Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 9 grudnia 2025 14:59
  • Data zakończenia: 9 grudnia 2025 15:06

Egzamin zdany!

Wynik: 34/40 punktów (85,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na podstawie przedstawionych w tabeli danych katalogowych wskaż zasilacz, którego należy użyć do zasilania akcesoriów napędu bram garażowych.

Dane katalogowe napędu bram garażowych
Napięcie zasilania (V ~/Hz)230/50
Napięcie zasilania akcesoriów (V DC)24
Maks. obciążenie akcesoriów [mA]200
Układ logicznyAutomatyczny/półautomatyczny
Wyprowadzenie płytyOtwieranie/stop/zabezpieczenia/układ kontrolny/ lampka błyskowa 24 V DC
Czas świecenia lampy oświetleniowej2 min


Zasilacz1234
Napięcie wejściowe110 ÷ 230 V AC,
50 ÷ 60 Hz
110 ÷ 230 V AC,
50 ÷ 60 Hz
230 V AC,
50 Hz
230 V AC,
50 Hz
Napięcie wyjściowe13,8 V DC12 V DC24 V AC24 V DC
Maksymalny prąd wyjściowy0,25 A2 A0,5 A0,3 A
A. 4
B. 1
C. 2
D. 3
Zastanówmy się, dlaczego zasilacz nr 4 jest najlepszym wyborem. Po pierwsze, napięcie zasilania akcesoriów według danych katalogowych wynosi 24 V DC. To oznacza, że potrzebujemy zasilacza, który dostarczy właśnie takie napięcie wyjściowe. Zasilacz nr 4 spełnia ten wymóg, ponieważ jego napięcie wyjściowe wynosi 24 V DC. To jest kluczowe, ponieważ użycie zasilacza o niewłaściwym napięciu mogłoby uszkodzić akcesoria lub spowodować ich nieprawidłowe działanie. Po drugie, maksymalne obciążenie akcesoriów wynosi 200 mA, co oznacza, że zasilacz musi dostarczać przynajmniej taki prąd. Zasilacz nr 4 może dostarczać prąd do 0,3 A, czyli 300 mA, co jest wystarczające. W praktyce stosowanie zasilacza, który ma trochę większy zapas prądu, jest dobrą praktyką, bo zapewnia stabilność zasilania i wydłuża żywotność sprzętu. Branża często zaleca, aby zasilacze miały przynajmniej 20% marginesu w stosunku do maksymalnego poboru prądu akcesoriów. Pamiętajmy, że odpowiedni dobór zasilacza to nie tylko kwestia jego parametrów elektrycznych, ale także bezpieczeństwa i niezawodności całego systemu. Moim zdaniem, zawsze warto zwracać uwagę na te szczegóły, bo mogą one decydować o długoterminowym funkcjonowaniu urządzeń.

Pytanie 2

Które elementy na schematach układów pneumatycznych są oznaczane literą V?

A. Pompy.
B. Zawory.
C. Siłowniki.
D. Silniki.
Dokładnie, chodzi o zawory. W układach pneumatycznych, zawory są kluczowe dla kontrolowania przepływu powietrza. Oznaczane są literą V, co jest standardem w schematach technicznych. Zawory mogą spełniać różne funkcje, takie jak regulacja ciśnienia, kierunku przepływu czy rozdziału strumienia. Na przykład, zawory sterujące kierunkiem przepływu umożliwiają zmianę ruchu siłownika z jednego kierunku na drugi. W praktyce, w przemyśle, zawory są wykorzystywane w wielu miejscach, od prostych maszyn po zaawansowane systemy automatyzacji. Istnieje wiele typów zaworów, jak elektromagnetyczne, kulowe czy iglicowe, każdy z nich ma swoje specyficzne zastosowania. Z mojego doświadczenia wynika, że wybór odpowiedniego zaworu jest kluczowy dla efektywności i niezawodności całego układu. Prawidłowe oznaczenie i użycie zaworów zgodnie z normami, jak ISO 1219, zapewnia właściwe działanie systemu i ułatwia serwisowanie czy modernizację układu. To naprawdę fascynujące, jak wiele można osiągnąć dzięki prostym, ale skutecznym rozwiązaniom jak zawory. Warto się z nimi zaprzyjaźnić, bo to podstawa wielu systemów pneumatycznych.

Pytanie 3

Dobierz przewód do wykonania połączenia silnika 3-fazowego z przemiennikiem częstotliwości.

A. Przewód 3.
Ilustracja do odpowiedzi A
B. Przewód 1.
Ilustracja do odpowiedzi B
C. Przewód 2.
Ilustracja do odpowiedzi C
D. Przewód 4.
Ilustracja do odpowiedzi D
Właściwy wybór to przewód 1. Ten typ przewodu jest przeznaczony do zasilania silników 3-fazowych z przemiennikiem częstotliwości (falownikiem). Ma on ekran z oplotu miedzianego lub aluminiowego, który ogranicza emisję zakłóceń elektromagnetycznych (EMC) oraz chroni przed ich przenikaniem do innych urządzeń. Przewody tego typu są odporne na drgania, wyższe temperatury i impulsy napięciowe generowane przez falownik. Dodatkowo posiadają izolację z materiałów trudnopalnych, często w klasie odporności na promieniowanie UV i oleje, co pozwala stosować je zarówno wewnątrz, jak i na zewnątrz obiektów przemysłowych. Z mojego doświadczenia wynika, że takie przewody – np. typu Ölflex Servo, BiTservo lub Helukabel Topflex – są niezbędne, aby uniknąć problemów z czujnikami, sterownikami PLC i komunikacją sieciową. Standard PN-EN 60204-1 wyraźnie zaleca stosowanie ekranowanych kabli przy połączeniach silników z falownikami właśnie ze względu na ograniczenie zakłóceń harmonicznych.

Pytanie 4

Dobierz przewód do wykonania połączenia silnika 3-fazowego z przemiennikiem częstotliwości.

A. Przewód 4
Ilustracja do odpowiedzi A
B. Przewód 3
Ilustracja do odpowiedzi B
C. Przewód 2
Ilustracja do odpowiedzi C
D. Przewód 1
Ilustracja do odpowiedzi D
Do połączenia silnika 3-fazowego z przemiennikiem częstotliwości należy użyć przewodu ekranowanego, takiego jak ten przedstawiony na zdjęciu. Jest to specjalny przewód silnikowy z oplotem miedzianym (ekranem), który tłumi zakłócenia elektromagnetyczne generowane przez falownik. Wewnątrz znajdują się trzy żyły fazowe oraz przewód ochronny PE, co w pełni odpowiada wymaganiom zasilania silnika 3-fazowego. Ekran musi być podłączony po obu stronach – do obudowy falownika oraz do korpusu silnika – aby skutecznie odprowadzać prądy zakłóceniowe. Z mojego doświadczenia, tego typu przewody (oznaczenia np. ÖLFLEX SERVO, Bitner BiTservo, Helukabel TOPFLEX) są odporne na drgania, oleje i podwyższoną temperaturę, co ma duże znaczenie w aplikacjach przemysłowych. Dzięki ekranowi sygnały sterujące i komunikacyjne w sąsiednich przewodach są chronione przed interferencją. W praktyce warto też zwrócić uwagę, by długość przewodu między falownikiem a silnikiem była możliwie krótka – to minimalizuje emisję zakłóceń EMC.

Pytanie 5

Urządzenie 1-fazowe jest oznaczone symbolem. W celu podłączenia do sieci niezbędne będzie podpięcie do niego przewodów

Ilustracja do pytania
A. L, N, PE
B. L, PE
C. N, PE
D. L, N
Odpowiedź z przewodami L i N jest prawidłowa, ponieważ urządzenie 1-fazowe wymaga podłączenia do źródła zasilania obejmującego przewód fazowy (L) oraz neutralny (N). Symbol, który widzisz, to oznaczenie podwójnej izolacji, co oznacza, że urządzenie nie wymaga podłączenia przewodu ochronnego (PE). Dzięki temu, masz pewność, że urządzenie jest bezpieczne do użytku bez podłączenia do ziemi. Według standardów, takie urządzenia są konstruowane w taki sposób, by zapewnić ochronę nawet w przypadku awarii izolacji podstawowej. Praktyczne zastosowanie tego znajdziesz w wielu urządzeniach domowych, takich jak suszarki czy golarki elektryczne, które często korzystają z podwójnej izolacji. Takie rozwiązanie jest zgodne z normami IEC i jest szeroko stosowane w branży. Warto pamiętać, że podłączenie tylko przewodów L i N jest standardem w przypadku urządzeń o podwójnej izolacji, a ignorowanie tego mogłoby prowadzić do błędów w instalacji elektrycznej.

Pytanie 6

Na podstawie schematu podłączenia przewodów do przemiennika częstotliwości wskaż zaciski, do których należy podłączyć czujnik temperatury wykorzystany do termicznego zabezpieczenia silnika.

Ilustracja do pytania
A. 5 oraz L
B. 2 oraz L
C. H oraz L
D. O oraz L
Świetnie, że wybrałeś odpowiedź 5 oraz L. W schematach elektrycznych falowników często występuje potrzeba podłączenia termistora w celu zabezpieczenia silnika przed przegrzaniem. Zgodnie z dobrymi praktykami, termistor podłącza się do specjalnie dedykowanego wejścia, które w tym przypadku to zacisk 5, skonfigurowany jako wejście termistora. Zacisk ten współpracuje z zaciskiem L, który pełni rolę zacisku wspólnego dla wejść programowalnych. Takie połączenie zapewnia falownikowi możliwość monitorowania temperatury silnika i uruchamiania procedur zabezpieczających w razie potrzeby, co jest kluczowe dla wydłużenia żywotności sprzętu. W praktyce, poprawne podłączenie termistora pozwala na automatyczne wyłączanie falownika w momencie wykrycia przekroczenia dopuszczalnej temperatury. Jest to zgodne z normami bezpieczeństwa i standardami przemysłowymi, które kładą nacisk na minimalizację ryzyka uszkodzeń sprzętu i zapewnienie bezpieczeństwa w miejscu pracy. Jeśli interesujesz się elektryką, warto pogłębić wiedzę na temat różnych rodzajów czujników temperatury oraz ich zastosowań w przemyśle.

Pytanie 7

Który typ złącza przedstawiono na rysunku?

Ilustracja do pytania
A. RS-232
B. HDMI
C. RJ-45
D. USB
Wybrałeś poprawną odpowiedź, ponieważ złącze RS-232 to klasyczny interfejs, który przez lata był standardem komunikacji szeregowej w komputerach i urządzeniach przemysłowych. Złącze te, najczęściej spotykane w wersji DB9, umożliwia przesyłanie danych szeregowo, co oznacza, że bity są przesyłane jeden po drugim. Jest znane ze swojej prostoty i niezawodności, chociaż jego prędkość transmisji nie jest zbyt wysoka w porównaniu z nowoczesnymi standardami. Używane jest często w aplikacjach przemysłowych, systemach POS czy do podłączania modemów i drukarek. Mimo że RS-232 zostało wypierane przez nowsze technologie, takie jak USB czy Ethernet, nadal znajduje zastosowanie tam, gdzie wymagana jest długa odległość transmisji i odporność na zakłócenia. W praktyce, złącza RS-232 są często wykorzystywane do konfiguracji urządzeń sieciowych czy w systemach automatyki przemysłowej. Warto także pamiętać, że ten typ połączenia wymaga odpowiedniego kabla z ekranowaniem, aby zminimalizować wpływ zakłóceń elektromagnetycznych. Moim zdaniem, znajomość RS-232 to podstawa dla każdego, kto interesuje się elektroniką i telekomunikacją, ponieważ pozwala zrozumieć fundamenty komunikacji szeregowej i jej zastosowania w praktyce.

Pytanie 8

Przed montażem sprawdzono parametry elektryczne przewodu. Z jednej strony został on podłączony jak na przedstawionej ilustracji, a z drugiej żyły pozostały niepodłączone. Którego parametru dotyczył wykonany w ten sposób pomiar?

Ilustracja do pytania
A. Sumy rezystancji żył L1, L2, L3 oraz PEN.
B. Rezystancji żył L1, L2, L3.
C. Rezystancji izolacji między przewodami L1, L2, L3 a przewodem PEN.
D. Rezystancji izolacji między przewodami L1 i L2 i L3.
Mierzenie rezystancji izolacji między przewodami L1, L2, L3 a przewodem PEN jest kluczowym krokiem w zapewnieniu bezpieczeństwa instalacji elektrycznych. W praktyce, ten test pozwala na wykrycie wszelkich uszkodzeń izolacji, które mogą prowadzić do niebezpiecznych zwarć lub porażeń prądem. Rezystancja izolacji powinna być odpowiednio wysoka, aby zapobiegać przepływowi prądu między przewodami. Z mojego doświadczenia, często spotyka się sytuacje, w których niewłaściwa izolacja prowadzi do awarii i przerw w dostawie energii, co w konsekwencji może wpłynąć na działanie całego systemu elektrycznego. Standardy takie jak PN-IEC 60364 wskazują, że minimalna rezystancja izolacji dla większości instalacji powinna wynosić 1 MΩ. Wartości poniżej tego poziomu mogą sugerować, że istnieje problem, który należy rozwiązać przed oddaniem instalacji do użytku. Takie podejście jest zgodne z dobrymi praktykami branżowymi, które podkreślają znaczenie regularnych przeglądów i testów, aby zapewnić niezawodność i bezpieczeństwo systemów elektrycznych. To również elementarne działanie w kontekście prewencji ryzyka pożarowego oraz ochrony zdrowia i życia ludzkiego.

Pytanie 9

Przedstawione na ilustracjach narzędzia służą do

Ilustracja do pytania
A. ściągania izolacji.
B. zaciskania wtyków RJ45.
C. cięcia przewodów.
D. zaciskania końcówek tulejkowych.
Narzędzia przedstawione na ilustracjach to zaciskarki do końcówek tulejkowych. Służą one do zakładania tulejek na przewody wielodrutowe, co jest niezbędne, aby zapewnić pewny i bezpieczny kontakt w złączach śrubowych. Tulejki te, nazywane też ferrulami, pozwalają na właściwe ułożenie przewodów w zaciskach, co jest kluczowe w instalacjach elektrycznych. Z mojego doświadczenia, dobrze zaciśnięta tulejka znacząco poprawia jakość połączenia i zmniejsza ryzyko uszkodzenia przewodu. Zaciskanie tulejek jest standardem w profesjonalnych instalacjach, zwłaszcza tam, gdzie liczy się niezawodność i bezpieczeństwo. Narzędzia te są zaprojektowane tak, aby zapewnić odpowiednią siłę nacisku, co gwarantuje trwałość połączenia. To ważne, bo nieodpowiednio zaciśnięta tulejka może prowadzić do problemów z przewodnością lub wręcz awarii. Niektórzy twierdzą, że można się obyć bez tych narzędzi, ale moim zdaniem, ich użycie jest nie tylko dobrą praktyką, ale wręcz koniecznością w profesjonalnej pracy elektryka. Zaciskarki dostępne są w różnych rozmiarach i konfiguracjach, co pozwala na ich stosowanie w szerokim zakresie aplikacji, od domowych instalacji po przemysłowe systemy elektryczne.

Pytanie 10

Wskaż stany logiczne wejść I2 i I3 sterownika w układzie przedstawionym na rysunku przy wsuniętym tłoczysku i poprawnej pracy czujników.

Ilustracja do pytania
A. I2 = 0, I3 = 0
B. I2 = 1, I3 = 1
C. I2 = 1, I3 = 0
D. I2 = 0, I3 = 1
Odpowiedź I2 = 1, I3 = 0 jest prawidłowa, ponieważ obrazuje stan, w którym tłoczysko jest wsunięte i czujnik B1 jest aktywowany. W praktyce, gdy tłoczysko siłownika znajduje się w pozycji wsuniętej, czujnik krańcowy B1 jest włączony, co powoduje logiczny '1' na wejściu I2 sterownika PLC. Czujnik B2, natomiast, odpowiada za pozycję wysuniętą i pozostaje w stanie nieaktywnym, więc I3 jest równe '0'. Taki stan logiczny umożliwia sterowanie sekwencją cyklu pracy siłownika w zautomatyzowanych układach. Moim zdaniem, to jedno z kluczowych zastosowań PLC w przemyśle, gdzie precyzyjne sterowanie pozycją elementów ruchomych jest niezbędne. Zgodnie z dobrymi praktykami, zawsze należy upewnić się, że wszystkie czujniki są poprawnie skalibrowane i umieszczone, aby zapewnić bezawaryjne działanie systemu.

Pytanie 11

Na podstawie fragmentu karty katalogowej zaworu elektromagnetycznego określ maksymalne wartości ciśnienia roboczego i temperatury medium.

Fragment karty katalogowej
Typ modułu pneumatykizawór elektromagnetyczny
GwintBSP 3/4"
Średnica zewnętrzna przewodu20 mm
Ciśnienie robocze0.1÷16 bar
Temperatura pracymax. 50°C
Temperatura medium maks.90°C
Napięcie zasilania24 V DC
Klasa szczelnościIP65
Materiał korpusumosiądz
Materiał uszczelnieniakauczuk NBR
Podłączenie elektryczneDIN 43650 typ A
A. Ciśnienie robocze 10 barów i temperatura 90°C
B. Ciśnienie robocze 16 barów i temperatura 90°C
C. Ciśnienie robocze 16 barów i temperatura 50°C
D. Ciśnienie robocze 0,1 bara i temperatura 50°C
W przypadku analizowania tego rodzaju dokumentacji technicznej, kluczowe jest zwrócenie uwagi na specyfikacje i granice pracy urządzeń. W pierwszej błędnej odpowiedzi wskazano ciśnienie robocze 0,1 bara, co jest najniższą wartością w zakresie pracy, ale nie maksymalną. Z kolei temperatura 50°C odnosi się do maksymalnej temperatury pracy zaworu, ale nie do temperatury medium. Druga niepoprawna odpowiedź z ciśnieniem 16 barów jest poprawna pod względem ciśnienia, ale temperatura 50°C jest tutaj nieadekwatna, gdyż maksymalna temperatura medium to 90°C. Trzecia odpowiedź z ciśnieniem 10 barów to wartość mieszcząca się w zakresie, ale nie jest maksymalnym ciśnieniem, a temperatura 90°C jest zgodna z maksymalną temperaturą medium, jednak nie odpowiada maksymalnym warunkom. Typowe błędy myślowe mogą wynikać z niepełnego zrozumienia różnicy między zakresem ciśnienia roboczego a maksymalną temperaturą medium oraz temperaturą pracy samego zaworu. Warto pamiętać, że w przemyśle często stosuje się kompleksowe podejście do analizy specyfikacji technicznych, co pomaga w unikaniu błędów i zapewnia bezpieczną eksploatację urządzeń. Dobre praktyki obejmują regularne przeglądy dokumentacji oraz szkolenia personelu, by zrozumieli znaczenie poszczególnych parametrów. Dbanie o poprawne dopasowanie komponentów do specyfikacji systemów jest kluczowe dla ich trwałości i efektywności.

Pytanie 12

Który miernik należy zastosować w miejscu oznaczonym literą X na schemacie elektrycznym przedstawionym na rysunku?

Ilustracja do pytania
A. Omomierz.
B. Amperomierz.
C. Częstotliwościomierz.
D. Woltomierz.
Amperomierz to właściwy wybór, ponieważ mierzy prąd płynący przez obwód. W miejscu oznaczonym literą X mamy do czynienia z typową konfiguracją obwodu, gdzie chcemy zmierzyć prąd przepływający przez R2 i R3. Amperomierz włączamy szeregowo z elementami, przez które płynie prąd, co umożliwia dokładny pomiar bez zakłóceń. W praktyce, dobrze zamontowany amperomierz ma mały opór wewnętrzny, aby nie wpływać na obwód. Warto pamiętać, że dla bezpieczeństwa i dokładności pomiaru, amperomierz powinien być przystosowany do zakresu mierzonego prądu. W sytuacjach przemysłowych, gdzie mamy do czynienia z większymi wartościami prądów, używa się czasem przekładników prądowych. Przykładowo, w instalacjach elektrycznych takie pomiary pomagają w diagnozowaniu problemów i optymalizacji zużycia energii. Moim zdaniem, zrozumienie działania amperomierza to kluczowy element dla każdego początkującego elektryka, bo to narzędzie jest podstawą w codziennej pracy z obwodami elektrycznymi.

Pytanie 13

Użyta funkcja komparatora przedstawiona na rysunku, jest sprawdzeniem warunku

Ilustracja do pytania
A. „mniejszy lub równy”.
B. „mniejszy”.
C. „równy”.
D. „nierówny”.
Funkcja komparatora użyta na rysunku to 'mniejszy lub równy'. To oznacza, że porównywana jest wartość w zmiennej %MW48 z liczbą 5. Jeśli wartość w %MW48 jest mniejsza lub równa 5, komparator zwróci prawdę. W praktyce, takie zastosowanie jest często wykorzystywane w automatyce i systemach sterowania, gdzie musimy monitorować i reagować na zmieniające się wartości procesowe. Przykładowo, w przypadku sterowania poziomem cieczy w zbiorniku, można użyć takiego komparatora do aktywacji pompy, gdy poziom cieczy jest mniejszy lub równy określonej wartości. To podejście jest zgodne z dobrymi praktykami w dziedzinie automatyki, ponieważ umożliwia proste i efektywne monitorowanie stanu systemu. Dodatkowo, stosowanie komparatorów 'mniejszy lub równy' w kodzie sterowników PLC jest częste, ponieważ pozwala na podjęcie decyzji w oparciu o proste warunki logiczne. Wykorzystując takie podejście, możemy zwiększyć niezawodność systemu, co jest kluczowe w aplikacjach przemysłowych.

Pytanie 14

Na którym rysunku przedstawiono symbol graficzny będący oznaczeniem napędu łącznika uruchamianego przez obrót?

A. Rysunek 3
Ilustracja do odpowiedzi A
B. Rysunek 1
Ilustracja do odpowiedzi B
C. Rysunek 2
Ilustracja do odpowiedzi C
D. Rysunek 4
Ilustracja do odpowiedzi D
Symbol przedstawiony na rysunku 3 jest oznaczeniem napędu łącznika uruchamianego przez obrót. Jest to standard w projektowaniu schematów elektrycznych, gdzie symbole graficzne wizualizują funkcjonalność danego elementu. Taki sposób oznaczania jest bardzo przydatny w praktyce, zwłaszcza gdy mamy do czynienia z szafami sterowniczymi czy tablicami rozdzielczymi. Napęd obrotowy jest często stosowany w mechanizmach, które wymagają precyzyjnego i niezawodnego przełączania, jak np. przełączniki krzywkowe czy styczniki. Z mojego doświadczenia, dobrze jest znać różne symbole, bo to ułatwia pracę i komunikację w zespole projektowym. Pamiętaj też, że zgodność ze standardami, takimi jak normy IEC, zapewnia spójność i uniwersalność schematów elektrycznych. W praktyce, stosowanie poprawnych symboli pomaga w unikaniu błędów podczas montażu i konserwacji urządzeń, co przekłada się na bezpieczeństwo i efektywność pracy.

Pytanie 15

Wskaż element, którym można zastąpić uszkodzony element S1 w układzie, którego schemat przedstawiono na rysunku.

Ilustracja do pytania
A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Wybór odpowiedniego elementu do zastąpienia uszkodzonego S1 jest kluczowy dla prawidłowego działania układu. Na schemacie widzimy elektrozawór sterujący, gdzie S1 pełni funkcję zaworu rozdzielającego. Jego zadaniem jest kontrolowanie przepływu medium, dzięki czemu układ pneumatyczny działa zgodnie z założeniami. W tym kontekście wybór zaworu z odpowiednim typem sterowania, np. mechanicznego czy pneumatycznego, jest istotny. Poprawna odpowiedź wskazuje na element, który może pełnić tę funkcję, zapewniając niezawodność i dokładność działania układu. W branży pneumatycznej dobór elementu zastępczego często opiera się na standardach, takich jak ISO 5599-1, które określają wymiary i sposób montażu. Właściwie dobrany zawór zapewnia minimalizację ryzyka przecieków i optymalne działanie systemu. Praktyczne zastosowanie tego wyboru można zauważyć w automatyzacji procesów, gdzie takie elementy odpowiadają za szybką i precyzyjną kontrolę ruchów mechanicznych.

Pytanie 16

Aby zapewnić stałą wartość ciśnienia doprowadzanego do układu pneumatycznego, należy zastosować zawór

A. bezpieczeństwa.
B. dławiący.
C. zwrotny.
D. redukcyjny.
Zawór redukcyjny to kluczowy element w układach pneumatycznych, którego głównym zadaniem jest utrzymanie stałej wartości ciśnienia na wyjściu, niezależnie od zmian ciśnienia na wejściu. Działa to na zasadzie mechanizmu równoważenia siły sprężyny z siłą gazu, co pozwala na precyzyjne dostosowanie ciśnienia do wymagań układu. W praktyce takie zawory są niezbędne w systemach, gdzie stabilność i precyzyjne ciśnienie robocze mają krytyczne znaczenie, na przykład w urządzeniach medycznych, gdzie zbyt wysokie ciśnienie mogłoby zaszkodzić pacjentowi, lub w liniach produkcyjnych, gdzie zmiany ciśnienia mogą wpływać na jakość produktu. Z mojego doświadczenia wynika, że prawidłowe dobranie zaworu redukcyjnego jest kluczowe dla efektywności i bezpieczeństwa całego układu. Dobre praktyki branżowe sugerują, aby regularnie kontrolować stan zaworów i kalibrować je, by uniknąć niepotrzebnych awarii. Warto też pamiętać, że zawory te mogą być stosowane w różnorodnych środowiskach pracy, od przemysłowych po laboratoryjne, co pokazuje ich uniwersalność i znaczenie w różnych aplikacjach technicznych.

Pytanie 17

Urządzenie połączone ze sterownikiem PLC, oznaczone ADMC-1801, pełni w układzie przedstawionym na ilustracji funkcję

Ilustracja do pytania
A. zasilacza sterownika PLC.
B. modułu wyjściowego.
C. modułu wejściowego.
D. interfejsu komunikacyjnego.
Moduł oznaczony jako ADMC-1801 pełni funkcję modułu wejściowego w układzie sterowania z użyciem PLC. Moduły wejściowe są kluczowe w systemach automatyki, ponieważ pozwalają na zbieranie sygnałów z różnych czujników i urządzeń pomiarowych. W tym przypadku, jak widać na schemacie, moduł ten jest wykorzystywany do odbierania sygnału z czujnika PT100, który mierzy temperaturę. PT100 to zresztą standardowy czujnik rezystancyjny, cieszący się dużą popularnością ze względu na swoją dokładność i stabilność pomiarów. Odczyty z tego czujnika są następnie przekształcane przez moduł wejściowy na sygnał zrozumiały dla PLC, co umożliwia dalsze przetwarzanie i odpowiednie sterowanie procesem. Z mojego doświadczenia, użycie odpowiedniego modułu wejściowego jest kluczowe dla zapewnienia dokładności i niezawodności całego systemu sterowania. Dobre praktyki branżowe sugerują również regularne kalibrowanie takich czujników i modułów, aby utrzymać najwyższy poziom precyzji. Takie podejście zapewnia, że system działa zgodnie z założeniami projektowymi, a ewentualne odchylenia są szybko wychwytywane i korygowane.

Pytanie 18

Jaki rodzaj ustroju pomiarowego zastosowano w mierniku, którego tabliczkę znamionową przedstawiono na rysunku?

Ilustracja do pytania
A. Elektrodynamiczny.
B. Indukcyjny.
C. Elektromagnetyczny.
D. Magnetoelektryczny.
Na tabliczce znamionowej nie przedstawiono ustroju indukcyjnego, elektrodynamicznego ani elektromagnetycznego. Ustrój indukcyjny działa na zasadzie prądów wirowych i stosowany jest w miernikach prądu przemiennego, np. w licznikach energii – jego symbolem są dwa prostokąty lub zwoje. Ustrój elektrodynamiczny wykorzystuje oddziaływanie dwóch cewek i umożliwia pomiar zarówno prądu stałego, jak i przemiennego, a jego oznaczenie to dwa połączone zwoje. Natomiast ustrój elektromagnetyczny wykorzystuje ruch żelaznej kotwiczki w polu cewki, a w symbolu widoczny jest prostokąt z ukośną kreską – tego tutaj nie ma. W prezentowanym symbolu kluczowy jest magnes trwały w kształcie podkowy, co jednoznacznie wskazuje na układ magnetoelektryczny. Błędne rozpoznanie często wynika z mylenia go z elektromagnetycznym, ale różnica polega na tym, że w magnetoelektrycznym używa się magnesu stałego, a w elektromagnetycznym – pola wytwarzanego przez cewkę. To ważne, bo decyduje o tym, czy miernik może pracować tylko z prądem stałym, czy również zmiennym.

Pytanie 19

Na rysunku przedstawiono diagram działania jednego z bloków funkcjonalnych sterownika PLC. Jest to blok

Ilustracja do pytania
A. licznika impulsów zliczającego w górę CTU.
B. licznika impulsów zliczającego w dół CTD.
C. timera opóźniającego wyłączenie TOF
D. timera opóźniającego załączenie TON.
Twoja odpowiedź jest trafna! Przedstawiony diagram ilustruje działanie licznika impulsów zliczającego w dół, znanego jako CTD. Na osi czasu widzimy, jak licznik decrementuje wartość przy każdym impulsie. To jest charakterystyczne dla liczników zliczających w dół, które są powszechnie stosowane w automatyce przemysłowej do śledzenia ilości cykli maszynowych lub kontrolowania procesów produkcyjnych. Przykładowo, jeśli chcesz monitorować ilość produktów na linii produkcyjnej, CTD pozwoli Ci śledzić, ile produktów zostało już wykonanych do określonego celu. Warto zauważyć, że wykorzystanie takich liczników zgodnie z normami ISO w przemyśle pozwala na precyzyjne monitorowanie procesów i zwiększa efektywność operacyjną. Właściwe zastosowanie bloków funkcyjnych, takich jak CTD, jest kluczowe dla zapewnienia niezawodności i bezpieczeństwa systemów sterowania. Dzięki temu możesz nie tylko poprawić wydajność, ale także łatwo diagnozować i rozwiązywać problemy, które mogą się pojawić podczas działania systemu.

Pytanie 20

Element przedstawione na rysunku to

Ilustracja do pytania
A. pirometr.
B. czujnik pojemnościowy.
C. czujnik rezystancyjny.
D. termometr rtęciowy.
To świetnie, że rozpoznajesz czujnik rezystancyjny. Te czujniki, zwane także RTD (Resistance Temperature Detector), są szeroko stosowane w przemyśle do precyzyjnych pomiarów temperatury. Ich działanie opiera się na zależności rezystancji metalu od temperatury. Najczęściej spotykane są czujniki wykonane z platyny, takie jak Pt100, Pt500 czy Pt1000, gdzie liczby oznaczają wartość rezystancji w omach przy 0°C. Czujniki te są cenione za swoją dokładność i stabilność pomiarową. Są stosowane tam, gdzie wymagana jest wysoka precyzja, jak w przemyśle chemicznym, farmaceutycznym czy w laboratoriach badawczych. Ich kalibracja i zgodność z międzynarodowymi standardami, np. IEC 60751, zapewniają spójność i wiarygodność pomiarów. Dodatkowo, dzięki zastosowaniu różnych materiałów na osłonę, mogą być stosowane w trudnych warunkach środowiskowych. Takie czujniki mogą pracować w szerokim zakresie temperatur, co czyni je niezwykle uniwersalnymi narzędziami pomiarowymi.

Pytanie 21

Element zaznaczony na ilustracji strzałką, posiadający jedno uzwojenie, umożliwiający w zależności od konstrukcji obniżanie lub podwyższanie wartości napięcia przemiennego, to

Ilustracja do pytania
A. multimetr cyfrowy.
B. silnik prądu stałego.
C. autotransformator.
D. opornik dekadowy.
Autotransformator to urządzenie transformujące napięcie przy użyciu pojedynczego uzwojenia. Poprzez zmianę odczepów na uzwojeniu, możemy regulować napięcie wyjściowe w stosunku do napięcia wejściowego. Jest to rozwiązanie bardziej ekonomiczne i kompaktowe w porównaniu do klasycznych transformatorów, które mają dwa oddzielne uzwojenia: pierwotne i wtórne. W praktyce, autotransformatory są powszechnie używane w urządzeniach elektronicznych, gdzie wymagane są niewielkie zmiany napięcia. Przykład to regulacja oświetlenia lub prędkości obrotowej silników. Standardy branżowe wskazują na zastosowanie ich w sytuacjach, gdzie potrzebna jest wysoka sprawność i niskie straty mocy. Warto pamiętać, że autotransformatory nie izolują galwanicznie obwodów, co może być zarówno zaletą, jak i wadą, w zależności od aplikacji. Dzięki nim możemy uzyskać regulowane napięcie w sposób bardziej płynny i efektywny, co jest cenione w wielu dziedzinach przemysłu.

Pytanie 22

Element zabezpieczający silnik, zaznaczony na schemacie linią przerywaną, jest wyzwalany

Ilustracja do pytania
A. ciśnieniowo.
B. podprądowo.
C. nadnapięciowo.
D. cieplnie.
Element zabezpieczający, który jest wyzwalany cieplnie, to najczęściej wyłącznik termiczny lub przekaźnik termiczny. Tego typu zabezpieczenia stosuje się przede wszystkim w obwodach silników elektrycznych, aby chronić je przed przegrzaniem. Dlaczego to takie ważne? Silniki elektryczne, zwłaszcza te pracujące w trudnych warunkach, mogą się przegrzewać z powodu przeciążenia lub zablokowania. Przekaźnik termiczny działa na zasadzie wydłużania się elementów bimetalicznych pod wpływem ciepła, co po przekroczeniu określonej temperatury przerywa obwód. To proste, ale bardzo skuteczne rozwiązanie. Standardy branżowe, na przykład normy IEC, zalecają stosowanie takich zabezpieczeń, aby zapewnić długowieczność maszyn i bezpieczeństwo pracy. Praktyczne zastosowanie? Wyobraź sobie, że masz silnik w fabryce, który napędza taśmociąg. Jeśli coś utknie na taśmie, silnik zaczyna pracować ciężej, co prowadzi do wzrostu temperatury. Dzięki przekaźnikowi termicznemu obwód zostaje przerwany, zanim dojdzie do uszkodzenia.

Pytanie 23

Który z bloków oprogramowania sterowników PLC działa wg diagramu przedstawionego na rysunku?

Ilustracja do pytania
A. Blok przerzutnika synchronicznego RS z dominującym wejściem R
B. Blok przerzutnika synchronicznego RS z dominującym wejściem S
C. Blok przerzutnika asynchronicznego RS z dominującym wejściem S
D. Blok przerzutnika asynchronicznego RS z dominującym wejściem R
Wybór przerzutnika synchronicznego lub przerzutnika z dominującym wejściem S mógł wynikać z pewnych błędnych założeń. Przerzutniki synchroniczne działają w oparciu o sygnał zegarowy, co w tym kontekście nie ma zastosowania, ponieważ diagram wskazuje na działanie asynchroniczne, czyli niezależne od zegara. Z kolei wybór przerzutnika z dominującym wejściem S mógł sugerować, że priorytet jest przyznawany wejściu S, jednak na diagramie wyraźnie widać, że to wejście R ma przewagę, co widać po zmianie stanu wyjścia Q zgodnie z aktywnością wejścia R. Takie podejście jest mylące, szczególnie w sytuacjach, gdzie ważna jest natychmiastowa reakcja systemu na sygnały sterujące. Często spotykanym błędem jest przyjmowanie, że wszystkie przerzutniki RS działają na podobnych zasadach, jednak różnice w ich zachowaniu mogą być kluczowe dla poprawnego działania układu. Dlatego ważne jest zrozumienie ich specyfiki oraz praktyczne stosowanie się do standardów i zasad projektowania układów logicznych. Jeśli zrozumiesz te różnice, unikniesz błędów w projektowaniu i implementacji oprogramowania sterowników PLC, co jest kluczowe w świecie automatyzacji przemysłowej.

Pytanie 24

Przedstawione na rysunkach narzędzia służą do

Ilustracja do pytania
A. cięcia przewodów.
B. zaciskania końcówek tulejkowych.
C. zaciskania wtyków RJ45.
D. ściągania izolacji.
Dobrze, że wybrałeś tę odpowiedź. Narzędzia przedstawione na rysunkach to zaciskarki do końcówek tulejkowych. W praktyce, takie tulejkowe końcówki są używane do zabezpieczenia końcówek przewodów, co zapobiega ich strzępieniu się i zapewnia lepsze połączenie elektryczne. To niezwykle ważne w instalacjach elektrycznych, gdzie zależy nam na trwałości i bezpieczeństwie połączeń. Zaciskarki umożliwiają precyzyjne i mocne zaciśnięcie tulejki na przewodzie, co jest zgodne ze standardami branżowymi, takimi jak normy IEC czy DIN. Prawidłowo zaciśnięta tulejka zapewnia nie tylko mechaniczne, ale i elektryczne bezpieczeństwo połączenia, co jest kluczowe w zapobieganiu awariom i stratom energii. Warto pamiętać, że używanie odpowiednich narzędzi i technik w pracy z przewodami jest jednym z fundamentów profesjonalizmu w branży elektrycznej. Zaciskarki tego typu mogą mieć regulowany mechanizm zaciskowy, co pozwala na dostosowanie do różnych rozmiarów tulejek, a ich ergonomiczna konstrukcja ułatwia pracę nawet w trudnych warunkach.

Pytanie 25

Na podstawie przedstawionej listy kontrolnej procedury postępowania uruchomieniowego przed załączeniem układu regulacji opartym na sterowniku PLC należy w pierwszej kolejności sprawdzić

Ilustracja do pytania
A. kolejność podłączeń elementów wejściowych do sterownika.
B. kolejność podłączeń elementów wyjściowych do sterownika.
C. prawidłowość podłączeń przewodów ochronnych w układzie.
D. położenie przełącznika trybu pracy sterownika PLC.
Sprawdzenie prawidłowości podłączeń przewodów ochronnych w układzie jest kluczowe dla zapewnienia bezpieczeństwa każdego systemu elektrycznego, w tym układów z sterownikami PLC. Przewody ochronne są częścią systemu zabezpieczającego przed porażeniem prądem elektrycznym. Ich głównym zadaniem jest odprowadzenie potencjalnie niebezpiecznego prądu do ziemi, co minimalizuje ryzyko porażenia prądem użytkowników. W praktyce oznacza to, że w przypadku wystąpienia awarii, np. przebicia izolacji przewodu fazowego, wszelkie niebezpieczne napięcia są natychmiastowo sprowadzone do ziemi. Z tego powodu, przed uruchomieniem układu regulacji opartego na PLC, ważne jest, aby upewnić się, że przewody ochronne są prawidłowo podłączone. Standardy branżowe, takie jak normy IEC czy EN, podkreślają wagę prawidłowego uziemienia i ochrony przed porażeniem. Moim zdaniem, ignorowanie tego kroku to jak chodzenie po linie bez siatki bezpieczeństwa. Pamiętajmy, że w dziedzinie elektryki bezpieczeństwo zawsze powinno być na pierwszym miejscu.

Pytanie 26

Przedstawiony fragment programu realizuje funkcję

Ilustracja do pytania
A. NAND
B. AND
C. OR
D. NOR
Odpowiedź OR jest poprawna, ponieważ program zrealizowany w języku drabinkowym (Ladder Diagram) wykorzystuje operację OR, która jest logicznym lub. Instrukcja LD (Load) ładuje wartość wejścia X1:I0.0, a następnie instrukcja OR dodaje do tego wartość wejścia X2:I0.1. Wynik operacji jest zapisywany w wyjściu Y1:Q0.0 za pomocą instrukcji ST (Store). Logika OR działa w ten sposób, że wynik jest prawdą, jeśli przynajmniej jedno z wejść jest prawdą. Praktyczne zastosowanie takiego schematu można znaleźć w automatyce przemysłowej, na przykład kiedy chcemy uruchomić maszynę, jeśli jeden z dwóch różnych czujników wykryje określony stan. Standardy programowania PLC, takie jak IEC 61131-3, wskazują na stosowanie drabinkowych schematów do tworzenia czytelnych logik dla techników. Logika OR jest jednym z podstawowych bloków budujących bardziej złożone systemy automatyki, gdzie często wymagana jest elastyczność w reagowaniu na wiele warunków wejściowych. Moim zdaniem w automatyce przemysłowej umiejętność czytania i interpretacji takich prostych programów jest kluczowa do szybkiego diagnozowania i naprawy systemów.

Pytanie 27

Aby przekaźnik czasowy PCU-504 realizował funkcję opóźnionego załączenia po czasie 2 minut, kolejno przełączniki P1, P2 i P3 powinny być ustawione w następujących pozycjach:

Ilustracja do pytania
A. P1 – 2, P2 – 1, P3 – B10
B. P1 – 1, P2 – 1, P3 – A10
C. P1 – 2, P2 – 2, P3 – A0,1
D. P1 – 1, P2 – 2, P3 – B0,1
Ustawienia przekaźnika czasowego PCU-504 są kluczowe dla jego prawidłowego działania w funkcji opóźnionego załączenia. Zastosowanie opcji P1 – 2, P2 – 1, P3 – B10 oznacza, że ustawiamy 2 na pokrętle jednostek, 1 na dziesiątkach oraz wybieramy funkcję opóźnionego załączenia z mnożnikiem 10. Opóźnienie wynosi 2 minuty, co jest wynikiem ustawienia wartości 2 na pokrętle jednostek, a wartość 10 na pokrętle mnożnika (B10 na P3). Funkcja opóźnionego załączenia jest przydatna w wielu zastosowaniach, na przykład w systemach oświetleniowych czy wentylacyjnych, gdzie chcemy uniknąć nagłych skoków mocy. W praktyce, takie ustawienia pomagają w utrzymaniu stabilności systemu oraz zmniejszają obciążenie mechaniczne urządzeń. Standardy instalacji elektrycznych zalecają stosowanie przekaźników czasowych do ochrony obwodów przed przeciążeniem. Z mojego doświadczenia, poprawne ustawienie tych pokręteł może znacząco zwiększyć wydajność i żywotność systemu. Pamiętajcie, że właściwa konfiguracja to podstawa w automatyce przemysłowej, dlatego zawsze warto dokładnie analizować instrukcje i specyfikacje sprzętu.

Pytanie 28

W regulatorze PID symbolem Kₚ oznacza się współczynnik

A. proporcjonalności.
B. wyprzedzenia.
C. zdwojenia.
D. propagacji.
Współczynnik Kₚ w regulatorze PID odnosi się do członu proporcjonalnego. To oznacza, że jego rola polega na proporcjonalnym reagowaniu na błąd regulacji. Kiedy pojawia się różnica między wartością zadaną a rzeczywistą, człon proporcjonalny zwiększa lub zmniejsza sygnał sterujący wprost proporcjonalnie do tego błędu. Dlatego nazywa się go członem proporcjonalnym. Praktyczne zastosowanie tej wiedzy można znaleźć w wielu dziedzinach, na przykład w automatyce przemysłowej, gdzie precyzyjna regulacja temperatury, ciśnienia czy prędkości jest kluczowa. Kiedy błąd jest duży, Kₚ zwiększa sygnał sterujący, aby szybko go zredukować, choć może to prowadzić do przeregulowań. Z mojego doświadczenia wynika, że właściwe dobranie tego parametru jest kluczowe dla stabilnej pracy układu. W literaturze technicznej często podkreśla się znaczenie tuningowania współczynnika Kₚ, co jest częścią standardowych procedur kalibracyjnych. Podsumowując, człon proporcjonalny jest fundamentem działania regulatorów PID i wymaga precyzyjnego dostrojenia, aby zapewnić optymalne działanie systemów sterowania.

Pytanie 29

W systemie automatyki wszystkie połączenia wykonano przewodem oznaczonym jako 15G0,75. Oznacza to, że jest to przewód

Ilustracja do pytania
A. 15 żyłowy, bez żyły ochronnej, przekrój 0,75 mm²
B. 15 żyłowy, z żyłą ochronną, przekrój 0,75 mm²
C. 15 żyłowy, z żyłą ochronną, przekrój 0,5 mm²
D. 15 żyłowy, bez żyły ochronnej, przekrój 0,5 mm²
Oznaczenie 15G0,75 w przewodach jasno wskazuje na kilka istotnych cech tego przewodu. Przede wszystkim liczba 15 oznacza, że przewód posiada 15 żył. Jest to ważne, gdyż wielożyłowe przewody są często używane w systemach automatyki do przesyłania sygnałów sterujących. Litera 'G' w oznaczeniu informuje nas, że przewód posiada żyłę ochronną, co jest kluczowe dla bezpieczeństwa instalacji. Żyła ochronna zapewnia, że w przypadku awarii elektrycznej nadmiarowe napięcie zostanie odprowadzone, minimalizując ryzyko uszkodzenia urządzeń lub porażenia prądem. Z kolei wartość 0,75 mm² określa przekrój pojedynczej żyły, co ma wpływ na jej zdolność do przewodzenia prądu. W praktyce przewody o mniejszych przekrojach stosuje się do przesyłania sygnałów o niskim natężeniu. Przewody takie są zgodne z normami określającymi minimalne wymagania dla zabezpieczenia elektrycznego, co ma krytyczne znaczenie w instalacjach przemysłowych. Wiedza ta pozwala na odpowiedni dobór przewodów w zależności od potrzeb instalacji, co ma bezpośredni wpływ na jej efektywność i bezpieczeństwo.

Pytanie 30

Na schemacie układu sterowania elementy PT1 i PT2 to

Ilustracja do pytania
A. falowniki.
B. przemienniki częstotliwości.
C. prostowniki niesterowane.
D. prostowniki sterowane.
Na schemacie widoczne są dwa elementy oznaczone jako PT1 i PT2, które pełnią funkcję prostowników sterowanych. Charakterystycznym symbolem jest tu dioda z ukośną linią przy bramce – oznacza to tyrystor (SCR), który pozwala regulować moment przewodzenia prądu w każdej połówce sinusoidy napięcia przemiennego. Dzięki temu można sterować napięciem wyjściowym i w efekcie prędkością lub momentem silnika prądu stałego (oznaczonego jako M na rysunku). W praktyce takie rozwiązania stosuje się w układach napędowych, gdzie wymagana jest płynna regulacja obrotów. Sterowanie kątem załączenia tyrystora pozwala zmieniać średnią wartość napięcia zasilającego silnik. Moim zdaniem to bardzo elegancki i klasyczny przykład regulacji mocy w systemach DC, jeszcze zanim falowniki stały się powszechne. W przemyśle taki układ był (i nadal bywa) używany np. w dźwignicach, suwnicach czy walcarkach, gdzie liczy się precyzja i niezawodność. W odróżnieniu od prostowników niesterowanych, tutaj sterowanie odbywa się poprzez impuls bramkowy, co daje znacznie większą kontrolę nad procesem.

Pytanie 31

Którą funkcję logiczną realizuje element przedstawiony na rysunku?

Ilustracja do pytania
A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Analizując różne możliwości, można zauważyć, że często jest trudno odróżnić funkcje logiczne tylko na podstawie tabelki prawdy. Źle dobrana odpowiedź mogła wynikać z błędnej interpretacji tabeli prawdy, która jest kluczowa w zrozumieniu logiki systemu. Tabela prawdy dla funkcji OR pokazuje, że wynik jest prawdziwy, gdy przynajmniej jedno wejście jest prawdziwe. W przeciwnym razie, jak w funkcji AND, wynik byłby prawdziwy tylko wtedy, gdy oba wejścia są prawdziwe, co w kontekście zaworów pneumatycznych oznaczałoby brak przepływu przy zasilaniu tylko jednego wejścia. Błędne wybranie funkcji NOT, sugerowałoby, że przy jednym zasileniu występuje brak przepływu, co nie odpowiada rzeczywistości w tym przypadku. Typowym błędem jest mieszanie funkcji XOR z OR, gdzie XOR wymaga tylko jednego aktywnego sygnału dla wyniku prawdziwego, ale nie obu jednocześnie. Zrozumienie tych różnic jest fundamentalne w projektowaniu niezawodnych systemów logicznych i ma kluczowe znaczenie w automatyzacji procesów.

Pytanie 32

Na podstawie fragmentu karty katalogowej zaworu elektromagnetycznego określ maksymalne wartości ciśnienia roboczego i temperatury medium.

Fragment karty katalogowej
Typ modułu pneumatykizawór elektromagnetyczny
GwintBSP 3/4"
Średnica zewnętrzna przewodu20 mm
Ciśnienie robocze0.1÷16 bar
Temperatura pracymax. 50°C
Temperatura medium maks.90°C
Napięcie zasilania24 V DC
Klasa szczelnościIP65
Materiał korpusumosiądz
Materiał uszczelnieniakauczuk NBR
Podłączenie elektryczneDIN 43650 typ A
A. Ciśnienie robocze 16 barów i temperatura 90°C
B. Ciśnienie robocze 0,1 bara i temperatura 50°C
C. Ciśnienie robocze 16 barów i temperatura 50°C
D. Ciśnienie robocze 10 barów i temperatura 90°C
Podczas analizy parametrów technicznych zaworów elektromagnetycznych jedną z najczęstszych pułapek jest mylenie temperatury pracy z temperaturą medium. Wiele osób przyjmuje, że 'temperatura pracy' odnosi się bezpośrednio do medium płynącego przez zawór, jednak w rzeczywistości odnosi się ona do warunków, w jakich sam zawór może bezpiecznie działać. W podanym fragmencie karty katalogowej temperatura pracy wynosi maksymalnie 50°C, co oznacza, że sam zawór może pracować w takim otoczeniu. Natomiast temperatura medium, czyli substancji przepływającej przez zawór, może wynosić aż 90°C. To kluczowe rozróżnienie, które często powoduje błędne wnioski, zwłaszcza gdy ktoś nie zapozna się dokładnie z kartą katalogową. Kolejnym często napotykanym błędem jest niedocenianie zakresu ciśnienia roboczego. Zakres 0,1-16 barów oznacza, że zawór jest przeznaczony do pracy w bardzo zróżnicowanych warunkach ciśnienia. Warto również pamiętać, że wartości maksymalne nie powinny być traktowane jako docelowe w codziennym użytkowaniu, ale raczej jako granice, których nie należy przekraczać. Przemyślana analiza danych z karty katalogowej pozwala na właściwy dobór komponentów do aplikacji, co ma bezpośrednie przełożenie na niezawodność i bezpieczeństwo całego systemu.

Pytanie 33

Do odkręcania śrub przedstawionych na zdjęciu służy klucz z nasadką o nacięciu

Ilustracja do pytania
A. krzyżowym.
B. trójkątnym.
C. torx.
D. prostym.
Śruby przedstawione na zdjęciu mają charakterystyczne, sześcioramienne gniazdo w kształcie gwiazdy. Klucze torx oznaczane są symbolem T (np. T20, T30) i zostały zaprojektowane tak, aby przenosić większy moment obrotowy bez ryzyka uszkodzenia łba śruby. W przeciwieństwie do tradycyjnych śrub krzyżowych lub prostych, torx zapewnia znacznie lepszy kontakt narzędzia z gniazdem, co zmniejsza efekt tzw. wyślizgiwania się końcówki (cam-out). W praktyce technicznej śruby torx stosuje się w motoryzacji, elektronice, urządzeniach przemysłowych i meblarstwie – tam, gdzie wymagana jest precyzja i trwałość połączenia. Z mojego doświadczenia wynika, że warto mieć w warsztacie pełen zestaw torxów, bo coraz częściej zastępują one klasyczne krzyżaki. Dodatkowo istnieją wersje zabezpieczone (torx z bolcem w środku), które wymagają specjalnego klucza, co chroni przed nieautoryzowanym rozkręceniem urządzeń.

Pytanie 34

Na rysunku przedstawiono diagram działania jednego z bloków funkcjonalnych sterownika PLC. Jest to

Ilustracja do pytania
A. blok licznika impulsów zliczającego w dół CTD
B. blok timera opóźniającego załączenie TON
C. blok licznika impulsów zliczającego w górę CTU
D. blok timera opóźniającego wyłączenie TOF
Blok licznika impulsów zliczającego w dół, oznaczany jako CTD, jest kluczowym elementem w sterownikach PLC, który pozwala na zliczanie wstecz impulsów sterujących. Na wykresie widzimy, że wartość CV (Current Value) zmniejsza się z każdym impulsem, co odpowiada działaniu licznika zliczającego w dół. Tego typu bloki są często używane w aplikacjach przemysłowych, w których ważne jest utrzymanie kontroli nad ilością wykonanych operacji lub zliczaniem komponentów na linii produkcyjnej. Stosując standardy IEC 61131-3, projektanci systemów mogą łatwo zintegrować funkcję licznika w swoich programach, co zapewnia spójność i niezawodność działania. Moim zdaniem, liczniki zliczające w dół są niezastąpione w sytuacjach, gdzie kontrola ilości zasobów czy operacji jest kluczowa. Dzięki nim możemy również realizować bardziej zaawansowane zadania logiczne, jak np. zatrzymywanie procesu po osiągnięciu określonej liczby cykli. Ważnym aspektem jest także możliwość resetowania licznika, co daje dużą elastyczność w zastosowaniach praktycznych.

Pytanie 35

Na podstawie zamieszczonych w tabeli parametrów technicznych enkodera wskaż wartość napięcia zasilania, pozwalającą na jego prawidłową pracę.

Wybrane parametry techniczne enkodera
Zasilanie5 V DC ±10 %
Pobór prądu≤ 60 mA
Prędkość obrotowa10 000 rpm
Rozdzielczość5 ÷ 6000 imp./obr
Temperatura pracy-25 ÷ +100°C
Średnica osiØ10 mm
Średnica obudowyØ58 mm
A. 4,4 V DC
B. 10,0 V DC
C. 5,4 V DC
D. 15,0 V DC
Poprawna odpowiedź to 5,4 V DC i już tłumaczę dlaczego. Mamy w tabeli podane, że enkoder wymaga napięcia zasilania 5 V DC ±10%. Co to oznacza w praktyce? Oznacza to, że urządzenie może poprawnie pracować w zakresie napięcia od 4,5 V do 5,5 V. Odpowiedź 5,4 V DC mieści się w tym zakresie, więc jest prawidłowa. To ważne, ponieważ nieprawidłowe napięcie zasilania może prowadzić do niepoprawnej pracy enkodera lub nawet jego uszkodzenia. W praktyce, w zastosowaniach przemysłowych, zawsze należy trzymać się specyfikacji producenta, aby zapewnić nie tylko poprawną, ale i długotrwałą pracę urządzenia. Często w systemach automatyki mamy do czynienia z różnymi napięciami zasilania, dlatego tak ważne jest, by trzymać się wskazanych wartości. Moim zdaniem, dobrze jest też zaznajomić się z pojęciem tolerancji napięcia, które jest kluczowe przy doborze zasilania dla urządzeń elektronicznych. Świadomość tego, jak napięcie wpływa na działanie enkodera, może zapobiec wielu problemom w przyszłości.

Pytanie 36

Według której zasady należy w układzie sterowania zaprojektować działanie umożliwiające wyłączenie zautomatyzowanego systemu sterowanego przez sterownik PLC?

A. Zasady blokady sygnałów wyjściowych.
B. Zasady przerwy roboczej - podanie stanu 0 na wejście sterownika.
C. Zasady prądu roboczego - podanie stanu 1 na wejście sterownika.
D. Zasady blokady programowej sygnałów wejściowych.
W kontekście projektowania systemów sterowania, zasady blokady sygnałów wyjściowych i blokady programowej sygnałów wejściowych są często źle interpretowane. Blokada sygnałów wyjściowych oznacza, że urządzenia wykonawcze przestają otrzymywać sygnały sterujące, co oczywiście może doprowadzić do zatrzymania systemu. Jednakże, nie jest to optymalna metoda, ponieważ nie każde urządzenie reaguje przewidywalnie na brak sygnału. Na przykład, niektóre siłowniki mogą pozostać w swoim ostatnim położeniu, co w sytuacjach awaryjnych nie jest pożądane. Blokada programowa sygnałów wejściowych z kolei koncentruje się na ignorowaniu danych wchodzących do sterownika. Choć może to być przydatne w przypadku uszkodzonych czujników, to jednak nie jest to efektywna metoda wyłączania systemu, gdyż nie zapewnia natychmiastowego zatrzymania jego działania. Zasady prądu roboczego polegają na podawaniu stanu 1 na wejście sterownika, co zakłada, że urządzenie pracuje tylko wtedy, gdy jest zasilane. Takie podejście jest mniej bezpieczne w sytuacjach awaryjnych, ponieważ wymaga aktywnej interwencji i nie działa w przypadku utraty zasilania. Często spotykanym błędem myślowym jest założenie, że brak działania sygnałów wyjściowych lub programowych wystarczy do wyłączenia systemu. W rzeczywistości, w sytuacjach awaryjnych, wyłączenie zasilania przez wprowadzenie stanu 0 jest najbardziej niezawodnym i bezpiecznym rozwiązaniem, co potwierdzają standardy branżowe. Dlatego zasady przerwy roboczej są preferowane w projektowaniu systemów sterowania.

Pytanie 37

Na rysunku przedstawiono

Ilustracja do pytania
A. przegub robota.
B. ramię robota.
C. chwytak robota.
D. podstawę robota.
To, co widzisz na obrazku, to rzeczywiście chwytak robota. Chwytaki są niezwykle istotne w automatyzacji procesów, bo to one pozwalają na manipulację obiektami. W praktyce, chwytaki mogą być pneumatyczne, elektryczne lub hydrauliczne, w zależności od zastosowania. Wielu producentów stawia na precyzję i delikatność, zwłaszcza w branży elektronicznej, gdzie chwytak musi bardzo ostrożnie obchodzić się z drobnymi komponentami. Standardy przemysłowe, takie jak ISO 10218 dotyczące bezpieczeństwa robotów, podkreślają znaczenie zastosowania odpowiednich chwytaków w zależności od zadania. Kolejną rzeczą do rozważenia jest materiał, z jakiego wykonany jest chwytak – zazwyczaj używa się aluminium ze względu na jego lekkość i wytrzymałość. Warto również pamiętać, że chwytaki są często zintegrowane z systemami wizyjnymi, co zwiększa ich precyzję i efektywność. Moim zdaniem, jest to jeden z najważniejszych elementów robota, bo to dzięki niemu robot może naprawdę wpływać na otoczenie.

Pytanie 38

Oszacuj na podstawie charakterystyki pompy wysokość podnoszenia cieczy, jeżeli przy prędkości obrotowej n = 1 850 1/min pracuje ona z wydajnością 550 m³/h.

Ilustracja do pytania
A. 8,5 m
B. 4,2 m
C. 6,4 m
D. 2,2 m
Odpowiedź 4,2 m jest prawidłowa, ponieważ wykres charakterystyki pompy PS 200 pokazuje, jak zmienia się wysokość podnoszenia cieczy w zależności od wydajności i prędkości obrotowej pompy. Przy prędkości obrotowej n = 1850 obr/min i wydajności 550 m³/h, wykres wskazuje na wysokość podnoszenia około 4,2 m. W praktyce takie podejście do analizy wykresów charakterystyk pomp jest kluczowe podczas projektowania systemów pompowych. Dzięki temu można dobrać odpowiednią pompę do konkretnego zastosowania, zapewniając jej optymalną wydajność. Dobrze dobrana pompa nie tylko spełnia wymagania wydajnościowe, ale także działa efektywnie, co przekłada się na niższe koszty eksploatacyjne i dłuższą żywotność. W branży wodociągowej czy przemysłowej, dobór pompy na podstawie dokładnych danych z wykresów jest standardem, co zapewnia bezpieczeństwo i niezawodność systemu. Warto pamiętać, że błędny dobór pompy może prowadzić do problemów z przepływem, a nawet awarii całego systemu.

Pytanie 39

Silnik trójfazowy napędzający taśmociąg linii montażowej jest sterowany za pomocą układu łagodnego rozruchu. Aby czas zatrzymania silnika wynosił 1 sekundę, konieczne jest ustawienie pokrętła

Ilustracja do pytania
A. środkowego na 100
B. dolnego na 1
C. dolnego i górnego na 1
D. górnego na 1
Poprawne jest ustawienie dolnego pokrętła (oznaczonego jako t-Stop) na wartość 1 sekundy. Na przedstawionym panelu widoczne są trzy potencjometry: t-Start, U-Start i t-Stop. Pierwszy odpowiada za czas łagodnego rozruchu, drugi za napięcie początkowe przy starcie silnika, a trzeci – dolny – za czas łagodnego zatrzymania. W zadaniu chodzi o uzyskanie zatrzymania w czasie 1 sekundy, więc należy wyregulować właśnie t-Stop. W praktyce przemysłowej taki układ softstartu pozwala uniknąć gwałtownych zmian momentu i obciążeń mechanicznych przy zatrzymywaniu taśmociągu. Ustawienie t-Stop = 1 s oznacza, że napięcie na wyjściu będzie płynnie redukowane do zera w ciągu jednej sekundy, co zapobiega szarpnięciom i luzom w układzie przeniesienia napędu. Moim zdaniem to jedno z najważniejszych ustawień przy układach transportowych – zbyt krótki czas powoduje zbyt szybkie hamowanie i naprężenia w taśmie, a zbyt długi wydłuża cykl produkcyjny. Warto też pamiętać, że t-Start i t-Stop powinny być ustawione proporcjonalnie do masy i bezwładności całego układu, aby zachować płynność pracy.

Pytanie 40

Podczas montażu został nacięty przewód zasilający 3-fazowy silnik hydroforu. Uszkodzeniu uległy izolacja zewnętrzna oraz izolacja żyły N niepodłączonej do silnika. Które zdanie poprawnie określa możliwość użytkowania tak uszkodzonej instalacji?

Ilustracja do pytania
A. Eksploatacja tej instalacji jest możliwa, ale przy uszkodzonym przewodzie trzeba umieścić tabliczkę ostrzegawczą.
B. Mimo tego uszkodzenia instalacja może być normalnie eksploatowana.
C. Można tę instalację eksploatować pod warunkiem, że nie ma wycieku wody z hydroforu.
D. Ta instalacja nie może być eksploatowana.
Taka instalacja nie może być eksploatowana. Nawet jeśli uszkodzenie dotyczy tylko izolacji zewnętrznej i nieużywanej żyły N, przepisy jasno zabraniają użytkowania przewodów z naruszoną izolacją. Zgodnie z normą PN-EN 50110-1 oraz zasadami eksploatacji urządzeń elektrycznych, każdy przewód musi mieć pełną, nienaruszoną izolację, gwarantującą ochronę przed porażeniem i zwarciem. W tym przypadku przewód jest nacięty – odsłonięty metalowy rdzeń może stanowić zagrożenie porażeniem, a także doprowadzić do zwarcia między żyłami. W praktyce zawodowej taki przewód należy niezwłocznie wymienić lub odciąć uszkodzony odcinek i wykonać nowe połączenie zgodne z normami. Moim zdaniem nie warto ryzykować – nawet najmniejsze nacięcie może w dłuższym czasie prowadzić do przegrzewania, utleniania i awarii całej instalacji, szczególnie w środowisku wilgotnym, jak przy hydroforze.