Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 21 lutego 2026 17:18
  • Data zakończenia: 21 lutego 2026 17:46

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Jaką średnicę powinien mieć siłownik jednostronnego działania o działaniu pchającym, by przy ciśnieniu 6 barów działał z siłą 1120 N?

WARTOŚCI SIŁ DZIAŁANIA SIŁOWNIKÓW KOMPAKTOWYCH
Średnica siłownika [mm]Siłowniki dwustronnego działania z jednostronnym tłoczyskiemSiłowniki dwustronnego działania z dwustronnym tłoczyskiemSiłowniki jednostronnego działania pchająceSiłowniki jednostronnego działania ciągnące
Siła pchająca przy zasilaniu 6 bar [N]Siła ciągnąca przy zasilaniu 6 bar [N]Siła pchająca przy zasilaniu 6 bar [N]Siła ciągnąca przy zasilaniu 6 bar [N]Siła pchająca przy zasilaniu 6 bar [N]Siła ciągnąca Sprężyny [N]Siła ciągnąca przy zasilaniu 6 bar [N]Siła pchająca Sprężyny [N]
121219191911106816
161219191911106816
2018814214214217471287
252952482482482701222412
324824154154154501638416
407546876876877082364223
501178105810581058112030100230
631869175017501750180035168235
803014282928292829295060271560
100471044204420442045201004231100
A. 80 mm
B. 63 mm
C. 50 mm
D. 100 mm
Poprawna odpowiedź to 50 mm, co oznacza, że siłownik jednostronnego działania o takim rozmiarze jest w stanie generować wystarczającą siłę przy ciśnieniu 6 barów. Aby to zrozumieć, warto przyjrzeć się wzorowi na siłę: F = P * A, gdzie F to siła, P to ciśnienie, a A to pole przekroju tłoka. Pole przekroju tłoka obliczamy ze wzoru A = π * (d/2)², gdzie d to średnica tłoka. Po przekształceniu wzoru, możemy obliczyć średnicę tłoka wymagającą dla konkretnych parametrów. Przy średnicy 50 mm, pole przekroju wynosi około 1,963 cm², co przy ciśnieniu 6 barów (co odpowiada 600 kPa) daje siłę równą 1178 N. Taka siła jest wystarczająca do osiągnięcia zamierzonego wyniku 1120 N, co czyni siłownik o średnicy 50 mm idealnym rozwiązaniem. W praktyce, dobór odpowiedniego siłownika jest kluczowy w aplikacjach takich jak automatyka przemysłowa, gdzie precyzja i moc są istotnymi czynnikami.

Pytanie 3

Jak należy skojarzyć w napędzie urządzenia mechatronicznego uzwojenie stojana silnika o przedstawionej tabliczce zaciskowej, obciążonego znamionowo i jak podłączyć do sieci 400 V 3/N/PE ~ 50 Hz, aby jego wał obracał się w lewo?

Ilustracja do pytania
A. W trójkąt i podłączyć U – L1, V – L3, W – L2
B. W gwiazdę i podłączyć U – L1, V – L3, W – L2
C. W gwiazdę i podłączyć U – L1, V – L2, W – L3
D. W trójkąt i podłączyć U – L1, V – L2, W – L3
Podłączenie silnika w gwiazdę (Y) nie jest odpowiednie, gdyż zmienia to charakterystykę pracy silnika i może nie zapewnić jego prawidłowego działania przy zamierzonym kierunku obrotów. W sytuacji, gdy podłączamy silnik w tę konfigurację, uzwojenia są połączone w taki sposób, że zmniejsza się napięcie na każdym z uzwojeń, co prowadzi do mniejszego momentu obrotowego. To z kolei skutkuje utrudnieniem osiągnięcia wymaganego kierunku rotacji. Typowym błędem jest nieprzemyślane podejście do koncepcji połączeń elektrycznych, gdzie operatorzy zakładają, że mogą dowolnie zmieniać konfigurację bez uwzględnienia więzi między napięciem a momentem obrotowym. W przypadku podłączenia, które sugeruje, aby L1, L2 i L3 były podłączone w różnych kombinacjach, często nie uwzględnia się, że zmiana jednolitego kierunku przepływu prądu jest kluczowa dla ustalenia kierunku obrotów, co w kontekście silników elektrycznych o budowie asynchronicznej jest fundamentalne. Przykłady nieprawidłowych połączeń mogą prowadzić do przegrzewania się silnika, co w konsekwencji może prowadzić do uszkodzeń i wyłączeń awaryjnych, co jest kosztowne dla przemysłu. Z tego powodu znajomość poprawnych metod podłączenia oraz ich wpływu na działanie silnika jest niezbędna w pracy na stanowiskach związanych z automatyką i elektrotechniką.

Pytanie 4

Jakich środków ochrony indywidualnej należy używać podczas wprasowywania ciasno pasowanych elementów przy użyciu prasy śrubowej przedstawionej na rysunku?

Ilustracja do pytania
A. Stoperów do ochrony słuchu.
B. Butów ochronnych.
C. Rękawic ochronnych i nauszników ochronnych.
D. Kasku ochronnego i okularów ochronnych.
Wybór niewłaściwych środków ochrony indywidualnej może prowadzić do poważnych konsekwencji zdrowotnych w trakcie pracy z prasą śrubową. Stopery do ochrony słuchu są ważne w środowiskach o wysokim poziomie hałasu, jednak w przypadku pracy z prasą, głównym zagrożeniem są uderzenia i odpryski. Nie zapewniają one ochrony przed mechanicznymi urazami, które są kluczowe w tej sytuacji. Buty ochronne, mimo że są istotne w wielu branżach, nie zabezpieczają głowy ani oczu, które są najbardziej narażone na obrażenia podczas wprasowywania elementów. Rękawice ochronne i nauszniki ochronne są również przydatne, jednak ich zastosowanie w kontekście pracy z prasą nie jest wystarczające, aby zminimalizować ryzyko urazów. Kluczowym zagadnieniem w ochronie osobistej jest zrozumienie, jakie zagrożenia występują w danym środowisku pracy i jakie środki ochrony są adekwatne do tych zagrożeń. Niezastosowanie odpowiednich środków, takich jak kask ochronny i okulary ochronne, może prowadzić do poważnych urazów, co podkreśla znaczenie właściwego doboru ochrony w kontekście specyficznych zagrożeń występujących w danym procesie produkcyjnym.

Pytanie 5

Na rysunku przedstawione zostały fragmenty dwóch elementów, które należy połączyć techniką połączenia wciskowego wtłaczanego. Jaka powinna być zależność pomiędzy wymiarami d1 i d2?

Ilustracja do pytania
A. dl > d2
B. dl = d2
C. dl ≤ d2
D. dl < d2
W odpowiedzi dl > d2 uznano, że średnica otworu (d2) musi być mniejsza od średnicy wału (d1) w połączeniu wciskowym wtłaczanym. Ta zasada jest fundamentalna dla zapewnienia stabilności i trwałości połączenia. W praktyce, podczas projektowania komponentów mechanicznych, inżynierowie często korzystają z tej zasady, aby zminimalizować ryzyko luzów i zapewnić odpowiednią siłę tarcia między elementami. Na przykład, w zastosowaniach motoryzacyjnych, takie jak łączenie wałów napędowych z osią, dokładne dopasowanie średnic jest kluczowe dla uniknięcia awarii i zwiększenia żywotności komponentów. W standardach branżowych, jak ISO lub ANSI, zaleca się określenie tolerancji wymiarowych, aby zminimalizować ryzyko nadmiernych naprężeń. Różnica pomiędzy wymiarami musi być starannie dobrana, aby umożliwić efektywne przekazywanie obciążeń, a jednocześnie unikać zbyt dużych naprężeń, które mogą prowadzić do deformacji lub pęknięć. Takie podejście jest zgodne z najlepszymi praktykami inżynieryjnymi, co podkreśla znaczenie właściwego doboru wymiarów w projektowaniu komponentów mechanicznych.

Pytanie 6

Jakie urządzenie powinno być wykorzystane do weryfikacji szczelności instalacji pneumatycznej?

A. Detektor z lampą UV
B. Ultradźwiękowy wykrywacz nieszczelności
C. Optyczny detektor nieszczelności
D. Detektor gazów
Ultradźwiękowy wykrywacz nieszczelności jest narzędziem szczególnie efektywnym w diagnozowaniu wycieków w instalacjach pneumatycznych. Działa na zasadzie analizy dźwięku, który generowany jest przez przepływ powietrza przez nieszczelności. W porównaniu do innych metod, wykrywacze ultradźwiękowe mają tę przewagę, że mogą wykrywać nieszczelności w trudnodostępnych miejscach, gdzie inne urządzenia mogą nie być w stanie zidentyfikować problemu. Przykładami ich zastosowania są inspekcje w zakładach produkcyjnych, gdzie utrzymanie ciśnienia w instalacjach pneumatycznych jest kluczowe dla efektywności operacyjnej. W branży przemysłowej standardy, takie jak ISO 50001, podkreślają znaczenie monitorowania i optymalizacji systemów pneumatycznych w celu zmniejszenia strat energii, co czyni ultradźwiękowe wykrywacze nieszczelności narzędziem zgodnym z najlepszymi praktykami w tym zakresie. Dodatkowo, użycie tego typu detektora pozwala na wczesne wykrycie problemów, co może prowadzić do znacznych oszczędności kosztów związanych z utrzymaniem i naprawą uszkodzeń.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Aby zweryfikować ciągłość układów elektrycznych, wykorzystuje się

A. omomierz
B. watomierz
C. woltomierz
D. amperomierz
Omomierz jest urządzeniem pomiarowym, które służy do pomiaru rezystancji elektrycznej, a jego zastosowanie w zakresie sprawdzania ciągłości połączeń elektrycznych jest kluczowe. W praktyce, omomierz jest wykorzystywany do wykrywania ewentualnych przerw w obwodach oraz oceny jakości połączeń. Na przykład, w instalacjach elektrycznych, przed oddaniem do użytkowania, ważne jest, aby sprawdzić, czy wszystkie połączenia są prawidłowo wykonane i czy nie występują utraty kontaktu. Normy takie jak PN-IEC 60364-6 podkreślają znaczenie przeprowadzania pomiarów ciągłości przewodów ochronnych, co można zrealizować właśnie przy pomocy omomierza. Warto również zauważyć, że pomiar ciągłości powinien być wykonywany w stanie nieenergetycznym instalacji, co zapewnia bezpieczeństwo oraz dokładność pomiarów. Umiejętność posługiwania się omomierzem w kontekście sprawdzania połączeń elektrycznych jest istotna dla każdego elektryka, a także dla osób zajmujących się konserwacją i przeglądami instalacji elektrycznych.

Pytanie 10

Jaka powinna być wartość znamionowego napięcia zasilania urządzenia, aby mogło być zasilane przez zasilacz impulsowy o charakterystyce obciążeniowej przedstawionej na rysunku?

Ilustracja do pytania
A. 60 V
B. 150 V
C. 80 V
D. 160 V
Wartość znamionowego napięcia zasilania wynosząca 150 V została określona na podstawie analizy charakterystyki obciążeniowej zasilacza impulsowego. Na wykresie można zauważyć, że przy tym napięciu zasilacz osiąga optymalny punkt pracy, co oznacza, że jego parametry są zgodne z wymaganiami urządzenia. Użycie napięcia 150 V jest istotne, ponieważ zasilacz impulsowy powinien działać w swoim zakresie znamionowym, aby zapewnić efektywność energetyczną oraz stabilność pracy. W praktyce, stosowanie zasilaczy impulsowych o odpowiednich wartościach znamionowych jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności urządzeń. Przykładem może być system zasilania w automatyce przemysłowej, gdzie zasilacz impulsowy o napięciu 150 V zasila różne komponenty, takie jak czujniki, siłowniki czy kontrolery. Dlatego ważne jest, aby dobierać zasilacze zgodnie z określonymi wartościami znamionowymi, co wpływa na ich długowieczność oraz minimalizuje ryzyko uszkodzenia sprzętu.

Pytanie 11

Aby maksymalnie zwiększyć zasięg przesyłania danych oraz ograniczyć wpływ zakłóceń elektromagnetycznych na transmisję w systemie mechatronicznym przy realizacji sterowania sieciowego, jaki kabel należy wykorzystać?

A. symetryczny nieekranowany (tzw. skrętka nieekranowana)
B. koncentryczny
C. światłowodowy
D. symetryczny ekranowany (tzw. skrętka ekranowana)
Kabel światłowodowy to naprawdę świetny wybór do sterowania sieciowego w systemach mechatronicznych. Szczególnie jeśli chodzi o przesył danych na długie odległości i zmniejszenie wpływu zakłóceń elektromagnetycznych. Wiesz, światłowody przesyłają sygnały jako impulsy świetlne, co sprawia, że są mniej podatne na zakłócenia niż tradycyjne kable miedziane. W automatyce przemysłowej, gdzie odległości między sprzętem mogą być naprawdę duże, to się przydaje. Kable te są odporne na zakłócenia elektryczne, więc idealnie nadają się do miejsc, gdzie są mocne pola elektromagnetyczne, jak w pobliżu maszyn elektrycznych. W dodatku mamy standardy komunikacyjne, takie jak 10GBASE-SR, które pokazują, że światłowody są super efektywne i wydajne, zwłaszcza na większych dystansach. Choć koszt zakupu jest wyższy na początku, długofalowo to się opłaca, bo są bardziej niezawodne i tańsze w eksploatacji.

Pytanie 12

Jakie jest medium robocze w systemie hydraulicznym?

A. energia elektryczna
B. olej pod ciśnieniem
C. powietrze sprężone
D. woda pod ciśnieniem
Olej pod ciśnieniem jest najczęściej stosowanym medium roboczym w układach hydraulicznych ze względu na swoje doskonałe właściwości smarne oraz zdolność do przenoszenia dużych obciążeń. W układach hydraulicznych olej działa jako nośnik energii, co pozwala na efektywne przekazywanie siły i momentu obrotowego. Dzięki dużej gęstości oraz niskiej kompresyjności, olej hydrauliczny zapewnia stabilność działania systemu hydraulicznego. Przykładem zastosowania oleju pod ciśnieniem może być hydraulika w maszynach budowlanych, takich jak koparki czy ładowarki, gdzie siły generowane przez siłowniki hydrauliczne są ogromne. W branży motoryzacyjnej olej hydrauliczny jest wykorzystywany w układach wspomagania kierownicy oraz w systemach hamulcowych. Praktyki dobrej konserwacji i regularnej wymiany oleju są kluczowe, aby zapewnić długowieczność i niezawodność systemów hydraulicznych, a także aby uniknąć awarii spowodowanych zanieczyszczeniami czy degradacją oleju.

Pytanie 13

W przedstawionym na rysunku siłowniku dwustronnego działania ruch tłoka odbywa się w kierunku wskazanym strzałką. Jaka komora oznaczona została literą B?

Ilustracja do pytania
A. Podtłokowa.
B. Tłoczna.
C. Spływowa.
D. Nadtłokowa.
Wybór odpowiedzi 'Tłoczna' jest trafny, ponieważ w siłownikach dwustronnego działania komora tłoczna to ta, do której dostarczane jest ciśnienie, aby poruszyć tłok w uzgodnionym kierunku. Na przedstawionym rysunku zauważamy, że strzałka wskazuje ruch tłoka w lewo, co sugeruje, że ciśnienie musi być wprowadzone do komory B, aby umożliwić ten ruch. W praktyce, systemy hydrauliczne i pneumatyczne często wykorzystują siłowniki do realizacji różnych czynności mechanicznych, takich jak podnoszenie, przesuwanie lub zaciskanie. Wiedza na temat działania komór w siłownikach jest niezbędna do projektowania i serwisowania urządzeń, które opierają swoje funkcjonowanie na takich mechanizmach. W branży automatyki i robotyki, standardy takie jak ISO 4413 dotyczące systemów hydraulicznych, podkreślają znaczenie zrozumienia poszczególnych komponentów systemu, w tym komór siłowników, co pozwala na ich efektywne i bezpieczne użytkowanie.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Na podstawie widoku płytki drukowanej i schematu ideowego wskaż który element należy zamontować w miejscu oznaczonym C3.

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Odpowiedź B jest poprawna, ponieważ na podstawie analizy schematu ideowego oraz widoku płytki drukowanej, element oznaczony jako C3 to kondensator o pojemności 100 µF. Kondensatory są kluczowymi elementami w obwodach elektronicznych, pełniącymi funkcję filtracji, przechowywania energii oraz stabilizacji napięcia. W kontekście tego pytania, zastosowanie kondensatora o pojemności 100 µF w miejscu C3 może być związane z zapewnieniem odpowiedniej stabilności napięcia zasilającego inne komponenty obwodu. Zgodnie z dobrymi praktykami projektowania elektroniki, wartość pojemności kondensatorów powinna być starannie dobrana, uwzględniając wymagania aplikacji, takie jak czas odpowiedzi oraz częstotliwość sygnałów. Jeśli w aplikacji kondensator ten ma za zadanie wygładzenie napięcia w zasilaczu, jego dobór musi być zgodny z wymaganiami prądowymi oraz charakterystyką obciążenia, co podkreśla znaczenie właściwego wyboru komponentów w projektowaniu obwodów elektronicznych.

Pytanie 17

Aby zmierzyć naprężenia normalne (ściśnięcia, rozciągnięcia), należy użyć

A. pirometru
B. tensometru
C. termometru
D. tachometru
Tensometr jest urządzeniem służącym do pomiaru naprężeń normalnych, takich jak ściskanie i rozciąganie. Działa na zasadzie pomiaru odkształceń, które następnie przelicza na wartości naprężeń zgodnie z zasadą Hooke'a. Dzięki temu, tensometry są niezwykle ważne w inżynierii mechanicznej i materiałowej, gdzie precyzyjne pomiary naprężeń są kluczowe dla oceny wytrzymałości materiałów oraz konstrukcji. Przykłady zastosowania tensometrów obejmują badania wytrzymałościowe elementów konstrukcyjnych, takich jak belki, stropy czy mosty. W standardach takich jak ISO 9513 określono metody kalibracji tensometrów, co pozwala na uzyskanie wiarygodnych wyników. Dobre praktyki w stosowaniu tensometrów obejmują również ich odpowiedni dobór do rodzaju materiału oraz warunków pomiarowych, co zapewnia rzetelność i dokładność uzyskanych wyników. Dodatkowo, stosowane są różne typy tensometrów, w tym tensometry foliowe, które umożliwiają pomiary na różnorodnych powierzchniach, co zwiększa ich wszechstronność w zastosowaniach inżynieryjnych.

Pytanie 18

Na podstawie tabeli określ, które czynności konserwacyjne powinny być wykonywane tylko raz w roku.

CzynnośćCykle
ŁożyskaKontrolowanie temperaturyCo godzinę
SmarowanieDwa razy w roku
CzyszczenieRaz w roku
Kontrola stanu
DławnicaKontrolowanie temperaturyCo godzinę
Kontrolowanie swobody ruchuDwa razy w roku
Smarowanie śrub i nakrętek
WyciekiKontrolaCo godzinę
CiśnieniomierzOdczyt stanuCo godzinę
KalibracjaRaz w roku
PrzepływomierzOdczyt stanuCo godzinę
KalibracjaRaz w roku
A. Kalibracja przyrządów pomiarowych.
B. Kontrola temperatury dławnicy i łożysk.
C. Smarowanie łożysk.
D. Kontrola ciśnienia i natężenia przepływu.
Kalibracja przyrządów pomiarowych, takich jak ciśnieniomierze czy przepływomierze, jest kluczowym elementem zapewnienia dokładności pomiarów w różnych procesach przemysłowych. Czynność ta powinna być przeprowadzana raz w roku, aby upewnić się, że urządzenia działają zgodnie z określonymi normami. W przypadku instrumentów pomiarowych, nieprawidłowe wskazania mogą prowadzić do poważnych konsekwencji, takich jak błędne monitorowanie ciśnienia lub przepływu, co z kolei może wpływać na efektywność produkcji lub bezpieczeństwo operacji. Przy kalibracji często stosuje się wzorce odniesienia, które spełniają międzynarodowe standardy, aby zapewnić, że wyniki są wiarygodne. Przykładowo, w przemyśle chemicznym, regularna kalibracja przyrządów pomiarowych jest wymagana przez standardy ISO, co zapewnia zgodność z regulacjami i minimalizuje ryzyko niezgodności produkcji.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Mocno podgrzana ciecz hydrauliczna wytwarza podczas awarii w słabo wentylowanym pomieszczeniu tzw. "mgłę olejową", która może prowadzić do różnych schorzeń

A. dermatologicznych
B. układu sercowego
C. układu pokarmowego
D. układu słuchu
Zrozumienie wpływu rozgrzanej cieczy hydraulicznej na zdrowie człowieka wymaga znajomości mechanizmów działania substancji chemicznych oraz ich skutków zdrowotnych. Odpowiedzi dotyczące narządu słuchu i serca są mylące, ponieważ mgła olejowa głównie działa na skórę, a nie na te narządy. Problemy ze słuchem mogą być wynikiem hałasu w środowisku pracy, nie zaś kontaktu z mgłą olejową. Mylne jest również myślenie, że mgła olejowa wpływa na serce; skutki zdrowotne związane z substancjami chemicznymi, takimi jak oleje hydrauliczne, nie są bezpośrednio związane z układem sercowo-naczyniowym. Do najczęstszych dolegliwości związanych z narażeniem na oleje i smary należą problemy dermatologiczne, związane z podrażnieniem skóry. Problemy z przewodem pokarmowym w tym kontekście także są nieprawidłowe, ponieważ substancje te nie są wprowadzane do organizmu doustnie, a ich wpływ na układ pokarmowy nie jest bezpośredni. Odpowiedź wskazująca na problemy dermatologiczne uwzględnia natomiast rzeczywiste ryzyko zdrowotne, które może wystąpić w wyniku kontaktu ze szkodliwymi substancjami w formie mgły olejowej.

Pytanie 21

Jaki aparat elektryczny jest wykorzystywany do ochrony silnika indukcyjnego przed przeciążeniem?

A. Wyłącznik różnicowoprądowy
B. Wyłącznik nadmiarowy
C. Przekaźnik termobimetalowy
D. Stycznik elektromagnetyczny
Wyłącznik nadmiarowy, stycznik elektromagnetyczny oraz wyłącznik różnicowoprądowy to urządzenia, które pełnią różne funkcje w systemach elektrycznych, ale nie są odpowiednie do zabezpieczenia silnika indukcyjnego przed przeciążeniem. Wyłącznik nadmiarowy, mimo że jest używany do ochrony przed przeciążeniem, działa na zasadzie automatycznego wyłączania obwodu przy przekroczeniu określonego prądu. Jednak nie jest on dostosowany do specyficznych warunków pracy silników indukcyjnych, gdzie ważne jest szybkie reagowanie na zmiany obciążenia. Stycznik elektromagnetyczny, z drugiej strony, służy do załączania i wyłączania obwodów elektrycznych, a jego zadanie polega na kontrolowaniu przepływu energii elektrycznej, a nie na monitorowaniu stanu przeciążenia. Wyłącznik różnicowoprądowy jest przeznaczony głównie do ochrony ludzi przed porażeniem prądem elektrycznym, a jego działanie opiera się na wykrywaniu różnicy prądu między przewodami zasilającymi, co nie ma związku z przeciążeniem silnika. Wybór niewłaściwego urządzenia do ochrony silnika może prowadzić do uszkodzenia sprzętu, a także do niebezpieczeństwa dla użytkowników. Dlatego ważne jest, aby w odpowiedni sposób dobierać komponenty zabezpieczające zgodnie z ich funkcjami oraz zaleceniami producentów i normami branżowymi.

Pytanie 22

Czujnik zbliżeniowy powinien być podłączony do cyfrowego wejścia sterownika PLC przy użyciu

A. klucza
B. lutownicy
C. szczypiec
D. wkrętaka
Odpowiedź "wkrętaka" jest poprawna, ponieważ narzędzie to jest niezbędne do dokręcania lub luzowania śrub, które często są używane do mocowania złączy i elementów w instalacjach elektrycznych, w tym w podłączaniu czujników do systemów PLC. W przypadku czujników zbliżeniowych, które mogą być montowane w różnych konfiguracjach, ważne jest, aby zapewnić solidne połączenie elektryczne. Użycie wkrętaka pozwala na precyzyjne i bezpieczne przymocowanie przewodów do zacisków sterownika PLC, co jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa i niezawodności połączeń elektrycznych. Niewłaściwe lub luźne połączenia mogą prowadzić do błędnych odczytów czujnika oraz innych problemów w systemie automatyki. W praktyce, często stosuje się wkrętaki o wymiennej końcówce, co umożliwia łatwe dostosowanie narzędzia do różnych typów śrub i zacisków, co zwiększa efektywność pracy na placu budowy czy w zakładzie produkcyjnym. Właściwa metoda podłączenia gwarantuje także dłuższą żywotność komponentów oraz ich prawidłowe działanie w różnych warunkach środowiskowych.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Jakim urządzeniem można zmierzyć siłę nacisku tłoka w siłowniku hydraulicznym?

A. termistorem
B. tensometrem
C. pirometrem
D. hallotronem
Tensometr to urządzenie pomiarowe, które wykorzystuje zjawisko zmiany oporu elektrycznego w wyniku odkształcenia materiału. W kontekście siłowników hydraulicznych, tensometry mogą być używane do precyzyjnego pomiaru siły nacisku tłoka, ponieważ siła ta powoduje odkształcenie elementu pomiarowego, co bezpośrednio wpływa na zmianę jego oporu. Dzięki temu, tensometry pozwalają na uzyskanie dokładnych i wiarygodnych wyników pomiarów, które są kluczowe w wielu zastosowaniach inżynieryjnych, takich jak automatyka przemysłowa, systemy hydrauliczne oraz testowanie materiałów. Przykładem zastosowania tensometrów w praktyce może być monitorowanie siły nacisku w maszynach do formowania, gdzie precyzyjna kontrola siły jest niezbędna do zapewnienia jakości produkcji. W branży inżynieryjnej stosuje się różne normy, takie jak ISO 376, które dotyczą metod pomiarowych przy użyciu tensometrów, co podkreśla ich znaczenie oraz zastosowanie w profesjonalnych pomiarach.

Pytanie 25

Które urządzenie ma symbol graficzny taki jak na rysunku?

Ilustracja do pytania
A. Filtr.
B. Zawór spustowy.
C. Smarownica.
D. Osuszacz powietrza.
Symbol graficzny przedstawiony na rysunku jednoznacznie wskazuje na smarownicę, która odgrywa kluczową rolę w utrzymaniu sprawności mechanizmów. Smarownice są stosowane w wielu branżach, w tym w motoryzacji, produkcji maszyn oraz w przemyśle lotniczym. Użycie smarów zmniejsza tarcie między ruchomymi elementami, co skutkuje zmniejszeniem zużycia, a tym samym wydłużeniem żywotności urządzeń. W praktyce, smarownice mogą być zintegrowane z systemami automatycznego smarowania, co pozwala na precyzyjne dawkowanie smaru, minimalizując ryzyko zarówno niedosmarowania, jak i przesmarowania. Zastosowanie symboli graficznych w dokumentacji technicznej jest zgodne z normami ISO, co ułatwia identyfikację urządzeń i ich funkcji. Przykłady zastosowań smarownic obejmują smarowanie łożysk, przekładni oraz innych elementów mechanicznych, gdzie kluczowe jest utrzymanie niskiego poziomu tarcia i zapobieganie uszkodzeniom.

Pytanie 26

W tabeli podano dane techniczne sterownika PLC Jakim maksymalnym prądem można obciążyć sterownik dołączając do jego wyjścia silnik?

Dane techniczne
Napięcie zasilająceAC/DC 24 V
Wejścia:
Zakres dopuszczalnyDC 20,4 ... 28,8 V
Przy sygnale „0"maks. AC/DC 5 V
Przy sygnale „1"min. AC/DC 12 V
Prąd wejściowy2,5 mA
Wyjścia:
Rodzaj4 przekaźnikowe
Prąd ciągły10 A - przy obciążeniu rezystancyjnym,
3 A - przy obciążeniu indukcyjnym
A. 10 A
B. 0,75 A
C. 3 A
D. 2,5 A
Wybór odpowiedzi, które wskazują na inne wartości prądu, może wynikać z kilku typowych błędów myślowych obowiązujących w temacie doboru komponentów do systemów automatyki. Podawanie wartości takich jak 0,75 A, 2,5 A czy 10 A może sugerować nieporozumienie dotyczące charakterystyki silników indukcyjnych oraz ich wymagań prądowych. Na przykład, wybranie niskiego prądu, jak 0,75 A, może wynikać z założenia, że silnik o niewielkiej mocy wymaga niewielkiego prądu. Jednakże, nawet małe silniki mogą mieć prąd rozruchowy, który jest znacznie wyższy od prądu nominalnego, co może prowadzić do uszkodzenia sterownika, jeśli jego maksymalny prąd nie jest wystarczający. Z kolei podanie 10 A jako limitu jest całkowicie błędne, ponieważ wiele typowych sterowników PLC nie jest zaprojektowanych do obsługi tak dużych obciążeń bez dodatkowych urządzeń zabezpieczających. Zrozumienie zasadności obliczeń dotyczących prądu oraz ich konsekwencji w praktyce jest kluczowe w doborze odpowiednich komponentów. W automatyce przemysłowej, ignorowanie tych zasad może prowadzić do poważnych uszkodzeń sprzętu, co z kolei wiąże się z kosztami naprawy oraz przestojami w produkcji. Dlatego, przed podłączeniem jakiegokolwiek obciążenia do sterownika, zawsze należy dokładnie zapoznać się z jego specyfikacjami technicznymi i warunkami pracy.

Pytanie 27

W układzie przedstawionym na schemacie zawór zasadniczy jest sterowany

Ilustracja do pytania
A. pneumatycznie przez spadek ciśnienia.
B. siłą mięśni.
C. pneumatycznie przez wzrost ciśnienia.
D. elektrycznie.
Zawór zasadniczy w układzie pneumatycznym działa na zasadzie wzrostu ciśnienia. To ważny element, bo kiedy ciśnienie w linii sterującej rośnie, to przesuwa elementy zaworu pomocniczego i zmienia stan zaworu zasadniczego. Taki sposób sterowania jest często stosowany w automatyce i inżynierii pneumatycznej, bo pozwala na skuteczne zarządzanie przepływem. Na przykład w przemyśle, gdzie automatyzacja działa sprawnie dzięki pneumatycznemu sterowaniu zaworami. To umożliwia szybkie i bezproblemowe procesy technologiczne. Warto też wspomnieć, że wiele inżynieryjnych aplikacji korzysta z zaworów regulujących ciśnienie, co zwiększa ich wszechstronność i funkcjonalność.

Pytanie 28

Charakterystykę I = f(U) diody półprzewodnikowej można uzyskać za pomocą oscyloskopu dwukanałowego w trybie

A. DC
B. AC
C. X/Y
D. X/T
Użycie trybu AC do analizy charakterystyki prądowo-napięciowej diody półprzewodnikowej jest niewłaściwe, ponieważ ten tryb oscyloskopu służy przede wszystkim do analizy sygnałów zmiennych. W trybie AC oscyloskop nie wyświetla sygnałów stałych, co ogranicza możliwość monitorowania prądów i napięć w nieliniowych elementach, takich jak diody, które wymagają analizy w pełnym zakresie napięć. Z kolei tryb DC pozwala na obserwację sygnałów stałych, ale nie umożliwia jednoczesnego przedstawienia prądu i napięcia na jednym wykresie, co jest kluczowe do zrozumienia charakterystyki diody. Opcja X/T również nie jest odpowiednia, gdyż ten tryb jest używany do analizy sygnałów czasowych, a nie do porównania dwóch zmiennych, jak w przypadku prądu i napięcia. Typowym błędem przy wyborze trybu oscyloskopu jest założenie, że wystarczy wybrać jakikolwiek tryb do analizy, nie biorąc pod uwagę specyfiki badanego elementu. Aby skutecznie analizować nieliniowe charakterystyki, konieczne jest zrozumienie, że odpowiedni tryb X/Y dostarcza najbardziej wartościowych informacji, które są niezbędne dla właściwej interpretacji wyników oraz projektowania układów elektronicznych.

Pytanie 29

Pompa hydrauliczna z tłokowymi elementami roboczymi jest przestawiona na rysunku

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Wybór innej opcji niż "D" wskazuje na brak zrozumienia fundamentalnych zasad działania pomp hydraulicznych z tłokowymi elementami roboczymi. Pompy te są zaprojektowane tak, aby wykorzystać ruch tłoków do przetłaczania cieczy, co nie jest charakterystyczne dla innych typów pomp, takich jak pompy zębate czy wirnikowe. Na przykład, pompy zębate opierają swoją pracę na przekładni mechanicznej, gdzie obracające się zęby przetłaczają ciecz, co nie daje możliwości osiągnięcia tak wysokiegociśnienia jak w przypadku tłokowych odpowiedników. Wybierając odpowiedzi, które nie odnoszą się do tłoków, można omyłkowo sądzić, że elementy wirujące lub zębate są równie skuteczne w kontekście wysokociśnieniowych zastosowań hydraulicznych. Powoduje to typowy błąd myślowy, w którym użytkownicy nie dostrzegają, że różne konstrukcje pomp mają różne zastosowania i ograniczenia, a ich wybór powinien być dostosowany do specyficznych warunków operacyjnych. Uzyskanie pełnego zrozumienia budowy i działania pomp hydraulicznych, w tym ich cech charakterystycznych, jest niezbędne dla inżynierów i techników, aby mogli efektywnie projektować i wdrażać systemy hydrauliczne w oparciu o standardy branżowe. Zrozumienie różnic między różnymi typami pomp jest kluczowe dla doboru odpowiednich urządzeń do konkretnej aplikacji, co ma istotny wpływ na wydajność i niezawodność całego systemu.

Pytanie 30

Narzędzie przedstawione na rysunku służy do

Ilustracja do pytania
A. odsysania spoiwa.
B. przedmuchiwania sprężonym powietrzem.
C. nitowania.
D. dozowania oleju.
Pompa do odsysania spoiwa, znana również jako odsysacz lutowniczy, jest kluczowym narzędziem w elektronice, zwłaszcza podczas lutowania i naprawy układów elektronicznych. Jej podstawowym zadaniem jest skuteczne usuwanie nadmiaru spoiwa z połączeń lutowniczych, co pozwala na uzyskanie czystszych i bardziej trwałych lutów. Przeprowadzając proces lutowania, szczególnie w przypadku małych elementów, może zdarzyć się, że spoiwo rozleje się lub złączy kilka padów, co prowadzi do zwarć. Odsysacz lutowniczy pozwala na szybkie i efektywne usunięcie nadmiaru materiału, co zwiększa jakość połączenia oraz minimalizuje ryzyko uszkodzenia komponentów. W praktyce, aby użyć odsysacza, wystarczy podgrzać spoiwo lutownicze, a następnie w odpowiednim momencie przyłożyć końcówkę odsysacza, która wciągnie płynne spoiwo. Narzędzie to jest zgodne z najlepszymi praktykami w branży, gdzie precyzja i czystość lutowania są kluczowe dla długoterminowej niezawodności urządzeń elektronicznych.

Pytanie 31

Na rysunku przedstawiono symbol czujnika

Ilustracja do pytania
A. indukcyjnego.
B. ultradźwiękowego.
C. magnetycznego.
D. mechanicznego.
Symbol przedstawiony na rysunku jest charakterystyczny dla czujników magnetycznych, które są szeroko stosowane w różnych dziedzinach technologii. Czujniki te działają na zasadzie wykrywania obecności pola magnetycznego, co pozwala na monitorowanie i kontrolowanie wielu procesów. Przykładem aplikacji czujników magnetycznych jest automatyka przemysłowa, gdzie są używane do detekcji pozycji elementów maszyn, takich jak drzwi czy klapki. Dodatkowo, w branży motoryzacyjnej czujniki te mogą być wykorzystywane do pomiaru prędkości obrotowej silników oraz w systemach ABS, gdzie monitorują prędkość kół. Warto również zauważyć, że czujniki magnetyczne wykorzystują zasady elektromagnetyzmu, co jest zgodne z normami branżowymi, takimi jak IEC 60947 dla urządzeń elektrycznych. Ich niezawodność i prostota w implementacji sprawiają, że są one preferowanym rozwiązaniem w wielu zastosowaniach inżynieryjnych.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Jakie jest zastosowanie przedstawionego na rysunku elementu?

Ilustracja do pytania
A. Zamiana prądu przemiennego na prąd stały.
B. Filtrowanie zakłóceń napięcia sieciowego.
C. Zamiana prądu przemiennego na prąd jednokierunkowy.
D. Obniżanie napięcia sieciowego.
Mostek prostowniczy, przedstawiony na rysunku, jest kluczowym elementem w konwersji prądu przemiennego (AC) na prąd stały (DC). Jego podstawowym zastosowaniem jest prostowanie sygnałów AC, co jest niezbędne w wielu aplikacjach elektronicznych. Na przykład, w zasilaczach do komputerów czy urządzeń elektronicznych, mostek prostowniczy jest często pierwszym krokiem w procesie przetwarzania energii elektrycznej. Dzięki czterem diodom, które są skonfigurowane w formie mostka, prąd przemienny przepływający przez ten element jest przekształcany w prąd jednokierunkowy, co pozwala na jego późniejsze wykorzystanie w obwodach wymagających napięcia stałego. Przykładem zastosowania mostka prostowniczego jest zasilanie silników prądu stałego, gdzie wymagany jest stabilny i jednorodny przepływ prądu. Zgodnie z najlepszymi praktykami w branży, odpowiednia dioda powinna być dobrana na podstawie maksymalnego napięcia i natężenia prądu, co zapewnia niezawodność i długowieczność urządzenia.

Pytanie 36

Urządzenie przedstawione na zdjęciu to

Ilustracja do pytania
A. transformator rozdzielczy.
B. transformator separacyjny.
C. transformator bezpieczeństwa.
D. autotransformator.
Transformator separacyjny, którego zdjęcie przedstawia analizowane urządzenie, pełni kluczową rolę w zapewnieniu bezpieczeństwa w instalacjach elektrycznych. Jego główną funkcją jest separacja obwodów elektrycznych, co oznacza, że nie przenosi energii elektrycznej bezpośrednio z jednego obwodu do drugiego, ale tworzy między nimi fizyczną barierę. Oznaczenia na tabliczce znamionowej (PRI: 230 V i SEC: 230 V) sugerują, że napięcie na wejściu i wyjściu jest identyczne, co jest charakterystyczne dla transformatorów separacyjnych. Takie transformatory znajdują zastosowanie w sytuacjach, gdzie kluczowe jest zminimalizowanie ryzyka porażenia prądem, na przykład w urządzeniach medycznych czy oświetleniu o niskim napięciu. Zgodnie z normami IEC 61558, transformatory separacyjne muszą spełniać określone wymagania dotyczące izolacji i bezpieczeństwa, co czyni je niezawodnym rozwiązaniem w wielu aplikacjach, w których technologia wymaga ochrony przed bezpośrednim kontaktem z napięciem sieciowym.

Pytanie 37

Podczas użytkowania urządzenia zaobserwowano wzrost hałasu spowodowany przez łożysko toczne. Naprawa sprzętu polega na

A. wymianie całego łożyska
B. wymianie osłony łożyska
C. zmniejszeniu luzów łożyska
D. redukcji nadmiaru smaru w łożysku
Wymiana całego łożyska jest właściwą odpowiedzią w kontekście zwiększonego hałasu, który wskazuje na problemy z łożyskiem tocznym. W przypadku uszkodzenia łożyska, jego wymiana jest najlepszym rozwiązaniem, ponieważ usunięcie i zastąpienie uszkodzonego elementu zapewnia długotrwałą efektywność działania urządzenia. Standardy branżowe, takie jak ISO 1940, wskazują na potrzebę wymiany łożysk, gdy wykazują one znaczące zużycie lub uszkodzenie, co może prowadzić do awarii mechanizmu. Przykładem może być sytuacja w przemyśle motoryzacyjnym, gdzie wymiana łożysk w silnikach oraz układach napędowych jest kluczowym elementem zapewniającym ich niezawodność. Dodatkowo, regularna kontrola stanu łożysk oraz ich wymiana zgodnie z zaleceniami producenta sprzętu są najlepszą praktyką, co przekłada się na wydłużenie cyklu życia maszyn i zmniejszenie ryzyka awarii.

Pytanie 38

Jaką metodę należy wykorzystać do połączenia szkła z metalem?

A. Spawanie
B. Zgrzewanie
C. Nitowanie
D. Klejenie
Klejenie to najskuteczniejsza metoda łączenia szkła z metalem ze względu na różnice w ich właściwościach fizycznych i chemicznych. Szkło jest materiałem kruchym, a metal - plastycznym, co sprawia, że tradycyjne metody, takie jak zgrzewanie czy spawanie, mogą prowadzić do uszkodzenia szkła. Klejenie wykorzystuje specjalistyczne kleje, które tworzą mocne, elastyczne połączenie, a także mogą dostosować się do różnic w rozszerzalności cieplnej obu materiałów. W praktyce, odpowiednie kleje epoksydowe lub akrylowe są często stosowane do takich aplikacji, umożliwiając trwałe i estetyczne łączenie. W branży budowlanej i w przemyśle, klejenie szkła do metalowych elementów jest powszechnie stosowane w oknach strukturalnych, elewacjach oraz w produkcji mebli. Dobrą praktyką jest również stosowanie gruntów, które poprawiają adhezję kleju do powierzchni, co zwiększa trwałość i odporność połączenia na różne czynniki zewnętrzne. Takie podejście jest zgodne z normami ISO dotyczących klejenia i pozwala na uzyskanie wysokiej jakości połączeń.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

W układzie przedstawionym na rysunku, przy temperaturze 20 stopni C przez cewkę przekaźnika prąd nie płynie, a jego styki są rozwarte. Aby nastąpiło zwarcie styków przekaźnika

Ilustracja do pytania
A. rezystancja rezystora powinna wzrosnąć.
B. napięcie zasilające powinno zmaleć.
C. temperatura termistora powinna wzrosnąć.
D. temperatura termistora powinna zmaleć.
Odpowiedź dotycząca wzrostu temperatury termistora PTC jest prawidłowa, ponieważ w układach elektronicznych, termistory PTC zmieniają swoją rezystancję w zależności od temperatury otoczenia. W miarę wzrostu temperatury, ich rezystancja rośnie, co skutkuje zwiększeniem napięcia na bazie tranzystora BD139. Kiedy napięcie to osiąga odpowiedni poziom, tranzystor przechodzi w stan przewodzenia, co aktywuje przekaźnik i zamyka styki. Tego rodzaju mechanizm jest powszechnie wykorzystywany w automatyzacji, gdzie kontrola temperatury jest kluczowa, na przykład w systemach grzewczych, klimatyzacyjnych czy chłodniczych. W praktyce, odpowiednie korzystanie z termistorów PTC pozwala na automatyczne włączanie lub wyłączanie urządzeń w zależności od warunków temperaturowych, co przyczynia się do oszczędności energetycznych oraz bezpieczeństwa urządzeń. Dobrą praktyką w projektowaniu takich systemów jest zapewnienie odpowiedniego zabezpieczenia przed przegrzaniem, a także monitorowanie pracy układu przez czujniki temperatury, co zwiększa niezawodność całego systemu.