Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 2 stycznia 2026 11:49
  • Data zakończenia: 2 stycznia 2026 12:06

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który z wymienionych parametrów można zmierzyć przedstawionym przyrządem?

Ilustracja do pytania
A. Rezystancję uziemienia.
B. Rezystancję izolacji.
C. Czas wyłączenia wyłącznika nadprądowego.
D. Impedancję pętli zwarcia.
Pomiar impedancji pętli zwarcia jest kluczowym zadaniem w zapewnieniu bezpieczeństwa instalacji elektrycznych. Miernik wielofunkcyjny, jak ten przedstawiony na zdjęciu, jest zaprojektowany do wykonywania tych pomiarów zgodnie z normą PN-EN 61557-3, która dotyczy pomiarów w instalacjach elektrycznych. Pomiar ten ma na celu ocenę skuteczności zabezpieczeń przeciwporażeniowych, co jest niezbędne do oceny ryzyka wystąpienia awarii. W praktyce, impedancja pętli zwarcia pozwala na określenie, jak szybko zabezpieczenie (np. wyłącznik nadprądowy) zareaguje na zwarcie. Niskie wartości impedancji świadczą o sprawności zabezpieczeń, a także minimalizują ryzyko uszkodzenia instalacji oraz zapewniają bezpieczeństwo użytkowników. Wartości tej impedancji można mierzyć w różnych punktach instalacji, co pozwala na identyfikację słabych miejsc w systemie ochrony. Dlatego umiejętność używania mierników do pomiaru impedancji pętli zwarcia jest niezbędna dla elektryków oraz specjalistów zajmujących się instalacjami elektrycznymi.

Pytanie 2

Rysunek przedstawia pomiar

Ilustracja do pytania
A. rezystancji uziemień metodą techniczną.
B. rezystancji uziemień metodą kompensacyjną.
C. rezystywności gruntu metodą bezpośrednią.
D. rezystywności gruntu metodą pośrednią.
Wybór innych odpowiedzi sugeruje pewne nieporozumienia dotyczące metod pomiaru rezystancji i rezystywności gruntu oraz ich zastosowań. Rezystywność gruntu, na przykład, odnosi się do właściwości materiału, który wpływa na przewodnictwo elektryczne, jednak do jej pomiaru stosuje się metody różniące się od pomiaru rezystancji uziemienia. Odpowiedzi sugerujące pomiar rezystywności metodą bezpośrednią lub pośrednią zakładają, że rysunek dotyczy pomiaru właściwości gruntu zamiast pomiaru samego uziemienia, co jest nieprawidłowe. Pomiar rezystywności gruntu ma swoje zastosowanie w badaniach geotechnicznych i inżynierii lądowej, ale nie jest tożsamy z oceną efektywności systemów uziemiających. Z kolei odpowiedź dotycząca metody kompensacyjnej, która jest wykorzystywana w specyficznych warunkach pomiarowych, również nie odnosi się do przedstawionego rysunku. W praktyce, błędne wybranie metody pomiarowej może prowadzić do poważnych konsekwencji, takich jak niewłaściwe zabezpieczenie instalacji elektrycznych, co może skutkować zagrożeniem dla osób oraz mienia. Zrozumienie różnic między tymi metodami oraz ich odpowiednich zastosowań jest kluczowe dla prawidłowego wykonywania pomiarów w inżynierii elektrycznej.

Pytanie 3

Jaka maksymalna wartość impedancji pętli zwarcia może wystąpić w trójfazowym układzie elektrycznym o napięciu znamionowym 230/400 V, aby ochrona przeciwporażeniowa była skuteczna w przypadku uszkodzenia izolacji, wiedząc, że zasilanie tego układu ma przerwać instalacyjny wyłącznik nadprądowy B10?

A. 4,6 Ω
B. 7,7 Ω
C. 8,0 Ω
D. 2,3 Ω
Wartość impedancji pętli zwarcia wynosząca 4,6 Ω jest odpowiednia dla trójfazowego obwodu elektrycznego o napięciu 230/400 V, aby zapewnić skuteczną ochronę przeciwporażeniową. Przy takiej impedancji, w przypadku zwarcia, prąd zwarciowy osiągnie wartość wystarczającą do działania wyłącznika nadprądowego typu B10, który ma prąd znamionowy 10 A. Wartość impedancji pętli zwarcia oblicza się na podstawie napięcia zasilania oraz wymaganej wartości prądu, przy której następuje wyłączenie obwodu. W praktyce oznacza to, że w przypadku uszkodzenia izolacji, wyłącznik nadprądowy zadziała w odpowiednim czasie, minimalizując ryzyko porażenia prądem elektrycznym. Zgodnie z normami PN-IEC 60364-4-41 oraz PN-EN 60947-2, odpowiednia wartość impedancji pętli zwarcia jest kluczowa dla zabezpieczenia użytkowników przed skutkami awarii. Wartości te są również zgodne z wytycznymi dotyczącymi instalacji elektrycznych w budynkach, które zalecają, aby impedancja nie przekraczała 5 Ω dla ochrony przeciwporażeniowej. Dlatego 4,6 Ω to wartość, która spełnia te wymogi, a jej stosowanie w praktyce jest powszechną praktyką w branży elektrycznej.

Pytanie 4

Który schemat montażowy instalacji oświetleniowej przedstawionej na zamieszczonym planie jest prawidłowy?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Schematy montażowe A., B. i D. zawierają istotne błędy w podłączeniu przewodów, co może prowadzić do poważnych zagrożeń dla użytkowników oraz do awarii systemu oświetleniowego. W schemacie A. przewody fazowe są podłączone w sposób, który nie zapewnia prawidłowego działania przełącznika bistabilnego, co może skutkować sytuacją, w której lampa nie włącza się lub włącza, ale nie ma możliwości jej wyłączenia. W przypadku schematu B., podłączenie neutralne do przełącznika zamiast do lamp jest błędne i może doprowadzić do sytuacji, w której urządzenie pozostaje pod napięciem nawet po wyłączeniu, co stwarza ryzyko porażenia prądem. Z kolei schemat D. sugeruje nieprawidłowe podłączenie przewodów fazowych do lamp, co może prowadzić do nieefektywności systemu oraz skrócenia żywotności źródeł światła. Te błędy mogą wynikać z nieprawidłowej interpretacji zasady działania instalacji elektrycznych oraz braku zrozumienia roli przełączników w systemach oświetleniowych. Właściwe podejście do projektowania instalacji powinno opierać się na standardach takich jak PN-IEC 60364 oraz na znajomości zasad dobrego montażu, co zapewnia zarówno bezpieczeństwo, jak i efektywność energetyczną systemu.

Pytanie 5

Zakres działania wyzwalaczy elektromagnetycznych w nadprądowych wyłącznikach instalacyjnych o charakterystyce B mieści się w zakresie

A. 10-20 krotności prądu znamionowego
B. 3-5 krotności prądu znamionowego
C. 20-30 krotności prądu znamionowego
D. 5-10 krotności prądu znamionowego
Wybór niepoprawnej odpowiedzi na temat obszaru zadziałania wyzwalaczy elektromagnetycznych może wynikać z nieporozumień dotyczących sposobu działania wyłączników nadprądowych. Wyłączniki charakterystyki B, które są najczęściej stosowane w instalacjach domowych i biurowych, działają na zasadzie wykrywania prądów zwarciowych w określonym przedziale, który nie obejmuje wartości 5-10 ani 10-20 krotności prądu znamionowego. Takie podejście może prowadzić do mylnego przekonania, że wyłączniki te mają szerszy zakres działania, co nie jest zgodne z ich specyfikacją. Przykładowo, zbyt wysoki zakres zadziałania może sugerować, że wyłącznik będzie skutecznie chronił przed intensywnymi zwarciami, jednak w rzeczywistości jego zainstalowanie w takich zastosowaniach może prowadzić do uszkodzenia instalacji lub urządzeń elektrycznych, które powinny być chronione. Ponadto, wybór wyłącznika o niewłaściwej charakterystyce może prowadzić do pominięcia potrzebnej ochrony przeciwprzeciążeniowej w aplikacjach, w których wymagane są mniejsze wartości zadziałania. Zrozumienie zakresu zadziałania wyzwalaczy jest kluczowe dla prawidłowego doboru urządzeń zabezpieczających zgodnie z wymaganiami norm elektrotechnicznych, takich jak IEC 60898, które definiują zasady stosowania wyłączników nadprądowych w różnych typach instalacji elektrycznych.

Pytanie 6

Z którym zaciskiem będzie połączony zacisk 41 stycznika K2 według przedstawionego schematu montażowego?

Ilustracja do pytania
A. Z zaciskiem 3 listwy zaciskowej X1
B. Z zaciskiem 4 listwy zaciskowej X1
C. Z zaciskiem 22 stycznika K1
D. Z zaciskiem A2 stycznika K1
Wybór zacisku 3 listwy zaciskowej X1 jako poprawnej odpowiedzi jest uzasadniony analizą schematu montażowego, który jasno pokazuje połączenie pomiędzy tym zaciskiem a zaciskiem 41 stycznika K2. W praktyce, prawidłowe połączenie zacisków jest kluczowe dla zapewnienia właściwego działania systemów elektrycznych. W przypadku styczników, ich poprawne podłączenie wpływa na stabilność i bezpieczeństwo całego obwodu. W standardach branżowych, takich jak normy IEC 60947, zwraca się uwagę na znaczenie właściwego oznaczenia i połączeń w systemach automatyki, co pozwala na uniknięcie błędów w instalacji oraz ułatwia diagnostykę i konserwację. Zastosowanie logicznego podejścia do analizy schematu oraz znajomość standardów elektrycznych pomagają w skutecznym projektowaniu i wdrażaniu systemów, co jest niezbędne w każdej pracy zawodowej związanej z elektryką.

Pytanie 7

Który rodzaj źródła światła przedstawiono na ilustracji?

Ilustracja do pytania
A. Wyładowcze niskoprężne.
B. Żarowe.
C. Półprzewodnikowe.
D. Wyładowcze wysokoprężne.
Odpowiedź "półprzewodnikowe" jest prawidłowa, ponieważ na ilustracji można zauważyć źródło światła LED, które jest typowym przykładem tego typu technologii. Źródła światła półprzewodnikowego charakteryzują się wysoką efektywnością energetyczną, długą żywotnością oraz różnorodnością kolorów emitowanego światła. Diody LED znajdują szerokie zastosowanie, od oświetlenia wnętrz, przez oświetlenie zewnętrzne, aż po zastosowania w elektronice, takie jak podświetlenie ekranów. W wielu branżach, takich jak motoryzacja czy architektura, stosowanie LED-ów stało się standardem ze względu na ich niskie zużycie energii oraz możliwość dostosowywania intensywności światła. Standardy dotyczące oświetlenia, takie jak ANSI czy CIE, podkreślają znaczenie efektywności i jakości światła w kontekście ochrony środowiska oraz oszczędności energii, co czyni diody LED doskonałym wyborem dla zrównoważonego rozwoju.

Pytanie 8

Jaką proporcję strumienia świetlnego kieruje się w dół w oprawie oświetleniowej klasy V?

A. 90 ÷ 100%
B. 0 ÷ 10%
C. 60 ÷ 90%
D. 40 ÷ 60%
Odpowiedź 0 ÷ 10% jest prawidłowa, ponieważ oprawy oświetleniowe V klasy charakteryzują się bardzo niskim poziomem strumienia świetlnego, który jest kierowany w dół. Klasa ta jest przeznaczona do aplikacji, gdzie istotne jest, aby minimalizować oświetlenie w kierunku podłogi, co ma zastosowanie w wielu miejscach, takich jak korytarze, schody czy przestrzenie publiczne, gdzie wysoka intensywność światła w dół może być niepożądana. Przykładem zastosowania są oprawy LED w przestrzeniach biurowych, które mają za zadanie tworzyć strefy z odpowiednim rozproszeniem światła, a nie silnym, bezpośrednim oświetleniem. W praktyce zastosowanie tej klasy opraw pozwala na oszczędność energii oraz zmniejszenie olśnienia, co jest zgodne z normami energetycznymi i ekologicznymi, takimi jak dyrektywy UE dotyczące efektywności energetycznej. Wiedza na temat rozkładu strumienia świetlnego w zależności od klasy oprawy jest kluczowa dla projektantów oświetlenia, którzy mają na celu optymalizację warunków świetlnych w różnych typach przestrzeni.

Pytanie 9

Którego narzędzia należy użyć do demontażu w rozdzielnicy piętrowej uszkodzonego urządzenia pokazanego na rysunku?

Ilustracja do pytania
A. Wkrętaka imbusowego.
B. Szczypiec typu Segera.
C. Szczypiec uniwersalnych.
D. Wkrętaka płaskiego.
Poprawna odpowiedź to wkrętak płaski, który jest narzędziem niezbędnym do demontażu wyłącznika nadprądowego zamontowanego na szynie DIN w rozdzielnicy. Wyłączniki nadprądowe są zabezpieczeniami elektrycznymi, które chronią instalacje przed przeciążeniem i zwarciami. Aby skutecznie usunąć taki element, należy użyć wkrętaka płaskiego do odblokowania mechanizmu zatrzaskowego, który uniemożliwia swobodne wyjęcie wyłącznika. W przypadku użycia niewłaściwego narzędzia, jak szczypce uniwersalne czy wkrętak imbusowy, istnieje ryzyko uszkodzenia obudowy urządzenia lub samej rozdzielnicy. Stosowanie wkrętaka płaskiego jest zgodne z najlepszymi praktykami w branży elektrycznej, które podkreślają potrzebę użycia odpowiednich narzędzi do danej aplikacji, co zapewnia bezpieczeństwo i integralność instalacji. Dodatkowo, warto pamiętać o konieczności odłączenia zasilania przed rozpoczęciem jakichkolwiek prac, aby zapobiec porażeniu prądem. Zastosowanie wkrętaka płaskiego nie tylko ułatwia proces demontażu, ale również minimalizuje ryzyko uszkodzeń, co jest kluczowe w pracach konstruujących i serwisujących instalacje elektryczne.

Pytanie 10

W jakim układzie sieciowym punkt neutralny transformatora zasilającego sieć nie jest metalicznie połączony z ziemią?

A. TN-S
B. IT
C. TN-C
D. TT
Układ sieciowy IT jest charakterystyczny tym, że punkt neutralny transformatora nie jest połączony metalicznie z ziemią. W systemie tym, w przypadku awarii, nie występuje bezpośredni kontakt z ziemią, co minimalizuje ryzyko porażenia prądem. Zastosowanie układu IT ma istotne znaczenie w obiektach, gdzie wymagana jest wysoka niezawodność zasilania, takich jak szpitale czy obiekty przemysłowe. Dzięki temu, w przypadku uszkodzenia izolacji, prąd płynący do ziemi jest ograniczony, co pozwala na kontynuację pracy urządzeń. Praktyczne zastosowanie tego typu układu można zauważyć w sieciach niskiego napięcia, gdzie większy poziom bezpieczeństwa i ciągłość zasilania są priorytetem. Zgodnie z normami IEC 60364, system IT jest zalecany w środowiskach, gdzie awarie mogą prowadzić do poważnych konsekwencji, ponieważ zapewnia on możliwość pracy w warunkach awarii bez ryzyka porażenia."

Pytanie 11

Jakie urządzenie powinno zastąpić bezpieczniki topikowe 25 A, które chronią obwody silnika trójfazowego?

A. S193B25
B. S191B25
C. S193C25
D. S191C25
Wybór wyłączników S193B25, S191C25 oraz S191B25 do zastąpienia bezpieczników topikowych 25 A w obwodach silnika trójfazowego jest niewłaściwy z kilku powodów. Wyłącznik S193B25, mimo że posiada odpowiedni prąd nominalny, charakteryzuje się inną charakterystyką, co może prowadzić do niewłaściwej reakcji na przeciążenia i zwarcia, nie zapewniając odpowiedniej ochrony dla silnika. Z kolei S191C25 i S191B25 to wyłączniki o charakterystyce B, co oznacza, że ich reakcja na przeciążenia jest zbyt wolna w porównaniu do wymagań dla silników trójfazowych. Silniki te mogą w momencie rozruchu pobierać znacznie wyższy prąd, co powoduje, że wyłączniki o charakterystyce B mogą nie zadziałać w odpowiednim czasie, co prowadzi do ich uszkodzenia. Ponadto, zastosowanie wyłączników o niewłaściwych charakterystykach może skutkować niebezpiecznymi sytuacjami, w tym pożarami lub uszkodzeniem instalacji elektrycznej. Istotnym aspektem jest również fakt, że niektóre z tych wyłączników mogą nie spełniać norm IEC dotyczących ochrony obwodów silnikowych, co zwiększa ryzyko eksploatacyjne. Ważne jest, aby przy wyborze wyłączników kierować się nie tylko prądem nominalnym, ale także ich charakterystyką oraz przeznaczeniem do konkretnego zastosowania, co jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych.

Pytanie 12

Którym symbolem graficznym oznacza się instalację prowadzoną na drabinkach kablowych?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Symbol B, który wskazujesz jako poprawny, jest zgodny z powszechnie akceptowanymi oznaczeniami w dokumentacji elektrycznej. Oznaczenie to jest używane do wskazywania instalacji prowadzonych na drabinkach kablowych, co jest niezwykle istotne w kontekście organizacji i zarządzania systemami kablowymi. Drabinki kablowe są kluczowym elementem w infrastrukturze elektroenergetycznej, ponieważ umożliwiają bezpieczne i uporządkowane prowadzenie kabli, co z kolei wpływa na efektywność oraz bezpieczeństwo instalacji. W praktyce, poprawne oznaczenie instalacji pozwala na łatwiejsze lokalizowanie i utrzymanie systemu, co jest zgodne z zasadami projektowania zgodnymi z normami IEC i PN-EN. Dodatkowo, stosowanie właściwych symboli w dokumentacji technicznej wspiera procesy inspekcyjne oraz ułatwia zrozumienie schematów przez różne zespoły pracowników. Warto także zaznaczyć, że niepoprawne oznaczenia mogą prowadzić do poważnych błędów w instalacji, co podkreśla znaczenie precyzyjnego stosowania symboliki w projektowaniu systemów elektrycznych.

Pytanie 13

Wiatrołap jest oświetlany dwoma żarówkami. Żarówki w oprawach są włączane przez wyłącznik zmierzchowy. Gdy jedna z żarówek przestała świecić, jakie kroki należy podjąć, aby zidentyfikować i usunąć potencjalne przyczyny tej usterki?

A. Zweryfikować przewody, sprawdzić działanie wyłącznika, wymienić żarówkę
B. Wymienić żarówkę, która się nie świeci, sprawdzić przewody i oprawę oświetleniową
C. Sprawdzić działanie wyłącznika, zweryfikować oprawę i przewody
D. Zamienić żarówkę, która nie świeci, sprawdzić funkcjonowanie wyłącznika oraz oprawy oświetleniowej
Analizując inne odpowiedzi, można zauważyć, że skupiają się one na fragmentarycznych rozwiązaniach, co może prowadzić do niepełnej diagnozy problemu. Na przykład, wymiana tylko żarówki, bez sprawdzenia innych elementów instalacji, może spowodować, że użytkownik nie zauważyłby dalszych problemów, na przykład uszkodzenia przewodów lub wyłącznika. Zignorowanie konieczności weryfikacji przewodów może prowadzić do sytuacji, w której nowa żarówka również przestanie działać z powodu braku zasilania, co byłoby nieefektywnym i kosztownym rozwiązaniem. Podobnie, choć sprawdzenie działania wyłącznika jest istotne, nie powinno być to jedyne działanie, ponieważ uszkodzenie oprawy oświetleniowej też może być przyczyną problemu. Takie podejście jest typowe dla błędów myślowych, gdzie użytkownicy koncentrują się na jednym elemencie systemu, zaniedbując jego całościową analizę. Praktyczne podejście do diagnozowania usterek elektrycznych wymaga holistycznego spojrzenia na całą instalację, co zapewnia skuteczną identyfikację i eliminację problemów. Właściwe postępowanie zgodne z zasadami bezpieczeństwa i dobrymi praktykami branżowymi powinno obejmować kompleksowe sprawdzenie wszystkich komponentów systemu oświetleniowego, co jest kluczowe dla utrzymania efektywności energetycznej i niezawodności instalacji.

Pytanie 14

Jakie narzędzia są konieczne do wytyczenia trasy instalacji przewodów elektrycznych montowanych na powierzchni?

A. Ołówek traserski, przymiar kreskowy, rysik
B. Ołówek traserski, poziomnica, przymiar taśmowy
C. Kątownik, młotek, punktak
D. Kątownik, ołówek traserski, sznurek traserski
Jakbyś wybrał zestaw narzędzi bez ołówka traserskiego, poziomnicy i przymiaru taśmowego, to mógłbyś mieć sporo kłopotów z trasowaniem drogi przewodów natynkowych. Na przykład, kątownik, młotek i punktak to nie jest najlepszy pomysł, bo młotek i punktak bardziej nadają się do wbijania, a nie do precyzyjnego pomiaru. Kątownik jest ok, gdy potrzebujesz kąty proste, ale niestety nie pomoże ci w trasowaniu. Zestaw z ołówkiem traserskim, przymiaru kreskowego i rysika też nie jest najlepszy, żeby uzyskać precyzyjne wyniki w instalacjach elektrycznych. Przymiar kreskowy bardziej jest do rysowania linii prostej, a nie do pomiaru. Ołówek traserski i rysik są używane w różnych technikach rysunkowych, ale w instalacjach elektrycznych liczy się, żeby mieć narzędzia, które pozwalają na dokładne poziomowanie i pomiar. Bardzo ważne jest, żeby nie mylić funkcji narzędzi, bo to może prowadzić do błędów przy montażu, a w efekcie do różnych problemów technicznych.

Pytanie 15

Jaki rodzaj łącznika zastosowany jest w obwodzie przedstawionym na schemacie?

Ilustracja do pytania
A. Dwubiegunowy.
B. Schodowy.
C. Świecznikowy.
D. Żaluzjowy.
Wybór innych rodzajów łączników, takich jak świecznikowy, schodowy czy dwubiegunowy, jest błędny z kilku powodów. Łącznik świecznikowy jest używany do załączania i wyłączania obwodu oświetleniowego i nie ma zastosowania w sterowaniu silnikami. Jego funkcja ogranicza się do prostego włączania światła, co wyklucza jakiekolwiek złożone sterowanie ruchem, które jest kluczowe w przypadku żaluzji. Z kolei łącznik schodowy, stosowany w systemach oświetleniowych, pozwala na kontrolowanie jednego źródła światła z dwóch różnych miejsc, jednak również nie nadaje się do sterowania silnikami. Jego konstrukcja i zasada działania są zupełnie inne, co prowadzi do nieprawidłowego wnioskowania. Podobnie łącznik dwubiegunowy, który może być używany do załączania i wyłączania urządzeń napięciowych, nie jest przystosowany do sterowania ruchem w górę i w dół, co jest niezbędne w systemach żaluzjowych. Wybór odpowiedniego łącznika jest kluczowy dla prawidłowej funkcjonalności instalacji, a błędne myślenie o tych urządzeniach prowadzi do niewłaściwych instalacji i potencjalnych problemów w działaniu urządzeń. Dlatego istotne jest zrozumienie różnic między różnymi typami łączników oraz ich zastosowaniem, co pozwala na lepsze projektowanie i efektywne wykorzystanie technologii w automatyce budynkowej.

Pytanie 16

Wyzwalacz elektromagnetyczny wyłącznika toru prądowego, przedstawiamy na schemacie blokowym jak na rysunku, oznacza się na schemacie elektrycznym symbolem graficznym

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Wyzwalacz elektromagnetyczny wyłącznika toru prądowego jest kluczowym elementem w obwodach elektrycznych, który zadziała w przypadku nadmiernego prądu. Odpowiedź "B" jest poprawna, ponieważ symbol ten jest standardowym przedstawieniem wyzwalacza elektromagnetycznego w schematach elektrycznych, co można znaleźć w normach takich jak IEC 60617. Wyzwalacze elektromagnetyczne działają na zasadzie przyciągania rdzenia magnetycznego, który w momencie przegrzania lub przeciążenia powoduje otwarcie obwodu. To zastosowanie jest niezwykle istotne w systemach ochronnych, gdzie funkcja wyłączenia obwodu zapobiega uszkodzeniom urządzeń oraz pożarom. W praktyce, zrozumienie funkcji i symboliki wyzwalaczy elektromagnetycznych jest niezbędne dla inżynierów i techników w branżach elektrycznych oraz automatyki, ponieważ pozwala to na właściwe projektowanie systemów zabezpieczeń oraz ich efektywne wdrażanie.

Pytanie 17

Który układ połączeń sond pomiarowych miernika rezystancji IMU względem badanego uziomu Rx jest zgodny z zasadami pomiaru rezystancji uziemienia?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
W przypadku niepoprawnych odpowiedzi, takich jak A, C i D, można zauważyć, że nie spełniają one wymogów dotyczących układu sond pomiarowych. W odpowiedzi A, potencjalna sonda znajduje się zbyt blisko badanego uziomu, co prowadzi do zniekształcenia wyników, ponieważ nie uwzględnia się rzeczywistego spadku napięcia w gruncie. W odpowiedzi C, nieprawidłowe rozmieszczenie sond skutkuje brakiem możliwości precyzyjnego pomiaru rezystancji, co może prowadzić do błędnych wniosków na temat stanu uziomu. W odpowiedzi D, konieczność zrozumienia, jak prąd wpływa na pomiary rezystancji, nie została spełniona, co jest kluczowe dla obliczeń związanych z bezpieczeństwem instalacji elektrycznych. Typowe błędy myślowe to ignorowanie zasad dotyczących odległości sond, co może prowadzić do błędnych wniosków o efektywności uziemienia. W praktyce, brak znajomości zasad pomiarowych może mieć poważne konsekwencje, takie jak uszkodzenie sprzętu lub zagrożenie dla bezpieczeństwa użytkowników. Dlatego ważne jest, aby przed przystąpieniem do pomiarów zrozumieć podstawowe zasady dotyczące rozmieszczenia sond oraz ich wpływu na dokładność wyniku, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 18

W celu naprawy kabla przyłączeniowego, który został uszkodzony podczas prac ziemnych i został ułożony bez zapasu, potrzebne są

A. odcinek kabla oraz zgrzewarka
B. odcinek kabla zakończony głowicami
C. mufa rozgałęźna oraz odcinek kabla
D. dwie mufy kablowe i odcinek kabla
Odpowiedź, która wskazuje na użycie dwóch muf kablowych i odcinka kabla, jest prawidłowa, ponieważ podczas naprawy uszkodzonego kabla przyłączeniowego, kluczowe jest zapewnienie odpowiedniego połączenia i izolacji. Mufy kablowe pozwalają na skuteczne połączenie dwóch odcinków kabla, co jest szczególnie istotne w przypadku, gdy uszkodzenie występuje w obrębie zasięgu istniejącego kabla. Dwie mufy są potrzebne, aby połączyć nowy odcinek kabla z istniejącymi końcami kabla, co zapewnia, że cała instalacja będzie pracować prawidłowo. Praktycznym przykładem zastosowania tego rozwiązania może być sytuacja, w której kabel został uszkodzony przez maszynę budowlaną. W takim przypadku profesjonalne podejście obejmuje nie tylko wymianę uszkodzonego odcinka, ale również użycie muf w celu zapewnienia wodoodporności i ochrony przed uszkodzeniami mechanicznymi. Zgodnie z normami IEC 60502 oraz PN-EN 50393, stosowanie muf kablowych w połączeniach kablowych jest standardową praktyką, co dodatkowo potwierdza słuszność tego rozwiązania.

Pytanie 19

Zamiast starego bezpiecznika trójfazowego 25 A, należy zastosować wysokoczuły wyłącznik różnicowoprądowy. Który z przedstawionych w katalogu, należy wybrać?

WyłącznikOznaczenie
A.BPC 425/030 4P AC
B.BDC 225/030 2P AC
C.BPC 425/100 4P AC
D.BDC 440/030 4P AC
A. C.
B. B.
C. A.
D. D.
Wybór wyłącznika różnicowoprądowego z opcji A (BPC 425/030 4P AC) jest prawidłowy, ponieważ spełnia wszystkie kluczowe kryteria niezbędne do zastąpienia starego bezpiecznika trójfazowego 25 A. Prąd znamionowy 25 A oznacza, że urządzenie jest w stanie bezpiecznie obsługiwać obciążenia elektryczne o tym natężeniu, co jest niezbędne w instalacjach trójfazowych. Dodatkowo, wyłącznik ten posiada cztery bieguny, co jest istotne w kontekście ochrony trzech faz oraz przewodu neutralnego, co gwarantuje właściwe i równomierne zabezpieczenie całego układu. Czułość 30 mA jest zgodna z zaleceniami normy PN-EN 61008-1, która wskazuje, że wyłączniki różnicowoprądowe o tej czułości powinny być stosowane w obwodach zasilających urządzenia, które mogą stwarzać ryzyko porażenia prądem. Zastosowanie wyłączników różnicowoprądowych w instalacjach elektrycznych to dobra praktyka w celu minimalizacji ryzyka uszkodzenia ciała ludzkiego przez prąd elektryczny oraz zapobieganie pożarom spowodowanym przez upływ prądu. Dlatego wybór opcji A jest zgodny z aktualnymi standardami oraz najlepszymi praktykami w dziedzinie ochrony przeciwporażeniowej.

Pytanie 20

Jakie zadanie dotyczy konserwacji instalacji elektrycznej?

A. Modernizacja rozdzielnicy instalacji elektrycznej
B. Wymiana uszkodzonych źródeł światła
C. Zmiana rodzaju zastosowanych przewodów
D. Instalacja dodatkowego gniazda elektrycznego
Wymiana zepsutych źródeł światła to naprawdę istotny kawałek roboty przy konserwacji instalacji elektrycznej. Chodzi o to, żeby nasze oświetlenie działało bez zarzutu i żeby użytkownicy czuli się bezpiecznie. Jak żarówki czy świetlówki się psują, to mogą zdarzyć się nieprzewidziane awarie, a czasem może być to nawet niebezpieczne i prowadzić do pożaru. Fajnie jest pamiętać o regularnej wymianie, bo to zgodne z normami, na przykład PN-EN 50110-1, które mówią, jak dbać o instalacje elektryczne. Dobrym przykładem jest to, jak trzeba kontrolować stan źródeł światła w miejscach publicznych. Ich awaria to nie tylko niewygoda, ale także może zagrażać bezpieczeństwu ludzi. A jeśli wymieniamy te źródła światła na czas, to także dbamy o efektywność energetyczną, co jest zgodne z normami ochrony środowiska.

Pytanie 21

Jeśli do pomiaru napięcia w sieci 230 V zastosowano miernik analogowy o dokładności 0,5 i zakresie 300 V, jakie będą wskazania tego miernika?

A. 230 V (±1,50 V)
B. 230 V (±1,40 V)
C. 230 V (±1,20 V)
D. 230 V (±1,30 V)
Pomiar napięcia sieciowego o wartości 230 V za pomocą miernika analogowego o klasie dokładności 0,5 w zakresie 300 V daje wskazania w formacie 230 V (±1,50 V). Klasa dokładności 0,5 oznacza, że maksymalny błąd pomiarowy wynosi 0,5% wartości wskazania. W przypadku napięcia 230 V, obliczamy błąd jako 0,5% z 230 V, co daje 1,15 V. Z uwagi na standardowe zaokrąglanie, zaokrąglamy do najbliższego wyższego błędu, co daje nam 1,50 V. W praktyce, taki parametr może stać się kluczowy w instalacjach elektrycznych, gdzie precyzyjne pomiary napięcia są niezbędne do zapewnienia bezpieczeństwa i efektywności działania urządzeń. Użycie mierników o odpowiednich klasach dokładności i zakresach pomiarowych jest zgodne z normami IEC 61010, które regulują wymogi dotyczące bezpieczeństwa i dokładności przyrządów pomiarowych.

Pytanie 22

W układzie przedstawionym na rysunku, po podłączeniu odbiornika, zadziałał wyłącznik różnicowoprądowy. Przyczyną tego jest

Ilustracja do pytania
A. nieprawidłowe połączenie przewodu neutralnego i ochronnego.
B. pojawienie się napięcia na części metalowej normalnie nieprzewodzącej.
C. zwarcie między przewodem fazowym i ochronnym
D. zwarcie między przewodem neutralnym i ochronnym.
Zrozumienie mechanizmu działania wyłączników różnicowoprądowych jest kluczowe dla prawidłowej interpretacji sytuacji przedstawionej w pytaniu. Odpowiedź sugerująca zwarcie między przewodem neutralnym a ochronnym jest błędna, gdyż w takim przypadku wyłącznik nie zareagowałby. Zwarcie to nie wiąże się z różnicą prądów, która jest podstawą działania tych zabezpieczeń. Z kolei wariant dotyczący zwarcia między przewodem fazowym a ochronnym również nie jest trafny, ponieważ takie zwarcie najczęściej prowadzi do zadziałania zabezpieczeń nadprądowych, a nie różnicowoprądowych. Warto zauważyć, że nieprawidłowe połączenie przewodu neutralnego i ochronnego może prowadzić do poważnych problemów z bezpieczeństwem, jednak nie będzie to głównym powodem działania wyłącznika różnicowoprądowego. Typowym błędem w rozumieniu tego zagadnienia jest mylenie funkcji różnych rodzajów zabezpieczeń. Wyłącznik różnicowoprądowy ma na celu ochronę przed skutkami upływu prądu, a nie przed zwarciami. W praktyce, gdy urządzenie elektryczne generuje napięcie na obudowie, wyłącznik różnicowoprądowy działa jako pierwsza linia obrony przed porażeniem, co wyraźnie wskazuje na znaczenie jego prawidłowego działania oraz instalacji zgodnie z obowiązującymi normami bezpieczeństwa.

Pytanie 23

Przewód, który jest oznaczony symbolem SMYp, ma żyły

A. wielodrutowe
B. sektorowe
C. płaskie
D. jednodrutowe
Jeśli wybrałeś niewłaściwą odpowiedź na temat przewodów SMYp, to pewnie wynika to z niezrozumienia ich specyfikacji oraz zastosowań. Odpowiedzi dotyczące żył sektorowych, płaskich czy jednodrutowych nie pasują do przewodów SMYp. Żyły sektorowe są używane w kablach zasilających o większych przekrojach, często w instalacjach energetycznych, gdzie są wymagane specjalne parametry dotyczące rozkładu pola elektrycznego. Żyły płaskie też mają swoje miejsce w różnych aplikacjach, głównie w konstrukcji kabli instalacyjnych, ale nie spełniają wymagań przewodów SMYp. Co do żył jednodrutowych, to chociaż mogą być używane w prostych instalacjach, to niestety nie zapewniają elastyczności, która jest ważna w sytuacjach, gdzie przewody muszą się poruszać. Wiesz, błędne odpowiedzi mogą wynikać z pomylenia różnych typów przewodów elektrycznych i ich właściwości. Ważne jest, żeby dobrać odpowiednie przewody w instalacjach elektrycznych, bo to kluczowe dla bezpieczeństwa i efektywności energetycznej. Zrozumienie różnic między typami żył i ich stosowaniem powinno być podstawą przy planowaniu i realizacji instalacji elektrycznych.

Pytanie 24

Symbol graficzny przedstawiony na rysunku oznacza łącznik

Ilustracja do pytania
A. dwubiegunowy.
B. schodowy.
C. świecznikowy.
D. hotelowy.
Odpowiedź schodowy jest poprawna, ponieważ symbol graficzny przedstawiony na rysunku rzeczywiście oznacza łącznik schodowy. Łącznik schodowy jest urządzeniem elektrycznym stosowanym w instalacjach oświetleniowych, które umożliwia kontrolowanie jednego źródła światła z dwóch różnych miejsc, co jest szczególnie przydatne na klatkach schodowych. Przykładowo, w przypadku długich schodów lub korytarzy, możliwe jest umiejscowienie jednego łącznika na dół schodów, a drugiego na górze. Zastosowanie łącznika schodowego przyczynia się do poprawy ergonomii i bezpieczeństwa, eliminując konieczność schodzenia w ciemności. Zgodnie z normą PN-IEC 60669-1, stosowanie łączników schodowych w instalacjach oświetleniowych jest szeroko uznawane jako najlepsza praktyka w celu zwiększenia funkcjonalności i komfortu użytkowania. Warto także zwrócić uwagę, że łączniki schodowe mogą być używane z innymi typami łączników, co umożliwia bardziej złożoną kontrolę oświetlenia w większych przestrzeniach.

Pytanie 25

Jakim przyrządem dokonuje się pomiaru rezystancji izolacyjnej przewodu?

A. Megaomomierz
B. Miernik pętli zwarcia
C. Induktorowy miernik uziemień
D. Omomierz
Megaomomierz jest specjalistycznym urządzeniem zaprojektowanym do pomiaru wysokiej rezystancji izolacji, co czyni go idealnym narzędziem do oceny stanu izolacji przewodów elektrycznych. W przeciwieństwie do zwykłych omomierzy, które mierzą rezystancję w zakresie niskich wartości, megaomomierz generuje napięcia próbne rzędu kilkuset woltów, co pozwala na dokładne określenie jakości izolacji. Przykładowo, podczas testowania instalacji elektrycznych w budynkach, użycie megaomomierza pozwala na wykrycie ewentualnych uszkodzeń izolacji, które mogłyby prowadzić do zwarć lub porażenia prądem. Zastosowanie tego urządzenia jest zgodne z normami IEC 61010 oraz IEC 61557, które definiują wymagania dotyczące bezpieczeństwa i wydajności tego typu pomiarów. Regularne sprawdzanie rezystancji izolacji za pomocą megaomomierza jest kluczowym elementem utrzymania bezpieczeństwa oraz niezawodności instalacji elektrycznych.

Pytanie 26

Co oznacza symbol literowy YKY?

A. przewód telekomunikacyjny z żyłami aluminiowymi w izolacji i powłoce z PVC
B. przewód oponowy warsztatowy z żyłami miedzianymi w izolacji z PVC
C. kabel z żyłami miedzianymi w izolacji z PVC
D. kabel z żyłami aluminiowymi w izolacji i powłoce z PVC
Odpowiedź wskazująca na kabel o żyłach miedzianych w izolacji polwinitowej jest poprawna, ponieważ symbol literowy YKY odnosi się do kabli, które są powszechnie stosowane w instalacjach elektrycznych. Kable te charakteryzują się miedzianymi żyłami, co zapewnia dobrą przewodność elektryczną oraz odporność na korozję, a ich izolacja wykonana z polichlorku winylu (PVC) oferuje wysoką odporność na działanie niekorzystnych czynników atmosferycznych. Kable YKY są często wykorzystywane w systemach zasilania, w rozdzielniach elektrycznych czy w instalacjach przemysłowych, gdzie wymagana jest niezawodność i bezpieczeństwo. Dodatkowo, zgodnie z normą PN-EN 50525, kable YKY mogą być stosowane w warunkach, gdzie wymagana jest odporność na wysokie temperatury, co sprawia, że są one wszechstronne w zastosowaniach. Przykłady zastosowania obejmują zarówno instalacje w budynkach mieszkalnych, jak i przemysłowych, gdzie kable legitymują się dobrymi parametrami mechanicznymi oraz elektrycznymi niezbędnymi do efektywnego funkcjonowania systemów zasilających.

Pytanie 27

Na podstawie przedstawionego schematu ideowego, określ jaki błąd popełniono przy montażu instalacji elektrycznej podtynkowej ułożonej w rurach.

Ilustracja do pytania
A. W instalacji nieprawidłowo połączono przewód ochronny.
B. Zastosowano niewłaściwy typ łącznika instalacyjnego.
C. Błędnie połączono przewody instalacji do zacisków żyrandola.
D. W rury wciągnięto niewłaściwą liczbę przewodów.
Błędne odpowiedzi, takie jak niewłaściwe połączenie przewodów instalacji do zacisków żyrandola czy niesprawidłowe połączenie przewodu ochronnego, wynikają z niepełnego zrozumienia zasady działania instalacji elektrycznych. W przypadku pierwszego błędu, pomylenie przewodów może prowadzić do poważnych zagrożeń, takich jak zwarcie czy uszkodzenie sprzętu, co negatywnie wpływa na bezpieczeństwo użytkowników. Z kolei niepoprawne połączenie przewodu ochronnego wprowadza ryzyko porażenia prądem, co jest sprzeczne z fundamentalnymi zasadami bezpieczeństwa, określonymi w normach takich jak PN-IEC 60364. Drugą nieprawidłową koncepcją jest zrozumienie liczby przewodów w instalacji. W przypadku stosowania zbyt wielu przewodów w rurze, może dojść do ich przegrzewania i uszkodzenia izolacji, co stwarza ryzyko pożaru. W praktyce, projektanci instalacji muszą przestrzegać odpowiednich standardów dotyczących liczby przewodów, które mogą być prowadzone w danej rurze, aby zachować optymalne warunki pracy i bezpieczeństwo. Zrozumienie tych zasad jest kluczowe dla prawidłowego montażu i eksploatacji systemów elektrycznych, co powinno być priorytetem dla każdego specjalisty w branży.

Pytanie 28

W układzie instalacji mieszkaniowej przedstawionej na rysunku, ochrona wyłącznikiem różnicowoprądowym RCD nie obejmuje gniazd w

Ilustracja do pytania
A. łazience i pokoju 1
B. łazience i pokoju 2
C. pokoju 1 i pokoju 2
D. kuchni i pokoju 2
Odpowiedź, w której zaznaczyłeś "pokoju 1 i pokoju 2", jest rzeczywiście trafna. W schemacie instalacji elektrycznej widać, że obwody gniazd w tych pomieszczeniach nie mają ochrony wyłącznika różnicowoprądowego (RCD). To ważne, bo RCD powinno się stosować w miejscach, gdzie ryzyko porażenia prądem jest większe, jak w łazienkach czy kuchniach, gdzie woda może być problemem. Normy mówią, że tam, gdzie może wystąpić kontakt z wodą, trzeba mieć RCD, żeby zapewnić bezpieczeństwo. W pokojach 1 i 2 brakuje tej ochrony, co oznacza, że gniazda nie są tak dobrze zabezpieczone. Dobrze zaprojektowana instalacja powinna zawsze brać to pod uwagę, zwłaszcza przy układzie gniazd w miejscach, gdzie może być wilgoć. Jakbyś planował przerobić te pomieszczenia lub dodać nowe urządzenia elektryczne, warto by było przemyśleć, czy nie trzeba coś zmienić w systemie ochrony.

Pytanie 29

Na rysunku pokazano pętlę zwarciową w układzie typu

Ilustracja do pytania
A. TT
B. TN-C-S
C. IT
D. TN-S
Odpowiedź TN-C-S jest poprawna, ponieważ odnosi się do systemu zasilania, w którym przewód PEN, pełniący funkcję zarówno przewodu ochronnego (PE), jak i neutralnego (N), jest rozdzielany na te dwa oddzielne przewody w określonym punkcie instalacji. Taki sposób realizacji systemu jest zgodny z normami bezpieczeństwa, co zapewnia nie tylko właściwe zabezpieczenie przed porażeniem prądem, ale także minimalizuje ryzyko zakłóceń w pracy urządzeń elektrycznych. W praktyce, układ TN-C-S jest często stosowany w budynkach mieszkalnych oraz przemysłowych, gdzie istotne jest zachowanie wysokiego poziomu bezpieczeństwa. Rozdzielenie przewodu PEN na PE i N zmniejsza ryzyko wystąpienia prądów wyrównawczych oraz potencjalnych problemów związanych z niewłaściwym uziemieniem. Ponadto, w kontekście regulacji, taki układ jest zgodny z normami IEC 60364, które nakładają obowiązek stosowania rozwiązań minimalizujących ryzyko wystąpienia niebezpiecznych sytuacji związanych z elektrycznością. Warto również zauważyć, że przy projektowaniu instalacji elektrycznych, inżynierowie muszą zwracać uwagę na lokalne przepisy i normy, które mogą wpłynąć na wybór konkretnego systemu zasilania.

Pytanie 30

Do pomiaru napięć stałych należy użyć miernika elektrycznego o ustroju, którego symbol graficzny przedstawiono na rysunku

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
W przypadku wyboru jakiejkolwiek innej odpowiedzi, można zauważyć szereg nieporozumień dotyczących symboli oraz ich zastosowania w elektrotechnice. Symbol przedstawiony przy opcji A, który sugeruje gniazdo zasilania stałego, nie ma zastosowania w kontekście pomiaru napięcia, jako że jego funkcja polega na dostarczaniu energii elektrycznej, a nie na jej pomiarze. Wybór B, symbolizujący rezystor, również jest błędny, ponieważ rezystory są komponentami pasywnymi stosowanymi do ograniczania prądu w obwodach, a nie do pomiaru napięcia. Ponadto, wybór C, który przedstawia symbol cewki indukcyjnej, może prowadzić do mylnych wniosków o pomiarze napięcia w obwodach, w których cewki są używane. Cewki indukcyjne są elementami aktywnymi, ale ich rola w pomiarach napięcia jest ograniczona, a w niektórych przypadkach mogą powodować zniekształcenia w wynikach pomiarów. Te wybory świadczą o braku zrozumienia różnicy między symbolami komponentów pasywnych a przyrządami pomiarowymi. Wybór niewłaściwego symbolu odzwierciedla typowe błędy myślowe w zakresie rozpoznawania zastosowań komponentów elektrycznych oraz ich rzeczywistej funkcji w obwodach, co jest kluczowe dla prawidłowego stosowania wiedzy w praktyce inżynieryjnej.

Pytanie 31

Zdjęcie przedstawia przewód

Ilustracja do pytania
A. YDY 3x1,5 750 V
B. YDYn 3x1,5 500 V
C. YDYp 3x1,5 750 V
D. YLY 3x1,5 500 V
Wybór błędnie oznaczonego przewodu prowadzi do wielu nieporozumień, które mogą wynikać z niewłaściwej interpretacji symboliki używanej w oznaczeniach. Przewody typu YDY, które nie zawierają litery 'p', są przewodami okrągłymi, co jest istotnym aspektem w kontekście instalacji w różnych warunkach, na przykład w pomieszczeniach o ograniczonej przestrzeni. Zastosowanie przewodów okrągłych może być niewłaściwe tam, gdzie istnieją ograniczenia przestrzenne, co może prowadzić do problemów z instalacją. Z kolei przewód YDYn 3x1,5 500 V, oznaczony jako przewód z napięciem 500 V, jest niewłaściwy dla aplikacji wymagających wyższego napięcia, co oznacza, że jego zastosowanie w instalacjach o wyższych wymaganiach może prowadzić do zagrożeń związanych z przeciążeniem. Ponadto, przewód YLY 3x1,5 500 V, który sugeruje zastosowanie izolacji polietylenowej, jest błędnym wyborem, ponieważ polietylen ma inne właściwości niż poliwinit, w tym różnice w odporności na czynniki atmosferyczne oraz chemiczne. Zrozumienie tych różnic jest kluczowe, aby uniknąć problemów z trwałością i bezpieczeństwem instalacji elektrycznych. W praktyce, nieprawidłowy wybór przewodu może prowadzić do awarii instalacji, a nawet stanowić zagrożenie pożarowe. Dlatego ważne jest, aby w każdej sytuacji dobierać przewód zgodnie z wymaganiami technicznymi i normami branżowymi, co zapewni bezpieczeństwo i efektywność działania instalacji.

Pytanie 32

Jakie czynności kontrolne nie są zaliczane do oględzin urządzeń napędowych podczas ich pracy?

A. Sprawdzenie stanu łożysk i przeprowadzenie pomiarów elektrycznych
B. Weryfikacja stanu przewodów ochronnych oraz ich połączeń
C. Ocena poziomu drgań oraz funkcjonowania układu chłodzenia
D. Kontrola zabezpieczeń i stanu osłon części wirujących
Odpowiedź "Sprawdzenie stanu łożysk i pomiary elektryczne" jest poprawna, ponieważ te czynności kontrolne są zazwyczaj przeprowadzane w trakcie przeglądów technicznych, a nie podczas bieżącej eksploatacji urządzeń napędowych. W czasie ruchu maszyny, kluczowe jest monitorowanie parametrów operacyjnych, takich jak poziom drgań, ponieważ mogą one wskazywać na potencjalne problemy z wydajnością lub uszkodzenia. Kontrola poziomu drgań i działania układu chłodzenia pozwala na szybką identyfikację nieprawidłowości, które mogą prowadzić do poważnych awarii. Ochrona przewodów i odpowiednie osłony części wirujących są również istotnymi aspektami bezpieczeństwa w czasie pracy urządzenia. Zgodnie z normami, takimi jak ISO 9001, monitoring w czasie rzeczywistym oraz regularne kontrole stanu technicznego są kluczowe dla zapewnienia efektywności i bezpieczeństwa operacji. Przykładem praktycznym może być zastosowanie systemów monitorowania drgań, które w czasie rzeczywistym informują operatorów o konieczności interwencji, co pozwala na minimalizację ryzyka awarii.

Pytanie 33

W którym wierszu tabeli prawidłowo określono funkcje i liczby przewodów jednożyłowych, które należy umieścić w rurach instalacyjnych, aby wykonać poszczególne obwody w układzie sieciowym TN-S, zakończone punktami odbioru o przedstawionych symbolach graficznych?

Ilustracja do pytania
A. W wierszu 3.
B. W wierszu 1.
C. W wierszu 4.
D. W wierszu 2.
Wiersz 4 tabeli prawidłowo określa wymagania dotyczące liczby przewodów w obwodach sieciowych TN-S. Dla obwodu 3, który odpowiada za oświetlenie, potrzebne są trzy przewody: jeden przewód fazowy, jeden neutralny oraz jeden ochronny, co jest zgodne z normami dotyczących instalacji elektrycznych. Z kolei dla obwodu 2, który obsługuje gniazdo siłowe, wymagane jest pięć przewodów: trzy fazowe, jeden neutralny i jeden ochronny. Zastosowanie odpowiedniej liczby przewodów jest kluczowe dla zapewnienia bezpieczeństwa i efektywności energetycznej instalacji. W przypadku niewłaściwej liczby przewodów, może dojść do przeciążeń, które stanowią poważne zagrożenie pożarowe. Standardy takie jak PN-IEC 60364-1 stanowią wytyczne, które należy przestrzegać w celu zapewnienia bezpieczeństwa i zgodności z obowiązującymi normami. W praktyce, prawidłowe określenie liczby przewodów jest istotne, aby uniknąć nieprawidłowości instalacyjnych, które mogą prowadzić do awarii sprzętu lub uszkodzenia instalacji.

Pytanie 34

W jaki sposób należy połączyć zaciski sieci zasilającej L, N, PE do zacisków puszki zasilającej instalację elektryczną, której schemat przedstawiono na rysunku, aby połączenia były zgodne z przedstawionym schematem ideowym?

Ilustracja do pytania
A. L - 2, N - 3, PE - 4
B. L - 3, N - 4, PE - 1
C. L - 1, N - 3, PE - 4
D. L - 1, N - 4, PE - 3
Poprawna odpowiedź to L - 1, N - 3, PE - 4, co jest zgodne z obowiązującymi normami instalacji elektrycznych w Polsce. Zacisk L, odpowiadający za przesył energii elektrycznej, powinien być połączony z punktem 1. Jest to istotne, ponieważ zapewnia to prawidłowe zasilanie obwodu. Zacisk N, który jest neutralny, łączy się z punktem 3, co umożliwia bezpieczne odprowadzenie prądu wstecz do źródła. Wreszcie, zacisk PE, pełniący funkcję ochrony przed porażeniem elektrycznym, powinien być połączony z punktem 4. Takie połączenie minimalizuje ryzyko awarii oraz zapewnia bezpieczeństwo użytkowników. W praktyce, przy wykonywaniu instalacji elektrycznych, zgodność z tym schematem jest kluczowa. Ponadto, należy pamiętać o regularnych przeglądach instalacji oraz stosowaniu się do norm PN-IEC 60364, aby zapewnić trwałość oraz niezawodność sieci zasilającej.

Pytanie 35

Które oznaczenie dotyczy przedstawionego trzonka elektrycznego źródła światła?

Ilustracja do pytania
A. E14
B. GU10
C. G9
D. MR16
Trzonek typu GU10, który został przedstawiony na zdjęciu, jest powszechnie stosowany w oświetleniu halogenowym oraz LED. Cechą charakterystyczną trzonka GU10 są dwa bolce o średnicy 10 mm, które umożliwiają łatwe i pewne zamocowanie w gniazdach. Ten rodzaj trzonka jest szczególnie popularny w reflektorach, co czyni go idealnym do zastosowań w oświetleniu akcentującym, gdzie istotne jest skierowanie światła na konkretne obszary. Standard GU10 jest zgodny z normami międzynarodowymi dotyczącymi wymiany i instalacji źródeł światła, co zapewnia uniwersalność i łatwość w stosowaniu. Użytkownicy powinni zwrócić uwagę na to, że trzonki GU10 są dostępne w różnych wariantach mocy oraz barwie światła, co pozwala na dostosowanie oświetlenia do indywidualnych potrzeb. Warto również zauważyć, że trzonek GU10 jest szczególnie efektywny pod względem energetycznym, zwłaszcza w wersjach LED, co wpisuje się w aktualne trendy w zakresie zrównoważonego rozwoju i oszczędności energii.

Pytanie 36

Którego przyrządu należy użyć do pomiarów rezystancji izolacji w instalacji elektrycznej?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Wybór niewłaściwego przyrządu do pomiarów rezystancji izolacji w instalacji elektrycznej może prowadzić do poważnych konsekwencji, zarówno technicznych, jak i bezpieczeństwa. Inne urządzenia, takie jak multimetru czy omomierze, nie są przystosowane do pomiaru wysokich wartości rezystancji, jakie występują w systemach izolacji. Multimetry, które często mają zakres pomiarowy do 20 MΩ, mogą nie być w stanie dokładnie zmierzyć rezystancji izolacji, zwłaszcza w przypadku uszkodzeń lub degradacji materiałów izolacyjnych. Użycie takich przyrządów w miejsce megomierza może prowadzić do fałszywych wniosków, które w efekcie mogą zagrażać bezpieczeństwu użytkowników. W praktyce, pomiar rezystancji izolacji powinien opierać się na standardowych procedurach, które wymagają użycia specjalistycznego wyposażenia. Dodatkowo, niekiedy występuje mylne przekonanie, że pomiar o niskich wartościach rezystancji jest wystarczający do oceny stanu izolacji. W rzeczywistości, normy branżowe jasno określają, że izolacja powinna mieć bardzo wysoką rezystancję, sięgającą nawet gigaomów, aby była uznawana za bezpieczną. Prawidłowe podejście do pomiarów nie tylko wpływa na efektywność działania instalacji, ale także na bezpieczeństwo ludzi oraz mienia, co jest kluczowym aspektem pracy w każdej branży związanej z elektrycznością.

Pytanie 37

Aparat pokazany na zdjęciu jest wykorzystywany do

Ilustracja do pytania
A. wyłączania prądów roboczych.
B. ograniczania napięć.
C. wykrywania prądów upływu.
D. ograniczania przepięć.
Wybór odpowiedzi dotyczącej wykrywania prądów upływu, ograniczania napięć lub wyłączania prądów roboczych wskazuje na pewne nieporozumienie dotyczące funkcji poszczególnych urządzeń w systemach elektrycznych. W przypadku wykrywania prądów upływu, mówimy o urządzeniach takich jak wyłączniki różnicowoprądowe, które mają na celu ochronę przed porażeniem prądem oraz zapobieganie pożarom spowodowanym przez prądy upływu. Ograniczniki napięć, choć mogą brzmieć podobnie, są innymi urządzeniami, które nie są przeznaczone do ograniczania chwilowych wzrostów napięcia, ale raczej do stabilizacji napięcia roboczego w systemie. Odpowiedź dotycząca wyłączania prądów roboczych w ogóle nie odnosi się do tematu ograniczania przepięć, a koncentruje się na zarządzaniu obciążeniem w instalacji elektrycznej. Warto zauważyć, że ograniczniki przepięć pełnią unikalną funkcję ochrony przed specyficznymi zagrożeniami, a ich skuteczność jest kluczowa w kontekście nowoczesnych instalacji elektrycznych, szczególnie w obiektach narażonych na wyładowania atmosferyczne. Ignorowanie tej właściwości prowadzi do poważnych konsekwencji, takich jak uszkodzenie sprzętu, co widać w praktyce, gdy urządzenia nie są odpowiednio zabezpieczone przed nagłymi skokami napięcia.

Pytanie 38

Na podstawie przedstawionego schematu połączeń określ, kiedy nastąpi zadziałanie wyłącznika różnicowoprądowego?

Ilustracja do pytania
A. Po załączeniu wyłącznika w obwodzie gniazd pokoi.
B. Po załączeniu wyłącznika w obwodzie łazienki i podłączeniu odbiornika.
C. Po załączeniu wyłącznika w obwodzie gniazd pokoi i podłączeniu odbiornika.
D. Po załączeniu wyłącznika w obwodzie łazienki.
Zrozumienie zasad działania wyłączników różnicowoprądowych jest kluczowe dla bezpieczeństwa użytkowników instalacji elektrycznych. Odpowiedzi, które nie uwzględniają podłączenia odbiornika lub odnoszą się tylko do samego załączenia wyłącznika, nie uwzględniają rzeczywistych warunków, w jakich wyłącznik różnicowoprądowy zadziała. Wyłącznik różnicowoprądowy jest zaprojektowany do wykrywania różnicy prądów między przewodami fazowym a neutralnym. Kiedy obwód jest załączony, ale nie ma podłączonego odbiornika, nie występuje żaden przepływ prądu przez urządzenie, co oznacza, że nie ma też ryzyka upływu prądu. Ta sytuacja prowadzi do błędnych wniosków, sugerujących, że sama aktywacja wyłącznika w obwodzie gniazd pokoi wystarczy do zadziałania RCD. W rzeczywistości, by wyłącznik mógł zadziałać, muszą być spełnione określone warunki, w tym obecność odbiornika, który może generować upływ prądu. Innym częstym błędem myślowym jest mylenie działania RCD z innymi zabezpieczeniami, takimi jak bezpieczniki, które działają na zasadzie przeciążenia prądowego. Zrozumienie tych różnic jest kluczowe dla bezpiecznego korzystania z instalacji elektrycznych, zgodnie z normami, takimi jak PN-EN 61008, które szczegółowo opisują wymagania dla wyłączników różnicowoprądowych. W związku z tym, odpowiedzi, które ignorują te fundamentalne zasady, mogą prowadzić do niebezpiecznych sytuacji w rzeczywistych instalacjach elektrycznych.

Pytanie 39

W strefie 0 przedstawionego na rysunku pomieszczenia z wanną można instalować

Ilustracja do pytania
A. przenośne odbiorniki o II klasie ochronności.
B. oprawy oświetleniowe o II klasie ochronności.
C. urządzenia zasilanie prądem zmiennym do 12 V.
D. elektryczne podgrzewacze wody.
W strefie 0 pomieszczenia z wanną można instalować jedynie urządzenia zasilane niskim napięciem, czyli prądem zmiennym do 12 V. Jest to zgodne z normami IEC 60364 oraz polskimi przepisami dotyczącymi ochrony przeciwporażeniowej. Niskie napięcie zapewnia znacznie wyższy poziom bezpieczeństwa w obszarach narażonych na kontakt z wodą, gdzie ryzyko porażenia prądem jest znacząco zwiększone. W praktyce oznacza to, że w strefie 0 można bezpiecznie stosować niektóre elementy oświetleniowe, takie jak lampy LED zasilane niskim napięciem, co umożliwia tworzenie atrakcyjnych aranżacji wnętrz. Przykładem mogą być podwodne reflektory montowane w wannach, które nie tylko poprawiają estetykę, lecz także zapewniają bezpieczeństwo użytkowników, minimalizując ryzyko wypadku. Instalacje w strefach mokrych powinny być projektowane przez wyspecjalizowanych elektryków, aby zapewnić zgodność z normami i bezpieczeństwo użytkowników.

Pytanie 40

Co może być przyczyną usterki na przedstawionym schemacie, jeżeli: żarówka E2 świeci się, a żarówka E1 nie świeci się, obie żarówki są sprawne, zmierzone napięcie U12 = 228 V, oprawy E1 i E2 są sprawne?

Ilustracja do pytania
A. Uszkodzony przewód pomiędzy W3 a E1
B. Uszkodzone przewody pomiędzy W2 a W3
C. Uszkodzony przewód pomiędzy W1 a S191B10
D. Uszkodzone przewody pomiędzy W1 a W2
Odpowiedź wskazująca na uszkodzony przewód pomiędzy W3 a E1 jest poprawna, ponieważ analizując sytuację, w której żarówka E2 świeci, a E1 nie, można wywnioskować, że obwód dostarczający prąd do E1 jest przerwany. Pomimo iż napięcie U12 wynosi 228 V, co sugeruje prawidłowe działanie obwodu pomiędzy W1 a W2, to brak świecenia żarówki E1 wskazuje na problem w dalszej części obwodu. W przypadku, gdyby przewody pomiędzy W1 a W2 lub W2 a W3 były uszkodzone, to również E2 nie mogłoby świecić. Praktyczne zastosowanie tej wiedzy odnosi się do diagnostyki usterek w instalacjach elektrycznych, gdzie kluczowym krokiem jest analiza obwodów oraz sprawdzanie, w którym miejscu prąd nie dociera do założonych punktów. W obiektach przemysłowych oraz mieszkalnych, stosowanie schematów połączeń i przeprowadzanie pomiarów napięcia jest niezbędne dla efektywnej diagnostyki i konserwacji. Zgodnie z normami bezpieczeństwa, każdy elektryk powinien być w stanie szybko zidentyfikować potencjalne problemy w obwodach, co prowadzi do oszczędności czasu oraz zasobów.