Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 00:15
  • Data zakończenia: 17 grudnia 2025 00:27

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie urządzenie jest wykorzystywane do ochrony przewodów instalacyjnych przed skutkami przeciążeń?

A. Izolacyjny rozłącznik
B. Ochrona przeciwprzepięciowa
C. Przekaźnik cieplny
D. Wyłącznik nadprądowy
Wyłącznik nadprądowy jest kluczowym urządzeniem stosowanym w instalacjach elektrycznych do ochrony przewodów instalacyjnych przed skutkami przeciążeń oraz zwarć. Działa on na zasadzie monitorowania prądu przepływającego przez obwód i automatycznie odłącza zasilanie w przypadku, gdy wartość prądu przekroczy ustaloną wartość nominalną. Dzięki temu zapobiega przegrzewaniu się przewodów oraz ryzyku pożaru. Przykładowo, w domowej instalacji elektrycznej, wyłącznik nadprądowy może chronić obwód, na którym znajduje się sprzęt AGD, co jest zgodne z normą PN-EN 60898. Często stosuje się go w połączeniu z innymi zabezpieczeniami, tworząc kompleksowy system ochrony. W przypadku nadmiernego obciążenia, wyłącznik nadprądowy zadziała w ułamku sekundy, co jest kluczowe dla bezpieczeństwa użytkowników. Dążąc do zapewnienia wysokiego poziomu bezpieczeństwa w instalacjach, należy regularnie kontrolować stan wyłączników nadprądowych oraz dostosowywać ich parametry do wymagań obciążeniowych danego obwodu.

Pytanie 2

Do nawinięcia stojana w trójfazowym silniku indukcyjnym o mocy 7,5 kW nie stosuje się

A. pierścienia zwierającego
B. drutu nawojowego
C. lakieru izolacyjnego
D. izolacji żłobkowej
Pierścień zwierający nie jest stosowany w przezwojeniu stojana trójfazowego silnika indukcyjnego o mocy 7,5 kW, ponieważ jego konstrukcja opiera się na rdzeniu stalowym, w którym uzwojenia są umieszczone w żłobkach. Pierścienie zwierające są używane głównie w silnikach z wirnikami klatkowym, gdzie zapewniają zamknięcie obwodu wirnika. W przypadku silników indukcyjnych z uzwojeniem stojana, kluczowe komponenty to drut nawojowy, izolacja żłobkowa oraz lakier izolacyjny. Drut nawojowy, wykonany z miedzi, jest niezbędny do utworzenia uzwojeń, które generują pole magnetyczne. Izolacja żłobkowa oraz lakier izolacyjny chronią drut przed zwarciem oraz uszkodzeniami mechanicznymi, a także zapewniają odpowiednią wydajność cieplną. Dobrze przeprowadzone przezwojenie zwiększa efektywność silnika, co jest istotne w kontekście obciążenia i żywotności maszyny.

Pytanie 3

Zatrzymanie pracy grzejnika skutkuje natychmiastowym działaniem zabezpieczenia nadprądowego. Co to sugeruje?

A. zwarcie przewodu fazowego oraz neutralnego
B. zwarcie przewodu ochronnego z obudową
C. uszkodzenie w przewodzie fazowym
D. uszkodzenie w grzałce
W przypadku innych odpowiedzi, które mogłyby być uznane za poprawne, jak przerwa w przewodzie fazowym, zwarcie przewodu ochronnego do obudowy czy zwarcie przewodu fazowego i neutralnego, warto wskazać na ich merytoryczne błędy. Przerwa w przewodzie fazowym nie mogłaby skutkować natychmiastowym działaniem zabezpieczenia nadprądowego, ponieważ w takim przypadku prąd nie popłynąłby w ogóle, co nie aktywuje zabezpieczeń. Zwarcie przewodu ochronnego do obudowy z kolei powinno wywołać reakcję wyłącznika różnicowoprądowego, a nie nadprądowego, jako że jest to zupełnie inny mechanizm zabezpieczający, który odpowiada za ochronę przed porażeniem prądem. Natomiast zwarcie przewodu fazowego i neutralnego zazwyczaj prowadzi do sytuacji nadmiernego przepływu prądu, co również spowodowałoby zadziałanie zabezpieczenia nadprądowego, ale w inny sposób i z innymi konsekwencjami. Niekiedy błędne wnioski płyną z niepełnego zrozumienia zasad działania zabezpieczeń oraz ich różnic, co prowadzi do pomyłek. Wiedza na temat tego, jak i dlaczego zabezpieczenia działają w dany sposób, jest kluczowa dla bezpieczeństwa instalacji elektrycznych i ich użytkowników. Dlatego zawsze należy dokładnie analizować przyczyny działania zabezpieczeń w kontekście konkretnego problemu.

Pytanie 4

Jaką wkładkę topikową bezpiecznikową powinno się wykorzystać do ochrony silnika indukcyjnego przed skutkami zwarć?

A. WT-00 gF
B. WT-2 gTr
C. WT/NH aM
D. WT/NH DC
Wkładka topikowa WT/NH aM jest odpowiednia do zabezpieczania silników indukcyjnych przed skutkami zwarć, ponieważ charakteryzuje się dużą zdolnością do przerwania prądu oraz odpowiednim czasem zadziałania. W porównaniu do innych wkładek, aM (motor) zapewnia lepszą ochronę w przypadku prądów rozruchowych, które mogą być znacznie wyższe od normalnych wartości roboczych. W praktyce, takie wkładki są stosowane w układach zasilających silników elektrycznych, które podczas rozruchu mogą generować prądy nawet 5-7 razy większe od nominalnych. Dzięki właściwościom aM, wkładki te pozwalają na dłuższe tolerowanie tych wysokich prądów, co znacząco zwiększa bezpieczeństwo i nie powoduje niepotrzebnych wyłączeń. Dodatkowo, zgodnie z normą IEC 60269, wkładki aM są przystosowane do ochrony silników przed przeciążeniem, co czyni je idealnym wyborem w aplikacjach przemysłowych. Warto zaznaczyć, że stosowanie wkładek zabezpieczających powinno odbywać się zgodnie z zaleceniami producentów urządzeń oraz normami bezpieczeństwa, co zwiększa ich efektywność i niezawodność.

Pytanie 5

Jaką minimalną liczbę pracowników z wymaganymi kwalifikacjami powinien zagwarantować pracodawca do realizacji prób i pomiarów przy urządzeniach elektrycznych o napięciu poniżej 1 kV w biurze?

A. Jednego
B. Czterech
C. Trzech
D. Dwóch
Wybór większej liczby pracowników, jak czterech, trzech czy dwóch, wskazuje na nieporozumienie dotyczące zasadności liczby osób wymaganych do wykonania prac przy urządzeniach elektrycznych o napięciu poniżej 1 kV. Często przyjmuje się, że większa liczba osób zwiększa bezpieczeństwo, co jest mylnym wnioskiem. Z punktu widzenia norm bezpieczeństwa, takich jak PN-IEC 60364, kluczowe jest, aby osoba wykonująca prace była odpowiednio wykwalifikowana i przeszkolona, a nie koniecznie, aby do wykonania prostych zadań występowało wiele osób. Więcej pracowników może wprowadzać dodatkowe ryzyko, takie jak chaos operacyjny, czy trudności w komunikacji, co może prowadzić do nieefektywności i potencjalnie zwiększać ryzyko wypadków. W praktyce, w wielu sytuacjach, standardowe procedury operacyjne przewidują, że jedna osoba jest wystarczająca do wykonania prób i pomiarów, o ile posiada odpowiednie uprawnienia. Typowe błędy myślowe prowadzące do nieprawidłowych odpowiedzi to nadmierne skupienie na liczbie osób zamiast na ich kwalifikacjach oraz zrozumieniu specyfiki wykonywanych prac. Takie podejście może podważać efektywność działań i prowadzić do niepotrzebnych kosztów związanych z zatrudnieniem większej liczby pracowników.

Pytanie 6

Jakie oznaczenie stopnia ochrony powinna mieć obudowa urządzenia elektrycznego, które jest zainstalowane w pomieszczeniach o dużej wilgotności?

A. IP22
B. IP44
C. IP32
D. IP11
Oznaczenie stopnia ochrony IP44 wskazuje, że urządzenie elektryczne jest chronione przed ciałami stałymi o średnicy 1 mm oraz przed wodą, która może padać w dowolnym kierunku. To czyni je odpowiednim rozwiązaniem do stosowania w pomieszczeniach wilgotnych, takich jak łazienki czy kuchnie, gdzie występuje ryzyko kontaktu z wodą i wilgocią. Zgodnie z normą IEC 60529, IP44 zapewnia odpowiedni poziom ochrony, który minimalizuje ryzyko uszkodzeń związanych z wilgocią, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W praktyce, urządzenia takie jak oświetlenie zewnętrzne, gniazda elektryczne czy wyłączniki umieszczone w wilgotnych pomieszczeniach powinny posiadać tę klasę ochrony, aby zminimalizować ryzyko zwarcia elektrycznego oraz wypadków. Dobrą praktyką jest również regularne sprawdzanie stanu obudów i uszczelek, aby zapewnić ich ciągłą skuteczność ochrony przed wodą i zanieczyszczeniami.

Pytanie 7

W obwodzie gniazd w przedpokoju zainstalowano przewód YDYt 3×2,5 mm2. Podczas wiercenia w ścianie pracownik przypadkowo uszkodził przewód, przecinając dwie jego żyły. Jak należy prawidłowo naprawić powstałą usterkę?

A. Zdemontować tynk w miejscu uszkodzenia, połączyć przewody, zaizolować taśmą i zatynkować ścianę.
B. Zdemontować tynk w miejscu uszkodzenia, zainstalować dodatkową puszkę i w niej połączyć żyły.
C. Przeciągnąć wyłącznie uszkodzone żyły, zastępując każdą przewodem jednodrutowym.
D. Przeciągnąć nowy przewód pomiędzy najbliższymi puszkami, używając pilota.
Poprawna odpowiedź wskazuje na konieczność rozebrania tynku w miejscu uszkodzenia, co pozwala na dostęp do przewodów. Instalacja dodatkowej puszki jest zgodna z normami bezpieczeństwa, ponieważ umożliwia bezpieczne połączenie uszkodzonych żył oraz ewentualne wprowadzenie dodatkowych elementów zabezpieczających. Połączenie żył powinno być wykonane za pomocą odpowiednich złączek, które zapewniają ich trwałość i bezpieczeństwo. Takie rozwiązanie jest zgodne z praktykami branżowymi, które zalecają unikanie izolowania przewodów taśmą w miejscu uszkodzenia, co może prowadzić do ryzyka przepięć lub zwarć. Przykładem zastosowania tej metody może być sytuacja, gdy w ramach modernizacji instalacji elektrycznej, pracownik stwierdza, że przewody zostały uszkodzone, a jednocześnie potrzebuje zainstalować nowe gniazda. Wówczas montaż puszki zapewnia łatwy dostęp do przewodów w przyszłości, co ułatwia konserwację i ewentualne naprawy. Działanie to jest zgodne z zasadami BHP oraz ochroną przed pożarami, co czyni je najlepszym wyborem w tej sytuacji.

Pytanie 8

Podstawowa ochrona przed porażeniem prądem za pomocą przegród lub obudów jest realizowana dzięki

A. wprowadzeniu barier chroniących przed przypadkowym kontaktem
B. umieszczeniu elementów aktywnych poza zasięgiem ręki
C. zastosowaniu osłon chroniących przed zamierzonym dotykiem
D. całkowitemu i trwałemu pokryciu części czynnych materiałem izolacyjnym
Pomimo że różne metody ochrony przed porażeniem prądem są ważnymi zagadnieniami w inżynierii elektrycznej, to odpowiedzi dotyczące umieszczenia części czynnych poza zasięgiem ręki, całkowitego pokrycia materiałem izolacyjnym oraz zastosowania przeszkód chroniących przed przypadkowym dotykiem nie są wystarczające. Umieszczenie części czynnych poza zasięgiem ręki może w pewnym stopniu ograniczyć ryzyko, jednak nie zapewnia skutecznej ochrony przed zamierzonym dotykiem. W praktyce, takie podejście może być stosowane jedynie w ograniczonym zakresie, np. w instalacjach, gdzie dostęp do urządzeń jest kontrolowany. Ponadto, całkowite pokrycie części czynnych materiałem izolacyjnym, choć może być skuteczne w pewnych warunkach, nie zawsze jest wykonalne ze względów praktycznych i technologicznych. Izolacja musi być zgodna z normami, aby rzeczywiście spełniać swoje funkcje. Zastosowanie przeszkód chroniących przed przypadkowym dotykiem również nie rozwiązuje problemu celowego kontaktu z częściami czynnymi. Ostatecznie, aby skutecznie chronić przed porażeniem, niezbędne jest zastosowanie kompleksowego podejścia, które uwzględnia zarówno osłony ochronne, jak i odpowiednie zabezpieczenia, zgodne z międzynarodowymi standardami bezpieczeństwa. Kluczowe jest zrozumienie, że ochrona przeciwporażeniowa wymaga nie tylko fizycznych barier, ale również edukacji użytkowników oraz przestrzegania norm i zasad bezpieczeństwa.

Pytanie 9

Jakie będą konsekwencje zmiany w instalacji elektrycznej w budynku mieszkalnym przewodów ADG 1,5 mm2 na przewody DY 1,5 mm2?

A. Osłabienie wytrzymałości mechanicznej przewodów
B. Zwiększenie rezystancji pętli zwarcia
C. Obniżenie napięcia roboczego
D. Zwiększenie obciążalności prądowej instalacji
Wybór niepoprawnych odpowiedzi, takich jak zmniejszenie wytrzymałości mechanicznej przewodów, zwiększenie rezystancji pętli zwarcia czy zmniejszenie napięcia roboczego, jest wynikiem nieporozumień dotyczących właściwości przewodów elektrycznych. Zmniejszenie wytrzymałości mechanicznej przewodów nie ma miejsca przy wymianie na przewody DY, gdyż te przewody są zaprojektowane z myślą o zwiększonej odporności na uszkodzenia mechaniczne. W rzeczywistości, przewody DY często oferują lepszą ochronę przed uszkodzeniami dzięki zastosowaniu odpowiednich materiałów izolacyjnych, co jest kluczowe w instalacjach podtynkowych. Zwiększenie rezystancji pętli zwarcia to kolejny mit, ponieważ zmiana przewodów na DY, które mają lepsze parametry elektryczne, w rzeczywistości może przyczynić się do zmniejszenia rezystancji pętli zwarcia, a nie jej zwiększenia. Zmniejszenie napięcia roboczego również nie jest efektem wymiany na przewody DY, jako że napięcie robocze w instalacji zależy od źródła zasilania oraz obciążenia, a nie od rodzaju zastosowanego przewodu. Właściwe zrozumienie tych kwestii jest kluczowe dla projektowania i modernizacji instalacji elektrycznych, dlatego tak ważne jest stosowanie sprawdzonych rozwiązań oraz przestrzeganie norm i dobrych praktyk branżowych.

Pytanie 10

Jakie zadania przy aktywnych urządzeniach elektrycznych można zrealizować bez zlecenia?

A. Dotyczące ratowania życia lub zdrowia osób
B. Przeprowadzane przy użyciu spawania oraz wymagające pracy z otwartym źródłem ognia
C. Dotyczące konserwacji bądź napraw urządzeń, które są całkowicie lub częściowo pod napięciem
D. Realizowane w sytuacjach stwarzających szczególne niebezpieczeństwo dla życia lub zdrowia osób
Odpowiedź związana z ratowaniem zdrowia lub życia ludzkiego jest poprawna, ponieważ w sytuacjach nagłych, takich jak wypadki czy inne niebezpieczeństwa, działania podejmowane w celu ochrony życia i zdrowia osób są priorytetowe. Zgodnie z przepisami prawa pracy oraz normami BHP, w przypadkach zagrożenia zdrowia lub życia ludzkiego, pracownicy mają prawo i obowiązek podejmować natychmiastowe działania ratunkowe, nawet jeśli wiąże się to z pracami przy czynnych urządzeniach elektrycznych. Na przykład, gdy osoba zostaje porażona prądem, każdy świadek zdarzenia powinien jak najszybciej odciąć zasilanie i udzielić pierwszej pomocy. Takie podejście jest zgodne z wytycznymi dotyczącymi bezpieczeństwa pracy, które nakładają na pracowników obowiązek reagowania na sytuacje kryzysowe bez czekania na formalne instrukcje. W praktyce, to może oznaczać konieczność szybkiego działania, co jest kluczowe dla zapobiegania poważnym obrażeniom lub śmierci.

Pytanie 11

Przed rozpoczęciem pomiaru rezystancji izolacji uzwojeń wirnika silnika z pierścieniem w pierwszej kolejności należy

A. sprawdzić ciągłość obwodu wirnika
B. zwierać uzwojenie stojana
C. odłączyć rezystory rozruchowe
D. wymienić szczotki
Odłączenie rezystorów rozruchowych przed pomiarem rezystancji izolacji uzwojeń wirnika silnika pierścieniowego jest kluczowym krokiem, aby uniknąć uszkodzeń sprzętu oraz zapewnić dokładność pomiarów. Rezystory rozruchowe są stosowane w obwodach silników w celu kontroli prądu rozruchowego, co oznacza, że są one podłączone do układu w momencie uruchamiania silnika. Jeśli nie zostaną odłączone, mogą powstać niepożądane połączenia, które zakłócą wyniki pomiarów rezystancji izolacji oraz mogą spowodować uszkodzenie miernika. Zgodnie z normą IEC 61557-1 dotyczącą pomiarów ochronnych w instalacjach elektrycznych, należy zawsze dbać o bezpieczeństwo i dokładność pomiarów, co obliguje do odpowiedniego przygotowania układów przed ich wykonaniem. Działania takie są istotne w kontekście zapobiegania awariom, które mogą prowadzić do kosztownych napraw lub przestojów w pracy maszyn. W praktyce, przed każdym pomiarem izolacji, zaleca się także sprawdzenie stanu szczotek i wirnika, ale najpierw kluczowe jest odłączenie obwodów, które mogłyby wpłynąć na pomiar.

Pytanie 12

Na wartość impedancji pętli zwarcia w systemie TN-C wpływ mają

A. liczba przewodów umieszczonych w korytkach
B. przekrój żył przewodów
C. metoda ułożenia przewodów w instalacji
D. materiał izolacyjny przewodów
Wartość impedancji pętli zwarcia w sieci TN-C jest kluczowym parametrem, który wpływa na bezpieczeństwo instalacji elektrycznej. Przekrój żył przewodów ma bezpośredni wpływ na oporność elektryczną i tym samym na impedancję pętli zwarcia. Im większy przekrój przewodów, tym mniejsza ich oporność, co prowadzi do niższej wartości impedancji pętli. To z kolei pozytywnie wpływa na czas zadziałania zabezpieczeń nadprądowych, co jest zgodne z wymaganiami normy PN-IEC 60364. W praktyce, odpowiednio dobrany przekrój przewodów zapewnia, że w przypadku zwarcia prąd zwarciowy będzie na tyle wysoki, aby zadziałały zabezpieczenia, minimalizując ryzyko uszkodzeń oraz pożaru. Właściwy dobór przekroju żył jest szczególnie ważny w instalacjach o dużym obciążeniu, gdzie niewłaściwe wartości impedancji mogą prowadzić do awarii systemu.

Pytanie 13

Zabezpieczenie bezpiecznej pracy grzejnika trójfazowego zapewnia

A. wymuszony obieg powietrza
B. regulacja mocy grzejnej
C. wyprowadzenie punktu neutralnego elementów grzejnych
D. osłona elementów grzejnych
Osłona elementów grzejnych jest kluczowym elementem zapewniającym bezpieczną eksploatację grzejnika trójfazowego. Tego rodzaju osłona chroni użytkowników przed bezpośrednim kontaktem z elementami grzejnymi, które mogą osiągać wysokie temperatury. W praktyce, stosowanie osłon jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 60335, które regulują wymagania dotyczące bezpieczeństwa urządzeń elektrycznych. Osłony mogą być wykonane z materiałów odpornych na działanie wysokiej temperatury i powinny być zamocowane w sposób uniemożliwiający ich przypadkowe zdjęcie. Dobrze zaprojektowana osłona nie tylko chroni przed poparzeniami, ale także minimalizuje ryzyko pożaru. Przykładem zastosowania osłon mogą być grzejniki stosowane w domach, które często wyposażane są w dodatkowe elementy zabezpieczające, aby zminimalizować ryzyko wypadków. Oprócz osłon, ważne jest również regularne sprawdzanie stanu technicznego urządzenia oraz jego instalacji, co jest podstawą odpowiedzialnej eksploatacji grzejników.

Pytanie 14

Jaki rodzaj wyłącznika nadprądowego powinno się użyć do ochrony kuchenki elektrycznej z trzema jednofazowymi grzałkami, których łączna moc wynosi 8,4 kW, zasilanych w fazach L1, L2, L3 w systemie trójfazowym o napięciu 230/400 V?

A. C10
B. C6
C. B10
D. B16
Odpowiedź B16 jest poprawna, ponieważ przy obliczaniu wymaganego wyłącznika nadprądowego dla kuchenki elektrycznej należy uwzględnić ogólną moc grzałek oraz charakterystykę używanego wyłącznika. Kuchenka ma moc 8,4 kW, co przy napięciu 400 V daje maksymalny prąd wynoszący około 12 A. Jednakże, przy wyborze wyłącznika nadprądowego warto uwzględnić dodatkowy margines bezpieczeństwa oraz obciążenie rozruchowe, które może być wyższe. Wyłącznik B16, który ma prąd znamionowy 16 A, będzie w stanie zabezpieczyć urządzenie przed przeciążeniem i zwarciem, jednocześnie nie wyzwalając się w przypadku chwilowych wzrostów prądu. Zgodnie z normą PN-IEC 60947-2, dla tego typu aplikacji zaleca się dobór wyłączników zabezpieczających z odpowiednim marginesem, co czyni B16 odpowiednim rozwiązaniem. Przykładem praktycznym zastosowania wyłącznika B16 mogą być instalacje w kuchniach przemysłowych, gdzie urządzenia o dużej mocy są powszechne i wymagają odpowiedniego zabezpieczenia.

Pytanie 15

Jak wpłynie na ilość wydzielanego ciepła w czasie, w grzejniku elektrycznym, gdy spiralę grzejną zmniejszy się o połowę, a napięcie pozostanie takie samo?

A. Zmniejszy się dwukrotnie
B. Zwiększy się czterokrotnie
C. Zmniejszy się czterokrotnie
D. Zwiększy się dwukrotnie
Odpowiedź, że ilość wydzielonego ciepła w jednostce czasu zwiększy się dwukrotnie, jest prawidłowa, ponieważ zmiana długości spirali grzejnej grzejnika elektrycznego wpływa na opór elektryczny. Zgodnie z prawem Ohma, opór R przewodnika jest proporcjonalny do jego długości l, co można zapisać jako R = ρ * (l/A), gdzie ρ to oporność właściwa, a A to pole przekroju poprzecznego. Skrócenie spirali grzejnej o połowę prowadzi do zmniejszenia oporu R. Przy stałym napięciu zasilania (U), moc P wydobywana z grzejnika może być określona wzorem P = U²/R. Zmniejszenie oporu o połowę spowoduje, że moc wzrośnie dwukrotnie, ponieważ w mianowniku wzoru P mamy wartość oporu, która uległa redukcji. W praktyce oznacza to, że grzejnik będzie efektywniej przekazywał ciepło do otoczenia, co jest istotne w kontekście optymalizacji systemów grzewczych, szczególnie w zastosowaniach przemysłowych i budowlanych, gdzie zarządzanie energią ma kluczowe znaczenie.

Pytanie 16

Który z poniższych przyrządów pozwala na zidentyfikowanie przerwy w przewodzie PE techniką bezpośrednią?

A. Miernik upływu
B. Woltomierz
C. Omomierz
D. Detektor napięcia
Omomierz to przyrząd, który jest kluczowy w lokalizowaniu braków ciągłości przewodu ochronnego (PE) metodą bezpośrednią. Działa na zasadzie pomiaru oporu elektrycznego, co pozwala na zidentyfikowanie ewentualnych uszkodzeń lub przerw w przewodach. W praktyce, aby skutecznie wykorzystać omomierz, należy podłączyć jego zaciski do końców przewodu PE. Jeśli wartość mierzonego oporu jest bardzo wysoka lub wynosi nieskończoność, oznacza to, że występuje przerwa w ciągłości przewodu. W przypadku, gdy opór jest zgodny ze standardami (najczęściej < 1 Ω), można uznać, że przewód jest w dobrym stanie. W branży elektrycznej stosuje się omomierze zgodnie z normami, np. PN-EN 61557, które określają wymagania dotyczące pomiarów bezpieczeństwa. Dobrą praktyką jest regularne kontrolowanie systemu uziemiającego za pomocą omomierzy, aby zapewnić, że instalacja elektryczna spełnia normy bezpieczeństwa.

Pytanie 17

Jaką minimalną liczbę osób należy zaangażować do pracy w warunkach szczególnego zagrożenia?

A. Cztery osoby
B. Dwie osoby
C. Jedna osoba
D. Trzy osoby
Minimalna liczba osób wykonujących prace w warunkach szczególnego zagrożenia powinna wynosić dwie osoby, co jest zgodne z zasadami bezpieczeństwa pracy oraz regulacjami prawnymi. W praktyce, obecność co najmniej dwóch pracowników zapewnia wzajemne wsparcie i możliwość szybkiej reakcji w sytuacjach awaryjnych. Na przykład, w przypadku prac w zamkniętych przestrzeniach, takich jak zbiorniki czy kanały, jeden pracownik może pełnić rolę osoby asekurującej, co jest niezbędne w przypadku wystąpienia zagrożenia zdrowia lub życia. Istotne jest, by w ramach tych prac, każdy z pracowników miał przypisane konkretne zadania oraz mógł efektywnie komunikować się z partnerem. Zgodnie z normami, takimi jak PN-N-18002 dotycząca zarządzania bezpieczeństwem i higieną pracy, pracodawcy są zobowiązani do zapewnienia odpowiednich warunków, które minimalizują ryzyko wypadków. W praktyce, w przypadku awarii sprzętu lub nagłych problemów zdrowotnych, obecność drugiej osoby może być kluczowa w zapewnieniu szybkiej pomocy oraz wezwania służb ratunkowych.

Pytanie 18

Aby zabezpieczyć silnik o parametrach znamionowych podanych poniżej, należy dobrać wyłącznik silnikowy według oznaczenia producenta

Silnik 3~ Typ MAS063-2BA90-Z
0,25 kW 0,69 A Izol. F
IP 54 2755 obr/min cosφ 0,81
400 V (Y) 50 Hz

A. PKZM01 – 0,63
B. MMS-32S – 1,6A
C. MMS-32S – 4A
D. PKZM01 – 1
Wybór niewłaściwych wyłączników silnikowych często wynika z niepełnego zrozumienia zasad doboru urządzeń zabezpieczających dla silników elektrycznych. Na przykład, MMS-32S – 4A oferuje zbyt wysoki prąd znamionowy, co może prowadzić do braku skutecznej ochrony silnika. Taki wyłącznik nie zadziała w przypadku przeciążenia, co naraża silnik na uszkodzenia. Z kolei PKZM01 – 0,63, mimo że jest bliższy wymaganiom silnika, także nie spełnia norm, ponieważ jego maksymalny prąd jest zbyt niski w stosunku do prądu znamionowego silnika. Wybierając wyłączniki, należy pamiętać o odpowiednich marginesach prądowych, co oznacza, że wyłącznik powinien mieć wartość znamionową prądu większą niż prąd roboczy silnika, ale nie przeładowaną, aby nie doszło do fałszywych zadziałań. Niewłaściwy dobór wyłączników może prowadzić do poważnych konsekwencji, takich jak uszkodzenie silnika, a także potencjalne ryzyko pożaru z powodu przeciążeń. W związku z tym, kluczowe jest przestrzeganie norm dotyczących instalacji elektrycznych i zabezpieczeń, takich jak IEC 60947, które dostarczają wytycznych na temat bezpiecznego doboru urządzeń ochronnych dla silników. Zrozumienie tych zasad jest fundamentalne dla właściwego funkcjonowania systemów elektrycznych i ochrony sprzętu.

Pytanie 19

Który z poniższych środków ostrożności nie jest wymagany dla zapewnienia bezpieczeństwa podczas realizacji prac przy linii napowietrznej, która została odłączona od zasilania?

A. Używanie sprzętu izolacyjnego
B. Realizowanie pracy w zespole
C. Ogrodzenie terenu, na którym prowadzone są prace
D. Przyłączenie wyłączonej linii do uziemienia
Stosowanie sprzętu izolacyjnego w kontekście prac przy wyłączonej linii napowietrznej jest często mylone z koniecznością w sytuacjach, gdzie napięcie jest obecne. Gdy linia jest wyłączona i odpowiednio zabezpieczona, sprzęt izolacyjny nie jest konieczny, ponieważ nie ma ryzyka porażenia prądem. Jednakże, w praktyce, jego użycie może być zalecane w celu dodatkowego zabezpieczenia oraz w sytuacjach, gdzie istnieje ryzyko nieprzewidzianych okoliczności, takich jak przypadkowe włączenie linii. Na przykład, w zgodzie z normami BHP, stosowanie sprzętu izolacyjnego jest kluczowe podczas pracy w pobliżu niepewnych źródeł napięcia. Zawsze warto stosować zasadę ostrożności i posiadać odpowiednie szkolenie w zakresie użycia tego sprzętu. Pracownicy powinni być również świadomi procedur dotyczących oznakowania i blokowania urządzeń, aby zapewnić, że linie pozostaną wyłączone podczas realizacji prac.

Pytanie 20

Jaką wartość ma maksymalna dozwolona rezystancja uziomu RA przewodu ochronnego, który łączy uziom z częścią przewodzącą przy nominalnym prądzie różnicowym IΔN = 30 mA oraz napięciu dotykowym 50 V AC wyłącznika różnicowoprądowego?

A. 2 000 Ω
B. 4 000 Ω
C. Około 830 Ω
D. Około 1660 Ω
Największa dopuszczalna rezystancja uziomu R_A dla przewodu ochronnego łączącego uziom z częścią przewodzącą dostępną w przypadku prądu różnicowego I_ΔN = 30 mA i napięcia dotykowego 50 V AC wynosząca około 1660 Ω wynika z obliczeń opartych na zasadach bezpieczeństwa elektrycznego. W przypadku, gdy wystąpi prąd różnicowy, uziemienie ma za zadanie zapewnić skuteczne odprowadzenie prądu do ziemi, aby zminimalizować ryzyko porażenia prądem. Przy napięciu dotykowym 50 V AC maksymalna dopuszczalna rezystancja uziomu może być obliczona z równania: R = U/I, gdzie U to napięcie dotykowe, a I to prąd różnicowy. Zatem R = 50 V / 0,030 A = 1666,67 Ω. Praktyczne zastosowanie tej wiedzy ma kluczowe znaczenie w projektowaniu instalacji elektrycznych, gdzie zapewnienie skutecznego uziemienia jest niezbędne dla ochrony ludzi oraz sprzętu. Utrzymywanie odpowiednich wartości rezystancji uziomu jest zgodne z normami europejskimi, takimi jak PN-EN 61140, które wskazują na konieczność regularnych pomiarów oraz konserwacji systemów uziemiających, aby zapewnić ich skuteczność i bezpieczeństwo.

Pytanie 21

Jaka jest minimalna wymagana wartość natężenia oświetlenia dla powierzchni blatów ławek w klasie?

A. 400 lx
B. 300 lx
C. 200 lx
D. 500 lx
Wymagana minimalna wartość natężenia oświetlenia powierzchni blatów ławek szkolnych w sali lekcyjnej wynosi 300 lx. Jest to standardowa wartość określona w normach oświetleniowych, takich jak PN-EN 12464-1, które regulują kwestie oświetlenia miejsc pracy, w tym również szkół. W praktyce oznacza to, że odpowiednie natężenie oświetlenia zapewnia komfort i efektywność nauki uczniów, co jest kluczowe dla ich skupienia oraz zdolności do przyswajania wiedzy. Oświetlenie na poziomie 300 lx pozwala na wygodne czytanie, pisanie i wykonywanie innych zadań wymagających precyzyjnego wzroku. Wartości poniżej tej normy mogą prowadzić do zmęczenia oczu i obniżenia wydajności uczniów. Przykładem zastosowania tej wartości jest projektowanie wnętrz w nowych szkołach, gdzie architekci uwzględniają odpowiednie źródła światła, aby zapewnić optymalne warunki do nauki.

Pytanie 22

Który z poniższych elementów nie jest częścią transformatora energetycznego?

A. Uchwyty do podłączenia przewodów
B. Silnik synchroniczny
C. Rdzeń magnetyczny
D. Izolatory ceramiczne
Transformator energetyczny jest urządzeniem, które służy do zamiany napięcia elektrycznego przy pomocy zjawiska indukcji elektromagnetycznej. Kluczowymi częściami transformatora są rdzeń magnetyczny, uzwojenia oraz izolacja. Rdzeń magnetyczny wykonany z cienkich blach stalowych umożliwia efektywne przenoszenie strumienia magnetycznego. Uzwojenia, które są nawinięte na rdzeń, są wykonane z przewodników miedzianych lub aluminiowych i służą do przenoszenia prądu. Izolacja natomiast zabezpiecza przed zwarciami i przepięciami. Silnik synchroniczny, który jest urządzeniem przetwarzającym energię elektryczną na mechaniczną, nie jest częścią transformatora. Transformator nie posiada elementów ruchomych ani nie generuje momentu obrotowego, co jest charakterystyczne dla silników. Wiedza o różnicach między tymi urządzeniami jest kluczowa dla zrozumienia ich działania i zastosowania w przemyśle energetycznym. Transformator jako urządzenie statyczne jest bardziej efektywny w aplikacjach wymagających zmiany napięcia, podczas gdy silniki synchroniczne są używane do napędzania maszyn.

Pytanie 23

Do zabezpieczenia nadprądowego których z wymienionych urządzeń przeznaczony jest element przedstawiony na ilustracji?

Ilustracja do pytania
A. Zasilaczy komputerowych.
B. Multimetrów przenośnych.
C. Prostowników półprzewodnikowych.
D. Paneli fotowoltaicznych.
Odpowiedź jest poprawna, ponieważ element przedstawiony na ilustracji to bezpiecznik przeznaczony do stosowania w systemach zasilania z napięciem stałym (DC) oraz prądem do 350A. Bezpieczniki tego typu są kluczowym komponentem w instalacjach fotowoltaicznych, gdzie wymagane są zabezpieczenia zdolne do pracy z wysokimi napięciami stałymi, często sięgającymi 1500V. W systemach fotowoltaicznych, ochrona przed przeciążeniem i zwarciami jest niezbędna, aby zapewnić bezpieczeństwo zarówno sprzętu, jak i użytkowników. Stosowanie odpowiednich zabezpieczeń nadprądowych jest zgodne z normami branżowymi, takimi jak IEC 60947-3, które regulują kwestie dotyczące urządzeń rozdzielczych. W praktyce, zastosowanie bezpieczników w systemach PV pozwala na minimalizację ryzyka uszkodzeń, co jest niezwykle ważne w kontekście inwestycji w odnawialne źródła energii. Dobrą praktyką jest regularne sprawdzanie i konserwacja zabezpieczeń, co przyczynia się do długowieczności systemu.

Pytanie 24

Podczas pomiaru rezystancji izolacji przewodów, jakie napięcie testowe jest zazwyczaj stosowane dla obwodów o napięciu znamionowym 230 V?

A. 500 V
B. 100 V
C. 230 V
D. 750 V
Pomiar rezystancji izolacji jest kluczowym krokiem w ocenie stanu technicznego instalacji elektrycznych. Dla obwodów o napięciu znamionowym 230 V zaleca się stosowanie napięcia testowego 500 V. Wybór tego napięcia wynika z norm i standardów, które nakładają wymogi dotyczące minimalnej wartości napięcia testowego, aby zapewnić wiarygodne wyniki pomiarów. Rozporządzenia takie jak PN-HD 60364-6:2016-07 wskazują, że dla obwodów o napięciu znamionowym do 500 V, napięcie testowe powinno wynosić 500 V. Zastosowanie wyższego napięcia testowego niż napięcie znamionowe jest konieczne, aby wykryć ewentualne uszkodzenia izolacji, które mogą pojawić się w warunkach rzeczywistej eksploatacji. Dzięki temu można zidentyfikować miejsca, gdzie izolacja może być osłabiona, co pozwala na podjęcie kroków naprawczych przed wystąpieniem awarii. To podejście jest powszechnie stosowane w branży, zapewniając bezpieczeństwo i niezawodność instalacji elektrycznej.

Pytanie 25

Które z poniższych wymagań nie jest konieczne do spełnienia przy wprowadzaniu do użytku po remoncie urządzenia napędowego z silnikiem trójfazowym Pn = 15 kW, Un = 400 V (Δ), fn = 50 Hz?

A. Urządzenie spełnia kryteria efektywnego zużycia energii
B. Wyniki testów technicznych urządzenia są zadowalające
C. Silnik jest wyposażony w przełącznik gwiazda-trójkąt
D. Moc silnika jest odpowiednia do wymagań napędzanego sprzętu
Odpowiedź wskazująca na to, że silnik jest wyposażony w przełącznik gwiazda-trójkąt jest poprawna, ponieważ to wymaganie nie jest konieczne do spełnienia przy przyjmowaniu urządzenia napędowego do eksploatacji po remoncie. Przełącznik gwiazda-trójkąt jest stosowany w silnikach elektrycznych, aby umożliwić ich rozruch przy niższej mocy znamionowej, co zmniejsza szczytowy prąd rozruchowy i zmniejsza obciążenie mechaniczne. Jednak nie jest to wymóg w kontekście przyjmowania do eksploatacji, ponieważ urządzenia mogą funkcjonować prawidłowo bez takiego przełącznika, zwłaszcza gdy nie ma potrzeby minimalizacji prądu rozruchowego. W praktyce, w zależności od zastosowania, niektóre silniki mogą być uruchamiane bezpośrednio, co jest całkowicie akceptowalne, zwłaszcza w zastosowaniach, gdzie napęd jest normalnie obciążony. Przykładem mogą być silniki napędzające wentylatory lub pompy, gdzie obciążenie jest od samego początku znaczące, co eliminuje potrzebę stosowania przełączników gwiazda-trójkąt.

Pytanie 26

Jak zastosowanie w instalacji puszek rozgałęźnych o stopniu ochrony IP 43 zamiast wymaganych w projekcie o stopniu ochrony IP44 wpłynie na jej jakość?

A. Poprawi się klasa izolacji.
B. Poprawi się klasa ochrony.
C. Zmniejszy się odporność na pył.
D. Zmniejszy się odporność na wilgoć.
Dobra robota, że zwróciłeś uwagę na wybór puszek rozgałęźnych z IP 43. Wiesz, że to gorsza opcja w porównaniu do IP 44? IP oznacza, jak dobrze urządzenie radzi sobie z wodą i innymi nieprzyjemnościami. W przypadku IP 43, ochrona przed wilgocią nie jest zbyt silna, więc urządzenia mogą być narażone na wodne mgły, ale nie na krople wody spadające pod kątem. W przeciwieństwie do tego, IP 44 to lepsza opcja, jeśli chodzi o odporność na wilgoć, co jest super ważne w miejscach jak łazienki czy piwnice. Tak naprawdę, dobierając odpowiednie puszki, nie tylko dbamy o bezpieczeństwo, ale też o długość życia całej instalacji elektrycznej. Wybór elementów z właściwą klasą ochrony ma ogromny wpływ na to, jak system będzie działał i zmniejsza ryzyko różnych awarii związanych z wilgocią.

Pytanie 27

Jakie urządzenie powinno zostać użyte do zasilenia obwodu SELV z sieci 230 V, 50 Hz?

A. Przekładnik
B. Dzielnik napięcia
C. Transformator bezpieczeństwa
D. Autotransformator
Transformator bezpieczeństwa jest kluczowym urządzeniem stosowanym do zasilania obwodów SELV (Safety Extra Low Voltage) z sieci 230 V, 50 Hz. Jego główną funkcją jest zapewnienie izolacji galwanicznej pomiędzy wysokim napięciem a niskim napięciem, co znacząco minimalizuje ryzyko porażenia prądem elektrycznym. Transformator bezpieczeństwa działa na zasadzie obniżania napięcia do poziomu, który jest bezpieczny dla użytkowników. Przykładem zastosowania transformatora bezpieczeństwa może być oświetlenie w obiektach, gdzie wymagana jest szczególna ochrona przed porażeniem, takie jak baseny, łazienki czy miejsca z dużą wilgotnością. Zgodnie z normą IEC 61140, urządzenia te muszą spełniać określone wymagania dotyczące bezpieczeństwa, co czyni je niezastąpionymi w instalacjach niskonapięciowych. Transformator bezpieczeństwa, w przeciwieństwie do innych urządzeń, zapewnia nie tylko redukcję napięcia, ale i odpowiednie zabezpieczenie przed skutkami awarii, co czyni go odpowiednim wyborem w kontekście bezpieczeństwa użytkowników.

Pytanie 28

Który z poniższych środków zabezpieczających przed porażeniem prądem elektrycznym nie jest właściwy do użycia w pomieszczeniach z zamontowaną wanną lub prysznicem?

A. Obwody PELV
B. Izolowanie stanowiska
C. Separacja elektryczna
D. Obwody SELV
Izolowanie stanowiska jako środek ochrony przed porażeniem prądem elektrycznym nie jest zalecane w pomieszczeniach z zainstalowaną wanną lub prysznicem, ponieważ takie miejsca są szczególnie narażone na kontakt z wodą, a tym samym zwiększone ryzyko porażenia. Praktyka izolowania stanowiska polega na tworzeniu fizycznych barier, które mają na celu zminimalizowanie ryzyka kontaktu z żywymi częściami. W kontekście pomieszczeń mokrych, jednak, kluczowe jest stosowanie bardziej zaawansowanych środków ochrony, które są zgodne z przepisami zawartymi w normach IEC 60364 oraz PN-EN 61140. Przykładem zabezpieczenia, które może być stosowane w takich warunkach, są obwody SELV, które zapewniają niskie napięcie bezpieczeństwa. W takich miejscach, gdzie ryzyko kontaktu z wodą jest wysokie, istotne jest również, aby instalacje były odpowiednio zabezpieczone i aby stosować osprzęt o podwyższonym stopniu ochrony, na przykład z klasą IP44 lub wyższą.

Pytanie 29

Jakie są minimalne wymagania, oprócz odpowiedniego wykształcenia, które powinna spełniać osoba odpowiedzialna za przeprowadzanie pomiarów odbiorczych instalacji elektrycznej w budynku mieszkalnym?

A. Wyłącznie świadectwo kwalifikacyjne w zakresie D
B. Świadectwo kwalifikacyjne w zakresie E + D + pomiary
C. Jedynie świadectwo kwalifikacyjne w zakresie E
D. Świadectwo kwalifikacyjne w zakresie E + pomiary
Posiadanie wyłącznie świadectwa kwalifikacyjnego w zakresie D lub E jest niewystarczające do samodzielnego wykonywania pomiarów odbiorczych instalacji elektrycznej. Świadectwo kwalifikacyjne w zakresie D odnosi się do eksploatacji urządzeń, instalacji i sieci elektrycznych, ale nie obejmuje bezpośrednio umiejętności przeprowadzania pomiarów, które są kluczowe dla zapewnienia prawidłowego funkcjonowania instalacji elektrycznej. Odpowiedzi sugerujące, że samo świadectwo w zakresie E wystarczy, aby wykonywać pomiary, ignorują fakt, że pomiary wymagają specyficznych umiejętności i wiedzy technicznej. W praktyce, pomiar izolacji, pomiar prądu oraz pomiar napięcia to podstawowe czynności, które muszą być przeprowadzane przez osobę posiadającą odpowiednie przygotowanie. Dodatkowo, odpowiedź sugerująca, że świadectwo w zakresie E i D z pomiarami jest wystarczające, jest myląca, gdyż nie uwzględnia konieczności specjalistycznej wiedzy z zakresu pomiarów, która jest niezbędna w kontekście norm i przepisów dotyczących praktyki instalacyjnej. W praktyce, dobrze jest również znać obowiązujące przepisy prawa, które regulują wymagania dotyczące bezpieczeństwa i jakości wykonania instalacji elektrycznych. Dlatego kluczowe jest, aby technik elektryk posiadał zarówno odpowiednie świadectwa, jak i umiejętności praktyczne związane z pomiarami.

Pytanie 30

Istotnym czynnikiem wpływającym na skuteczność chłodzenia indukcyjnego silnika elektrycznego jest

A. czujnik temperatury
B. klatka wirnika
C. koło pasowe
D. wlot powietrza
Wybór czujnika temperatury, klatki wirnika czy koła pasowego jako kluczowych elementów chłodzenia silnika elektrycznego wskazuje na niepełne zrozumienie zasad działania takich urządzeń. Czujnik temperatury, choć istotny dla monitorowania stanu silnika, nie wpływa bezpośrednio na proces chłodzenia. Jego zadaniem jest jedynie dostarczanie informacji o aktualnej temperaturze, co może być przydatne do diagnostyki, ale nie zastąpi aktywnego chłodzenia, które zapewnia wlot powietrza. Klatka wirnika, będąca częścią wirującego elementu silnika, nie ma wpływu na odprowadzanie ciepła, a jej rola koncentruje się na wytwarzaniu momentu obrotowego. Natomiast koło pasowe jest elementem mechanicznym, który przekazuje ruch, ale również nie uczestniczy w procesach chłodzenia. Zastosowanie tych komponentów jako głównych czynników chłodzenia jest zatem błędne i może prowadzić do przegrzewania silnika, co z kolei skraca czas jego eksploatacji. Kluczowym błędem myślowym jest zamiana elementów detekcyjnych i mechanicznych w rolę aktywnego systemu chłodzenia, co nie jest zgodne z zasadami inżynierii elektrycznej. W rzeczywistości, efektywność chłodzenia zawsze powinna być oparta na systemach wentylacji oraz odpowiednim projektowaniu wlotów powietrza, co jest standardem w branży elektrycznej.

Pytanie 31

Które z wymienionych wskazówek nie dotyczy projektanta oraz realizatora nowej instalacji elektrycznej w lokalu mieszkalnym?

A. Zasilanie gniazd wtykowych w każdym pomieszczeniu z oddzielnego obwodu
B. Zasilanie odbiorników o dużej mocy, zainstalowanych na stałe, z wydzielonych obwodów
C. Zasilanie gniazd wtykowych w kuchni z oddzielnego obwodu
D. Rozdzielenie obwodów oświetleniowych od obwodów gniazd wtykowych
Podejście polegające na zasilaniu gniazd wtykowych w każdym pomieszczeniu z osobnego obwodu może budzić wątpliwości, ale ważne jest zrozumienie, dlaczego inne odpowiedzi są uznawane za zasady dobrej praktyki w instalacjach elektrycznych. Separacja obwodów oświetleniowych od gniazd wtykowych jest kluczowa dla zachowania bezpieczeństwa. W przypadku awarii w instalacji oświetleniowej, gniazda pozostaną funkcjonalne, co jest istotne w sytuacjach awaryjnych, kiedy światło może być potrzebne do bezpiecznego poruszania się w pomieszczeniu. Odbiorniki dużej mocy, takie jak klimatyzatory czy piekarniki, powinny być zasilane z wydzielonych obwodów, aby uniknąć przeciążeń, które mogą prowadzić do wyzwolenia zabezpieczeń. W kuchni, z uwagi na dużą liczbę urządzeń elektrycznych, zasilanie gniazd wtykowych z osobnego obwodu jest niezbędne dla zachowania bezpieczeństwa użytkowników oraz stabilności zasilania. Ignorowanie tych zasad może prowadzić do sytuacji, w których przeciążone obwody będą powodować nie tylko problemy techniczne, ale także poważne zagrożenie pożarowe. Dlatego kluczowe jest zrozumienie, że nie wszystkie pomieszczenia wymagają zasilania z odrębnych obwodów, a przemyślane projektowanie instalacji elektrycznych zgodne z obowiązującymi normami zapewnia bezpieczeństwo i efektywność użytkowania.

Pytanie 32

Jakie z poniższych warunków powinno być spełnione w instalacji mieszkalnej, aby zagwarantować minimalną ochronę przed porażeniem prądem elektrycznym?

A. Zrealizowanie instalacji elektrycznej przy użyciu przewodu o żyłach w formie linki
B. Wykorzystanie przewodów roboczych o właściwej wartości rezystancji izolacji
C. Montowanie w instalacji wyłącznika różnicowoprądowego
D. Podłączenie styków ochronnych gniazd do przewodu ochronnego systemu
Wykonanie instalacji elektrycznej przewodem o żyłach w postaci linki nie zapewnia podstawowej ochrony przed porażeniem prądem. Choć zastosowanie przewodów wielożyłowych może być korzystne w kontekście elastyczności i łatwości montażu, nie wpływa bezpośrednio na poziom ochrony przed porażeniem. Kluczowym czynnikiem w zabezpieczeniu przed prądem jest jakość izolacji oraz jej rezystancja, a nie sam rodzaj przewodu. Połączenie styków ochronnych gniazd z przewodem ochronnym sieci, mimo że jest istotne dla uziemienia, samo w sobie nie wystarczy, aby zapobiec porażeniu. Uziemienie działa jako zabezpieczenie, ale najsłabszym ogniwem w systemie mogą być właśnie przewody robocze, których izolacja nie jest odpowiednia. Zastosowanie wyłącznika różnicowoprądowego, chociaż bardzo ważne, również nie jest jedynym czynnikiem, który zapewnia bezpieczeństwo. Wyłączniki te działają w momencie wykrycia różnicy prądów, ale nie eliminują ryzyka wynikającego z nieodpowiedniej izolacji przewodów. Dlatego kluczowym elementem bezpieczeństwa jest monitorowanie stanu izolacji przewodów roboczych oraz ich odpowiednia specyfikacja, co powinno być standardem w każdej instalacji elektrycznej.

Pytanie 33

Na podstawie wyników pomiarów zamieszczonych w przedstawionej tabeli określ uszkodzenie występujące w instalacji.

Pomiar napięcia między przewodem PE i drugim punktem instalacji
Drugi punkt pomiaru:Przewód fazowy LPrzewód neutralny NMetalowa rura COMetalowa rura gazowaMetalowa wanna łazienkowa
232 V0 V51 V49 V0 V
Wynik:232 V0 V51 V49 V0 V
A. Uszkodzona izolacja przewodu neutralnego w pobliżu wanny.
B. Uszkodzone połączenia wyrównawcze miejscowe.
C. Przebicie izolacji przewodu fazowego do metalowych rur.
D. Zwarcie między przewodem neutralnym i fazowym.
Wybór niepoprawnej odpowiedzi często wynika z błędnego zrozumienia zasad działania instalacji elektrycznych oraz pomiarów napięcia. Przebicie izolacji przewodu fazowego do metalowych rur może sugerować, że izolacja jest w złym stanie, jednak w przypadku obecności napięcia na metalowych elementach, ważniejsze jest zrozumienie, że to nieprawidłowości w połączeniach wyrównawczych mogą być przyczyną takich zjawisk. Zwarcie między przewodem neutralnym a fazowym, choć groźne, nie tłumaczy obecności napięcia na metalowych elementach, które powinny być uziemione. Uszkodzona izolacja przewodu neutralnego w pobliżu wanny to inny problem, który z kolei jest bardziej związany z bezpieczeństwem użytkowników, ale nie wyjaśnia zjawiska napięcia na metalowych rurach. Każda z tych opcji nie odnosi się w wystarczający sposób do problemu, który pojawia się w wyniku niewłaściwego działania połączeń wyrównawczych. W szczególności, nieprawidłowe myślenie prowadzi do pominięcia fundamentalnych zasad związanych z uziemieniem i ochroną przeciwporażeniową. Kluczowe jest, aby instalacje były projektowane i wykonane zgodnie z aktualnymi normami, a ich regularna kontrola zapewnia bezpieczeństwo i eliminację potencjalnych zagrożeń.

Pytanie 34

Jakie metody zapewniają ochronę przed porażeniem w instalacji fotowoltaicznej na stronie prądu stałego w przypadku uszkodzenia?

A. umieszczenie wszystkich komponentów na izolowanym podłożu
B. użycie automatycznego wyłączenia zasilania poprzez wyłączniki nadprądowe
C. wykonanie wszystkich elementów w II klasie ochronności
D. użycie automatycznego wyłączenia zasilania przez zastosowanie bezpieczników topikowych
Umieszczanie wszystkich urządzeń na podłożu izolacyjnym może wydawać się praktycznym rozwiązaniem, jednak nie zapewnia ono wystarczającego poziomu ochrony w przypadku uszkodzenia instalacji. Izolacja podłoża nie jest wystarczającym zabezpieczeniem, ponieważ nie eliminuje ryzyka pojawienia się napięcia na komponentach, które mogą stać się niebezpieczne w przypadku awarii. W przypadku wykonania urządzeń w II klasie ochronności, takie rozwiązanie zapewnia znacznie większą pewność bezpieczeństwa użytkowników. Stosowanie samoczynnego wyłączenia zasilania za pomocą bezpieczników topikowych również nie jest odpowiednim podejściem, ponieważ nie zapewnia ono szybkiej reakcji na awarie, a sama konstrukcja bezpieczników może nie być dostosowana do specyfiki prądu stałego. Co więcej, bezpieczniki topikowe mogą nie zadziałać w każdym przypadku awarii, co zwiększa ryzyko porażenia. Zastosowanie wyłączników nadprądowych, choć wydaje się lepszym rozwiązaniem, również nie jest wystarczające w kontekście instalacji fotowoltaicznych. Wyłączniki te są zaprojektowane przede wszystkim do ochrony przed przeciążeniem, niekoniecznie gwarantując pełne bezpieczeństwo w przypadku uszkodzenia izolacji lub innych awarii elektrycznych. W instalacjach takich jak fotowoltaiczne, gdzie prąd stały stanowi inne wyzwanie niż typowe systemy prądu zmiennego, odpowiednia klasa ochronności i zastosowanie odpowiednich zabezpieczeń są kluczowe dla bezpieczeństwa i zgodności z normami branżowymi.

Pytanie 35

Gdy chodzi o odbiornik o dużej mocy, taki jak kuchenka elektryczna, jak należy go zasilać?

A. z wspólnego obwodu oświetleniowego
B. z wydzielonego obwodu z własnym zabezpieczeniem
C. z wspólnego obwodu gniazd wtyczkowych
D. z wydzielonego obwodu bez własnych zabezpieczeń
Zasilanie kuchenki elektrycznej ze wspólnego obwodu oświetleniowego czy gniazd wtyczkowych jest nieodpowiednie i może prowadzić do wielu problemów. Obwody oświetleniowe są zaprojektowane do obsługi urządzeń o niskim poborze mocy, takich jak lampy, co oznacza, że nie są przystosowane do zasilania urządzeń o dużym poborze energii, jak kuchenki elektryczne. Podłączenie kuchenki do takiego obwodu może prowadzić do przeciążenia instalacji, co w konsekwencji może skutkować wyłączeniem bezpieczników lub, w skrajnych przypadkach, pożarem. Z kolei wspólny obwód gniazd wtyczkowych, który może być obciążony przez wiele urządzeń jednocześnie, również nie jest odpowiednim rozwiązaniem. W przypadku podłączenia kuchenki, inne urządzenia mogą przekroczyć dopuszczalny prąd, co prowadzi do potencjalnych zagrożeń. Ponadto, brak wydzielonego obwodu i zabezpieczenia oznacza, że w przypadku awarii kuchenki nie będzie możliwości szybkiego odłączenia zasilania, co zwiększa ryzyko uszkodzenia sprzętu oraz stwarza niebezpieczeństwo dla użytkowników. Kluczowe jest, aby pamiętać, że instalacja elektryczna powinna być projektowana zgodnie z normami, takimi jak PN-IEC 60364, które jasno definiują wymagania dotyczące zasilania urządzeń o wysokim poborze mocy.

Pytanie 36

Jaki przekrój przewodu należy dobrać do zasilania odbiornika jednofazowego o danych Sn = 4,6 kVA i Un = 230 V, stosując kryterium obciążalności prądowej na podstawie danych przedstawionych w tabeli?

Obciążalność
mm21,01,52,54,06,0
A1519243242
A. 1,5 mm2
B. 6,0 mm2
C. 4,0 mm2
D. 2,5 mm2
Wybór przekroju przewodu o średnicy 4,0 mm2, 1,5 mm2 lub 6,0 mm2 nie spełnia kryteriów obciążalności prądowej dla zasilania odbiornika jednofazowego o mocy 4,6 kVA i napięciu 230 V. Przede wszystkim, wybór 1,5 mm2 jest niewłaściwy, ponieważ jego maksymalna obciążalność wynosi tylko 16 A, co jest zdecydowanie poniżej obliczonego prądu obciążenia wynoszącego około 20 A. Użycie zbyt małego przekroju może prowadzić do przegrzewania przewodu, co zwiększa ryzyko uszkodzenia instalacji oraz stwarza zagrożenie pożarowe. Z kolei wybór 4,0 mm2, mimo że teoretycznie mógłby być odpowiedni, nie jest optymalny i nie uwzględnia kryteriów efektywności energetycznej. Przewody o większym przekroju również są mniej elastyczne i trudniejsze w instalacji, a ich koszt jest wyższy bez potrzeby. W przypadku zastosowania przewodu 6,0 mm2, przekroczenie wymaganej obciążalności może być uzasadnione tylko w szczególnych warunkach, gdzie przewód będzie narażony na znacznie wyższe obciążenia. W praktyce, właściwe dobieranie przekrojów przewodów powinno być prowadzone według norm i zasad zawartych w dokumentacji technicznej, aby zapewnić bezpieczeństwo i efektywność kosztową instalacji elektrycznej.

Pytanie 37

Jakie środki ochrony przeciwporażeniowej stosuje się w przypadku uszkodzenia obwodu pojedynczego odbiornika?

A. wyłącznie specjalne ogrodzenia
B. umiejscowienie poza zasięgiem ręki
C. separację elektryczną
D. jedynie obudowy
Podczas rozważania środków ochrony przeciwporażeniowej, istotne jest zrozumienie, że samodzielne stosowanie obudów jako formy ochrony nie wystarcza, zwłaszcza w przypadku uszkodzenia obwodu. Obudowy mogą jedynie działać jako pierwsza linia obrony, ale ich skuteczność ogranicza się do sytuacji, w której są one odpowiednio zaprojektowane i wykonane z materiałów odpornych na wpływy zewnętrzne. W praktyce, nie zawsze można zagwarantować, że obudowa w pełni zablokuje dostęp do części energii elektrycznej, co czyni ją niewystarczającą jako jedyny środek ochrony. Próba zapewnienia bezpieczeństwa poprzez umieszczenie urządzenia poza zasięgiem ręki również nie może być traktowana jako skuteczna forma ochrony, ponieważ nie eliminuje ryzyka przypadkowego kontaktu z urządzeniem. Tego rodzaju podejście opiera się na błędnym założeniu, że oddalenie od źródła prądu automatycznie zwiększa bezpieczeństwo, co w rzeczywistości może tylko częściowo zredukować ryzyko. Z kolei stosowanie specjalnych ogrodzeń nie jest odpowiedzią na problem ochrony osób przed porażeniem elektrycznym. Ogrodzenia mogą być skuteczne w ochronie niewielkich obszarów, lecz nie eliminują zagrożeń związanych z niewłaściwym użytkowaniem sprzętu elektrycznego czy awarią instalacji. Takie podejście prowadzi do mylnych przekonań, które mogą skutkować poważnymi konsekwencjami zdrowotnymi, dlatego kluczowe jest stosowanie sprawdzonych rozwiązań, takich jak separacja elektryczna, które oferują rzeczywiste zabezpieczenie przed porażeniem. Wszelkie działania związane z ochroną elektryczną powinny być zgodne z normami i regulacjami, które jasno określają najlepsze praktyki w tej dziedzinie.

Pytanie 38

W instalacji elektrycznej w łazience pojawiła się potrzeba dodania gniazda wtyczkowego w pierwszej strefie ochronnej, które ma być zasilane z obwodu zabezpieczonego przez SELV o napięciu nieprzekraczającym 25 V AC. Gdzie powinno być umieszczone źródło zasilania dla tego gniazda?

A. Na zewnątrz stref 0 i 1
B. W obrębie strefy 1
C. Tylko na zewnątrz strefy 2
D. W obrębie strefy 0
Odpowiedź "Na zewnątrz stref 0 i 1" jest prawidłowa, ponieważ w instalacjach elektrycznych w łazienkach przestrzegane są określone strefy ochronne, które mają na celu minimalizację ryzyka porażenia prądem. Strefa 0 obejmuje miejsca bezpośredniego kontaktu z wodą, takie jak wnętrze wanny czy brodzika, gdzie nie można instalować urządzeń elektrycznych z wyjątkiem tych ściśle przystosowanych do takich warunków. Strefa 1 to obszar bezpośrednio nad strefą 0, gdzie również stosuje się szczególne ograniczenia. Dla gniazda zasilanego prądem o niskim napięciu (SELV) poniżej 25 V AC, nie ma zagrożenia porażeniem prądem w przypadku awarii, dlatego jego źródło zasilania może znajdować się w bezpiecznym obszarze, czyli na zewnątrz stref 0 i 1. Przykładem praktycznym może być zainstalowanie takiego gniazda pod lustrem, gdzie nie ma bezpośredniego kontaktu z wodą, a jednak można z niego bezpiecznie korzystać. Zgodność z normami dotyczącymi bezpieczeństwa, takimi jak PN-EN 61140, jest kluczowa w takich instalacjach, aby zapewnić użytkownikom maksimum bezpieczeństwa.

Pytanie 39

Jakie czynności oraz w jakiej kolejności powinny zostać dokonane podczas wymiany uszkodzonego łącznika elektrycznego?

A. Odłączyć zasilanie, wymontować uszkodzony łącznik, sprawdzić ciągłość połączeń
B. Załączyć zasilanie, sprawdzić ciągłość połączeń, wymontować uszkodzony łącznik
C. Wymontować uszkodzony łącznik, odłączyć zasilanie, sprawdzić ciągłość połączeń
D. Odłączyć zasilanie, sprawdzić brak napięcia, wymontować uszkodzony łącznik
Odpowiedzi, które sugerują rozpoczęcie od włączenia napięcia, są nieodpowiednie i stawiają w niebezpieczeństwie osoby wykonujące wymianę łącznika. Włączenie napięcia przed sprawdzeniem, czy instalacja jest bezpieczna, to poważny błąd, który może prowadzić do porażenia prądem, co jest absolutnie nieakceptowalne w praktykach związanych z pracą z elektrycznością. Dodatkowo, pominięcie kroku sprawdzenia ciągłości połączeń przed odłączeniem napięcia może skutkować uszkodzeniem nowego łącznika, jeśli pojawią się problemy z instalacją. Kolejnym błędnym założeniem jest wymontowanie uszkodzonego łącznika przed potwierdzeniem, że nie ma napięcia. Taki sposób działania naraża osobę pracującą na niebezpieczeństwo, gdyż usunięcie elementu instalacji przy włączonym napięciu może prowadzić do zwarcia lub zwarcia elektrycznego. W kontekście norm bezpieczeństwa, takie działania są w pełni sprzeczne z wytycznymi zawartymi w PN-IEC 60364, które kładą nacisk na bezpieczeństwo podczas pracy z urządzeniami elektrycznymi. Dlatego kluczowe jest przestrzeganie ustalonych procedur i kolejności działań, aby zminimalizować ryzyko wypadków oraz zapewnić prawidłowe funkcjonowanie instalacji. Każdy technik powinien być świadomy tych zasad i stosować je w praktyce, aby chronić siebie i innych przed niebezpieczeństwem związanym z energią elektryczną.

Pytanie 40

Do zabezpieczenia silnika, którego parametry znamionowe zamieszczono w ramce, należy wybrać wyłącznik silnikowy o oznaczeniu fabrycznym

Silnik 3~   Typ MAS063-2BA90-Z

0,25 kW   0,69 A   Izol. F

IP54   2755 obr/min   cosφ 0,81

400 V (Y)   50 Hz

A. MMS-32S – 4A
B. PKZM01 – 1
C. MMS-32S – 1,6A
D. PKZM01 – 0,63
Wybór niewłaściwego wyłącznika silnikowego może prowadzić do poważnych szkód zarówno w urządzeniu, jak i w sieci zasilającej. Odpowiedzi MMS-32S – 4A oraz MMS-32S – 1,6A są nieodpowiednie, ponieważ prądy znamionowe tych wyłączników są znacznie wyższe niż prąd znamionowy silnika wynoszący 0,69 A. Użycie wyłącznika o zbyt wysokim prądzie znamionowym skutkuje brakiem efektywnego zabezpieczenia przed przeciążeniem, co może prowadzić do uszkodzenia silnika w przypadku wystąpienia nieprawidłowości w układzie. Wyłącznik PKZM01 – 0,63, mimo że jest bliski prądu znamionowego, również nie jest optymalny, gdyż jego prąd znamionowy jest niższy od wymaganej normy, co może skutkować fałszywym wyłączeniem. W praktyce, niewłaściwy dobór wyłącznika może być wynikiem braku zrozumienia zasad działania zabezpieczeń elektrycznych oraz niewłaściwej analizy charakterystyki obciążenia. Standardy branżowe, takie jak IEC 60947-4-1, podkreślają, jak istotne jest precyzyjne dobieranie parametrów wyłączników, aby zapewnić nie tylko ochronę urządzeń, ale także bezpieczeństwo użytkowników oraz trwałość całej instalacji elektrycznej.