Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 8 grudnia 2025 15:17
  • Data zakończenia: 8 grudnia 2025 15:35

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na którym rysunku przedstawiono schemat układu do wykonania pomiaru impedancji pętli zwarcia instalacji w układzie TN?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
W celu zrozumienia, dlaczego inne schematy nie przedstawiają poprawnego układu pomiarowego, należy przyjrzeć się ich elementom oraz zastosowaniom. Wiele osób może błędnie zakładać, że jakiekolwiek układy z miernikami elektrycznymi mogą być użyte do pomiaru impedancji pętli zwarcia. W przypadku schematów A, C i D, brak jest kluczowych elementów, które są niezbędne do przeprowadzenia pomiarów w układzie TN. Na przykład, jeśli rysunek A przedstawia układ bez odpowiedniego uziemienia lub izolacji, to może prowadzić do nieprawidłowych wskazań pomiarowych. Często występującym błędem jest mylenie pomiaru impedancji z pomiarami innych parametrów elektrycznych, takich jak napięcie czy prąd. Pomiar impedancji wymaga specyficznej konfiguracji, aby zapewnić dokładność i bezpieczeństwo, a brak zasilania odpowiednich elementów prowadzi do niewłaściwych odczytów. Kolejnym typowym błędem myślowym jest ignorowanie standardów branżowych, takich jak PN-EN 61557-3, które wyraźnie określają, jakie komponenty powinny być użyte w tego rodzaju pomiarach. Dlatego ważne jest, aby dobrze rozumieć rolę każdego elementu w układzie pomiarowym i ich wpływ na bezpieczeństwo i dokładność pomiaru w instalacjach TN.

Pytanie 2

Którym zestawem przyrządów pomiarowych można w przypadku braku watomierza wyznaczyć moc czynną pobieraną przez silnik elektryczny zasilany z instalacji jednofazowej?

Amperomierz
Częstościomierz
Waromierz
Amperomierz
Częstościomierz
Woltomierz
Omomierz
Waromierz
Woltomierz
Amperomierz
Waromierz
Woltomierz
ABCD
A. C.
B. A.
C. B.
D. D.
Odpowiedź D jest prawidłowa, ponieważ zestaw przyrządów składający się z amperomierza i woltomierza jest wystarczający do pomiaru mocy czynnej silnika elektrycznego zasilanego z instalacji jednofazowej. W obwodach jednofazowych moc czynna obliczana jest na podstawie wzoru P = U * I * cos(φ), gdzie U to napięcie, I to natężenie prądu, a cos(φ) to współczynnik mocy. Amperomierz umożliwia pomiar natężenia prądu, natomiast woltomierz pozwala na pomiar napięcia. Znajomość wartości obu tych parametrów pozwala na obliczenie mocy czynnej silnika. Przykładowo, jeśli zmierzymy napięcie w obwodzie jako 230 V i natężenie prądu jako 10 A, a współczynnik mocy ustalimy na 0,8, moc czynna wyniesie P = 230 * 10 * 0,8 = 1840 W. Taka metoda jest zgodna z praktykami stosowanymi w elektrotechnice i jest szeroko akceptowana w branży.

Pytanie 3

Jaką rolę odgrywa wyzwalacz elektromagnetyczny w wyłączniku nadprądowym?

A. Zatrzymuje łuk elektryczny
B. Napina sprężynę mechanizmu
C. Rozpoznaje zwarcia
D. Identyfikuje przeciążenia
Wybór odpowiedzi dotyczącej gaszenia łuku elektrycznego jest mylny, ponieważ proces ten nie jest bezpośrednio związany z funkcją wyzwalacza elektromagnetycznego. Wyłączniki nadprądowe, przy wykrywaniu zwarcia, mogą generować łuk elektryczny, który jest następnie gaszony przez specjalne mechanizmy w urządzeniach, takich jak komory gaszenia łuku. W związku z tym, gaszenie łuku to proces, który zachodzi po detekcji zwarcia, a nie jest funkcją wyzwalacza. Ponadto, odpowiedź odnosząca się do wykrywania przeciążeń jest również nieprawidłowa, ponieważ wyzwalacz elektromagnetyczny skupia się głównie na detekcji zwarć, a przeciążenia są zwykle rozpoznawane przez funkcję wyzwalacza termicznego, który działa na zasadzie wydłużania się elementu bimetalowego pod wpływem ciepła generowanego przez przepływający prąd. Naciąganie sprężyny napędu, chociaż istotne w niektórych mechanizmach wyłączników, nie ma żadnego związku z funkcjami wyzwalacza elektromagnetycznego. W praktyce, mylenie funkcji tych komponentów prowadzi do nieporozumień w zakresie projektowania systemów zabezpieczeń elektrycznych, co może skutkować niewłaściwym doborem urządzeń oraz potencjalnym zagrożeniem dla użytkowników i sprzętu.

Pytanie 4

Na którym rysunku przedstawiono świetlówkę kompaktową?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Świetlówka kompaktowa, znana również jako lampa energooszczędna, jest nowoczesnym rozwiązaniem w dziedzinie oświetlenia, które łączy w sobie efektywność energetyczną oraz długowieczność. W przeciwieństwie do tradycyjnych żarówek, świetlówki kompaktowe emitują znacznie więcej światła przy tej samej mocy, co sprawia, że są bardziej ekonomiczne i ekologiczne. Odpowiedź D przedstawia lampę o charakterystycznym kształcie składającym się z kilku zwiniętych rurek, co jest typowe dla świetlówek kompaktowych. W praktyce, zastosowanie takich lamp w domach i biurach pozwala na znaczące obniżenie kosztów energii elektrycznej, co jest zgodne z aktualnymi trendami w zakresie zrównoważonego rozwoju oraz normami dotyczącymi ochrony środowiska. Dodatkowo, świetlówki kompaktowe charakteryzują się dłuższą żywotnością, co ogranicza liczbę odpadów, a wiele modeli jest kompatybilnych z oprawami standardowymi, co ułatwia ich wymianę. W kontekście dobrych praktyk, warto zwrócić uwagę na certyfikaty energetyczne, które świadczą o wysokiej efektywności tych lamp.

Pytanie 5

Stosując kryterium obciążalności prądowej, dobierz przewód kabelkowy o najmniejszym przekroju żył miedzianych do wykonania trójfazowej instalacji wtynkowej w układzie TN-S, która jest zabezpieczona wyłącznikiem instalacyjnym z oznaczeniem B16.

Przekrój przewodu mm²Jeden lub kilka kabli 1-żyłowych ułożonych w rurzeKilka kabli np.: przewody płaszczowe, rurowe, wtynkowePojedynczy w powietrzu, przy czym odstęp odpowiada przynajmniej średnicy kabla
Żyła Cu AŻyła Al AŻyła Cu AŻyła Al AŻyła Cu AŻyła Al A
0,75--12-15-
1,011-15-19-
1,515-18-24-
2,5201526203226
4252034274233
6332644355442
A. YDY 5x1,5 mm2
B. YDY 5x2,5 mm2
C. YDY 5x1 mm2
D. YADY 5x4 mm2
Wybór innych przewodów, takich jak YDY 5x1 mm2, YADY 5x4 mm2 czy YDY 5x2,5 mm2, nie spełnia wymagań technicznych związanych z obciążalnością prądową w danej instalacji. Przewód YDY 5x1 mm2 ma zbyt mały przekrój, co uniemożliwia mu bezpieczne przewodzenie prądu o natężeniu 16A, a jego obciążalność długotrwała jest zdecydowanie poniżej wymaganego poziomu. Zastosowanie przewodu o zbyt małym przekroju może prowadzić do przegrzewania, uszkodzenia izolacji, a w konsekwencji do ryzyka pożaru. Natomiast YADY 5x4 mm2, mimo że ma większy przekrój, nie jest odpowiedni w tej konkretnej instalacji, ponieważ nie jest konieczne stosowanie tak dużego przewodu dla obciążenia 16A, co zwiększa koszty materiałów. Z kolei YDY 5x2,5 mm2, choć ma większy przekrój niż wymagany, również nie jest optymalnym rozwiązaniem w tej sytuacji, ponieważ może prowadzić do nieefektywnego wykorzystania zasobów oraz niepotrzebnego zwiększenia kosztów instalacji. Kluczowe w doborze przewodów jest przestrzeganie standardów branżowych oraz obliczeń dotyczących rzeczywistego obciążenia, co zapewnia bezpieczeństwo oraz efektywność energetyczną instalacji. Należy pamiętać, że odpowiednie podejście do projektowania instalacji elektrycznych nie tylko zabezpiecza przed awariami, ale także spełnia normy i przepisy prawne, co jest niezbędne w każdym projekcie budowlanym.

Pytanie 6

Przed dokonaniem pomiarów rezystancji izolacyjnej obwodu oświetleniowego, oprócz odłączenia zasilania, co jeszcze należy zrobić?

A. wymontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
B. zamontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
C. wymontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
D. zamontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
Wymontowanie źródeł światła i zamknięcie łączników instalacyjnych przed pomiarem rezystancji izolacji obwodu oświetleniowego jest kluczowym krokiem, który ma na celu zapewnienie bezpieczeństwa oraz dokładności pomiarów. Podczas testowania rezystancji izolacji ważne jest, aby żadne źródło ładunku nie było podłączone do obwodu, ponieważ może to prowadzić do fałszywych odczytów oraz uszkodzenia urządzeń. Zamknięcie łączników instalacyjnych eliminuje ryzyko przypadkowego włączenia obwodu w trakcie testu. Zgodnie z normą PN-EN 61557, przed przeprowadzeniem pomiarów należy upewnić się, że obwód jest całkowicie odłączony od zasilania, a wszelkie elementy, które mogą wprowadzić zmienność w pomiarach, są usunięte. Praktyczne zastosowanie tej procedury znajduje zastosowanie w przemyśle budowlanym oraz w konserwacji instalacji elektrycznych, gdzie bezpieczeństwo i dokładność pomiarów są priorytetowe.

Pytanie 7

Dokonując oględzin powykonawczych zabezpieczeń w instalacji elektrycznej przedstawionej na schemacie można stwierdzić, że zamieniono miejscami bezpieczniki

Ilustracja do pytania
A. B1 z B2
B. B2 z B4
C. B3 z B2
D. B1 z B4
Odpowiedź B1 z B2 jest prawidłowa, ponieważ analiza schematu instalacji elektrycznej wyraźnie wskazuje na zamianę miejscami tych dwóch bezpieczników. Bezpiecznik B1, który ma wartość nominalną 10A, powinien być umieszczony na początku instalacji, gdzie jego zadaniem jest ochrona całego obwodu przed przeciążeniem. Z kolei bezpiecznik B2, o wartości 25A, jest przeznaczony do zabezpieczania obwodów o większym poborze mocy. Przełożenie tych miejsc prowadzi do nieodpowiedniego zabezpieczenia, co jest sprzeczne z normami bezpieczeństwa, takimi jak PN-IEC 60364, które wymagają, aby zabezpieczenia były dobierane na podstawie charakterystyki obwodów oraz urządzeń, które mają chronić. Właściwe umiejscowienie bezpieczników jest kluczowe dla zachowania bezpieczeństwa użytkowników oraz ochrony instalacji. W praktyce, niewłaściwe dobranie wartości bezpieczników może prowadzić do ich nadmiernego przepalania lub wręcz do uszkodzenia urządzeń podłączonych do instalacji, co generuje dodatkowe koszty napraw i obniża komfort użytkowania.

Pytanie 8

Jakie narzędzia powinny być użyte do montażu urządzeń oraz realizacji połączeń elektrycznych w rozdzielnicy w budynku mieszkalnym?

A. Szczypce do cięcia przewodów, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji, zestaw wkrętaków
B. Szczypce płaskie, nóż monterski, przymiar taśmowy, przyrząd do ściągania izolacji, wkrętarka
C. Szczypce płaskie, młotek, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji
D. Szczypce do zaciskania końcówek, przyrząd do ściągania powłoki, nóż monterski, zestaw wkrętaków
Wybrany zestaw narzędzi jest idealny do montażu aparatury oraz wykonywania połączeń elektrycznych w rozdzielnicy mieszkaniowej. Szczypce do cięcia przewodów umożliwiają precyzyjne przycinanie przewodów do żądanej długości, co jest kluczowe dla zapewnienia dobrego połączenia. Przyrząd do ściągania powłoki pozwala na łatwe usunięcie zewnętrznej izolacji z przewodów, dzięki czemu można uzyskać dostęp do żył przewodów. Z kolei przyrząd do ściągania izolacji jest niezbędny do delikatnego usunięcia izolacji z końców przewodów, co jest ważne dla uniknięcia uszkodzeń drutów. Zestaw wkrętaków jest kluczowy przy montażu elementów rozdzielnicy, takich jak złącza, bezpieczniki czy przekaźniki. Wszystkie te narzędzia są zgodne z najlepszymi praktykami w branży elektrycznej, co zapewnia bezpieczeństwo oraz efektywność pracy. Dobrze dobrany zestaw narzędzi znacząco wpływa na jakość i trwałość wykonanej instalacji elektrycznej.

Pytanie 9

Co powoduje zwęglenie izolacji na końcu przewodu fazowego blisko zacisku w puszce rozgałęźnej?

A. Zbyt wysoka wartość prądu długotrwałego
B. Wzrost napięcia zasilającego spowodowany przepięciem
C. Zbyt mały przekrój użytego przewodu
D. Poluzowanie śruby mocującej w puszce
Poluzowanie się śruby dociskowej w puszce rozgałęźnej jest jedną z najczęstszych przyczyn zwęglenia izolacji na końcu przewodu fazowego. Kiedy śruba mocująca luzuje się, może to prowadzić do niewłaściwego kontaktu elektrycznego, co powoduje wzrost oporu na styku. W wyniku tego oporu generowane jest ciepło, które może spalić izolację przewodu, prowadząc do zwęglenia. Praktyczne przykłady wskazują, że regularne przeglądy instalacji elektrycznych oraz zastosowanie odpowiednich narzędzi do prawidłowego dokręcania połączeń są niezbędne dla zapewnienia bezpieczeństwa. W standardach branżowych, takich jak PN-IEC 60364, zwraca się uwagę na konieczność stosowania wysokiej jakości materiałów oraz odpowiednich technik montażu, aby zminimalizować ryzyko wystąpienia takich problemów. Dobrą praktyką jest także oznaczanie i dokumentowanie przeprowadzonych kontroli oraz konserwacji połączeń, co sprzyja długoterminowemu bezpieczeństwu użytkowania instalacji elektrycznej.

Pytanie 10

Poślizg silnika indukcyjnego osiągnie wartość 1, gdy

A. silnik zostanie zasilony prądem przeciwnym.
B. silnik znajdzie się w stanie jałowym.
C. wirnik silnika będzie w bezruchu.
D. wirnik silnika zostanie dogoniony.
Poślizg silnika indukcyjnego wyraża się jako różnica między prędkością wirnika a prędkością obrotową pola magnetycznego, wyrażona jako procent. Gdy wirnik jest zatrzymany, jego prędkość (ω_wirnika) wynosi 0, a pole magnetyczne wiruje z prędkością synchronizacyjną (ω_s). W takim przypadku poślizg jest równy 1 (100%), co oznacza maksymalne opóźnienie wirnika. W praktyce, taka sytuacja występuje w przypadku rozruchu silnika, gdy nie ma jeszcze momentu obrotowego, a silnik pracuje na pełnym poślizgu. Zrozumienie poślizgu w silniku indukcyjnym ma kluczowe znaczenie dla projektowania i eksploatacji systemów napędowych, zwłaszcza w aplikacjach wymagających precyzyjnego sterowania momentem obrotowym, takich jak w przypadku silników napędzających prasy czy taśmy transportowe. Wiedza ta pozwala na lepsze dostosowanie parametrów eksploatacyjnych silników oraz na zminimalizowanie strat energetycznych i optymalizację ich pracy w różnych warunkach obciążenia.

Pytanie 11

Na którym rysunku przedstawiono prawidłowy schemat sterowania oświetleniem z dwóch niezależnych miejsc?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
W przypadku rysunków A, B i C, schematy nie spełniają wymogów dotyczących prawidłowego sterowania oświetleniem z dwóch miejsc. Wiele osób może błędnie zakładać, że wystarczy zastosować standardowe przełączniki w tych schematach, co prowadzi do niepoprawnej konfiguracji. Rysunek A może przedstawiać jedynie klasyczny przełącznik, który umożliwia włączanie i wyłączanie światła z jednego miejsca, co nie jest wystarczające w przypadku, gdy wymagane jest sterowanie z dwóch lokalizacji. Rysunek B może zawierać jedynie przełączniki pojedyncze, co nie pozwala na zdalne sterowanie oświetleniem z więcej niż jednego miejsca. Z kolei rysunek C może zawierać niewłaściwe połączenia elektryczne lub brak elementów, które umożliwiają prawidłowe funkcjonowanie systemu. Typowe błędy myślowe prowadzące do niepoprawnych wyborów obejmują brak zrozumienia podstawowych zasad działania przełączników krzyżowych oraz ignorowanie praktycznych aspektów związanych z ich zastosowaniem w instalacjach elektrycznych. Kluczowe jest zrozumienie, że tylko zastosowanie odpowiednich komponentów oraz prawidłowe ich połączenie w schemacie elektrycznym zapewnia efektywne i bezpieczne sterowanie oświetleniem z różnych miejsc.

Pytanie 12

Jaki wyłącznik przedstawiono na rysunku?

Ilustracja do pytania
A. Czasowy.
B. Różnicowoprądowy.
C. Silnikowy.
D. Nadprądowy.
Wyłącznik różnicowoprądowy to naprawdę ważne urządzenie w każdej instalacji elektrycznej. Jego głównym zadaniem jest ochrona nas przed porażeniem prądem. Działa to tak, że jeśli wykryje różnicę między prądem, który wpływa a tym, który wypływa z obwodu, to szybko odłącza zasilanie. Kiedy prąd upływowy przekroczy ustaloną wartość, najczęściej 30 mA, to wyłącznik po prostu wyłącza prąd. Fajnie jest wiedzieć, że takie wyłączniki są stosowane zwłaszcza w łazienkach, czy wszędzie tam, gdzie elektryczność ma kontakt z wodą. Warto zaznaczyć, że według normy PN-EN 61008, powinny być w każdej nowoczesnej instalacji, co świadczy o ich roli w dbaniu o nasze bezpieczeństwo. Poza tym, nowoczesne budynki zwykle są w nie wyposażone, co dodatkowo zwiększa bezpieczeństwo. Oprócz ochrony, wyłączniki różnicowoprądowe też pomagają monitorować stan instalacji, co jest istotne, by była ona w dobrym stanie.

Pytanie 13

Zgodnie z PN-IEC 60364-4-41:2000, maksymalny dozwolony czas wyłączenia w systemach typu TN przy napięciu zasilania 230 V wynosi

A. 0,1 s
B. 0,4 s
C. 0,2 s
D. 0,8 s
Maksymalny dopuszczalny czas wyłączenia w układach sieci typu TN przy napięciu zasilania 230 V wynosi 0,4 s, zgodnie z normą PN-IEC 60364-4-41:2000. Czas ten jest kluczowy w kontekście bezpieczeństwa użytkowników i ochrony instalacji elektrycznych. W układzie TN zastosowanie przewodów ochronnych oraz odpowiedniego zabezpieczenia (np. wyłączników nadprądowych i różnicowoprądowych) ma na celu zminimalizowanie ryzyka porażenia prądem. Przykładowo, w przypadku uszkodzenia izolacji, szybkie wyłączenie zasilania ogranicza czas, w którym występuje niebezpieczne napięcie na obudowach urządzeń elektrycznych. Z tego względu, normy te zalecają właśnie ten czas wyłączenia, który pozwala pełni zabezpieczyć użytkownika przed skutkami awarii. W praktyce, odpowiednie dobranie elementów zabezpieczających oraz ich regularne testowanie jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych, co czyni tę wiedzę niezbędną dla każdego specjalisty w tej dziedzinie.

Pytanie 14

Który symbol graficzny na schemacie ideowym projektowanej instalacji elektrycznej oznacza sposób prowadzenia przewodów w tynku?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Poprawna odpowiedź to B, ponieważ w polskich normach dotyczących schematów instalacji elektrycznych, sposób prowadzenia przewodów w tynku jest zazwyczaj reprezentowany przez symbol składający się z dwóch równoległych linii. Jedna z tych linii jest ciągła, co wskazuje na przewód zamontowany w tynku, a druga jest przerywana, sugerując ewentualne miejsce, w którym przewód jest ukryty lub prowadzenie w trudnych warunkach. Tego rodzaju symbol nie tylko ułatwia zrozumienie schematu instalacji, ale również przyczynia się do zachowania bezpieczeństwa oraz efektywności w projektowaniu i wykonywaniu instalacji elektrycznych. Przykładowo, w praktyce, stosowanie się do tego symbolu pozwala instalatorom na dokładne zaplanowanie trasy przewodów w ścianach budynków, co ma kluczowe znaczenie dla estetyki oraz funkcjonalności instalacji. Ponadto, stosowanie jednolitych symboli zgodnych z normami branżowymi, jak PN-EN 60617, zapewnia, że wszyscy uczestnicy procesu budowlanego mają wspólne zrozumienie projektu, co minimalizuje ryzyko błędów w realizacji.

Pytanie 15

Który z wymienionych rodzajów wkładek topikowych powinien być użyty do zabezpieczenia przed zwarciem jednofazowego silnika indukcyjnego klatkowego?

A. aL
B. gG
C. gR
D. aM
Wybór niewłaściwych typów wkładek topikowych dla zabezpieczenia jednofazowego silnika indukcyjnego klatkowego jest często wynikiem niepełnego zrozumienia ich właściwości i zastosowań. Wkładki typu gG są przeznaczone do ogólnej ochrony obwodów elektrycznych, ale nie są optymalne dla silników, ponieważ mogą nie być w stanie skutecznie zareagować na nagłe przeciążenia i zwarcia, które są typowe dla rozruchu silników. Z kolei wkładki gR, choć przeznaczone do ochrony przed przeciążeniami, nie są dostosowane do specyficznych potrzeb silników, a ich czas reakcji może prowadzić do uszkodzeń. Wkładki typu aL, które są przeznaczone do ograniczenia prądów rozruchowych, również nie zapewniają odpowiedniego zabezpieczenia przed zwarciem, co może skutkować poważnymi uszkodzeniami silnika. Istotnym błędem myślowym jest założenie, że każda wkładka topikowa będzie spełniać te same funkcje niezależnie od kontekstu zastosowania. Odpowiedni dobór wkładek, takich jak aM, uwzględniający zarówno moment rozruchowy, jak i charakterystykę obciążeń, jest kluczowy dla zapewnienia trwałości i niezawodności pracy silników elektrycznych.

Pytanie 16

Który sposób połączenia przewodów jest zgodny z przedstawionym na rysunku schematem ideowym instalacji elektrycznej pracującej w sieci TN-S?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Odpowiedź C jest poprawna, ponieważ zgodnie z systemem TN-S, przewód ochronny PE (przewód uziemiający) i przewód neutralny N (przewód zerowy) muszą być rozdzielone na całej długości instalacji. W tym systemie przewód PE jest przeznaczony wyłącznie do celów ochronnych, co zapobiega ryzyku przypadkowego wprowadzenia prądu do obwodów neutralnych. Poprawne rozdzielenie tych przewodów ma kluczowe znaczenie dla bezpieczeństwa użytkowników, ponieważ zmniejsza ryzyko porażenia prądem. W praktyce oznacza to, że w rozdzielni elektrycznej przewody te powinny być traktowane jako odrębne, co jest zgodne z normami PN-IEC 60364 oraz PN-EN 50110, które regulują zasady bezpieczeństwa w instalacjach elektrycznych. W instalacjach TN-S, przewód PE powinien być odpowiednio uziemiony, co znacznie poprawia ochronę przed zwarciami i innymi awariami. Warto zauważyć, że standardy te są stosowane w wielu krajach, co podkreśla ich uniwersalność i znaczenie dla zachowania wysokiego poziomu bezpieczeństwa. Przykładem zastosowania tego rozwiązania są budynki użyteczności publicznej, gdzie bezpieczeństwo użytkowników ma kluczowe znaczenie.

Pytanie 17

Na zdjęciach przedstawiono kolejno od lewej typy trzonków źródeł światła

Ilustracja do pytania
A. E27,G4,MR11,G9
B. E27,MR11,G4,G9
C. E27,G9,MR11,G4
D. E27,G4,G9,MR11
Zrozumienie różnorodności trzonków źródeł światła jest kluczowe dla efektywnego i praktycznego ich wykorzystania. Wybór niewłaściwej kombinacji trzonków, jak w przypadku niepoprawnych odpowiedzi, może prowadzić do nieefektywnego oświetlenia, a także do problemów z kompatybilnością urządzeń. Na przykład, pomylenie trzonka E27 z G4 w praktycznym zastosowaniu jest poważnym błędem, ponieważ E27 to standardowy gwint dla większych żarówek, podczas gdy G4 jest przeznaczony dla niskonapięciowych źródeł światła, takich jak miniaturowe halogeny. W przypadku odpowiedzi, które sugerują inne porządki, kluczowe jest zrozumienie, że różne typy trzonków mają specyficzne wymiary i przeznaczenia, co sprawia, że ich zamiana lub niewłaściwa identyfikacja prowadzi do nieprawidłowego działania systemu oświetleniowego. Niepoprawne odpowiedzi mogą także wynikać z błędnego przekonania, że różne trzonki mogą być stosowane zamiennie, co nie jest prawdą w kontekście technicznych wymagań. Wiedza o tym, jakie trzonki są używane w określonych zastosowaniach, pozwala na lepsze planowanie i realizację projektów oświetleniowych, jak również na unikanie kosztownych pomyłek przy zakupie źródeł światła.

Pytanie 18

Wybierz z tabeli numer katalogowy wtyczki, która wraz przewodem wystarczy do zasilenia betoniarki z silnikiem trójfazowym pobierającym w warunkach pracy znamionowej moc 12 kVA. Maszyna sterowana jest stycznikiem z cewką na napięcie 230 V i zasilana z sieci TN-S o napięciu 230/400 V.

Ilustracja do pytania
A. 015-6
B. 025-6
C. 024-6
D. 014-6
Wybór niewłaściwej wtyczki, takiej jak 014-6, 015-6 lub 024-6, może wydawać się na pierwszy rzut oka odpowiedni, jednakże przy bliższym przyjrzeniu się okazuje się, że każda z tych opcji nie spełnia podstawowych wymagań dla urządzenia o mocy 12 kVA. Wtyczka 014-6 jest zaprojektowana na niższe obciążenia, co oznacza, że jej maksymalna wartość prądu jest niewystarczająca dla betoniarki, która wymaga 17,32 A. Z kolei wtyczka 015-6 również nie jest przystosowana do pracy z takim obciążeniem, co może prowadzić do niebezpiecznych sytuacji związanych z przegrzewaniem i uszkodzeniem wtyczki. W przypadku wtyczki 024-6, choć może ona mieć nieco wyższe parametry, wciąż nie osiąga wymaganej wydajności prądowej. Użycie niewłaściwej wtyczki może skutkować nie tylko awarią sprzętu, ale także naruszeniem przepisów BHP, które wymuszają stosowanie odpowiednich, certyfikowanych komponentów do zasilania maszyn przemysłowych. Warto pamiętać, że każde urządzenie elektryczne powinno być zasilane zgodnie z jego specyfikacją, co obejmuje również właściwy dobór wtyczek oraz przewodów, aby zminimalizować ryzyko awarii i zapewnić bezpieczeństwo użytkowania.

Pytanie 19

Oprawa oświetleniowa pokazana na zdjęciu jest przeznaczona do zamontowania żarówki z trzonkiem

Ilustracja do pytania
A. E14
B. MR16
C. GU10
D. E27
Oprawa oświetleniowa przedstawiona na zdjęciu jest przeznaczona do zamontowania żarówki z trzonkiem GU10, co można stwierdzić na podstawie analizy wizualnej. Trzonek GU10 charakteryzuje się dwoma bolcami zakończonymi małymi wypustkami, co jest typowe dla tego standardu. W praktyce, żarówki GU10 są powszechnie stosowane w oświetleniu punktowym, halogenowym oraz LED, zapewniając dużą wydajność świetlną oraz możliwość łatwej wymiany. Warto zwrócić uwagę na to, że zastosowanie odpowiednich żarówek w danej oprawie oświetleniowej jest kluczowe dla zapewnienia optymalnego działania systemu oświetleniowego oraz bezpieczeństwa użytkowania. W profesjonalnych instalacjach oświetleniowych, takich jak biura czy przestrzenie komercyjne, standard GU10 jest często preferowany ze względu na różnorodność dostępnych źródeł światła oraz ich łatwość w montażu i demontażu, co sprzyja serwisowaniu. Zastosowanie odpowiednich standardów trzonków pozwala także na lepsze zarządzanie energią i efektywność kosztową, co jest istotne w kontekście nowoczesnych rozwiązań oświetleniowych.

Pytanie 20

Jakim urządzeniem można przeprowadzić bezpośredni pomiar rezystancji obwodu?

A. omomierzem
B. woltomierzem
C. watomierzem
D. amperomierzem
Omomierz to przyrząd elektryczny zaprojektowany specjalnie do pomiaru rezystancji, dlatego jest idealnym narzędziem do wykonywania pomiarów bezpośrednich rezystancji obwodów. Działa na zasadzie wysyłania prądu przez rezystor i pomiaru spadku napięcia, co umożliwia obliczenie rezystancji zgodnie z prawem Ohma (R = U/I). Przykładowe zastosowania omomierza obejmują testowanie ciągłości połączeń w instalacjach elektrycznych, diagnozowanie uszkodzeń w komponentach elektronicznych oraz pomiary rezystancji w aplikacjach przemysłowych. W kontekście dobrych praktyk, omomierze są często stosowane w serwisach i laboratoriach, gdzie precyzyjne pomiary rezystancji są kluczowe, szczególnie w kontekście bezpieczeństwa urządzeń elektrycznych, co jest zgodne z normami IEC 61010 dotyczącymi bezpieczeństwa przyrządów pomiarowych.

Pytanie 21

Miernik rezystancji włączony do układu jak na rysunku służy do

Ilustracja do pytania
A. pomiaru impedancji pętli zwarciowej.
B. sprawdzenia ciągłości przewodu głównego połączenia wyrównawczego.
C. pomiaru rezystancji uziemienia.
D. sprawdzenia ciągłości przewodu miejscowego połączenia wyrównawczego.
Wybór odpowiedzi niezgodnej z rzeczywistym przeznaczeniem miernika rezystancji może prowadzić do poważnych konsekwencji w pracy z instalacjami elektrycznymi. Pomiar impedancji pętli zwarciowej, choć istotny, dotyczy innego aspektu analizy instalacji elektrycznej. Impedancja pętli zwarciowej jest parametrem, który pozwala zrozumieć, jak instalacja zareaguje w przypadku zwarcia. Pomiar ten wykonuje się zwykle w celu oceny skuteczności zabezpieczeń, a nie do sprawdzenia ciągłości przewodów ochronnych. Także, pomiar rezystancji uziemienia, mimo że istotny dla zapewnienia ochrony przed porażeniem, odnosi się do innego elementu instalacji, a nie do samej ciągłości przewodu. Dodatkowo, sprawdzenie ciągłości przewodu miejscowego połączenia wyrównawczego także nie jest właściwe w kontekście użycia miernika w opisywanym układzie. Mierzony przewód w tym przypadku jest przewodem głównym, który odgrywa kluczową rolę w bezpiecznym funkcjonowaniu całej instalacji. Zrozumienie różnicy pomiędzy tymi rodzajami pomiarów jest kluczowe dla każdego specjalisty zajmującego się elektryką, ponieważ pomyłka w identyfikacji celu pomiaru może prowadzić do poważnych problemów z bezpieczeństwem instalacji, a także do nieprawidłowej oceny stanu technicznego systemu elektrycznego.

Pytanie 22

Aby wymienić wadliwy łącznik w instalacji, należy wykonać następujące kroki:

A. usunąć uszkodzony łącznik, odłączyć napięcie, sprawdzić ciągłość połączeń
B. wyłączyć napięcie, upewnić się o braku napięcia, wyjąć uszkodzony łącznik
C. podłączyć napięcie, zweryfikować ciągłość połączeń, wyjąć uszkodzony łącznik
D. wyłączyć napięcie, usunąć uszkodzony łącznik, zweryfikować ciągłość połączeń
Odpowiedź odłączająca napięcie, sprawdzająca brak napięcia, a następnie wymontowująca uszkodzony łącznik jest zgodna z najlepszymi praktykami w zakresie bezpieczeństwa elektrycznego. Odłączenie napięcia przed przystąpieniem do jakiejkolwiek pracy na instalacji elektrycznej jest kluczowe, aby zminimalizować ryzyko porażenia prądem. Sprawdzenie braku napięcia za pomocą odpowiednich narzędzi, takich jak tester napięcia, jest niezbędne, aby potwierdzić, że instalacja jest bezpieczna do pracy. Po wykonaniu tych dwóch kroków można bezpiecznie wymontować uszkodzony łącznik. Przykładem praktycznym może być sytuacja, w której technik serwisowy wymienia łącznik w oświetleniu sufitowym. Stosując powyższe kroki, zapewnia sobie bezpieczeństwo oraz minimalizuje ryzyko uszkodzeń innych elementów instalacji. Zgodnie z normami IEC i PN-EN, przestrzeganie tych zasad jest obligatoryjne, aby utrzymać wysokie standardy bezpieczeństwa w pracy z instalacjami elektrycznymi.

Pytanie 23

Który rodzaj pomiaru pokazany jest na rysunku?

Ilustracja do pytania
A. Rezystancji izolacji stanowiska.
B. Ciągłości przewodów.
C. Napięcia dotykowego.
D. Impedancji zwarciowej.
Pomiar rezystancji izolacji to naprawdę ważny element, jeśli chodzi o ocenę stanu instalacji elektrycznych. Bez tego nie da się mówić o bezpieczeństwie użytkowników, zwłaszcza w różnych warunkach. Na rysunku widzisz miernik rezystancji, który jest podłączony do badanego elementu i do ziemi. Taki sposób pomiaru pozwala ocenić jakość izolacji oraz wykryć ewentualne usterki. To ważne, bo niektóre problemy mogą prowadzić do groźnych sytuacji, jak na przykład porażenie prądem. W instalacjach przemysłowych regularne pomiary rezystancji izolacji to konieczność, żeby zapewnić, że wszystko działa jak należy, zgodnie z normami IEC 61557. Mierzenie z odpowiednim dociskiem elektrody, w tym przypadku 750 N, też jest kluczowe. Wartości rezystancji powinny być zgodne z normami, a przynajmniej 1 MΩ, żeby mieć pewność, że wszystko jest w porządku i bezpieczne. Znajomość tych parametrów i umiejętność ich analizy jest mega ważna dla każdego, kto zajmuje się elektryką.

Pytanie 24

Który z pokazanych na rysunkach przewodów należy zastosować do wykonania instalacji zasilającej odbiornik prądu stałego w układzie 2/M DC 220/110 V?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Wybór przewodu D do instalacji zasilającej odbiornik prądu stałego w układzie 2/M DC 220/110 V jest właściwy z kilku powodów. Przewód ten charakteryzuje się odpowiednią izolacją, która jest niezbędna do pracy w warunkach napięcia stałego. W przypadku prądu stałego, szczególnie przy wyższych napięciach, kluczowe jest, aby przewód był odporny na przepięcia oraz miał właściwości dielektryczne, które zapobiegają przebiciu izolacji. W praktyce oznacza to, że przewody stosowane w instalacjach DC muszą być zgodne z normami, takimi jak IEC 60228 oraz IEC 60529, które określają wymagania dotyczące izolacji i ochrony przed wodą i ciałami stałymi. Przykładem zastosowania przewodu D mogą być instalacje w fotowoltaice, gdzie również wykorzystywane są wysokie napięcia stałe. Odpowiedni dobór przewodu wpływa nie tylko na bezpieczeństwo, ale także na efektywność energetyczną całego systemu. Dlatego korzystanie z przewodów zgodnych ze specyfikacjami producentów oraz standardami branżowymi jest kluczowe.

Pytanie 25

W celu sprawdzenia poprawności działania wyłączników różnicowoprądowych zmierzono ich różnicowe prądy zadziałania i wyniki zamieszczono w przedstawionej tabeli. Który z wyłączników nie spełnia warunku prądu zadziałania IΔ = (0,5÷1,00) IΔN?

WyłącznikWynik pomiaru różnicowego prądu zadziałania IΔ
P302 25-10-AC8 mA
P202 25-30-AC12 mA
P304 40-30-AC25 mA
P304 40-100-AC70 mA
A. P302 25-10-AC
B. P304 40-30-AC
C. P304 40-100-AC
D. P202 25-30-AC
Wyłącznik P202 25-30-AC jest prawidłową odpowiedzią, ponieważ jego zmierzony prąd zadziałania wynosi 12 mA, co nie spełnia wymaganego zakresu prądu zadziałania IΔ = (0,5÷1,00) IΔN. Zgodnie z normami, wyłączniki różnicowoprądowe powinny mieć prąd zadziałania w granicach 15 mA do 30 mA dla wyłączników o prądzie znamionowym 30 mA. Oznacza to, że każdy wyłącznik, który nie osiąga minimalnej wartości 15 mA, nie jest w stanie skutecznie zabezpieczyć instalacji przed pożarem czy porażeniem prądem. Prawidłowe działanie wyłączników różnicowoprądowych jest kluczowe w zapewnieniu bezpieczeństwa elektrycznego, dlatego inżynierowie i technicy powinni regularnie testować i sprawdzać ich parametry, aby zapewnić odpowiednią ochronę. W praktyce, wyłączniki tego typu stosuje się w obiektach użyteczności publicznej, gdzie bezpieczeństwo użytkowników jest priorytetem, a ich efektywność jest ściśle monitorowana na podstawie norm PN-EN 61008 i PN-EN 62423.

Pytanie 26

Jakie są wartości znamionowe prądu oraz liczba biegunów wyłącznika oznaczonego symbolem S194 B3?

A. 9 A i 4 bieguny
B. 4 A i 3 bieguny
C. 3 A i 4 bieguny
D. 19 A i 3 bieguny
Wyłącznik oznaczony symbolem S194 B3 posiada prąd znamionowy równy 3 A oraz 4 bieguny. Jest to typowy wyłącznik stosowany w instalacjach elektrycznych, który może być użyty do ochrony obwodów przed przeciążeniami i zwarciami. Prąd znamionowy 3 A wskazuje, że urządzenie jest przeznaczone do zastosowań o niewielkim obciążeniu, co czyni je idealnym rozwiązaniem w przypadku małych instalacji domowych lub biurowych, gdzie nie zachodzi potrzeba stosowania wyłączników o wyższych prądach. Z kolei cztery bieguny oznaczają, że wyłącznik może działać w obwodach trójfazowych, co jest istotne w bardziej skomplikowanych układach elektrycznych. W praktyce, przy doborze wyłącznika, należy zawsze uwzględniać zarówno prąd znamionowy, jak i liczbę biegunów, aby zapewnić odpowiednią ochronę i bezpieczeństwo. Przykładem zastosowania tego typu wyłącznika jest instalacja w małych warsztatach czy laboratoriach, gdzie używane są urządzenia o niskim poborze mocy.

Pytanie 27

Który z wymienionych parametrów można zmierzyć przyrządem przedstawionym na ilustracji?

Ilustracja do pytania
A. Chwilową moc obciążenia.
B. Impedancję pętli zwarcia.
C. Prąd upływu.
D. Rezystancję izolacji.
Pomiar prądu upływu, impedancji pętli zwarcia oraz chwilowej mocy obciążenia opiera się na innych zasadach pomiarowych i wymaga odmiennych przyrządów. Prąd upływu dotyczy prądów, które uciekają z instalacji do ziemi lub do obudowy urządzeń, co jest istotne z punktu widzenia bezpieczeństwa, ale nie jest bezpośrednio związane z pomiarem rezystancji izolacji. Z kolei impedancja pętli zwarcia jest mierzona w celu oceny skuteczności ochrony przeciwporażeniowej i nie może być określona przy użyciu miernika izolacji. Mierniki do pomiaru impedancji pętli zwarcia wykorzystują inną metodologię pomiarową i zazwyczaj są dostosowane do pracy w obwodach z obciążeniem. Chwilowa moc obciążenia również nie jest zależna od wartości rezystancji izolacji, gdyż odnosi się do momentalnego zużycia energii przez urządzenie, co jest mierzono za pomocą liczników energii elektrycznej. Typowe nieporozumienie polega na myleniu różnych parametrów elektrycznych, co może prowadzić do niewłaściwych pomiarów i, w konsekwencji, do nieprawidłowych ocen stanu instalacji. Dlatego ważne jest, aby przed przystąpieniem do pomiarów dobrze zrozumieć zastosowanie konkretnego narzędzia pomiarowego oraz jego możliwości.

Pytanie 28

Który układ sieciowy przedstawiono na schemacie?

Ilustracja do pytania
A. TN-C
B. IT
C. TT
D. TN-S
Wybór odpowiedzi innej niż TT wskazuje na szereg nieporozumień dotyczących układów sieciowych. Układ TN-C, na przykład, charakteryzuje się połączeniem przewodu neutralnego z przewodem ochronnym, co w przypadku awarii może prowadzić do niebezpiecznych sytuacji, zagrażających użytkownikom budynku. W kontekście norm, takie połączenie jest sprzeczne z zasadami, które nakładają obowiązek utrzymania niezależnych ścieżek uziemienia dla przewodu neutralnego i ochronnego. Z kolei układ IT, który także został błędnie wybrany, polega na braku połączenia z ziemią w systemie zasilania, co powoduje, że nawet w przypadku uszkodzenia izolacji, nie ma bezpośredniego uziemienia, co generuje zagrożenie. Układ TT, w przeciwieństwie do tych dwóch, zapewnia dodatkowe bezpieczeństwo poprzez niezależne uziemienia. Odpowiedzi wskazujące na TN-S również są mylne, ponieważ w tym układzie występuje oddzielne uziemienie dla przewodów neutralnych i ochronnych, co nie jest zgodne z przedstawionym schematem. Tego typu nieprawidłowe odpowiedzi często wynikają z mylenia podstawowych zasad dotyczących uziemienia oraz bezpieczeństwa instalacji elektrycznych. Niezrozumienie kluczowych różnic pomiędzy tymi układami może prowadzić do podjęcia niewłaściwych decyzji w projektowaniu i eksploatacji instalacji elektrycznych, co z kolei może zagrażać bezpieczeństwu użytkowników.

Pytanie 29

Podczas wymiany uszkodzonego gniazda wtykowego w instalacji ukrytej prowadzonej w rurkach karbowanych zauważono, że na skutek poluzowania zacisku izolacja jednego z przewodów na kilku centymetrach straciła elastyczność oraz zmieniła kolor. Jak należy zrealizować naprawę uszkodzenia?

A. Założyć gumowy wężyk na uszkodzoną izolację przewodu
B. Wymienić uszkodzony przewód na nowy o takim samym przekroju
C. Pomalować uszkodzoną izolację przewodu
D. Wymienić wszystkie przewody na nowe o większym przekroju
Wymiana uszkodzonego przewodu na nowy o takim samym przekroju jest kluczowym działaniem w zapewnieniu bezpieczeństwa i funkcjonalności instalacji elektrycznej. Uszkodzenie izolacji przewodu, które prowadzi do utraty elastyczności i zmiany koloru, wskazuje na problem, który może prowadzić do porażenia prądem lub zwarcia. Zgodnie z normami IEC oraz Polskimi Normami (PN), przewody elektryczne powinny być zawsze w dobrym stanie technicznym. W praktyce, wymiana uszkodzonego przewodu na nowy o takim samym przekroju zapewnia, że instalacja elektryczna będzie w pełni sprawna i zgodna z wymaganiami dotyczącymi obciążalności prądowej oraz ochrony przed przeciążeniem. Przykładem może być wymiana przewodu w domowej instalacji, gdzie zgodność z przekrojem przewodu zabezpiecza przed zjawiskiem przegrzewania się instalacji oraz potencjalnym uszkodzeniem urządzeń elektrycznych. Stanowisko to jest zgodne z dobrą praktyką inżynieryjną i zapewnia trwałość oraz bezpieczeństwo eksploatacji systemów elektrycznych.

Pytanie 30

Które wyprowadzenia czujnika kontroli i zaniku faz należy włączyć szeregowo z cewką stycznika zgodnie z przedstawionymi schematami z jego instrukcji fabrycznej?

Ilustracja do pytania
A. 1 i 4
B. 7 i 8
C. 4 i 8
D. 1 i 7
Odpowiedź 7 i 8 jest prawidłowa, ponieważ zgodnie z przedstawionymi schematami w instrukcji fabrycznej, te wyprowadzenia czujnika kontroli i zaniku faz są zaprojektowane do szeregowego połączenia z cewką stycznika. W praktyce oznacza to, że czujnik monitoruje obecność wszystkich faz w układzie. W przypadku zaniku jednej z faz, obwód jest otwierany, co skutkuje deaktywacją cewki stycznika i wyłączeniem silnika. Takie rozwiązanie jest zgodne z najlepszymi praktykami w zakresie automatyki przemysłowej, gdzie ochrona silników przed pracą w warunkach braku fazy jest kluczowa dla ich żywotności i bezpieczeństwa operacyjnego. Zastosowanie czujników zaniku faz w układach zasilania nie tylko zabezpiecza urządzenia przed uszkodzeniami, ale również zwiększa efektywność operacyjną całego systemu, zapewniając ciągłość pracy. Warto zaznaczyć, że zgodność z normami bezpieczeństwa, takimi jak IEC 60204-1, staje się niezbędna w projektowaniu takich układów, aby spełniały one wymogi dotyczące bezpieczeństwa i niezawodności.

Pytanie 31

Jakim symbolem oznacza się przewód jednożyłowy, wykonany z aluminiowych drutów i mający izolację z polichlorku winylu, o średnicy żyły 2,5 mm2?

A. YDY 2,5 mm2
B. ADY 2,5 mm2
C. YLY 2,5 mm2
D. ALY 2,5 mm2
Odpowiedź ALY 2,5 mm2 jest poprawna, ponieważ odnosi się do przewodu jednożyłowego z aluminiową żyłą wielodrutową, który jest powszechnie stosowany w instalacjach elektrycznych. W oznaczeniu tym, litera 'A' wskazuje na materiał przewodnika - aluminium, co jest istotne, ponieważ różni się on właściwościami od miedzi, na przykład mniejszą przewodnością elektryczną i wyższą wagą przy tej samej długości. Litera 'L' oznacza, że przewód jest wielodrutowy, co zwiększa elastyczność i ułatwia instalację w trudnych warunkach. Przewody te są zwykle stosowane w instalacjach oświetleniowych oraz w zasilaniu urządzeń domowych, gdzie ich parametry elektryczne, takie jak maksymalne obciążenie prądowe, są dostosowane do standardów, takich jak PN-IEC 60228. Stosowanie przewodów o odpowiedniej specyfikacji jest kluczowe dla zapewnienia bezpieczeństwa oraz efektywności energetycznej w systemach elektrycznych.

Pytanie 32

Który układ sterowania przedstawiono na schemacie?

Ilustracja do pytania
A. Do załączenia silnika z opóźnieniem.
B. Do pracy zależnej dwóch styczników.
C. Do pracy równoległej dwóch styczników.
D. Do rozruchu silnika pierścieniowego.
Pytania dotyczące układów sterowania często prowadzą do nieporozumień związanych z interpretacją schematów. Odpowiedzi sugerujące rozruch silnika pierścieniowego lub załączenie silnika z opóźnieniem nie uwzględniają specyfiki przedstawionego układu. Pierwsza z tych koncepcji odnosi się do złożonego procesu uruchamiania silników o dużych momentach rozruchowych, który wymaga zastosowania specjalnych układów sterujących, takich jak styczniki z pierścieniami. Takie układy są złożone i nie mają związku z przedstawionym schematem, który dotyczy pracy zależnej dwóch styczników. Druga koncepcja, dotycząca załączenia z opóźnieniem, również jest błędna, ponieważ w przypadku układu pracy zależnej nie ma mowy o opóźnieniu, a jedynie o synchronizacji działania dwóch styczników. Dodatkowo, opcje dotyczące pracy równoległej dwóch styczników nie uwzględniają zasady, że jeden stycznik wpływa na drugi, co jest kluczowym elementem omawianego schematu. Tego typu błędy myślowe mogą wynikać z braku zrozumienia zasad działania układów sterujących oraz z mylenia różnych typów połączeń w automatyce. Aby poprawnie interpretować schematy, ważne jest, aby dobrze znać zasady działania układów oraz ich zastosowanie w praktyce. Warto zapoznać się z literaturą branżową oraz standardami, które precyzują zasady projektowania i stosowania układów sterujących.

Pytanie 33

Przewód, który jest oznaczony symbolem SMYp, ma żyły

A. wielodrutowe
B. sektorowe
C. płaskie
D. jednodrutowe
Jeśli wybrałeś niewłaściwą odpowiedź na temat przewodów SMYp, to pewnie wynika to z niezrozumienia ich specyfikacji oraz zastosowań. Odpowiedzi dotyczące żył sektorowych, płaskich czy jednodrutowych nie pasują do przewodów SMYp. Żyły sektorowe są używane w kablach zasilających o większych przekrojach, często w instalacjach energetycznych, gdzie są wymagane specjalne parametry dotyczące rozkładu pola elektrycznego. Żyły płaskie też mają swoje miejsce w różnych aplikacjach, głównie w konstrukcji kabli instalacyjnych, ale nie spełniają wymagań przewodów SMYp. Co do żył jednodrutowych, to chociaż mogą być używane w prostych instalacjach, to niestety nie zapewniają elastyczności, która jest ważna w sytuacjach, gdzie przewody muszą się poruszać. Wiesz, błędne odpowiedzi mogą wynikać z pomylenia różnych typów przewodów elektrycznych i ich właściwości. Ważne jest, żeby dobrać odpowiednie przewody w instalacjach elektrycznych, bo to kluczowe dla bezpieczeństwa i efektywności energetycznej. Zrozumienie różnic między typami żył i ich stosowaniem powinno być podstawą przy planowaniu i realizacji instalacji elektrycznych.

Pytanie 34

Którą klasę ochronności posiada oprawa oświetleniowa opatrzona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. III
B. II
C. I
D. 0
Wybór odpowiedzi, która wskazuje na inną klasę ochronności, może wynikać z nieporozumień dotyczących podstawowych zasad ochrony przed porażeniem elektrycznym. Klasa II, która często jest mylona z klasą I, nie wymaga przewodu ochronnego, ponieważ urządzenia tej klasy charakteryzują się podwójną izolacją, co nie zapewnia tak samo skutecznej ochrony w przypadku awarii. Z kolei klasa 0 dotyczy sprzętu bez izolacji i przewodu ochronnego, co czyni te urządzenia niebezpiecznymi i niezgodnymi z normami bezpieczeństwa. Wybór klasy III, z kolei, odnosi się do sprzętu zasilanego niskim napięciem, co również nie odnosi się do opraw oświetleniowych w standardowych instalacjach. Wiele osób myli te klasy, co może prowadzić do sytuacji narażających życie użytkowników. Przykładem takiego błędnego myślenia jest założenie, że niektóre urządzenia wystarczająco chronią przed porażeniem tylko dzięki zastosowaniu podstawowej izolacji. W rzeczywistości, prawidłowe podłączenie do przewodu ochronnego jest kluczowe dla bezpieczeństwa, co jednoznacznie potwierdzają normy i dobre praktyki w branży elektrycznej. Dlatego tak ważne jest zrozumienie różnic między tymi klasami i ich zastosowaniem w praktyce.

Pytanie 35

Na podstawie tabeli 2 dobierz dławik indukcyjny do oprawy oświetleniowej, w której znajdują się dwie świetlówki o długości 60 cm, wybrane z tabeli 1.

Ilustracja do pytania
A. L 22W
B. L 32W
C. L 18W
D. L 36W
Dobrze wybrałeś dławik L 36W, bo idealnie pasuje do zasilania dwóch świetlówek T8, każda po 18W, więc wszystko gra. Ten dławik zapewnia odpowiednią moc i parametry, które są niezbędne, żeby świetlówki działały jak należy. Warto zwrócić uwagę, że przy wyborze dławika trzeba myśleć o łącznej mocy świetlówek oraz ich typie, bo źle dobrany dławik może sprawić, że lampy będą migotać albo w ogóle nie będą działać. Dławik L 36W ma parametry zgodne z normami, co gwarantuje, że będzie działać długo i oszczędnie. Użycie go w oprawach z dwoma świetlówkami T8 to naprawdę dobra praktyka - zyskujesz nie tylko efektywność, ale też bezpieczeństwo. Pamiętaj, że dobór dławika powinien być zgodny z parametrami producenta, co tylko potwierdza, że to właściwy wybór.

Pytanie 36

Jaką z wymienionych czynności kontrolnych należy przeprowadzić po zainstalowaniu trójfazowego silnika elektrycznego?

A. Weryfikacja symetrii napięcia zasilającego
B. Mierzenie temperatury stojana
C. Sprawdzenie kierunku obrotów wału silnika
D. Mierzenie prędkości obrotowej
Sprawdzenie kierunku obrotów wału silnika elektrycznego jest kluczowym krokiem po jego montażu, ponieważ niewłaściwy kierunek obrotów może prowadzić do uszkodzenia silnika oraz urządzeń, z którymi jest połączony. W praktyce, wiele aplikacji wymaga, aby silnik obracał się w określonym kierunku, co jest szczególnie ważne w systemach napędowych, takich jak pompy, wentylatory czy maszyny robocze. Warto również pamiętać, że w przypadku silników trójfazowych zmiana kierunku obrotów jest możliwa poprzez zamianę miejscami dwóch dowolnych przewodów zasilających. Zgodnie z normami branżowymi, przed uruchomieniem silnika należy zawsze sprawdzić jego kierunek obrotów, aby zagwarantować prawidłowe działanie i uniknąć potencjalnych awarii. Dodatkowo, sprawdzenie kierunku obrotów może być dokumentowane w protokole uruchomieniowym, co jest zgodne z najlepszymi praktykami w zakresie zarządzania jakością oraz bezpieczeństwem w pracy. Warto także wspomnieć, że w przypadku silników używanych w automatyce przemysłowej, kierunek obrotów jest często monitowany przez systemy kontrolne, które mogą automatycznie reagować na nieprawidłowości.

Pytanie 37

Którego klucza należy użyć do przymocowania urządzenia elektrycznego do podłoża przy użyciu wkrętów, jak przedstawiony na ilustracji?

Ilustracja do pytania
A. Nasadowego.
B. Oczkowego.
C. Ampulowego.
D. Płaskiego.
Odpowiedź "Ampulowego" jest prawidłowa, ponieważ klucz ampulowy (inaczej klucz imbusowy) jest specjalnie zaprojektowany do pracy z wkrętami, które posiadają gniazdo sześciokątne wewnętrzne. Tego rodzaju wkręty są powszechnie stosowane w urządzeniach elektrycznych, co czyni klucz ampulowy niezwykle przydatnym narzędziem w wielu zastosowaniach. Dzięki konstrukcji klucza, który idealnie pasuje do gniazda wkrętu, można osiągnąć wysoki moment dokręcenia, co jest kluczowe dla zapewnienia stabilności zamocowanego urządzenia. W praktyce, użycie klucza ampulowego przy dokręcaniu wkrętów w urządzeniach elektrycznych zmniejsza ryzyko uszkodzenia elementów, ponieważ klucz nie zsuwa się z gniazda, co jest częstym problemem przy użyciu kluczy nasadowych czy oczkowych. Warto pamiętać, że nieodpowiednie narzędzie może prowadzić do uszkodzeń wkrętów oraz szkodliwych dla struktury zamocowanego urządzenia. Dlatego, wybierając odpowiedni klucz, należy kierować się jego specyfiką oraz standardami branżowymi dotyczącymi montażu i konserwacji urządzeń elektrycznych.

Pytanie 38

Które z poniższych wskazówek nie dotyczy przeprowadzania nowych instalacji elektrycznych w lokalach mieszkalnych?

A. Odbiorniki o dużej mocy należy zasilać z wyodrębnionych obwodów
B. Gniazda wtyczkowe w każdym pomieszczeniu powinny być zasilane z osobnego obwodu
C. Gniazda wtyczkowe w kuchni zasilane muszą być z oddzielnego obwodu
D. Oddzielić obwody oświetleniowe od obwodów gniazd wtyczkowych
Zalecenia dotyczące rozdzielenia obwodów oświetleniowych od gniazd wtyczkowych oraz zasilania gniazd wtyczkowych w kuchni z osobnego obwodu są zgodne z obowiązującymi standardami i dobrymi praktykami w zakresie projektowania instalacji elektrycznych. Rozdzielenie obwodów ma kluczowe znaczenie z punktu widzenia bezpieczeństwa; obwody oświetleniowe i gniazdowe powinny być niezależne, aby w przypadku awarii jednego z obwodów, drugi mógł funkcjonować bez zakłóceń. Gniazda w kuchni, ze względu na dużą moc odbiorników, wymagają osobnego zasilania, co jest zgodne z zaleceniami normy PN-IEC 60364-7-701, która wskazuje na ryzyko przeciążenia obwodów, a także potencjalne niebezpieczeństwo porażenia prądem. Zasilanie gniazd wtyczkowych w pojedynczym pomieszczeniu z osobnego obwodu jest błędnym podejściem, gdyż w praktyce prowadzi do nieefektywnego wykorzystania przestrzeni oraz zwiększenia kosztów instalacyjnych. W przypadku standardowych mieszkań, stosuje się obwody ogólne, które obejmują więcej niż jedno pomieszczenie, co umożliwia bardziej elastyczne i ekonomiczne podejście do projektowania instalacji. Typowym błędem w myśleniu o instalacjach elektrycznych jest skupienie się na indywidualnych potrzebach poszczególnych pomieszczeń, zamiast analizowania efektywności całego systemu oraz jego zdolności do zaspokojenia wymagań użytkowników.

Pytanie 39

W jakiej z poniższych sytuacji poślizg silnika indukcyjnego będzie najmniejszy?

A. Silnik działa w nominalnych warunkach zasilania oraz obciążenia
B. Silnik będzie zasilany prądem w kierunku przeciwnym
C. Podczas zasilania silnika jego wirnik będzie stał
D. Silnik będzie pracować na biegu jałowym
Silnik pozostający na biegu jałowym charakteryzuje się minimalnym poślizgiem, ponieważ nie jest obciążony zewnętrznie, co sprawia, że jego wirnik obraca się blisko prędkości synchronicznej. W praktyce oznacza to, że nie ma znacznego oporu mechanicznego, który mógłby wpłynąć na różnicę między prędkością wirnika a polem magnetycznym statora. W takich warunkach obroty wirnika są prawie zgodne z obrotami pola magnetycznego. W zastosowaniach przemysłowych, takich jak wentylatory czy pompy, silniki indukcyjne często pracują w trybie jałowym, co minimalizuje straty energii. Dobrą praktyką jest monitorowanie poślizgu silników w celu optymalizacji ich wydajności i zużycia energii. Zmniejszenie poślizgu wpływa na obniżenie kosztów eksploatacji, co jest kluczowe w kontekście zarządzania energią w zakładach produkcyjnych.

Pytanie 40

Jaką klasę ochronności przypisuje się oprawie oświetleniowej, która nie ma zacisku ochronnego i jest zasilana ze źródła napięcia SELV?

A. III
B. I
C. 0
D. II
Klasy ochronności urządzeń elektrycznych mają kluczowe znaczenie dla zapewnienia bezpieczeństwa ich użytkowania. Odpowiedzi I, 0 oraz II nie są poprawne w kontekście oprawy zasilanej niskonapięciowym źródłem SELV. Klasa I odnosi się do urządzeń, które posiadają zacisk ochronny i wymagają podłączenia do uziemienia, co nie jest spełnione w przypadku oprawy bez zacisku ochronnego. Klasa 0 dotyczy urządzeń, które nie mają ochrony przeciwporażeniowej i są niebezpieczne w użytkowaniu, ponieważ nie oferują żadnego zabezpieczenia przed zwarciem. Z kolei klasa II odnosi się do urządzeń, które mają podwójną izolację i nie wymagają uziemienia. Odpowiedź na to pytanie wymaga zrozumienia różnic między tymi klasami oraz ich zastosowania w praktyce. Większość błędów w wyborze odpowiedzi wynika z nieznajomości zasad dotyczących bezpieczeństwa elektrycznego oraz z mylenia klasyfikacji opraw w kontekście ich konstrukcji i zastosowania. Ważne jest, aby zwracać uwagę na oznaczenia na urządzeniach oraz stosować się do norm i standardów, które regulują te kwestie. W kontekście opraw oświetleniowych klasa ochronności III to gwarancja, że użytkownik nie będzie narażony na niebezpieczeństwo, a projektanci oświetlenia mogą skutecznie wykorzystywać takie oprawy w różnych środowiskach.