pierścienia każde urządzenie jest bezpośrednio połączone z dwoma innymi, tworząc zamknięty obwód. To oznacza, że w celu przesyłania informacji każde urządzenie musi odbierać dane od swojego sąsiada i przekazywać je dalej. W praktyce to podejście zapewnia, że wszystkie urządzenia są zaangażowane w proces wymiany informacji, co przyczynia się do efektywności komunikacji. Przykładem zastosowania takiej topologii jest sieć Token Ring, która była powszechnie używana w latach 80. i 90. XX wieku. W sytuacjach, gdy jedno z urządzeń ulegnie awarii, przekazywanie danych może zostać przerwane, co pokazuje, jak istotna jest współpraca wszystkich urządzeń w pierścieniu. Zgodnie z dobrymi praktykami projektowania sieci, zrozumienie topologii i jej implikacji dla wymiany informacji pozwala na lepsze planowanie i optymalizację zasobów sieciowych, co jest kluczowe w kontekście zarządzania dużymi infrastrukturami IT.