Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 7 grudnia 2025 18:11
  • Data zakończenia: 7 grudnia 2025 18:27

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na rysunku przedstawiono ścianę

Ilustracja do pytania
A. piwniczną wykonaną na ławie betonowej.
B. fundamentową wykonaną na ławie żelbetowej.
C. piwniczną wykonaną na ławie żelbetowej.
D. fundamentową wykonaną na ławie betonowej.
Ściana przedstawiona na rysunku to ściana fundamentowa, wykonana na ławie żelbetowej. Tego rodzaju ściany są kluczowym elementem konstrukcyjnym budynków, ponieważ przenoszą obciążenia z budynku na grunt. Ława żelbetowa, w przeciwieństwie do ławy betonowej, zawiera zbrojenie w postaci prętów stalowych, co zapewnia jej większą wytrzymałość na ściskanie oraz rozciąganie. Wykorzystanie żelbetu w fundamentach jest zgodne z normą PN-EN 1992, która określa zasady projektowania konstrukcji żelbetowych. Przykładem zastosowania takich fundamentów są budynki wielorodzinne oraz obiekty przemysłowe, gdzie stabilność i nośność fundamentów są kluczowe dla bezpieczeństwa całej konstrukcji. Dobrze zaprojektowana i wykonana ściana fundamentowa wpływa na trwałość budynku oraz minimalizuje ryzyko osiadania i pęknięć, co jest szczególnie istotne w rejonach o zmiennych warunkach geologicznych.

Pytanie 2

Aby naprawić głębokie pęknięcia w ścianie murowanej, należy zastosować

A. klamry stalowe oraz zaczyn cementowy
B. cegły dziurawe wraz z zaczynem gipsowym
C. stalowe pręty oraz zaprawę gipsową
D. cegły kominowe i zaprawę cementową
Użycie klamer stalowych i zaczynu cementowego do naprawy głębokich pęknięć w ścianach murowanych jest zgodne z najlepszymi praktykami budowlanymi. Klamry stalowe służą do stabilizacji strukturalnej i wzmocnienia połączeń między elementami budowlanymi, co jest kluczowe w przypadku uszkodzeń o dużej głębokości. Zastosowanie zaczynu cementowego jako materiału wypełniającego pęknięcia jest również podstawą dobrych praktyk. Zaczyn cementowy charakteryzuje się wysoką wytrzymałością na ściskanie oraz odpornością na czynniki atmosferyczne, co czyni go idealnym do zastosowań zarówno wewnętrznych, jak i zewnętrznych. Przykładowo, w przypadku renowacji starych budynków, które mają pęknięcia wynikające z osiadania lub ruchów fundamentów, klamry stalowe mogą zostać użyte do złączenia i wzmocnienia uszkodzonych elementów, a zaczyn cementowy do ich wypełnienia. Warto również zwrócić uwagę na normy budowlane, które zalecają stosowanie tego typu materiałów w celu zapewnienia trwałości i bezpieczeństwa budynków.

Pytanie 3

Zgodnie z zasadami przedmiarowania robót murarskich ilość ścian oblicza się w metrach kwadratowych ich powierzchni. Od powierzchni ścian należy odejmować powierzchnie projektowanych otworów okiennych i drzwiowych większych od 0,5 m².
Oblicz ilość robót związanych z wykonaniem ściany z cegły ceramicznej pełnej, której widok przedstawiono na rysunku.

Ilustracja do pytania
A. 18,13 m2
B. 20,02 m2
C. 21,00 m2
D. 19,11 m2
W przypadku odpowiedzi, które nie są zgodne z poprawną wartością 19,11 m2, można zauważyć pewne nieporozumienia związane z obliczaniem powierzchni ścian. Często błędne podejście polega na nieuwzględnieniu otworów okiennych i drzwiowych lub na błędnym ich pomniejszeniu. Przyjmując, że całkowita powierzchnia ściany wynosi 20 m², a następnie nie odejmując powierzchni otworów, można uzyskać wartość zbyt dużą. Należy pamiętać, że zasady przedmiarowania wymagają dokładności – jedynie otwory większe niż 0,5 m² mają być brane pod uwagę, co jest zgodne z normami branżowymi. Kolejną typową pomyłką jest błędne obliczenie wymiarów ściany; na przykład, stosując niewłaściwe wymiary wysokości lub szerokości, co może prowadzić do znacznych rozbieżności w końcowych wynikach. Często również praktykuje się zaokrąglanie wyników, co w kontekście kosztorysowania i precyzyjnego planowania robót nie jest dobrym rozwiązaniem. Dlatego bardzo ważne jest, aby przy takich obliczeniach dokładnie analizować projekt, weryfikować wymiary oraz przestrzegać obowiązujących norm i standardów, aby uniknąć pomyłek, które mogą prowadzić do nieprawidłowego wyceny robót budowlanych.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Który etap wykonania ocieplenia ścian budynku metodą lekką mokrą przedstawiono na ilustracji?

Ilustracja do pytania
A. Montaż listwy startowej.
B. Nakładanie zaprawy klejowej.
C. Wtapianie siatki zbrojącej.
D. Uzupełnianie ubytków pianką.
Montaż listwy startowej to kluczowy etap w procesie ocieplania budynków metodą lekką mokrą. Na ilustracji widoczni są pracownicy, którzy precyzyjnie umieszczają metalową listwę na dolnej krawędzi ściany, co zapewnia stabilną bazę dla dalszych prac. Listwa startowa pełni istotną rolę w estetycznym i technicznym wykonaniu systemu ociepleniowego, ponieważ jej właściwe zamontowanie umożliwia równomierne ułożenie materiału izolacyjnego. Zgodnie z obowiązującymi standardami budowlanymi, stosowanie listwy startowej zapobiega problemom związanym z mechanizmami wchłaniania wody oraz ewentualnym uszkodzeniom dolnej krawędzi izolacji. Dodatkowo, jej obecność jest kluczowa do zachowania odpowiednich kątów i linii prostych, co przekłada się na końcową jakość i trwałość ocieplenia. W praktyce, zastosowanie listw startowych przyczynia się do wydłużenia żywotności systemów ociepleniowych, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 6

Na którym rysunku przedstawiono bloczek silikatowy?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Bloczek silikatowy, który został przedstawiony na rysunku oznaczonym literą C, jest klasycznym przykładem materiału budowlanego stosowanego w budownictwie. Jego jasny kolor oraz gładka powierzchnia są wynikiem starannego procesu produkcji, w którym piasek, wapno i woda są mieszane pod wysokim ciśnieniem. Bloczki te charakteryzują się wysokimi parametrami izolacyjnymi oraz dźwiękochłonności, co sprawia, że są idealnym materiałem do budowy ścian zewnętrznych oraz działowych. W praktyce, bloczki silikatowe mogą być stosowane zarówno w konstrukcjach mieszkaniowych, jak i komercyjnych, co potwierdzają standardy budowlane, takie jak PN-EN 771-2, które określają wymagania dla wyrobów budowlanych. Zastosowanie bloczków silikatowych zwiększa efektywność energetyczną budynków, co jest zgodne z nowymi przepisami dotyczącymi ochrony środowiska. Ich struktura umożliwia również łatwe cięcie oraz formowanie, co ułatwia pracę podczas budowy.

Pytanie 7

Z informacji podanych w tabeli wynika, że aby otrzymać zaprawę cementowo-wapienną marki 5, należy 2 pojemniki wapna hydratyzowanego zmieszać z

Orientacyjny skład objętościowy zapraw cementowo-wapiennych
Marka zaprawyz użyciem ciasta wapiennegoz użyciem wapna hydratyzowanego
1,51:1,5:81:1:9
31:1:71:1:6
51:0,3:41:0,5:4,5
A. 4 pojemnikami cementu i 16 pojemnikami piasku.
B. 2 pojemnikami cementu i 12 pojemnikami piasku.
C. 2 pojemnikami cementu i 14 pojemnikami piasku.
D. 4 pojemnikami cementu i 18 pojemnikami piasku.
Zrozumienie proporcji materiałów w budownictwie to naprawdę ważna sprawa, jeśli chcesz mieć trwałe zaprawy. W odpowiedziach faktycznie można znaleźć sporo typowych błędów, jak pomylenie proporcji. Dla zaprawy cementowo-wapiennej ta proporcja 1:0,5:4,5 jest naprawdę kluczowa i nie można jej zmieniać na własną rękę. Jeśli ktoś sugeruje mniej cementu albo za mało piasku, to może to prowadzić do poważnych problemów. Na przykład, jeśli użyjesz 2 pojemników cementu i 14 piasku, to zaprawa będzie znacznie słabsza, co może prowadzić do strukturalnych kłopotów. Wiele błędów wynika z niepełnego zrozumienia roli materiałów – cement jest najważniejszy dla wiązania mieszanki. Z drugiej strony, nadmiar piasku, jak w przypadku 16 pojemników, powoduje, że zaprawa staje się krucha, co też jest niezgodne z zasadami. Tak więc, grubość i płynność zaprawy to kluczowe rzeczy, żeby spełniała swoje zadanie. Lepiej więc trzymaj się standardów, jak PN-EN 998, żeby nie mieć później problemów.

Pytanie 8

Tynk zwykły w trzech warstwach, którego powierzchnia jest gładka, równomierna i ma połysk w ciemnym odcieniu, klasyfikuje się jako tynk kategorii

A. IV
B. III
C. IV f
D. IV w
Wybór tynku kategorii IV f, III lub IV jako odpowiedzi na to pytanie wskazuje na niezrozumienie klasyfikacji tynków oraz ich właściwości. Tynk IV f różni się od IV w głównie teksturą i wykończeniem. Tynki tej klasy są zazwyczaj bardziej chropowate i nie oferują tego samego poziomu gładkości ani połysku, co może nie spełniać oczekiwań dotyczących wykończenia powierzchni. Wybór tynku III również jest błędny, ponieważ ta klasa tynków przeznaczona jest głównie do zastosowań, gdzie nie wymaga się aż takiego poziomu estetyki, co w przypadku tynków IV w. Typowym błędem w myśleniu jest założenie, że wszystkie tynki w kategorii IV są sobie równe. W rzeczywistości różnice w wykończeniu, połysku i teksturze mają ogromne znaczenie dla finalnego efektu i zastosowania tynku. Kluczowe jest zrozumienie, że wybór odpowiedniej kategorii tynku powinien być uzależniony od wymaganych standardów estetycznych i funkcjonalnych, które są ściśle określone w dokumentacji technicznej oraz normach budowlanych. Niezrozumienie tych aspektów prowadzi do podejmowania błędnych decyzji w zakresie materiałów budowlanych, co może skutkować nieodpowiednim wyglądem wykończenia oraz większymi kosztami związanymi z ewentualnymi poprawkami.

Pytanie 9

Na rysunku przedstawiono

Ilustracja do pytania
A. poziomnicę.
B. kirkę.
C. przecinak.
D. zdzierak do tynków.
Zdzierak do tynków to narzędzie o płaskiej, ząbkowanej powierzchni, które służy do skutecznego usuwania starych tynków z powierzchni ścian. Jego konstrukcja pozwala na łatwe i efektywne skrawanie tynku, co minimalizuje ryzyko uszkodzenia podłoża. W praktyce, zdzierak jest niezastąpiony w pracach remontowych, gdzie często zachodzi potrzeba odnowienia i przygotowania powierzchni przed nałożeniem nowych materiałów wykończeniowych, takich jak gładzie czy farby. Prawidłowe użycie zdzieraka wiąże się z techniką, która pozwala na równomierne usunięcie tynku bez zbędnego wysiłku. Warto również dodać, że stosowanie tego narzędzia zgodnie z zasadami ergonomii przyczynia się do zmniejszenia ryzyka urazów i zwiększa komfort pracy. Zdzieraki do tynków są często wykorzystywane przez profesjonalnych malarzy i ekipy remontowe, co potwierdza ich znaczenie i zastosowanie w branży budowlanej.

Pytanie 10

Na podstawie danych zawartych w tablicy 0803 z KNR 2-02 oblicz koszt robocizny w przypadku wykonania sposobem ręcznym 250 m2 tynku zwykłego kategorii III na ścianie, jeżeli stawka za 1 r-g wynosi 12,00 zł.

Ilustracja do pytania
A. 1 776,30 zł
B. 2 145,30 zł
C. 1 341,90 zł
D. 1 144,50 zł
Zgubienie się w procesie obliczania kosztów robocizny często prowadzi do błędnych wniosków, co widać w przypadku niepoprawnych odpowiedzi. Przede wszystkim, podstawowym błędem jest pominięcie właściwego przeliczenia roboczogodzin na podstawie norm produkcji. Właściwe oszacowanie ilości roboczogodzin jest kluczowe do prawidłowego obliczenia kosztów. Przyjmowanie zbyt wysokich lub zbyt niskich wartości na m2 może znacząco wpłynąć na końcowy wynik. Wiele osób może również zignorować wpływ dodatkowych kosztów pośrednich, takich jak opłaty za sprzęt, transport czy materiały, które są niezbędne przy realizacji tynków. Innym typowym błędem jest nieumiejętne zrozumienie jednostek miary. W przypadku tynkowania, istotne jest zrozumienie, że 1 m2 nie przekłada się bezpośrednio na roboczogodziny, ponieważ różne techniki aplikacji mogą wymagać różnych ilości czasu. Osoby rozwiązujące takie zadania powinny również pamiętać o standardach branżowych, które jasno określają normy czasowe oraz stawki w zależności od kategorii tynku. Właściwe zrozumienie tych aspektów jest niezbędne do skutecznego i efektywnego zarządzania kosztami robocizny w projektach budowlanych.

Pytanie 11

Przygotowanie kruszywa naturalnego do wytworzenia zaprawy tynkarskiej, która ma być użyta do nałożenia tynku zwykłego, polega na

A. ustaleniu gęstości pozornej kruszywa
B. przesianiu kruszywa przez sito o oczkach 5 mm
C. przesianiu kruszywa przez sito o oczkach 2 mm
D. ustaleniu stopnia zagęszczenia kruszywa
Przesianie kruszywa przez sito o oczkach 2 mm jest kluczowym etapem w przygotowaniu zaprawy tynkarskiej przeznaczonej do wykonania narzutu tynku zwykłego. Użycie sita o takiej wielkości oczek pozwala na usunięcie większych zanieczyszczeń oraz fragmentów kruszywa, które mogłyby negatywnie wpłynąć na właściwości mechaniczne i estetyczne gotowego tynku. Zastosowanie właściwego rozmiaru kruszywa jest zgodne z normami budowlanymi, które wskazują, że do zapraw tynkarskich powinno się używać kruszywa o odpowiednich uziarnieniach, aby zapewnić optymalną przyczepność i jednorodność zaprawy. Przesiewanie kruszywa ma także na celu poprawę jego jednorodności, co jest istotne dla uzyskania stabilnych właściwości tynków oraz zapobiega pojawianiu się pęknięć. W praktyce, w zależności od wymagań projektu, można przeprowadzać dodatkowe testy, aby określić, czy wybrane kruszywo spełnia normy jakościowe, co przyczynia się do długotrwałych i estetycznych efektów końcowych w budownictwie.

Pytanie 12

Po jakim czasie od rozpoczęcia twardnienia powinno się przeprowadzić badanie wytrzymałości na ściskanie próbek zaprawy cementowo-wapiennej, aby określić jej markę/klasę?

A. Po 28 dniach
B. Po 14 dniach
C. Po 7 dniach
D. Po 1 dniu
Wybór odpowiedzi wskazującej na 7 dni twardnienia jest błędny z kilku powodów. Po pierwsze, w tym czasie materiał nie osiąga jeszcze swojej pełnej wytrzymałości, co jest zgodne z większością norm budowlanych, takich jak PN-EN 196-1, które jednoznacznie wskazują na 28-dniowy okres jako standardowy czas dla badań wytrzymałościowych. Podobnie, ocenianie zaprawy po 1 dniu lub 14 dniach również nie oddaje rzeczywistego potencjału materiału. W przypadku 1 dnia, zaprawa znajduje się jeszcze w fazie wczesnego twardnienia, kiedy to proces hydratacji cementu dopiero się rozpoczyna, co prowadzi do bardzo niskiej wytrzymałości. Z kolei po 14 dniach, chociaż materiał może wykazywać pewną wytrzymałość, nie osiąga jeszcze stabilnych wartości, które mogłyby być podstawą do klasyfikacji materiału. Często popełnianym błędem jest zakładanie, że wcześniejsze badania mogą dostarczyć zadowalających wyników, co może prowadzić do problemów konstrukcyjnych w przyszłości. Dlatego tak istotne jest przestrzeganie standardów i praktyk branżowych, które wskazują na 28-dniowy cykl jako punkt odniesienia dla rzetelnej oceny jakości zapraw cementowo-wapiennych. W praktyce budowlanej, ignorowanie tych zasad może skutkować zastosowaniem materiałów o niewłaściwych parametrach, co z kolei może prowadzić do poważnych awarii budowlanych.

Pytanie 13

Aby przygotować zaprawę cementowo-wapienną w proporcjach objętościowych 1 : 2 : 6, należy zastosować odpowiednio

A. 1 część cementu, 2 części wapna oraz 6 części wody
B. 1 część cementu, 2 części wapna i 6 części piasku
C. 1 część wapna, 2 części cementu oraz 6 części wody
D. 1 część wapna, 2 części cementu oraz 6 części piasku
Odpowiedź jest prawidłowa, ponieważ zaprawa cementowo-wapienna o proporcji 1:2:6 oznacza, że na każdą część cementu przypadają dwie części wapna i sześć części piasku. Taki skład jest powszechnie stosowany w budownictwie, szczególnie przy murowaniu. Cement działa jako spoiwo, które łączy pozostałe składniki, a wapno wpływa na elastyczność i trwałość zaprawy. Piasek z kolei zapewnia odpowiednią strukturę i wytrzymałość. W praktyce, stosując tę proporcję, można uzyskać zaprawę o dobrej przyczepności, odporności na czynniki atmosferyczne oraz długowieczności, co jest kluczowe w konstrukcjach budowlanych. Przykładowo, przy budowie murów z cegły, taka zaprawa zapewnia stabilność i odporność na pęknięcia, co jest zgodne z normami budowlanymi PN-EN 998-2. Warto również dodać, że odpowiednie dobieranie składników wpływa na właściwości termiczne i akustyczne muru, co jest istotne w kontekście komfortu użytkowania budynków.

Pytanie 14

Na którym rysunku przedstawiono podłużny układ konstrukcyjny budynku?

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.
Wybór odpowiedzi B, C lub D wskazuje na pewne błędne zrozumienie podstawowych zasad układów konstrukcyjnych w architekturze. Odpowiedzi te mogą sugerować mylne założenie, że wszelkie układy, które nie są podłużne, mogą być równie efektywne, co układy podłużne, co jest nieprawdziwe. W rzeczywistości, w układzie podłużnym, kluczowym aspektem jest to, iż ściany nośne muszą być odpowiednio rozmieszczone wzdłuż dłuższych boki budynku, co nie zostało przedstawione na rysunkach B, C i D. Na tych rysunkach mogą znajdować się układy, gdzie ściany nośne są zlokalizowane w inny sposób, co prowadzi do wielu problemów konstrukcyjnych, w tym do nieefektywnego przenoszenia obciążeń oraz ograniczonej funkcjonalności przestrzennej. Często w praktyce inżynierskiej spotyka się błędy polegające na niewłaściwej interpretacji układów ścian nośnych, co skutkuje nieodpowiednim zaprojektowaniem obiektów, które nie spełniają norm bezpieczeństwa oraz nie mogą być w przyszłości dostosowywane do zmieniających się potrzeb użytkowników. Dlatego zrozumienie różnic między poszczególnymi układami konstrukcyjnymi jest kluczowe dla sukcesu projektowego oraz dla zapewnienia długotrwałej trwałości i funkcjonalności budynków.

Pytanie 15

Gdy konstrukcja budynku opiera się na stalowych kształtownikach, to przed nałożeniem tynku na słup stalowy należy go

A. owinąć siatką
B. umyć wodą
C. oszlifować
D. pomalować farbą
Owinąć siatką słup stalowy przed otynkowaniem jest kluczowe dla zapewnienia odpowiedniego współczynnika przyczepności między tynkiem a stalą. Siatka zbrojeniowa, wykonana z odpowiednich materiałów, takich jak stal lub włókna syntetyczne, tworzy solidną podstawę dla tynku, poprawiając jego przyczepność oraz zwiększając ogólną trwałość wykończenia. Stalowe słupy, ze względu na swoją gładką powierzchnię, mogą mieć trudności z utrzymaniem tynku, jeśli nie zostaną odpowiednio przygotowane. Oprócz tego, owinęcie siatką chroni stal przed uszkodzeniami mechanicznymi podczas wykonywania dalszych prac budowlanych. W praktyce budowlanej często stosuje się również siatki o różnej wielkości oczek, co pozwala na dostosowanie ich do specyficznych wymagań projektu. Zgodnie z normami budowlanymi, takimi jak PN-EN 13914, odpowiednie przygotowanie podłoża jest kluczowe dla uzyskania trwałych i estetycznych wykończeń budowlanych.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Tynki przeznaczone do użytku na zewnątrz obiektów powinny wyróżniać się wysoką

A. nasiąkliwością
B. higroskopijnością
C. kapilarnością
D. mrozoodpornością
Zaprawy tynkarskie przeznaczone do stosowania na zewnątrz budynków muszą charakteryzować się mrozoodpornością, aby zapewnić trwałość i ochronę elewacji przed szkodliwym wpływem niskich temperatur oraz zjawisk atmosferycznych. Mrozoodporność oznacza, że materiał jest odporne na cykle zamrażania i rozmrażania, co jest kluczowe w klimacie, gdzie występują takie warunki. W praktyce, użycie zaprawy mrozoodpornej minimalizuje ryzyko pęknięć, łuszczenia się tynku oraz innych uszkodzeń, które mogą prowadzić do konieczności kosztownych napraw. W standardach budowlanych, takich jak PN-EN 998-1, określone są wymagania dotyczące zapraw tynkarskich, w tym odporności na działanie mrozu. Przykładem zastosowania są budynki jednorodzinne oraz wielorodzinne, gdzie elewacja narażona jest na działanie zmiennych warunków atmosferycznych. Osoby budujące lub odnawiające elewacje powinny zawsze wybierać materiały certyfikowane pod kątem mrozoodporności, aby zagwarantować wysoką jakość i trwałość wykończenia."

Pytanie 18

Na podstawie danych zawartych w tabeli wskaż, ile wody należy użyć do przygotowania 2 m3 zaprawy wapiennej o proporcji objętościowej składników 1:3 z użyciem ciasta wapiennego.

Proporcje i ilość składników na 1 m3 zaprawy wapiennej
Stosunek objętościowy wapna do piaskuMarka zaprawy MPaCiasto wapienne m3Piasek m3Woda dm3
1 : 1,50,40,5100,76537
1 : 20,40,4300,86050
1 : 30,40,3200,960100
1 : 3,50,20,2800,980130
1 : 4,50,20,2241,010166
A. 50 dm3
B. 200 dm3
C. 100 dm3
D. 300 dm3
Odpowiedź 200 dm3 jest prawidłowa, ponieważ na podstawie danych z tabeli dotyczących proporcji objętościowych 1:3 dla zaprawy wapiennej, na 1 m3 zaprawy wymagane jest 100 dm3 wody. Przygotowując 2 m3 zaprawy, wartość ta musi zostać podwojona, co daje 200 dm3. Taki sposób obliczenia ilości wody jest zgodny z dobrymi praktykami w budownictwie, gdzie precyzyjne określenie proporcji składników ma kluczowe znaczenie dla uzyskania odpowiedniej jakości zaprawy. Użycie niewłaściwej ilości wody może prowadzić do osłabienia struktury zaprawy, a w efekcie do trwałych uszkodzeń konstrukcji. Stąd, w praktyce budowlanej, takie obliczenia są niezbędne, aby zapewnić trwałość i właściwe właściwości mechaniczne zaprawy. Wiedza na temat proporcji składników i ich wpływu na końcowy produkt jest fundamentem dla każdego specjalisty w branży budowlanej, co pozwala na optymalizację procesów budowlanych oraz minimalizację ryzyka błędów.

Pytanie 19

Na podstawie fragmentu opisu technicznego określ, ile pojemników cementu i wapna należy zużyć do przygotowania zaprawy, jeżeli do jej sporządzenia zaplanowano 20 pojemników piasku?

Opis techniczny
(fragment)
(...) Do wykonania ścian zewnętrznych z pustaków Max należy zastosować zaprawę cementowo-wapienną odmiany E, o proporcji objętościowej składników 1 : 0,5 : 4. (...)
A. 4 pojemniki cementu i 2 pojemniki wapna.
B. 5 pojemników wapna i 2,5 pojemnika cementu.
C. 5 pojemników cementu i 2,5 pojemnika wapna.
D. 4 pojemniki wapna i 2 pojemniki cementu.
Odpowiedź, która wskazuje na zużycie 5 pojemników cementu i 2,5 pojemnika wapna jest właściwa, ponieważ opiera się na poprawnych proporcjach składników potrzebnych do przygotowania zaprawy. W opisie technicznym podano, że proporcje objętościowe składników wynoszą 1:0,5:4, co oznacza, że na każdy 1 pojemnik cementu przypada 0,5 pojemnika wapna i 4 pojemniki piasku. Zgodnie z planowanym użyciem 20 pojemników piasku, można obliczyć ilość pozostałych składników. 20 pojemników piasku podzielone przez 4 (czwartą część proporcji) daje 5 pojemników cementu, co odpowiada proporcji 1:4. Współczynnik dla wapna wynosi 0,5, więc 5 pojemników cementu pomnożone przez 0,5 daje 2,5 pojemnika wapna. Takie podejście nie tylko zapewnia zgodność z podanymi proporcjami, ale także wpisuje się w najlepsze praktyki budowlane, które gwarantują odpowiednią wytrzymałość i trwałość zaprawy. W praktyce, stosowanie się do tych proporcji pozwala uniknąć problemów związanych z niedostatecznym wiązaniem materiałów, co ma kluczowe znaczenie dla późniejszej jakości prac budowlanych.

Pytanie 20

Jaki rodzaj nadproża łukowego przedstawiono na rysunku?

Ilustracja do pytania
A. Półkolisty.
B. Odcinkowy.
C. Koszowy.
D. Ostrołukowy.
Odpowiedź "ostrołukowy" jest poprawna, ponieważ na przedstawionym rysunku widoczne jest nadproże, którego górna krawędź tworzy ostry łuk. Nadproża ostrołukowe są charakterystyczne dla architektury gotyckiej, gdzie zastosowanie takiego kształtu pozwalało na efektywne przenoszenie obciążeń z górnych części budowli. Ich forma przyczynia się do zwiększenia stabilności konstrukcji, co jest kluczowe w miejscach, gdzie wysokość i ciężar budowli są znaczne. Ostrołukowe nadproża mogą być również używane w nowoczesnej architekturze, gdzie estetyka i funkcjonalność idą w parze. Warto zwrócić uwagę na wpływ, jaki mają na estetykę wnętrz, nadając im lekkości i przestronności. W praktyce, przy projektowaniu nadproży, inżynierowie muszą uwzględniać nie tylko ich formę, ale także materiały, z których są wykonane, aby zapewnić trwałość i bezpieczeństwo budowli.

Pytanie 21

Na podstawie danych zawartych w tablicy z KNR oblicz, ile cegieł pełnych należy zamówić do wykonania 30 m2ścianek pełnych o grubości ¼cegły.

Ilustracja do pytania
A. 858 sztuk.
B. 861 sztuk.
C. 1 458 sztuk.
D. 1 443 sztuki.
Często zdarza się, że osoby przystępujące do obliczeń mylą jednostki miary lub nieprawidłowo interpretują dane z tabel. Na przykład, niektórzy mogą przyjąć, że do obliczenia potrzebnej liczby cegieł należy pomnożyć wartość cegieł na 1 m² przez inną, nieodpowiednią wartość powierzchni, co prowadzi do błędnych wyników, jak 1 443 lub 1 458 cegieł. Tego rodzaju błędy mogą wynikać z braku znajomości specyfikacji technicznych oraz nieprecyzyjnego podejścia do danych. Często również myli się grubość ściany, co prowadzi do przyjęcia niewłaściwej wartości w obliczeniach. W praktyce, precyzyjne obliczenia materiałów budowlanych są kluczowe dla efektywności projektów budowlanych, a ich niedoszacowanie może prowadzić do opóźnień i dodatkowych kosztów. Niezależnie od przyczyny błędnych obliczeń, ważne jest, aby przed podjęciem decyzji dokładnie przeanalizować wszystkie dostępne dane oraz uwzględnić specyfikacje techniczne dotyczące materiałów budowlanych, takie jak te zawarte w KNR. W ten sposób można uniknąć typowych pułapek związanych z obliczeniami i osiągnąć bardziej wiarygodne wyniki.

Pytanie 22

Jaką minimalną grubość powinny mieć przegrody oddzielające przewody spalinowe od dymowych w ścianach murowanych z cegły?

A. ½ cegły
B. ¼ cegły
C. 1 cegły
D. 1½ cegły
Minimalna grubość przegród oddzielających przewody spalinowe od dymowych wynosząca ½ cegły jest zgodna z regulacjami dotyczącymi bezpieczeństwa budowlanego. Tego rodzaju przegrody są kluczowe w zapobieganiu rozprzestrzenieniu się dymu oraz szkodliwych substancji w budynkach, co ma istotne znaczenie dla ochrony zdrowia i życia ludzi. Przegrody te powinny być projektowane zgodnie z wytycznymi zawartymi w normach budowlanych, takich jak PN-EN 13501-2, które określają wymagania dla klasyfikacji ogniowej materiałów budowlanych. W praktyce, zapewnienie odpowiedniej grubości przegrody wpływa na skuteczność ochrony przed pożarem, a także na trwałość konstrukcji. W sytuacjach, gdy przewody są umieszczane w bliskiej odległości od siebie, grubość ½ cegły stanowi minimalny standard, który można zastosować, aby zachować właściwe warunki bezpieczeństwa. Na przykład w budynkach użyteczności publicznej, gdzie istnieje większe ryzyko wystąpienia pożaru, zastosowanie takich przegrody jest nie tylko zalecane, ale może być wymagane przez lokalne przepisy budowlane.

Pytanie 23

Aby przywrócić właściwości ścian murowanych, które zostały zasolone i zawilgocone, potrzebna jest zaprawa

A. ogólnego przeznaczenia
B. renowacyjna
C. izolująca cieplnie
D. lekka
Zaprawa renowacyjna jest specjalnie zaprojektowana do naprawy uszkodzeń, takich jak zasolenie i zawilgocenie ścian murowanych. Zawiera składniki, które pomagają w redukcji krytycznych problemów związanych z wilgocią i solami, co jest kluczowe w zachowaniu integralności konstrukcyjnej budynków. Przykładowo, podczas renowacji zabytkowych murów, ważne jest, aby zastosować materiały, które są kompatybilne z oryginalnymi, aby nie spowodować dalszych uszkodzeń. W praktyce, zaprawy renowacyjne charakteryzują się niską przepuszczalnością dla wody oraz dobrą paroprzepuszczalnością, co pozwala na regulację wilgotności w murze, a także na wyeliminowanie problemów z solami, które mogą prowadzić do degradacji materiału. Dobrym przykładem zastosowania zaprawy renowacyjnej jest konserwacja starych budynków, gdzie zachowanie oryginalnych materiałów i struktury jest kluczowe dla utrzymania wartości historycznej i estetycznej.

Pytanie 24

Nominalna grubość spoin poziomych wynosi 12 mm (-2 mm; +5 mm), a spoin pionowych 10 mm (±5 mm). Na którym rysunku przedstawiono grubość spoin niezgodna z dopuszczalną?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Wybór innej odpowiedzi może wynikać z kilku typowych błędów myślowych oraz nieporozumień dotyczących tolerancji oraz zakresów grubości spoin. Na przykład, niektórzy mogą myśleć, że pokrewieństwo między tolerancją a nominalną wartością oznacza, iż mniejsze różnice nie mają znaczenia. To podejście jest błędne, ponieważ każda spoinę należy oceniać w kontekście jej nominalnej wartości oraz określonej tolerancji. W przypadku spoin pionowych, które mają tolerancję ±5 mm, wiele osób może mylnie ocenić, że grubość 5 mm jest akceptowalna bez uwzględnienia, że maksymalna dopuszczalna grubość spoiny poziomej na rysunku B również musi być w granicach tolerancji. Inny błąd to ignorowanie wpływu grubości spoin na trwałość konstrukcji. Przekroczenie tolerancji może prowadzić do osłabienia spoiny, co znacznie zwiększa ryzyko awarii. W praktyce inżynierowie muszą znać granice tolerancji i umieć je stosować, aby zapewnić bezpieczeństwo oraz zgodność projektu z obowiązującymi normami. Nieprzestrzeganie tych zasad prowadzi do kosztownych błędów oraz potencjalnych zagrożeń dla bezpieczeństwa w budownictwie.

Pytanie 25

Na rysunku przedstawiono fragment lica muru grubości jednej cegły, wykonanego z zastosowaniem wiązania

Ilustracja do pytania
A. amerykańskiego.
B. gotyckiego.
C. weneckiego.
D. kowadełkowego.
Wybór innej opcji wiązania cegieł w tym kontekście prowadzi do nieporozumień związanych z charakterystyką poszczególnych technik murowania. Wiązanie weneckie, które mogłoby przyjść na myśl, zakłada ułożenie cegieł w sposób zbliżony do gotyckiego, jednak nie przesuwa ich o połowę długości, co zmienia zarówno stabilność, jak i estetykę muru. W efekcie, ten rodzaj wiązania nie zapewnia optymalnego rozkładu obciążenia, co może prowadzić do problemów z trwałością konstrukcji. Wiązanie kowadełkowe z kolei, które jest popularne w budownictwie tradycyjnym, polega na układaniu cegieł w taki sposób, aby ich krawędzie były ze sobą stykowe, co sprawia, że nie uzyskuje się pożądanej stabilności. Wreszcie, wiązanie amerykańskie charakteryzuje się bardziej swobodnym podejściem do układania cegieł, co nie odpowiada ścisłym zasadom murowania widocznym w technice gotyckiej. Zrozumienie tych różnic jest kluczowe, aby uniknąć typowych błędów myślowych, które mogą prowadzić do niewłaściwego doboru techniki murowania, a tym samym do obniżenia jakości i estetyki budowanych obiektów.

Pytanie 26

Wypełnienie płyty ceglanej między stalowymi belkami, przedstawionej na rysunku, wykonuje się w stropie

Ilustracja do pytania
A. Akermana.
B. Kleina typu lekkiego.
C. DZ-3.
D. Kleina typu ciężkiego.
Wybór kleiny typu ciężkiego jako wypełnienia płyty ceglanej między stalowymi belkami jest decyzją zgodną z zasadami inżynierii budowlanej, zwłaszcza w kontekście konstrukcji stropowych narażonych na znaczne obciążenia. Kleina typu ciężkiego jest projektowana do przenoszenia dużych obciążeń, co jest istotne w przypadku stropów wspartych na stalowych belkach. Tego rodzaju wypełnienia są nie tylko bardziej odporne na deformacje, ale również zwiększają stabilność całej konstrukcji. W praktyce stosowanie kleiny typu ciężkiego jest powszechne w przypadku budowli przemysłowych oraz innych obiektów wymagających dużej nośności. Standardy budowlane, takie jak Eurokod 2, sugerują, że stosowanie odpowiednich materiałów w zależności od zapotrzebowania na nośność jest kluczowe dla zapewnienia bezpieczeństwa konstrukcji. Dodatkowo, kleiny tego typu są często wykorzystywane w projektach, w których istotnym czynnikiem są warunki środowiskowe, takie jak obciążenia dynamiczne czy udarowe, co czyni je idealnym rozwiązaniem w nowoczesnym budownictwie.

Pytanie 27

Ze względu na swoje właściwości, zaprawa cementowa powinna być używana do realizacji

A. tynków o właściwościach ciepłochronnych
B. tynków w pomieszczeniach mieszkalnych
C. silnie obciążonych murów konstrukcyjnych
D. murów o charakterze tymczasowym
Zaprawa cementowa to naprawdę solidny materiał, który ma świetne właściwości, jeśli chodzi o wytrzymałość na ściskanie i odporność na warunki pogodowe. Dlatego używamy jej głównie w miejscach, gdzie ściany muszą dźwigać spore obciążenie, jak na przykład w wielopiętrowych budynkach. W takich przypadkach ważne jest, żeby zaprawa miała odpowiednią klasę wytrzymałości oraz dobrze przylegała do różnych powierzchni. Mury nośne w takich budynkach muszą być dobrze przygotowane, bo to klucz do bezpieczeństwa i trwałości całej konstrukcji. Jak mówi norma PN-EN 998-1, dobór zaprawy murarskiej powinien być zależny od specyficznych potrzeb projektu, więc dobrze wybrana zaprawa cementowa to naprawdę podstawa, żeby budowla przetrwała jak najdłużej i była funkcjonalna.

Pytanie 28

Rzeczywiste wymiary pomieszczenia biurowego wynoszą 8 x 5 m. Jakie będą jego wymiary na rysunku sporządzonym w skali 1:200?

A. 40,0 x 25,0 cm
B. 16,0 x 10,0 cm
C. 8,0 x 5,0 cm
D. 4,0 x 2,5 cm
Aby obliczyć wymiary pomieszczenia biurowego w skali 1:200, należy najpierw zrozumieć, że skala ta oznacza, iż 1 jednostka na rysunku odpowiada 200 jednostkom w rzeczywistości. Wymiary pomieszczenia wynoszą 8 m x 5 m, co w centymetrach daje 800 cm x 500 cm. Przy zastosowaniu skali 1:200, obliczamy wymiary na rysunku, dzieląc rzeczywiste wymiary przez 200. Tak więc: 800 cm / 200 = 4 cm, a 500 cm / 200 = 2,5 cm. Zatem wymiary przedstawione na rysunku wynoszą 4,0 x 2,5 cm. W praktyce, umiejętność przeliczania wymiarów na rysunkach technicznych jest kluczowa w architekturze, inżynierii i projektowaniu wnętrz. Przy projektowaniu biur, poprawne odwzorowanie wymiarów budynków w rysunkach technicznych zapewnia dokładność i zgodność z rzeczywistością, co jest zgodne z normami branżowymi i wspomaga procesy konstrukcyjne oraz weryfikację planów budowlanych.

Pytanie 29

Który etap naprawy spękanego tynku przedstawiono na ilustracji?

Ilustracja do pytania
A. Oczyszczanie obrzeża rysy.
B. Gruntowanie obrzeża rysy.
C. Poszerzanie rysy.
D. Nakładanie zaprawy szpachlowej.
Poszerzanie rysy jest kluczowym etapem w naprawie spękanego tynku, co doskonale ilustruje przedstawiony obrazek. W tym kroku wykorzystuje się szpachelkę do usunięcia luźnych fragmentów tynku oraz do przygotowania rysy na przyjęcie nowej zaprawy. W praktyce, poszerzając rysę, stosujemy technikę, która pozwala na zapewnienie lepszej przyczepności materiałów naprawczych. Zgodnie z najlepszymi praktykami budowlanymi, przed nałożeniem nowego tynku, należy upewnić się, że krawędzie rysy są wolne od zanieczyszczeń, co często wymaga użycia narzędzi takich jak szczotki lub sprężone powietrze. Dobrze wykonane poszerzanie rysy pozwala na skuteczniejsze wypełnienie ubytków zaprawą, co z kolei przekłada się na wyższą trwałość oraz estetykę naprawy, spełniając standardy jakości budowlanej. Ważne jest, aby pamiętać, że pominięcie tego etapu może prowadzić do ponownego pojawienia się pęknięć, co jest sprzeczne z zasadami dobrego rzemiosła budowlanego.

Pytanie 30

Które zprzedstawionych na rysunku narzędzi należy zastosować do skuwania starego tynku?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Narządzie przedstawione na rysunku C, czyli młot wyburzeniowy, jest idealnym wyborem do skuwania starego tynku. Jego konstrukcja i mechanizm działania umożliwiają efektywne usuwanie tynków, które są z reguły mocno przytwierdzone do ścian. Młot wyburzeniowy generuje dużą siłę uderzenia, co sprawia, że radzi sobie z trudnymi materiałami budowlanymi. W praktyce, podczas skuwania tynku, należy kierować młot pod odpowiednim kątem, aby zminimalizować ryzyko uszkodzenia podłoża, na przykład betonu. Dobrą praktyką jest również noszenie odpowiednich środków ochrony osobistej, takich jak gogle i rękawice, aby uniknąć urazów. Tego typu narzędzie jest często wykorzystywane w pracach remontowych i budowlanych, a jego zastosowanie pozwala na szybkie i skuteczne przygotowanie powierzchni do dalszych prac, co jest zgodne z obowiązującymi standardami w branży budowlanej.

Pytanie 31

Po zainstalowaniu kratki wentylacyjnej w otworze wentylacyjnym szczelinę, która powstała pomiędzy ramką a tynkiem, należy wypełnić

A. zaprawą cementową
B. zaprawą gipsową
C. silikonem akrylowym
D. żywicą epoksydową
Wybór innych materiałów do wypełnienia szczeliny między kratką wentylacyjną a tynkiem może prowadzić do różnych problemów. Żywica epoksydowa, choć charakteryzuje się wysoką wytrzymałością, jest sztywna i nieelastyczna, co w kontekście wentylacji może powodować pęknięcia w wyniku naturalnych ruchów budynku, zmian temperatury oraz wilgotności. Również zaprawy cementowe i gipsowe, mimo że mogą wydawać się odpowiednie, nie są przystosowane do dynamicznych warunków, jakie występują w systemach wentylacyjnych. Te materiały nie tylko mogą pękać w wyniku skurczu, ale także nie zapewniają odpowiednich właściwości uszczelniających, co prowadzi do problemów z wentylacją i potentialnych strat energetycznych. Niezrozumienie tych różnic może skutkować błędnymi wyborami przy montażu, co w dłuższej perspektywie prowadzi do kosztownych napraw oraz obniżenia efektywności systemu wentylacyjnego. Zastosowanie niewłaściwych materiałów jest zatem typowym błędem, który wynika z braku znajomości właściwości i zastosowania odpowiednich produktów w kontekście ich przeznaczenia.

Pytanie 32

Ściana gotowa w systemie Thermomur jest zbudowana z 5 cm warstwy styropianu oraz

A. 15 cm betonu i 10 cm styropianu
B. 10 cm betonu i 5 cm styropianu
C. 15 cm betonu i 5 cm styropianu
D. 20 cm betonu i 5 cm styropianu
Poprawna odpowiedź to 15 cm betonu i 5 cm styropianu, co jest zgodne z zasadami budowy w systemie Thermomur. System ten łączy właściwości izolacyjne styropianu z wytrzymałością betonu, co czyni go efektywnym rozwiązaniem w budownictwie energooszczędnym. W przypadku tej ściany, 5 cm warstwy styropianu zapewnia dobrą izolację termiczną, natomiast 15 cm betonu gwarantuje odpowiednią nośność oraz trwałość konstrukcji. W praktyce, takie połączenie materiałów pozwala na osiągnięcie wysokiej efektywności energetycznej budynku, co jest kluczowe w kontekście coraz bardziej rygorystycznych norm dotyczących oszczędności energii. Ponadto, stosowanie tego typu konstrukcji wspiera zrównoważony rozwój dzięki mniejszemu zapotrzebowaniu na energię do ogrzewania i chłodzenia budynku. Warto zauważyć, że taka konfiguracja jest także rekomendowana w standardach budownictwa pasywnego, gdzie kluczowe są niskie straty ciepła oraz maksymalna efektywność energetyczna.

Pytanie 33

Jaką wytrzymałość ma klasa zaprawy na

A. ściśnięcie
B. ugięcie
C. przesuwanie
D. rozciąganie
Klasa zaprawy rzeczywiście odnosi się do jej wytrzymałości na ściskanie. Wytrzymałość na ściskanie jest kluczowym parametrem, który określa zdolność materiału do przenoszenia obciążeń działających w kierunku osiowym, co jest szczególnie istotne w budownictwie i inżynierii lądowej. W praktyce, zaprawy murarskie są stosowane do łączenia elementów budowlanych, takich jak cegły czy bloczki, a ich wytrzymałość na ściskanie wpływa na trwałość całej konstrukcji. Zgodnie z normami PN-EN 1015-11, wytrzymałość na ściskanie zaprawy może być klasyfikowana według różnych klas, co pozwala inżynierom na dobór odpowiedniego materiału do danego zastosowania, np. w budynkach mieszkalnych czy obiektach użyteczności publicznej. Wytrzymałość na ściskanie zaprawy jest zatem kluczowym wskaźnikiem jakości, którego pomiar przeprowadza się w warunkach laboratoryjnych, a jej znajomość pozwala na optymalizację kosztów oraz zapewnienie bezpieczeństwa konstrukcji.

Pytanie 34

Zadaniem jest zbudowanie ścianki działowej z cegły pełnej o grubości ½ cegły. Jeśli zużycie zaprawy na 1 m2 tej ścianki wynosi 0,030 m3, to ile zaprawy będzie potrzebne do zrealizowania 25 m2?

A. 0,50 m3
B. 0,625 m3
C. 0,75 m3
D. 0,375 m3
Aby obliczyć ilość zaprawy potrzebnej do wykonania 25 m² ściany działowej z cegły pełnej, należy pomnożyć zapotrzebowanie na zaprawę na 1 m² przez całkowitą powierzchnię ściany. W tym przypadku, zużycie zaprawy wynosi 0,030 m³ na 1 m². Zatem, dla 25 m² zaprawa wynosi: 0,030 m³/m² * 25 m² = 0,75 m³. W praktyce, znajomość takich obliczeń jest niezbędna dla odpowiedniego planowania materiałów budowlanych i kosztorysowania. Pozwala to na uniknięcie sytuacji, w której zabraknie materiału w trakcie budowy, co może prowadzić do opóźnień. W branży budowlanej obowiązują normy, które zalecają uwzględnianie nie tylko podstawowego zapotrzebowania, ale również ewentualnych strat podczas transportu i aplikacji materiałów. Dobrą praktyką jest również zawsze uwzględniać dodatkowy procent materiału na ewentualne poprawki lub błędy, co zwiększa efektywność wykorzystania surowców.

Pytanie 35

Jakie składniki mieszanki betonowej można podgrzać w trakcie jej przygotowywania w temperaturze poniżej +5 °C?

A. Piasek i wodę
B. Cement i wapno
C. Wapno oraz piasek
D. Cement oraz wodę
Odpowiedź "Piasek i wodę" jest prawidłowa, ponieważ te składniki mieszanki betonowej można podgrzewać, aby zminimalizować ryzyko zamarzania podczas prac w niskich temperaturach. Zgodnie z zaleceniami zawartymi w normach branżowych, takich jak PN-EN 206, temperatura mieszanki betonowej powinna być utrzymywana powyżej 0 °C, aby zapewnić odpowiednie procesy hydratacji cementu. Podgrzewanie piasku oraz wody pozwala na uzyskanie mieszanki o wyższej temperaturze, co sprzyja właściwej reakcji chemicznej i redukuje ryzyko wystąpienia problemów związanych z zamarzaniem. Przykładem praktycznego zastosowania tej metody jest przygotowywanie betonu w zimowych warunkach budowlanych, gdzie podgrzewanie wody do około +20 °C oraz użycie ciepłego piasku może znacząco poprawić jakość i trwałość betonowych konstrukcji. Ważne jest, aby zawsze stosować się do wytycznych dotyczących temperatury składników oraz czasu ich mieszania, aby zapewnić optymalne warunki pracy.

Pytanie 36

Jaką izolację wykonano na fragmencie ściany przedstawionej na rysunku?

Ilustracja do pytania
A. Paroszczelną.
B. Przeciwwilgociową.
C. Przeciwdrganiową.
D. Termiczną.
Odpowiedź termiczna jest poprawna, ponieważ na przedstawionym rysunku widoczna jest warstwa materiału izolacyjnego, który jest powszechnie stosowany w budownictwie celu redukcji strat ciepła. Izolacja termiczna ma na celu utrzymanie optymalnej temperatury wewnątrz budynku, co przekłada się na komfort użytkowników oraz oszczędności energetyczne. W praktyce, materiał taki jak wełna mineralna, styropian czy pianka poliuretanowa jest umieszczany w ścianach, dachach i podłogach, aby zminimalizować wymianę ciepła z otoczeniem. Standardy, takie jak norma PN-EN 13162, określają wymagania dotyczące materiałów izolacyjnych, a ich odpowiedni dobór wpływa na efektywność energetyczną budynku. Dobrze zaprojektowana izolacja nie tylko poprawia komfort, ale również zmniejsza koszty ogrzewania i chłodzenia, co jest kluczowe w kontekście zrównoważonego budownictwa.

Pytanie 37

Izolacje przeciwwilgociowe lekki typ dla ściany piwnicy powinny być wykonane

A. z folii kubełkowej
B. z papy asfaltowej
C. z pojedynczej warstwy folii PVC
D. z dwóch warstw lepiku asfaltowego
Izolacje w piwnicach to naprawdę istotna sprawa, bo źle zrobione mogą prowadzić do problemów. Folia PVC niby jest wodoodporna, ale w piwnicach, gdzie woda gruntowa jest cały czas obecna, nie jest najlepszym rozwiązaniem. Moim zdaniem, może spowodować nieszczelności. Folia kubełkowa też jest popularna, ale nie jest to to samo co lepik asfaltowy. Często się myli, że jedna warstwa lepiku wystarczy, ale tak naprawdę dwie warstwy dają dużo lepszą ochronę przed wilgocią. Papa asfaltowa, mimo że można ją stosować, to nie jest tak skuteczna jak lepik w warunkach wysokiej wilgotności i wody gruntowej. Ważne jest, żebyśmy rozumieli, że dobór materiałów wpływa nie tylko na koszty, ale też na długowieczność budynku.

Pytanie 38

Do zdzierania starego tynku należy zastosować pacę przedstawioną na rysunku

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Prawidłowa odpowiedź to "A", ponieważ narzędzie oznaczone literą "A" to paca z kolcami, która jest idealnym narzędziem do usuwania starego tynku. Pacę tę charakteryzują wytrzymałe kolce, które wnikają w powierzchnię tynku, co pozwala na efektywne zdzieranie materiału. W praktyce, przy odpowiednim kącie i technice pracy, paca z kolcami umożliwia szybkie i skuteczne usunięcie starych powłok, co jest niezbędne przed nałożeniem nowego tynku. Warto również wspomnieć o standardach pracy w budownictwie, które zalecają usunięcie wszelkich luźnych elementów oraz zanieczyszczeń przed rozpoczęciem ponownego tynkowania. Oprócz tego, stosowanie odpowiednich narzędzi, jak paca z kolcami, pozwala na osiągnięcie lepszych efektów estetycznych i trwałości nowego tynku. To narzędzie jest szczególnie cenione w branży budowlanej za swoją wszechstronność i efektywność, co czyni je niezbędnym w arsenale każdego fachowca.

Pytanie 39

Jakie z podanych cegieł powinny być użyte do budowy lekkiej ścianki działowej o grubości 12 cm?

A. Ceramiczne pełne
B. Silikatowe pełne
C. Dziurawki
D. Klinkierowe
Dziurawki, czyli cegły ceramiczne z otworami, są idealnym materiałem do budowy lekkich ścianek działowych o grubości 12 cm. Dzięki swojej strukturze, dziurawki charakteryzują się niską masą oraz dobrą izolacyjnością akustyczną i termiczną. Otwory w cegle zmniejszają jej ciężar, co ma kluczowe znaczenie przy budowie ścianek działowych, gdzie nie ma potrzeby stosowania ciężkich materiałów. Zastosowanie takich cegieł pozwala na szybszy i łatwiejszy montaż ścianek, co przyspiesza cały proces budowy. Dodatkowo, dziurawki są często wykorzystywane w budownictwie ze względu na swoje dobre właściwości mechaniczne oraz łatwość w obróbce. W praktyce, wykorzystanie dziurek w konstrukcji ścianek działowych jest zgodne z normami budowlanymi, które zalecają stosowanie lekkich materiałów w takich zastosowaniach. Warto również zauważyć, że dziurawki są bardziej przyjazne dla środowiska, ponieważ często są produkowane z naturalnych surowców i mają niską emisję CO2 podczas produkcji.

Pytanie 40

Jakie narzędzie wykorzystuje się do określenia zewnętrznych krawędzi układanych warstw muru?

A. poziomica murarska
B. sznur murarski
C. pion murarski
D. kątownik murarski
Sznur murarski jest kluczowym narzędziem w budownictwie, szczególnie przy układaniu murów. Umożliwia on wyznaczenie prostoliniowego kierunku oraz poziomu krawędzi muru, co jest niezbędne do zapewnienia stabilności, estetyki i dokładności wykonania. Kiedy murarz naciąga sznur pomiędzy dwoma punktami, tworzy on linię odniesienia, która pozwala na precyzyjne układanie kolejnych cegieł lub bloczków. Dzięki temu można uniknąć ewentualnych błądów związanych z krzywym układaniem materiałów budowlanych. W praktyce, sznur murarski jest często używany w połączeniu z pionem murarskim i poziomicą murarską, aby zapewnić, że nie tylko poziom, ale także pion krawędzi muru jest prawidłowy. Często stosuje się go w budownictwie jednorodzinnym oraz w większych projektach budowlanych, gdzie precyzja wykonania ma kluczowe znaczenie dla późniejszych etapów budowy. Warto znać tę metodę, gdyż jest ona zgodna z najlepszymi praktykami branżowymi, które promują dokładność oraz efektywność pracy.