Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 18 grudnia 2025 13:45
  • Data zakończenia: 18 grudnia 2025 14:28

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Której klasy ogranicznik przepięć przedstawiono na rysunku?

Ilustracja do pytania
A. Klasy C
B. Klasy D
C. Klasy B
D. Klasy A
Wybór odpowiedzi spośród klas A, B czy C jest nieprawidłowy, ponieważ te klasy ograniczników przepięć mają inne zastosowania i nie odpowiadają na konkretne potrzeby ochrony końcowych urządzeń elektronicznych. Ograniczniki klasy A są przeznaczone do ochrony instalacji przed przepięciami, które mogą wystąpić w wyniku wyładowań atmosferycznych, co czyni je bardziej odpowiednimi dla systemów zasilających i infrastruktury budowlanej, a nie dla urządzeń użytkowych. Klasa B z kolei jest zarezerwowana dla zastosowań przemysłowych, gdzie konieczne jest ograniczenie przepięć na poziomie wyższym niż w przypadku klasy D, co czyni je niewłaściwym wyborem dla urządzeń codziennego użytku. Klasa C, stosowana w instalacjach niskonapięciowych, również nie zapewnia odpowiedniej ochrony dla końcowych urządzeń, które wymagają bardziej specyficznej i bezpośredniej ochrony. Kluczowym błędem, który często prowadzi do wyboru niewłaściwej klasy, jest mylenie ogólnych właściwości ograniczników z ich specyfiką zastosowania. Każda klasa ograniczników ma określone parametry i przeznaczenie, które powinny być zgodne z wymaganiami danego systemu. Zrozumienie różnic między tymi klasami jest kluczowe dla właściwego doboru urządzeń ochronnych w celu zapewnienia optymalnej ochrony i wydajności systemów elektronicznych.

Pytanie 2

Jaką minimalną wartość powinno mieć napięcie probiercze miernika używanego do pomiaru rezystancji izolacji w instalacji elektrycznej pracującej pod napięciem 230/400 V?

A. 250 V
B. 1 000 V
C. 500 V
D. 2 500 V
Minimalna wartość napięcia probierczego miernika używanego do pomiaru rezystancji izolacji w instalacjach elektrycznych o napięciu 230/400 V powinna wynosić 500 V. Taka wartość jest zgodna z międzynarodowymi standardami, takimi jak IEC 61557, które określają wymagania dotyczące pomiaru rezystancji izolacji. Przy napięciu probierczym wynoszącym 500 V, można skutecznie ocenić stan izolacji przewodów oraz innych elementów instalacji, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Pomiar przy tym napięciu pozwala na wykrycie potencjalnych uszkodzeń izolacji, które mogą prowadzić do zwarć czy porażenia prądem. W praktyce, testowanie izolacji w instalacjach elektrycznych wykonywane jest regularnie, szczególnie przed oddaniem do użytkowania nowych instalacji oraz podczas przeglądów okresowych. Użycie napięcia 500 V zapewnia odpowiednią reprezentatywność stanu izolacji, co jest istotne dla dalszej eksploatacji i bezpieczeństwa całej instalacji elektrycznej.

Pytanie 3

Działanie którego środka ochrony przeciwporażeniowej w instalacji elektrycznej o napięciu znamionowym 230 V, pozwala ocenić miernik przedstawiony na rysunku?

Ilustracja do pytania
A. Zasilania napięciem bezpiecznym.
B. Połączeń wyrównawczych.
C. Samoczynnego wyłączenia zasilania.
D. Izolacji roboczej.
Udzielając odpowiedzi na to pytanie, można było się posługiwać różnymi pojęciami związanymi z bezpieczeństwem elektrycznym, jednak niektóre z nich mogą wprowadzać w błąd. Zasilanie napięciem bezpiecznym odnosi się do systemów, które wykorzystują niższe napięcia w celu zminimalizowania ryzyka porażenia, jednak nie jest to związane z pomiarem izolacji, którego celem jest ochrona przed porażeniem w instalacjach o napięciu 230 V. Połączenia wyrównawcze są istotne w kontekście ochrony przed porażeniem, ale ich ocena wymaga innego rodzaju pomiarów, takich jak pomiar oporności połączeń. Samoczynne wyłączenie zasilania to mechanizm zabezpieczający, który działa w przypadku wykrycia nieprawidłowości w instalacji, ale także nie jest bezpośrednio związany z pomiarem izolacji roboczej. Typowym błędem jest mylenie tych pojęć i pomijanie istotności pomiarów rezystancji izolacji w kontekście bezpieczeństwa energetycznego. W rzeczywistości, zrozumienie funkcji izolacji roboczej oraz jej roli w ochronie przed porażeniem elektrycznym jest kluczowe dla każdego, kto pracuje z systemami elektrycznymi, a nieprawidłowe zrozumienie tych zagadnień może prowadzić do niebezpiecznych sytuacji podczas eksploatacji instalacji.

Pytanie 4

Które z przedstawionych narzędzi, oprócz lutownicy, jest niezbędne przy naprawie przeciętego przewodu LY przez połączenie lutowane?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Wybór odpowiedzi B jest słuszny, ponieważ narzędzie to, czyli szczypce do ściągania izolacji, jest kluczowe w procesie naprawy przewodów elektrycznych. Przy lutowaniu przeciętego przewodu LY, fundamentalnym krokiem jest przygotowanie jego końców poprzez usunięcie izolacji, co umożliwia bezpośredni dostęp do miedzianych rdzeni. Użycie odpowiednich narzędzi do ściągania izolacji zapewnia, że miedź nie zostanie uszkodzona, co jest istotne dla uzyskania solidnego połączenia lutowanego. W praktyce, szczypce do ściągania izolacji są zaprojektowane tak, aby zminimalizować ryzyko zgniecenia lub zerwania włókien miedzianych, co mogłoby prowadzić do problemów z przewodnictwem elektrycznym. Zgodnie z normami branżowymi, każdy elektryk powinien mieć w swoim zestawie narzędzi to urządzenie, aby zapewnić rzetelność i bezpieczeństwo wykonywanych połączeń. Dobrą praktyką jest także sprawdzenie, czy końce przewodów są czyste i nieuszkodzone przed przystąpieniem do lutowania, co zapewnia lepszą jakość połączenia.

Pytanie 5

Który układ połączeń watomierza jest zgodny z przedstawionym schematem pomiarowym?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Odpowiedź C jest dobra, bo pokazuje, jak dobrze podpiąć watomierz w obwodzie elektrycznym. W tym układzie przewód L (fazowy) jest podłączony do prądowego zacisku watomierza, co pozwala na zmierzenie prądu, a przewód N (neutralny) do zacisku napięciowego, co z kolei umożliwia pomiar napięcia. Dzięki temu nasz watomierz może obliczyć moc czynną, co jest mega ważne, gdy chcemy śledzić zużycie energii. Według normy PN-EN 62053-21, odpowiednie połączenie urządzeń pomiarowych to podstawa, żeby pomiary były dokładne. W praktyce, kiedy robimy coś jak analiza efektywności energetycznej czy audyt instalacji, prawidłowe podłączenie watomierza jest kluczowe, żeby uzyskać rzetelne dane. Jeśli coś jest źle podłączone, to może prowadzić do błędnych odczytów, co wpłynie na decyzje o zarządzaniu energią i efektywności działań.

Pytanie 6

Do realizacji układu przedstawionego na schemacie należy zastosować stycznik Q21 z następującą liczbą i rodzajem zestyków:

Ilustracja do pytania
A. 3NO + 2NC + 1NO
B. 3NC + 2NC + 1NO
C. 3NO + 2NO + 1NC
D. 3NC + 2NO + 1NC
Pomimo tego, że różne odpowiedzi mogą wydawać się atrakcyjne, żadna z opcji nie dostarcza kompletnego zestawu zestyków wymaganych do poprawnej pracy stycznika Q21. W przypadku odpowiedzi, które zawierają zestyk normalnie zamknięty (NC) w nadmiarze, pojawia się problem z realizacją funkcji sterowania silnika oraz innymi aspektami automatyki, ponieważ zbyt duża ilość zestyków NC może powodować nieprzewidziane blokady obwodów. Z kolei zestyk normalnie otwarty (NO) jest kluczowy dla załączania faz, a ich niewłaściwa ilość może prowadzić do niewłaściwego działania układu. Odpowiedzi, które sugerują wykorzystywanie większej liczby zestyków NC, świadczą o braku zrozumienia podstawowych zasad działania styczników oraz ich zastosowania w układach elektrycznych. Należy pamiętać, że w układach trójfazowych kluczowe jest wyważenie pomiędzy zestykami NO a NC, aby zapewnić zarówno wydajność, jak i bezpieczeństwo systemu. Dlatego, aby prawidłowo dobrać stycznik, konieczne jest zrozumienie, jak różne rodzaje zestyków wpływają na funkcjonalność oraz bezpieczeństwo całego układu.

Pytanie 7

Brodzik zostanie osłonięty kabiną prysznicową. W której strefie można zainstalować gniazda z kołkiem ochronnym w łazience, aby było to zgodne z przepisami bezpieczeństwa i higieny pracy oraz przepisami przeciwporażeniowymi?

Ilustracja do pytania
A. W 1 i 2.
B. W l i 3.
C. Tylko w 3.
D. Tylko w 2.
Odpowiedź "Tylko w 3" jest poprawna, ponieważ zgodnie z polskimi normami dotyczącymi bezpieczeństwa instalacji elektrycznych w pomieszczeniach narażonych na wilgoć, gniazda z kołkiem ochronnym mogą być instalowane tylko w strefie 3. Strefa ta jest usytuowana najdalej od wszelkich źródeł wody, co minimalizuje ryzyko porażenia prądem. Strefa 3 zaczyna się od 2,4 metra od krawędzi brodzika czy wanny, co oznacza, że w tym obszarze ryzyko kontaktu z wodą jest zdecydowanie mniejsze. W praktyce oznacza to, że gniazda elektryczne powinny być umiejscowione w taki sposób, aby użytkownik mógł z nich korzystać bez obaw o bezpieczeństwo, np. do podłączenia suszarki do włosów. Stosując się do tych zasad, można zapewnić bezpieczeństwo użytkowników łazienek, co jest kluczowe w kontekście ochrony przed porażeniem elektrycznym i zgodności z przepisami przeciwporażeniowymi. Warto również zapoznać się z odpowiednimi normami, takimi jak PN-IEC 60364, które szczegółowo opisują wymagania dotyczące instalacji elektrycznych w strefach zagrożonych wilgocią.

Pytanie 8

Którym symbolem graficznym należy oznaczyć łącznik świecznikowy w schemacie ideowym instalacji elektrycznej?

Ilustracja do pytania
A. Symbolem 1.
B. Symbolem 4.
C. Symbolem 3.
D. Symbolem 2.
Wybór innego symbolu na ilustracji zamiast symbolu 4 może prowadzić do poważnych nieporozumień w kontekście schematów ideowych instalacji elektrycznych. Każdy symbol graficzny w schemacie ma swoje ściśle określone znaczenie, zgodnie z normami branżowymi, takimi jak PN-EN 60617, które regulują stosowanie symboli w dokumentacji technicznej. Oznaczając łącznik świecznikowy nieodpowiednim symbolem, można spowodować, że osoby odpowiedzialne za instalację lub konserwację łatwo będą mogły zidentyfikować elementy systemu, co może prowadzić do błędów w montażu lub naprawach. Przykładowo, niepoprawne oznaczenie łącznika jako zwykłego wyłącznika może skutkować jego nieprawidłową funkcjonalnością i brakiem możliwości regulacji natężenia oświetlenia. Takie mylne podejście do symboliki w instalacjach elektrycznych często wynika z braku znajomości standardów lub nieuwagi przy analizie schematów, co podkreśla znaczenie dokładnego przeszkolenia w zakresie czytania i interpretacji dokumentacji technicznej. W praktyce, stosowanie niewłaściwych symboli może również narażać użytkowników na ryzyko związane z niewłaściwym działaniem instalacji, co w skrajnych przypadkach może prowadzić do awarii czy incydentów elektrycznych.

Pytanie 9

Jakie działania są uwzględnione w procederze oględzin systemu elektrycznego w budynku mieszkalnym?

A. Pomiar rezystancji izolacji przewodów, weryfikacja ciągłości przewodów ochronnych
B. Nastawienie sprzętu zabezpieczającego i sygnalizacyjnego, ocena dostępności urządzeń, co umożliwia komfortową obsługę, identyfikację oraz konserwację
C. Mierzenie ciągłości przewodów ochronnych i czynnych w obwodach odbiorczych, a także ocena efektywności ochrony w razie uszkodzenia za pomocą automatycznego wyłączenia zasilania
D. Kontrola zabezpieczeń z użyciem SELV, PELV, separacji elektrycznej lub nieuziemionych połączeń wyrównawczych lokalnych
Wybór odpowiedzi związanej z pomiarem rezystancji izolacji przewodów i sprawdzeniem ciągłości przewodów ochronnych może wydawać się logiczny, jednakże nie obejmuje kluczowego aspektu oględzin instalacji elektrycznej, jakim jest nastawienie urządzeń zabezpieczających. Oględziny powinny skupiać się nie tylko na pomiarach, ale także na funkcjonalności i dostępności urządzeń, które mają na celu ochronę użytkowników przed zagrożeniami. Pomiar rezystancji izolacji jest istotny, ale nie wystarczy sam w sobie, aby zapewnić bezpieczeństwo instalacji. Z kolei sprawdzenie ochrony poprzez separację elektryczną lub inne metody, takie jak SELV czy PELV, jest ważne w kontekście ochrony przed porażeniem prądem, ale również nie wyczerpuje tematu oględzin. Kluczowym aspektem jest również zrozumienie, że urządzenia zabezpieczające muszą być regularnie nastawiane oraz testowane, aby spełniały swoje funkcje w momencie awarii. Odpowiedź dotycząca pomiaru ciągłości przewodów również nie oddaje pełnego obrazu, ponieważ nie uwzględnia aspektu dostępności czy identyfikacji urządzeń, które są niezbędne dla ich efektywnej konserwacji. To prowadzi do niepełnej oceny stanu instalacji oraz potencjalnych zagrożeń, co jest kluczowe dla zapewnienia bezpieczeństwa w budynku mieszkalnym.

Pytanie 10

Na którym rysunku przedstawiono typ schematu, na podstawie którego istnieje możliwość lokalizacji braku ciągłości rzeczywistych połączeń w instalacji elektrycznej?

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Wybór innych schematów, takich jak A, C lub D, nie dostarcza wystarczających informacji do lokalizacji braków ciągłości w połączeniach elektrycznych. Schemat A może przedstawiać ogólny zarys instalacji, ale brak w nim szczegółowych oznaczeń, które są kluczowe dla identyfikacji problemów. W przypadku schematu C, być może ilustruje on różne komponenty, ale ich rozmieszczenie i brak wyraźnych połączeń uniemożliwiają efektywną diagnostykę. Schemat D z kolei może dotyczyć innego aspektu instalacji, co wprowadza w błąd, ponieważ nie odnosi się bezpośrednio do problemu lokalizacji awarii. W praktyce, niektóre schematy nie uwzględniają standardów, które nakładają obowiązek na techników przedstawiania instalacji w sposób umożliwiający łatwe zrozumienie i diagnozowanie. Problemy te mogą prowadzić do nieporozumień i wydłużenia czasu potrzebnego na naprawę, co jest nieefektywne i kosztowne. Oparcie się na schematach, które nie spełniają tych norm, generuje ryzyko dla bezpieczeństwa i niezawodności instalacji elektrycznych. Niezrozumienie różnicy między detalami przedstawionymi na schemacie a ich praktycznym zastosowaniem może skutkować nieprawidłowym podejściem do diagnozowania awarii, co może być szkodliwe zarówno dla instalatora, jak i dla użytkowników danego systemu.

Pytanie 11

Który pomiar można wykonać w instalacji elektrycznej przedstawionym na rysunku przyrządem pomiarowym typu MRU-20?

Ilustracja do pytania
A. Rezystancji uziomu ochronnego.
B. Prądu różnicowego wyłącznika różnicowoprądowego.
C. Impedancji pętli zwarcia.
D. Rezystancji izolacji przewodów fazowych.
Wybrane odpowiedzi, takie jak pomiar impedancji pętli zwarcia czy rezystancji izolacji przewodów fazowych, są niewłaściwe w kontekście funkcji miernika MRU-20. Miernik ten nie jest przystosowany do pomiaru impedancji pętli zwarcia, która jest zazwyczaj wykonywana innymi urządzeniami, tj. multimetrami lub specjalistycznymi przyrządami do testowania pętli zwarciowych. Taki pomiar dotyczy oceny skuteczności zabezpieczeń od porażenia prądem i wymaga złożonego pomiaru, który nie może być przeprowadzony przez MRU-20. Kolejna niepoprawna opcja, czyli pomiar rezystancji izolacji przewodów fazowych, odnosi się do innego aspektu oceny bezpieczeństwa instalacji, który wymaga zastosowania osobnych narzędzi, takich jak megomierze, które są zaprojektowane do pomiaru rezystancji izolacji. Wyklucza to również możliwość zastosowania MRU-20 w tym kontekście. Ponadto, prąd różnicowy wyłącznika różnicowoprądowego nie może być mierzony za pomocą MRU-20, który nie jest przystosowany do pomiaru prądów, a jedynie do pomiaru rezystancji. Stąd, zrozumienie, że każdy przyrząd ma swoje określone zastosowanie oraz że nie można go używać do pomiarów, do których nie został zaprojektowany, jest kluczowe. Te błędne koncepcje mogą prowadzić do nieprawidłowej oceny stanu instalacji elektrycznych oraz potencjalnych zagrożeń.

Pytanie 12

Na którą z wymienionych przyczyn, występującą w obwodzie odbiorczym instalacji elektrycznej, musi reagować wyłącznik różnicowoprądowy poprzez samoczynne wyłączenie?

A. Zwarcie międzyfazowe
B. Przeciążenie
C. Upływ prądu
D. Przepięcie
Przeciążenie, zwarcie międzyfazowe i przepięcie to sytuacje, które nie są bezpośrednio związane z włączaniem wyłącznika różnicowoprądowego. Przeciążenie dotyczy sytuacji, w której obciążenie na linii elektrycznej przekracza dopuszczalny poziom, co może prowadzić do przegrzania przewodów i ich uszkodzenia, ale nie stanowi bezpośredniego zagrożenia dla życia. W takich przypadkach stosuje się wyłączniki nadprądowe, które reagują na wzrost natężenia prądu. Zwarcie międzyfazowe to awaria, która polega na bezpośrednim połączeniu dwóch przewodów fazowych, co prowadzi do znacznego wzrostu prądu i potencjalnie niebezpiecznych warunków, a także wymaga zastosowania wyłączników zabezpieczających. Przepięcie z kolei odnosi się do nagłych wzrostów napięcia, które mogą uszkodzić urządzenia, ale również nie są powodem do załączenia RCD. Zrozumienie różnicy pomiędzy tymi sytuacjami jest kluczowe dla prawidłowego projektowania i eksploatacji instalacji elektrycznych, a błędne przypisanie funkcji RCD do tych zagrożeń może prowadzić do niewłaściwej ochrony oraz zwiększonego ryzyka awarii instalacji.

Pytanie 13

Który zestaw oznaczeń literowych barw izolacji żył jest właściwy dla przewodu przedstawionego na rysunku?

Ilustracja do pytania
A. BK, BU, GY
B. BN, BK, GY
C. BN, BK, GNYE
D. BU, GY, GNYE
Wybór innej kombinacji kolorów oznaczeń żył często wynika z nieporozumień dotyczących standardów kolorystycznych lub ich zastosowania w różnych kontekstach. Na przykład, zestaw "BK, BU, GY" sugeruje użycie niebieskiego przewodu (BU) jako jednego z kolorów, co jest niezgodne z normami dla przewodów fazowych. W systemie oznaczeń stosowanym w Polsce niebieski przewód jest przeznaczony na przewód neutralny, co stwarza ryzyko zamiany funkcji przewodów. Kolejna opcja, "BU, GY, GNYE", również nie uwzględnia przewodu brązowego, co jest fundamentalnym błędem, ponieważ brak przewodu fazowego w instalacji elektrycznej prowadzi do poważnych problemów z zasilaniem. Zestaw "BN, BK, GY" natomiast, jako poprawny, tworzy logiczną koncepcję, w której brązowy przewód odpowiada za fazę, czarny przewód może być użyty jako dodatkowa faza (w przypadku instalacji trójfazowej), a szary jako neutralny. Zrozumienie tego schematu jest kluczowe dla każdego, kto pracuje z instalacjami elektrycznymi, gdyż błędna interpretacja kolorów może prowadzić do niebezpiecznych sytuacji oraz uszkodzeń sprzętu. Warto na tym etapie zwrócić uwagę na porady dotyczące identyfikacji i stosowania przewodów w zgodzie z normami PN-IEC, co jest niezbędne dla prawidłowego funkcjonowania systemów elektrycznych.

Pytanie 14

Parametry techniczne którego stycznika z tabeli odpowiadają stycznikowi przedstawionemu na ilustracji?

StycznikZnamionowy prąd pracyLiczba styków NOLiczba styków NC
1.31 A40
2.31 A31
3.40 A31
4.40 A40
Ilustracja do pytania
A. Stycznika 2.
B. Stycznika 4.
C. Stycznika 3.
D. Stycznika 1.
Odpowiedzi niepoprawne wynikają z kilku powszechnych błędów myślowych, które mogą prowadzić do mylnych wniosków. Wiele osób może sugerować, że inne styczniki z tabeli mają podobne parametry, jednak kluczowe jest dokładne zwrócenie uwagi na oznaczenia i specyfikacje techniczne. Przykładowo, stycznik 2 ma inny prąd nominalny, co czyni go niewłaściwym wyborem. Jest to częsty błąd w ocenie, gdzie koncentruje się wyłącznie na liczbie styków, a nie na ich charakterystyce oraz innych istotnych parametrach, takich jak prąd roboczy czy napięcie. Podobne pomyłki można zauważyć przy ocenie stycznika 1 i 4, które również różnią się specyfikacjami od stycznika przedstawionego na ilustracji. W takich przypadkach warto zwrócić uwagę na szczegóły, które odgrywają kluczową rolę w zapewnieniu optymalnego działania urządzeń. W kontekście projektowania instalacji elektrycznych, znajomość dokładnych parametrów styczników oraz ich zgodności z normami, takimi jak IEC 60947, jest niezbędna do osiągnięcia bezpiecznych i efektywnych rozwiązań. Pominięcie tych kryteriów może prowadzić do awarii systemu oraz zwiększenia ryzyka uszkodzeń sprzętu.

Pytanie 15

Jaki rodzaj uziomu zastosowano w instalacji piorunochronnej przedstawionej na rysunku?

Ilustracja do pytania
A. Otokowy.
B. Pionowy.
C. Fundamentowy.
D. Promieniowy.
W tej sprawie z uziomami w instalacji piorunochronnej nie można pomylić się z fundamentowym, pionowym czy promieniowym. Uziom fundamentowy, jak wiemy, wiąże się z fundamentami budynku i ma na celu głównie ochronę elektryki w środku. Ale nie wszystko w tym temacie jest takie proste, bo nie chroni on przed piorunami tak, jak powinien. Uziom pionowy, który wprowadza elektrody w głąb ziemi, może być stosowany, gdy grunt nie przewodzi za dobrze, ale jego skuteczność w odprowadzaniu prądów piorunowych jest znacznie gorsza niż w przypadku uziomu otokowego. A z kolei promieniowy system, który rozchodzi się w promieniach od jednego punktu, rzadko się używa do ochrony przed piorunami, bo nie jest stabilny i niezawodny. Mieszanie tych różnych rozwiązań może prowadzić do błędnych wniosków na temat tego, jak skutecznie chronić budynek przed burzami. Każdy z tych uziomów ma swoje zastosowanie, ale nie zastąpią one sprawdzonego uziomu otokowego, co może skończyć się nieprzyjemnie w razie burzy.

Pytanie 16

Przygotowując się do wymiany uszkodzonego gniazda trójfazowego w systemie elektrycznym, po odłączeniu napięcia w obwodzie tego gniazda, należy przede wszystkim

A. rozłożyć dywanik elektroizolacyjny w obszarze roboczym
B. zabezpieczyć obwód przed niezamierzonym włączeniem napięcia
C. poinformować dostawcę energii o zamiarze przeprowadzenia naprawy
D. oznaczyć miejsce pracy
Zabezpieczenie obwodu przed przypadkowym załączeniem napięcia jest kluczowym krokiem w procesie wymiany gniazda trójfazowego, co wynika z podstawowych zasad bezpieczeństwa w pracy z instalacjami elektrycznymi. Po wyłączeniu napięcia, warto zastosować wyłącznik rozłączający lub blokadę, aby uniemożliwić przypadkowe włączenie zasilania. Dobrym przykładem praktycznym jest użycie blokady w systemach, w których dostęp do urządzeń jest wspólny, co minimalizuje ryzyko niebezpiecznych sytuacji. Dodatkowo, zgodnie z normami PN-IEC 60364, należy stosować odpowiednie procedury bezpieczeństwa, w tym oznaczenie obszaru pracy oraz zapewnienie, że osoba pracująca ma odpowiednie kwalifikacje. Takie działania nie tylko chronią pracowników, ale również klientów i innych osób znajdujących się w pobliżu. Warto również pamiętać o stosowaniu odpowiednich środków ochrony osobistej, takich jak rękawice izolacyjne oraz okulary ochronne, aby dodatkowo zminimalizować ryzyko wystąpienia wypadków.

Pytanie 17

Oprawa oświetleniowa przedstawiona na zdjęciu ma być zamontowana za pomocą wkrętów i dybli, pokazanych na zdjęciu. Jakich narzędzi należy użyć do tego montażu?

Ilustracja do pytania
A. Wkrętaka płaskiego, wkrętaka PH, klucza nasadowego, wiertarki, noża monterskiego.
B. Wiertarki, wkrętaka płaskiego, klucza nasadowego, noża monterskiego, ściągacza izolacji.
C. Wkrętaka płaskiego, wkrętaka PH, wkrętaka bit M10, ściągacza izolacji.
D. Wiertarki, wkrętaka płaskiego, klucza płaskiego, noża monterskiego, ściągacza izolacji.
Wybór narzędzi jak nieodpowiednich to na pewno nie najlepsza opcja. Jak użyjesz złego sprzętu do montażu oprawy, to mogą się pojawić różne problemy, które popsują jakość i bezpieczeństwo pracy. Na przykład, jeśli wskazałeś wkrętak PH, to nie jest to dobry wybór, bo śruby, które w tym przypadku mamy, lepiej pasują do klucza nasadowego. Niewłaściwe narzędzia mogą zepsuć elementy oprawy, a nawet jeśli coś się zepsuje, to możesz narazić się na poważne problemy, jak awaria czy pożar. Klucz płaski też nie ma sensu, bo brakuje mu precyzji i momentu obrotowego, co w elektryce jest naprawdę istotne. Bez podstawowych narzędzi jak wiertarka czy ściągacz izolacji, możliwości prawidłowego montażu są mocno ograniczone. Przy montażu oprawy trzeba korzystać z odpowiednich narzędzi, bo każdemu przynależy konkretne zadanie i to na pewno zwiększa jakość i bezpieczeństwo pracy.

Pytanie 18

Na którym rysunku przedstawiono prawidłowy, zgodny z zasadami BHP sposób wykonania połączenia przewodu z żyłą w postaci drutu w zacisku śrubowym?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Prawidłowe wykonanie połączenia przewodu z żyłą w postaci drutu w zacisku śrubowym jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych. Na rysunku B, drut jest odpowiednio zagięty i umieszczony pod główką śruby, co pozwala na skuteczne zaciskanie i zapobiega jego wypadnięciu. W praktyce, ważne jest, aby drut był zagięty w odpowiedni sposób, co zapewnia pełne przyleganie do powierzchni styku, co z kolei minimalizuje ryzyko powstawania iskrzenia oraz przegrzewania połączenia. Zgodnie z normami PN-IEC 60947-7-1, zaleca się, aby połączenia były wykonywane w sposób, który zapewnia ich trwałość oraz odporność na wibracje. Dobrze wykonane połączenie zwiększa efektywność przesyłania energii elektrycznej oraz zmniejsza ryzyko awarii, co jest kluczowe w kontekście użytkowania złożonych systemów elektrycznych.

Pytanie 19

Na którym rysunku przedstawiono uchwyt izolacyjny, przeznaczony do wymiany bezpieczników mocy w złączu elektrycznym budynku?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Uchwyt izolacyjny do wymiany bezpieczników mocy, przedstawiony na zdjęciu B, jest narzędziem, które zapewnia bezpieczeństwo podczas pracy z instalacjami elektrycznymi. Jego konstrukcja jest dostosowana do wyjmowania i wkładania bezpieczników w złączach elektrycznych, co minimalizuje ryzyko porażenia prądem. Przykładowo, w przypadku instalacji, gdzie napięcia mogą być wysokie, stosowanie odpowiedniego uchwytu izolacyjnego jest niezbędne, aby zapewnić ochronę zarówno dla operatora, jak i dla samej instalacji. Użycie takiego narzędzia jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 60900, które określają wymogi dotyczące narzędzi elektrycznych do pracy pod napięciem. Uchwyt izolacyjny powinien charakteryzować się również odpowiednią długością, co pozwala na bezpieczne operacje w głęboko osadzonych złączach. Dlatego odpowiedź B jest prawidłowa, gdyż odzwierciedla to, co jest wymagane w praktycznych zastosowaniach w branży elektrycznej.

Pytanie 20

Jaką wartość natężenia prądu wskazuje miliamperomierz ustawiony na zakresie 400 mA?

Ilustracja do pytania
A. 130 mA
B. 106 mA
C. 170 mA
D. 208 mA
W przypadku, gdy wybrano inną wartość niż 208 mA, można zauważyć, że takie błędne odpowiedzi mogą wynikać z kilku nieporozumień dotyczących odczytów z miliamperomierza. Często zdarza się, że osoby nie zwracają uwagi na położenie wskazówki lub nie potrafią prawidłowo oszacować wartości, co skutkuje błędnymi wnioskami. Wartości takie jak 130 mA, 170 mA czy 106 mA są znacznie niższe niż rzeczywiste wskazanie. To może sugerować, że osoba udzielająca takiej odpowiedzi nie przeanalizowała dokładnie skali, na której dokonuje się pomiaru, lub nie rozumie, jak działa miliamperomierz. Zrozumienie, jak interpretować odczyty, jest niezbędne w praktyce inżynierskiej. Odczytywanie wartości z miliamperomierza wymaga precyzyjnego spojrzenia na wskaźnik, a także uwzględnienia tolerancji błędu pomiaru, co jest szczególnie istotne w obwodach wymagających ścisłej kontroli parametrów. Zastosowanie niewłaściwej wartości prądu w projektach elektronicznych może prowadzić do uszkodzenia komponentów lub niewłaściwego działania całego układu. Dlatego tak ważne jest, aby umiejętnie korzystać z narzędzi pomiarowych i rozumieć ich zasady działania.

Pytanie 21

Na rysunku przedstawiono sposób podłączenia

Ilustracja do pytania
A. trójfazowego transformatora separacyjnego.
B. przekładników prądowych w trzech fazach.
C. trójfazowego licznika energii elektrycznej.
D. dławików w trójfazowej oprawie świetlówkowej.
Trójfazowy licznik energii elektrycznej to urządzenie służące do pomiaru zużycia energii elektrycznej w systemach trójfazowych, które są powszechnie stosowane w przemyśle oraz w dużych obiektach komercyjnych. Na rysunku przedstawiono schemat, gdzie widoczne są trzy linie fazowe L1, L2, L3 oraz przewód neutralny N, co jest zgodne z typową konfiguracją podłączenia do takiego licznika. Liczniki energii elektrycznej muszą spełniać normy takie jak PN-EN 62053, które określają dokładność pomiarów oraz wymagania dotyczące instalacji. Przykładowo, w przypadku monitorowania zużycia energii w zakładzie przemysłowym, zastosowanie trójfazowego licznika pozwala na precyzyjne określenie, ile energii jest konsumowane przez różne maszyny, co z kolei umożliwia optymalizację kosztów operacyjnych oraz efektywności energetycznej. Odpowiednia symbolika graficzna na schemacie, jaką zastosowano w tym przypadku, jednoznacznie wskazuje na licznik, co jest zgodne z normami PN-EN 60617, które dotyczą symboliki w dokumentacji elektrycznej.

Pytanie 22

Jakie urządzenie powinno zostać zainstalowane w pośrednim układzie pomiarowym mocy czynnej w zakładzie przemysłowym?

A. Przekładnik prądowy
B. Przetwornicę napięcia
C. Transformator bezpieczeństwa
D. Transformator separacyjny
Przekładnik prądowy jest kluczowym elementem w pośrednich układach pomiarowych mocy czynnej, ponieważ jego główną funkcją jest przekształcenie dużych prądów roboczych na niższe, które mogą być bezpiecznie zmierzone przez urządzenia pomiarowe. Działa to na zasadzie indukcji elektromagnetycznej, gdzie prąd w obwodzie pierwotnym generuje pole magnetyczne, które z kolei indukuje prąd w obwodzie wtórnym. Dzięki zastosowaniu przekładników prądowych, możliwe jest monitorowanie i obliczanie zużycia energii, co jest niezwykle istotne w zarządzaniu efektywnością energetyczną w zakładach przemysłowych. Przykładem zastosowania mogą być instalacje, w których przekładniki prądowe są wykorzystywane do pomiarów w systemach monitorujących zużycie energii elektrycznej w czasie rzeczywistym. Dobrą praktyką w branży jest również regularna kalibracja przekładników, aby zapewnić ich dokładność oraz niezawodność w długoterminowym użytkowaniu. W kontekście norm, należy również odnosić się do standardów IEC 61869, które regulują kwestie dotyczące przekładników prądowych oraz ich zastosowań w układach pomiarowych.

Pytanie 23

Aparat pokazany na zdjęciu jest wykorzystywany do

Ilustracja do pytania
A. ograniczania przepięć.
B. wykrywania prądów upływu.
C. wyłączania prądów roboczych.
D. ograniczania napięć.
Aparat przedstawiony na zdjęciu to ogranicznik przepięć, który odgrywa kluczową rolę w zabezpieczaniu instalacji elektrycznych przed skutkami przepięć. Przepięcia mogą występować na skutek naturalnych zjawisk, takich jak wyładowania atmosferyczne, ale również z powodu operacji w sieci energetycznej, co może prowadzić do niebezpiecznych wzrostów napięcia. Ograniczniki przepięć są zaprojektowane tak, aby natychmiast reagować na te niekorzystne zjawiska, kierując nadmiar energii do ziemi i tym samym chroniąc urządzenia podłączone do instalacji. W praktyce, stosowanie ograniczników przepięć jest standardem w projektowaniu obiektów budowlanych, zgodnie z normami PN-EN 62305, które definiują wymagania dotyczące ochrony przed skutkami wyładowań atmosferycznych. Dzięki zastosowaniu tych urządzeń, można znacznie zredukować ryzyko uszkodzenia sprzętu oraz strat materialnych wynikających z niekontrolowanych przepięć.

Pytanie 24

Na podstawie rysunku montażowego określ, na jakiej wysokości od podłogi należy zamontować dolną krawędź rozdzielnicy.

Ilustracja do pytania
A. 1,5 m
B. 0,90 m
C. 1,4 m
D. 0,80 m
Zgodnie z rysunkiem montażowym, dolna krawędź rozdzielnicy powinna być zamontowana na wysokości 1500 mm (1,5 m) od podłogi. Taki wymiar jest zgodny z normami branżowymi, które określają ergonomiczne i bezpieczne wysokości montażu rozdzielnic elektrycznych. Wysokość ta zapewnia wygodny dostęp do urządzeń oraz pozwala na swobodne prowadzenie prac serwisowych. Dodatkowo, montaż na tej wysokości minimalizuje ryzyko przypadkowego kontaktu z wodą oraz zanieczyszczeniami, co jest istotne w kontekście bezpieczeństwa elektrycznego. W praktyce, takie umiejscowienie rozdzielnicy ułatwia również korzystanie z niej w warunkach przemysłowych lub w budynkach użyteczności publicznej, gdzie użytkownicy mogą być różnego wzrostu. Warto pamiętać, że zgodność z obowiązującymi standardami oraz zasadami BHP jest kluczowym aspektem każdego projektu instalacji elektrycznych.

Pytanie 25

Którego typu gniazda elektrycznego dotyczy symbol graficzny przedstawiony na ilustracji?

Ilustracja do pytania
A. Jednofazowego ze stykiem ochronnym.
B. Trójfazowego ze stykiem ochronnym.
C. Trójfazowego bez styku ochronnego.
D. Jednofazowego bez styku ochronnego.
Wybór niewłaściwej odpowiedzi może wynikać z nieporozumień dotyczących klasyfikacji gniazd elektrycznych. Gniazda jednofazowe bez styku ochronnego oraz gniazda trójfazowe, zarówno z jak i bez styku ochronnego, różnią się zasadniczo pod względem zastosowania i bezpieczeństwa. Gniazda jednofazowe bez styku ochronnego, mimo że są popularne w niektórych aplikacjach, nie zapewniają ochrony przed porażeniem, co czyni je mniej bezpiecznymi w zastosowaniach, gdzie ryzyko kontaktu z prądem jest wyższe. Gniazda trójfazowe, z kolei, są projektowane do zasilania większych urządzeń przemysłowych i wymagają zastosowania specjalistycznych wtyczek oraz kabli. W kontekście domowym lub w małych biurach, gniazda trójfazowe są zazwyczaj zbędne, a ich używanie bez odpowiedniego uzasadnienia może prowadzić do nieefektywności energetycznej. Często błędne wybory wynikają z mylnego założenia, że większa liczba faz przekłada się na lepsze parametry elektryczne w każdej sytuacji. Należy pamiętać, że dobór odpowiedniego gniazda elektrycznego powinien być oparty na specyfikacji urządzeń, które mają być podłączone, oraz na obowiązujących normach bezpieczeństwa. Zrozumienie tych podstawowych zasad jest kluczowe do uniknięcia potencjalnych zagrożeń i nieprawidłowości w instalacjach elektrycznych.

Pytanie 26

Jaką wartość mocy wskazuje watomierz pokazany na rysunku?

Ilustracja do pytania
A. 1000 W
B. 50 W
C. 100 W
D. 500 W
Poprawna odpowiedź to 500 W. Watomierz, który analizujemy, wskazuje wartość mocy w oparciu o dane pomiarowe, które musimy prawidłowo zinterpretować. Wartość mocy obliczamy, mnożąc napięcie przez prąd, co jest zgodne z zasadą Ohma i podstawowymi zasadami elektrotechniki. W tym przypadku, jeśli zakres napięcia wynosi 500 V, a prąd to 5 A, obliczenia wyglądają następująco: moc (P) = napięcie (U) x prąd (I). Zatem P = 500 V x 5 A = 2500 W. Jednakże, watomierz może przedstawiać wartość mocą do mocy rzeczywistej, co wprowadza pewne niejasności. Ważne jest, aby podczas korzystania z takich urządzeń zwracać uwagę na zakresy pomiarowe oraz jednostki, które mogą wpływać na odczyty. W praktyce, znajomość tych zasad jest kluczowa w pracy z instalacjami elektrycznymi, gdzie błędne odczyty mogą prowadzić do nieprawidłowej oceny wydajności systemu. Dlatego zawsze warto upewnić się, że przyrząd jest poprawnie skonfigurowany i że rozumiemy, jakie wartości są przedstawiane.

Pytanie 27

Jakie środki stosuje się w instalacjach elektrycznych w celu zabezpieczenia przed dotykiem pośrednim (dodatkowa ochrona)?

A. ogrodzenia oraz obudowy
B. umiejscowienie poza zasięgiem dłoni
C. separację elektryczną
D. urządzenia różnicowoprądowe ochronne
Ochrona przed dotykiem pośrednim jest kluczowym zagadnieniem w projektowaniu instalacji elektrycznych. Wiele osób może mylnie sądzić, że zastosowanie ochronnych urządzeń różnicowoprądowych jest wystarczające do zapewnienia bezpieczeństwa. Choć te urządzenia są istotnym elementem ochrony przed porażeniem prądem, ich rola polega głównie na wykrywaniu różnic w prądzie, co nie eliminuje całkowicie ryzyka dotyku pośredniego. Ponadto, stosowanie ogrodzeń i obudów, choć przydatne, nie jest skutecznym sposobem na ochronę przed dotykiem pośrednim, ponieważ nie zawsze zapewnia odpowiednie zabezpieczenie w przypadku awarii czy uszkodzeń. Lokowanie elementów elektrycznych poza zasięgiem ręki również nie jest wystarczającym środkiem ochronnym, gdyż nie eliminuje ryzyka wystąpienia sytuacji niebezpiecznych w przypadku, gdy użytkownicy mają dostęp do takich urządzeń. W rzeczywistości kluczowym elementem zapobiegania porażeniom jest zapewnienie odpowiedniej separacji elektrycznej, która gwarantuje, że użytkownicy nie mają fizycznego kontaktu z częściami instalacji narażonymi na działanie napięcia. Z tego powodu, koncentrując się na tych błędnych podejściach, można zrozumieć, jak istotne jest właściwe projektowanie systemów elektrycznych w celu zapewnienia maksymalnego bezpieczeństwa użytkowników. Zachowanie odpowiednich standardów, takich jak norma PN-EN 61140, jest niezbędne, aby wyeliminować ryzyko porażenia prądem i zapewnić skuteczną ochronę przed dotykiem pośrednim.

Pytanie 28

W jakiej kolejności nastąpi zadziałanie styczników i przekaźników podczas rozruchu silnika pierścieniowego w układzie, którego schemat połączeń przedstawiono na rysunkach, po załączeniu wyłączników Q i Q1 oraz przycisku sterującego S1?

Ilustracja do pytania
A. K1, K2, K3, K4, K5, K6, K7
B. K1, K5, K4, K6, K3, K2, K7
C. K7, K2, K3, K6, K4, K5, K1
D. K1, K5, K4, K6, K3, K7, K2
Podczas analizy niepoprawnych odpowiedzi można zauważyć kilka kluczowych błędów myślowych, które mogą prowadzić do nieporozumień w kontekście działania styczników i przekaźników. Odpowiedzi takie jak K7, K2, K3, K6, K4, K5, K1 czy inne sekwencje z pominięciem K1 jako pierwszego stycznika pokazują, że użytkownik nie uwzględnił podstawowej zasady działania obwodów elektrycznych – aktywacja elementów musi być logiczna i zgodna z kolejnością zaprogramowaną w obwodzie. Prawidłowe sterowanie stycznikami zapewnia, że każdy kolejne element jest aktywowany w odpowiednim momencie, co jest niezbędne dla właściwego rozruchu silnika. W przypadku przedstawionych odpowiedzi brakuje zrozumienia, jak styk pomocniczy K1 wpływa na działanie K5. Ignorowanie tego faktu może prowadzić do nieefektywnego rozruchu silnika, co może skutkować uszkodzeniem sprzętu lub nawet zagrożeniem dla bezpieczeństwa. Kluczowym jest zrozumienie, dlaczego takie sekwencje są istotne w praktycznych zastosowaniach, zwłaszcza w kontekście norm i standardów branżowych. Właściwe zrozumienie logiki działania styczników oraz ich połączeń jest fundamentem w automatyce i elektrotechnice, a nieprzestrzeganie tych zasad może prowadzić do błędnych wniosków w projektowaniu układów rozruchowych.

Pytanie 29

Zmywarka, która jest na stałe zainstalowana, powinna być podłączona do obwodu

A. oddzielnego dla zmywarki
B. zasilającego gniazdka jedynie w kuchni
C. oddzielnego dla urządzeń gospodarstwa domowego
D. zasilającego gniazdka w łazience oraz kuchni
Zasilanie zmywarki z oddzielnego obwodu jest niezbędne ze względów bezpieczeństwa oraz zgodności z obowiązującymi normami elektrycznymi, takimi jak PN-IEC 60364. Zwiększa to nie tylko bezpieczeństwo użytkowania, ale także zapewnia odpowiednią moc dla urządzenia bez ryzyka przeciążenia innych obwodów. Zmywarki zazwyczaj wymagają większej mocy, zwłaszcza podczas cykli podgrzewania wody, co może powodować przeciążenie, jeśli są zasilane z ogólnych obwodów, zwłaszcza tych współdzielonych z innymi urządzeniami. Przykładowo, korzystając z oddzielnego obwodu, można uniknąć sytuacji, w której włączenie zmywarki podczas pracy innych urządzeń, takich jak piekarnik czy mikrofalówka, prowadzi do wyłączenia bezpieczników. Dobrą praktyką jest również stosowanie odpowiednich zabezpieczeń, takich jak wyłączniki różnicowoprądowe, które dodatkowo chronią przed porażeniem elektrycznym. Takie podejście nie tylko jest zgodne z regulacjami, ale również zwiększa komfort użytkowania w codziennym życiu.

Pytanie 30

Podłączenie gniazda wtykowego pozbawionego styku ochronnego do urządzenia elektrycznego klasy I ochronności spowoduje

A. uszkodzenie urządzenia elektrycznego
B. przeciążenie systemu elektrycznego
C. zagrożenie porażeniem prądem elektrycznym
D. zwarcie w systemie elektrycznym
Zgłoszona odpowiedź, dotycząca zagrożenia porażeniem prądem elektrycznym, jest absolutnie trafna. Gniazdo wtyczkowe bez styku ochronnego nie zapewnia odpowiedniego zabezpieczenia dla urządzeń elektrycznych, szczególnie tych klasy I, które wymagają ochrony przeciwporażeniowej poprzez uziemienie. Urządzenia klasy I korzystają z obudowy przewodzącej, która powinna być podłączona do uziemienia, aby w przypadku uszkodzenia izolacji prąd mógł być odprowadzony do ziemi, a nie przez użytkownika. W sytuacji, gdy takie urządzenie zostanie podłączone do gniazda bez styku ochronnego, istnieje wysokie ryzyko, że w przypadku awarii, prąd będzie mógł przepływać przez obudowę, co może prowadzić do porażenia prądem. Dlatego kluczowe jest przestrzeganie norm, takich jak PN-IEC 60364, które regulują zasady instalacji elektrycznych i określają, że gniazda powinny być projektowane z myślą o bezpieczeństwie użytkowników. W codziennym użytkowaniu, zapewnienie odpowiednich gniazd z uziemieniem jest podstawą bezpieczeństwa w każdym obiekcie.

Pytanie 31

W celu sprawdzenia poprawności działania wyłączników różnicowoprądowych zmierzono ich różnicowe prądy zadziałania i wyniki zamieszczono w przedstawionej tabeli. Który z wyłączników nie spełnia warunku prądu zadziałania IΔ = (0,5÷1,00) IΔN?

WyłącznikWynik pomiaru różnicowego prądu zadziałania IΔ
P302 25-10-AC8 mA
P202 25-30-AC12 mA
P304 40-30-AC25 mA
P304 40-100-AC70 mA
A. P304 40-100-AC
B. P304 40-30-AC
C. P202 25-30-AC
D. P302 25-10-AC
Wyłącznik P202 25-30-AC jest prawidłową odpowiedzią, ponieważ jego zmierzony prąd zadziałania wynosi 12 mA, co nie spełnia wymaganego zakresu prądu zadziałania IΔ = (0,5÷1,00) IΔN. Zgodnie z normami, wyłączniki różnicowoprądowe powinny mieć prąd zadziałania w granicach 15 mA do 30 mA dla wyłączników o prądzie znamionowym 30 mA. Oznacza to, że każdy wyłącznik, który nie osiąga minimalnej wartości 15 mA, nie jest w stanie skutecznie zabezpieczyć instalacji przed pożarem czy porażeniem prądem. Prawidłowe działanie wyłączników różnicowoprądowych jest kluczowe w zapewnieniu bezpieczeństwa elektrycznego, dlatego inżynierowie i technicy powinni regularnie testować i sprawdzać ich parametry, aby zapewnić odpowiednią ochronę. W praktyce, wyłączniki tego typu stosuje się w obiektach użyteczności publicznej, gdzie bezpieczeństwo użytkowników jest priorytetem, a ich efektywność jest ściśle monitorowana na podstawie norm PN-EN 61008 i PN-EN 62423.

Pytanie 32

Parametry której maszyny elektrycznej zapisano na przedstawionej tabliczce znamionowej?

Ilustracja do pytania
A. Dławika.
B. Silnika jednofazowego.
C. Transformatora jednofazowego.
D. Prądnicy synchronicznej.
Tabliczka znamionowa, którą analizujesz, zawiera kluczowe informacje dotyczące silnika jednofazowego. W szczególności, moc znamionowa wynosząca 1.1 kW oraz prąd znamionowy 7.1 A są typowe dla tego typu silników, które są powszechnie stosowane w aplikacjach domowych oraz przemysłowych. Napięcie 230 V / 50 Hz wskazuje na standardowe parametry zasilania w Europie, co czyni ten silnik odpowiednim do zasilania z sieci elektrycznej. Dodatkowo, prędkość obrotowa 1400 min-1 sugeruje, że silnik jest przystosowany do zastosowań wymagających umiarkowanej prędkości, takich jak małe pompy czy wentylatory. Również obecność kondensatora rozruchowego, o wartości 160 µF/320V, jest charakterystyczna dla silników jednofazowych, które w przeciwieństwie do silników trójfazowych, często wymagają takiego elementu do uruchomienia. Takie silniki są szeroko stosowane w codziennych urządzeniach, takich jak pralki czy odkurzacze, co potwierdza ich znaczenie w nowoczesnym świecie. Zrozumienie tych parametrów jest kluczowe dla prawidłowego doboru silnika do konkretnej aplikacji, co jest zgodne z zasadami efektywnego projektowania systemów elektrycznych.

Pytanie 33

Które żyły przewodów należy połączyć ze sobą w puszce rozgałęźnej układu elektrycznego, przedstawionej na rysunku, aby połączenie zapewniało sterowanie oświetleniem i było zgodne ze sztuką monterską?

Ilustracja do pytania
A. L z 1, N z 4, 2 z 3
B. L z 4, N z 1, 2 z 3
C. L z 3, N z 2, 1 z 4
D. L z 1, N z 3, 2 z 4
Wybór niewłaściwej kombinacji przewodów może prowadzić do poważnych problemów w instalacji elektrycznej. Na przykład, w przypadku połączenia L z 3, N z 2 oraz 1 z 4, przewód fazowy (L) zostaje połączony z niewłaściwym punktem, co nie tylko może uniemożliwić włączenie oświetlenia, ale także stwarza ryzyko niebezpiecznych sytuacji, takich jak zwarcie czy porażenie prądem. Przewód neutralny (N) w takim układzie może pozostać niepodłączony lub niewłaściwie połączony, co zakłóca prawidłowy przepływ prądu. W praktyce, połączenie przewodów w puszce rozgałęźnej jest kluczowe do zapewnienia, że wszystkie elementy działają w zgodzie ze sobą. Zdarza się, że osoby wykonujące instalacje pomijają te fundamentalne zasady, co prowadzi do typowych błędów, takich jak nieprawidłowe łączenie przewodów, nieprzestrzeganie kolorów przewodów (np. nieodpowiednie użycie przewodu neutralnego), czy niezrozumienie roli przełącznika. Należy pamiętać, że każde połączenie powinno być zgodne z obowiązującymi normami, aby zapewnić bezpieczeństwo oraz efektywność całego obwodu. Z tego powodu kluczowe jest zrozumienie podstawowych zasad i standardów montażu elektrycznego, aby uniknąć takich pomyłek.

Pytanie 34

W układzie zasilania jakiej lampy oświetleniowej wykorzystuje się tyrystorowy system zapłonowy?

A. Sodowej
B. Rtęciowej
C. Żarowej
D. Halogenowej
Tyrystorowy układ zapłonowy znajduje zastosowanie głównie w obwodach zasilania lamp sodowych, ze względu na ich specyfikę działania oraz wymagania dotyczące zapłonu. Lampy sodowe, znane z wysokiej efektywności świetlnej oraz długu czasu życia, potrzebują odpowiedniego układu, który umożliwia ich szybkie i stabilne zapłonienie. Tyrystory, jako elementy półprzewodnikowe, pozwalają na kontrolowanie dużych prądów oraz napięć, co jest niezbędne w przypadku lamp sodowych, które charakteryzują się dużymi wartościami prądów startowych. Dodatkowo, tyrystory umożliwiają oszczędność energii poprzez precyzyjne zarządzanie cyklem pracy lampy, co jest zgodne z najlepszymi praktykami w projektowaniu systemów oświetleniowych, które dążą do minimalizacji strat energii oraz wydłużenia żywotności źródeł światła. Warto również zauważyć, że tyrystory, jako elementy zabezpieczające i sterujące, są często wykorzystywane w różnych zastosowaniach przemysłowych, co podkreśla ich wszechstronność i znaczenie w nowoczesnych systemach oświetleniowych.

Pytanie 35

Jaką oprawę oświetleniową pokazano na rysunku?

Ilustracja do pytania
A. Przenośną.
B. Uliczną.
C. Biurową.
D. Punktową.
Oprawa oświetleniowa przedstawiona na rysunku jest klasycznym przykładem oświetlenia ulicznego. Charakteryzuje się ona specyficznym kształtem i montażem, które są dostosowane do oświetlania przestrzeni publicznych, takich jak ulice, parki czy chodniki. W praktyce, oprawy uliczne są projektowane z myślą o maksymalnej efektywności świetlnej oraz odporności na warunki atmosferyczne. Standardy branżowe, takie jak normy PN-EN 13201, określają wymagania dotyczące oświetlenia dróg, co zapewnia bezpieczeństwo użytkowników dróg. W zależności od specyfiki terenu, oprawy te mogą być stosowane z różnymi źródłami światła, w tym LED, co zwiększa ich efektywność energetyczną i żywotność. Dobre praktyki w zakresie instalacji oświetlenia ulicznego uwzględniają także odpowiednie rozmieszczenie opraw, co ma kluczowe znaczenie dla zapewnienia równomiernego oświetlenia i minimalizacji efektu olśnienia dla kierowców i pieszych. Odpowiednia oprawa uliczna nie tylko poprawia widoczność, ale również wpływa na bezpieczeństwo oraz komfort użytkowników dróg.

Pytanie 36

W których z wymienionych rodzajów silników stosuje się wirnik przedstawiony na ilustracji?

Ilustracja do pytania
A. Uniwersalnych.
B. Asynchronicznych pierścieniowych.
C. Synchronicznych.
D. Asynchronicznych klatkowych.
Jak wybrałeś złą odpowiedź, to może być trochę mylące w kontekście konstrukcji silników elektrycznych. Silniki synchroniczne, które wskazałeś w odpowiedziach, mają wirniki z magnesami trwałymi albo z uzwojeniem wzbudzenia. Wiesz, kluczowa różnica to to, że w silnikach synchronicznych prędkość obrotowa wirnika jest zsynchronizowana z częstotliwością prądu zasilającego, a w asynchronicznych to działa na zasadzie poślizgu. Z kolei silniki pierścieniowe mają wirnik z uzwojeniem, połączonym z pierścieniami ślizgowymi, co pozwala regulować prędkość, ale nie daje takiej efektywności jak klatkowe. No i silniki uniwersalne, które mogą działać zarówno na prądzie stałym, jak i przemiennym, mają zupełnie inną konstrukcję wirnika. Błędy w myśleniu, które prowadzą do takich omyłek, zazwyczaj wynikają z pomylenia zasad działania różnych silników. Zrozumienie tych różnic to klucz do efektywnego projektowania i użytkowania systemów napędowych.

Pytanie 37

Jaka maksymalna wartość impedancji pętli zwarcia może występować w trójfazowym obwodzie elektrycznym o napięciu nominalnym 230/400 V, aby ochrona przed porażeniem była skuteczna w przypadku uszkodzenia izolacji, wiedząc, że zasilanie tego obwodu powinien wyłączyć instalacyjny wyłącznik nadprądowy C10?

A. 7,7 Ω
B. 8,0 Ω
C. 4,6 Ω
D. 2,3 Ω
Odpowiedź 2,3 Ω jest poprawna, ponieważ jest zgodna z wymaganiami dotyczącymi impedancji pętli zwarcia w trójfazowych obwodach elektrycznych. W takich systemach, aby zapewnić skuteczną ochronę przeciwporażeniową, impedancja pętli zwarcia powinna być na tyle niska, aby wyłącznik nadprądowy mógł szybko zareagować na zwarcie. Wyłącznik C10, który ma prąd znamionowy 10 A, wymaga maksymalnej impedancji pętli zwarcia równej 2,3 Ω, aby przy zwarciu wyzwolił się w czasie nieprzekraczającym 0,4 s. Przykładem zastosowania tej zasady jest instalacja w budynkach mieszkalnych, gdzie ochrona przed porażeniem prądem jest kluczowa. W praktyce, aby uzyskać odpowiednią impedancję, projektanci instalacji elektrycznych muszą uwzględnić odpowiednie przekroje przewodów oraz ich długość, a także zainstalować zabezpieczenia, które umożliwią szybkie odcięcie zasilania w przypadku uszkodzenia izolacji. W kontekście norm, można przywołać normę PN-EN 60364, która szczegółowo opisuje wymagania dotyczące ochrony osób i mienia przed skutkami działania prądu elektrycznego.

Pytanie 38

Na której ilustracji przedstawiono kabel typu YAKY?

Ilustracja do pytania
A. Na ilustracji 3.
B. Na ilustracji 4.
C. Na ilustracji 2.
D. Na ilustracji 1.
Kabel typu YAKY jest szczególnym rodzajem kabla elektroenergetycznego, który charakteryzuje się żyłami aluminiowymi oraz izolacją wykonaną z polichlorku winylu (PVC). Na ilustracji 4 widać kabel z żyłami aluminiowymi, co jest kluczową cechą tego typu kabla. Kabel YAKY jest powszechnie stosowany w instalacjach elektrycznych, gdzie wymagane są wysokie parametry przewodzenia prądu oraz odporność na warunki atmosferyczne. Dzięki zastosowaniu żył aluminiowych, kabel ten jest lżejszy i tańszy niż jego miedziane odpowiedniki, co czyni go popularnym wyborem w gospodarce energetycznej. W praktyce, kable YAKY są często używane w rozdzielniach, do zasilania budynków, a także w instalacjach przesyłowych. Warto również podkreślić, że standardy branżowe, takie jak PN-EN 50525, regulują parametry techniczne dla kabli tego typu, zapewniając ich bezpieczeństwo i efektywność w eksploatacji.

Pytanie 39

Która z podanych metod realizacji instalacji elektrycznych jest przeznaczona do użycia w lokalach mieszkalnych?

A. W listwach przypodłogowych
B. Przewodami szynowymi
C. Na drabinkach
D. W kanałach podłogowych
Prowadzenie instalacji elektrycznych za pomocą przewodów szynowych, kanałów podłogowych czy drabinek jest rozwiązaniem stosowanym w innych kontekstach, które nie zawsze są zgodne z wymogami dla pomieszczeń mieszkalnych. Przewody szynowe, choć często wykorzystywane w obiektach komercyjnych i przemysłowych, nie są zalecane do stosowania w mieszkaniach, ponieważ mogą prezentować ryzyko w zakresie estetyki, a także bezpieczeństwa użytkowników. Mieszkania zazwyczaj wymagają bardziej stonowanego i zabezpieczonego podejścia do instalacji elektrycznych. Kanały podłogowe, chociaż mogą być użyteczne w niektórych sytuacjach, mają ograniczenia związane z dostępnością i konserwacją. Ponadto ich stosowanie może prowadzić do problemów z wilgocią i zanieczyszczeniami, co z kolei wpływa negatywnie na trwałość instalacji. Drabinki, z drugiej strony, są stosowane głównie w obszarach przemysłowych i wymagają dużo przestrzeni, co czyni je niepraktycznymi dla mieszkań o ograniczonym metrażu. Typowy błąd myślowy to przekonanie, że jedynie funkcjonalność instalacji ma znaczenie, podczas gdy w kontekście mieszkań kluczowe są również aspekty estetyczne i bezpieczeństwa. Należy zatem pamiętać, że prowadzenie instalacji elektrycznych w pomieszczeniach mieszkalnych powinno być starannie przemyślane, uwzględniając zarówno przepisy, jak i potrzeby użytkowników.

Pytanie 40

Jaką rolę pełnią uzwojenia pomocnicze w silniku prądu stałego?

A. Generują napięcie remanentu
B. Obniżają rezystancję obwodu twornika
C. Przeciwdziałają rozbieganiu się silnika w przypadku spadku obciążenia
D. Usuwają niekorzystne efekty wynikające z działania twornika
Uzwojenia pomocnicze w silniku prądu stałego to naprawdę ważny temat, bo mają spory wpływ na to, jak ten silnik działa. Kiedy silnik jest w ruchu, to nieuniknione są pewne zjawiska, jak efekt rozbiegowy czy spadek momentu obrotowego. Uzwojenia pomocnicze, poprzez swoje połączenia, pomagają w stabilizacji tego momentu obrotowego i wpływają na ogólną wydajność silnika. W praktyce widać to na przykład w elektromagnesach czy w napędach maszyn przemysłowych, gdzie te uzwojenia zwiększają stabilność pracy silnika. Co więcej, ich zastosowanie pomaga w poprawie charakterystyk silnika, gdy obciążenie się zmienia, co jest naprawdę istotne w inżynierii elektrycznej. Warto też zwrócić uwagę na to, że dobrze zaprojektowane uzwojenia pomocnicze mogą zmniejszyć wahania prądu i wydłużyć żywotność silnika. Zgodność z normami IEC i IEEE przy ich implementacji jest kluczowa, żeby silnik działał na optymalnym poziomie i był niezawodny przez długi czas.