Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 8 grudnia 2025 08:31
  • Data zakończenia: 8 grudnia 2025 09:04

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który łącznik przedstawiono na rysunku?

Ilustracja do pytania
A. Świecznikowy.
B. Podwójny krzyżowy.
C. Dwubiegunowy.
D. Podwójny schodowy.
Wybór odpowiedzi, która nie jest prawidłowa, często wynika z nieporozumienia dotyczącego funkcji różnorodnych rodzajów łączników elektrycznych. Na przykład, łącznik dwubiegunowy jest zaprojektowany do włączania i wyłączania jednego obwodu elektrycznego, co nie odpowiada funkcjonalności łącznika podwójnego schodowego, który umożliwia kontrolę dwóch niezależnych obwodów. Inna niepoprawna odpowiedź, łącznik świecznikowy, jest stosowany w instalacjach oświetleniowych, ale jego zastosowanie jest ograniczone do sterowania jednym źródłem światła w różnych punktach z jednego miejsca. Z kolei łącznik podwójny krzyżowy służy do bardziej zaawansowanej konfiguracji, gdzie możliwe jest sterowanie jednym źródłem światła z trzech lub więcej miejsc, jednak nie jest odpowiedni dla prostych instalacji schodowych. Użytkownicy, wybierając te błędne odpowiedzi, mogą mylić funkcje różnych łączników lub nie mieć pełnej wiedzy na temat ich zastosowania. Kluczowe jest zrozumienie, że w przypadku schodów, gdzie bezpieczeństwo i wygoda są priorytetami, zastosowanie łącznika podwójnego schodowego jest najbardziej odpowiednie. Właściwa instalacja zgodna z przepisami i standardami bezpieczeństwa zapewnia efektywne i bezpieczne oświetlenie, co może być pomijane w przypadku niewłaściwego doboru łączników.

Pytanie 2

Której piły należy użyć do przycięcia korytka instalacyjnego?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Wybór złej piły do cięcia korytek może narobić bałaganu. Piły A, B czy D, które są raczej do drewna, nie nadają się do metalu. Jak próbujesz nimi ciąć metal, to wyjdziesz na tym źle - krawędzie będą postrzępione i to nie będzie ładnie wyglądać, a potem może być problem z montażem, bo elementy mogą się nie łączyć prawidłowo. Co więcej, cięcie metalu wymaga więcej siły, co może być męczące, a nawet grozić kontuzjami. Używanie piły do drewna do metalu to też szybkie zużycie narzędzia, a to niepotrzebnie zwiększa koszty. Dlatego tak ważne jest, żeby wiedzieć, które narzędzia do czego używać, bo to wpływa nie tylko na efektywność, ale i bezpieczeństwo podczas pracy.

Pytanie 3

Którego typu gniazda elektrycznego dotyczy symbol graficzny przedstawiony na ilustracji?

Ilustracja do pytania
A. Trójfazowego bez styku ochronnego.
B. Jednofazowego ze stykiem ochronnym.
C. Jednofazowego bez styku ochronnego.
D. Trójfazowego ze stykiem ochronnym.
Wybór niewłaściwej odpowiedzi może wynikać z nieporozumień dotyczących klasyfikacji gniazd elektrycznych. Gniazda jednofazowe bez styku ochronnego oraz gniazda trójfazowe, zarówno z jak i bez styku ochronnego, różnią się zasadniczo pod względem zastosowania i bezpieczeństwa. Gniazda jednofazowe bez styku ochronnego, mimo że są popularne w niektórych aplikacjach, nie zapewniają ochrony przed porażeniem, co czyni je mniej bezpiecznymi w zastosowaniach, gdzie ryzyko kontaktu z prądem jest wyższe. Gniazda trójfazowe, z kolei, są projektowane do zasilania większych urządzeń przemysłowych i wymagają zastosowania specjalistycznych wtyczek oraz kabli. W kontekście domowym lub w małych biurach, gniazda trójfazowe są zazwyczaj zbędne, a ich używanie bez odpowiedniego uzasadnienia może prowadzić do nieefektywności energetycznej. Często błędne wybory wynikają z mylnego założenia, że większa liczba faz przekłada się na lepsze parametry elektryczne w każdej sytuacji. Należy pamiętać, że dobór odpowiedniego gniazda elektrycznego powinien być oparty na specyfikacji urządzeń, które mają być podłączone, oraz na obowiązujących normach bezpieczeństwa. Zrozumienie tych podstawowych zasad jest kluczowe do uniknięcia potencjalnych zagrożeń i nieprawidłowości w instalacjach elektrycznych.

Pytanie 4

Który z podanych odbiorników energii elektrycznej charakteryzuje się najkorzystniejszym współczynnikiem mocy w aspekcie ekonomicznym?

A. Wzbudnik indukcyjny
B. Silnik uniwersalny
C. Silnik asynchroniczny
D. Piec oporowy
Wybór silnika uniwersalnego, wzbudnika indukcyjnego czy silnika asynchronicznego jako bardziej korzystnego z punktu widzenia współczynnika mocy jest mylny, ponieważ te urządzenia charakteryzują się istotnymi stratami energii i niższym współczynnikiem mocy, zazwyczaj wynoszącym od 0,6 do 0,9. Silnik uniwersalny, używany głównie w zastosowaniach domowych, takich jak odkurzacze, ma zdolność do pracy zarówno na prądzie stałym, jak i zmiennym, lecz jego zmienna charakterystyka obciążenia oraz niskie wartości współczynnika mocy w niektórych stanach roboczych obniżają jego efektywność energetyczną. Wzbudnik indukcyjny, stosowany głównie w aplikacjach wymagających regulacji, takich jak prądnice, może generować znaczące straty energii ze względu na zjawiska indukcyjne, co również wpływa na jego korzystność ekonomiczną. Silnik asynchroniczny, popularny w przemyśle, ma relatywnie dobry współczynnik mocy, ale wciąż nie osiąga efektywności pieca oporowego, a jego zastosowania często wymagają dodatkowych układów kompensacyjnych, które zwiększają koszty. Wybierając odpowiednie urządzenie, warto zwrócić uwagę na jego zastosowanie, a także na możliwe straty energii, które mogą znacząco wpłynąć na całkowity koszt eksploatacji.

Pytanie 5

Kontrolę przeciwpożarową wyłącznika prądu powinno się przeprowadzać w terminach określonych przez producenta, jednak nie rzadziej niż raz na

A. pięć lat
B. dwa lata
C. rok
D. trzy lata
Regularne przeglądy przeciwpożarowe wyłączników prądu są kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych. Zgodnie z przepisami i zaleceniami producentów, przegląd powinien być przeprowadzany nie rzadziej niż raz do roku, co pozwala na wykrycie i naprawę ewentualnych usterek, które mogą prowadzić do poważnych zagrożeń. Przykładowo, niewłaściwe działanie wyłącznika może skutkować brakiem ochrony przed przeciążeniem lub zwarciem, co w skrajnych przypadkach prowadzi do pożaru. Warto również pamiętać, że w obiektach o wysokim ryzyku pożarowym, takich jak zakłady przemysłowe czy magazyny, częstotliwość przeglądów może być jeszcze wyższa, aby zapewnić maksymalne bezpieczeństwo. Współczesne normy i standardy branżowe, takie jak norma PN-EN 61439, podkreślają znaczenie regularnych inspekcji i konserwacji urządzeń elektrycznych w kontekście ochrony przeciwpożarowej. Praktyka ta nie tylko chroni mienie, ale również życie ludzi, co czyni ją niezbędnym elementem zarządzania bezpieczeństwem w każdym przedsiębiorstwie.

Pytanie 6

Jaką wartość ma znamionowa sprawność silnika jednofazowego, którego dane to: PN = 3,7 kW (moc mechaniczna na wale), UN = 230 V, IN = 21,4 A, cos φ = 0,95?

A. 0,75
B. 0,71
C. 0,79
D. 0,95
Znamionowa sprawność silnika jednofazowego wynosi 0,79, co oznacza, że 79% energii elektrycznej dostarczonej do silnika przekształca się w moc mechaniczną na wale. Obliczenie sprawności silnika można przeprowadzić na podstawie wzoru: η = P_N / (U_N * I_N * cos φ), gdzie P_N to moc mechaniczna na wale, U_N to napięcie znamionowe, I_N to prąd znamionowy, a cos φ to współczynnik mocy. Dla tego silnika mamy: η = 3,7 kW / (230 V * 21,4 A * 0,95) = 0,79. Taka sprawność jest typowa dla silników elektrycznych, które są projektowane z myślą o jak najwyższej efektywności energetycznej. W praktyce, silniki o wysokiej sprawności są szczególnie poszukiwane w przemyśle, ponieważ pozwalają na znaczne oszczędności kosztów energii, a także redukcję emisji CO2. W dobie rosnących cen energii elektrycznej i rosnącej presji na ochronę środowiska, wybór silników o wysokiej sprawności staje się kluczowy.

Pytanie 7

Określ sposób podłączenia łącznika przedstawionego na fotografii, aby w układzie, którego schemat przedstawiono na rysunku, zapewnione było sterowanie oświetleniem z trzech niezależnych miejsc.

Ilustracja do pytania
A. I-1, II-2, III-3, IV-4
B. I-2, II-4, III-1, IV-3
C. I-4, II-3, III-2, IV-1
D. I-1, II-4, III-2, IV-3
Analizując zastosowane podejścia w niepoprawnych odpowiedziach, widać, że błędnie interpretują one zasady dotyczące podłączenia łącznika krzyżowego. Wiele osób może mylnie sądzić, że wystarczy zamienić miejscami wejścia i wyjścia bez zrozumienia ich funkcji. Na przykład, konfiguracja I-2, II-4, III-1, IV-3 sugeruje, że wejście 2 pełni rolę głównego źródła sygnału, co jest niezgodne z funkcją łącznika krzyżowego. Tego typu błędne myślenie można przypisać braku zrozumienia, jak sygnały elektryczne przepływają przez system, co prowadzi do nieprawidłowego sterowania oświetleniem. Kolejnym typowym błędem jest nieodróżnianie między funkcją wejść a wyjść łącznika. Wejścia 1 i 4 mają za zadanie przyjmować sygnały sterujące, a wyjścia 2 i 3 są odpowiedzialne za przekazywanie energii do oświetlenia. Niezrozumienie tej struktury może prowadzić do nieefektywnego działania całego układu oraz problemów z instalacją. Ważne jest, aby zrozumieć, że każdy element ma swoją określoną rolę w systemie elektrycznym i nie można dowolnie zmieniać ich funkcji bez konsekwencji dla bezpieczeństwa i wydajności instalacji.

Pytanie 8

Który pomiar można wykonać w instalacji elektrycznej przedstawionym na rysunku przyrządem pomiarowym typu MRU-20?

Ilustracja do pytania
A. Prądu różnicowego wyłącznika różnicowoprądowego.
B. Rezystancji izolacji przewodów fazowych.
C. Rezystancji uziomu ochronnego.
D. Impedancji pętli zwarcia.
Odpowiedź "rezystancji uziomu ochronnego" jest prawidłowa, ponieważ przyrząd pomiarowy MRU-20 jest specjalnie zaprojektowany do pomiaru rezystancji uziomu. Uziomy ochronne mają kluczowe znaczenie dla bezpieczeństwa instalacji elektrycznych, ponieważ zapewniają odprowadzenie prądów zwarciowych do ziemi, minimalizując ryzyko porażenia prądem elektrycznym oraz uszkodzenia urządzeń. Pomiar rezystancji uziomu ochronnego powinien odbywać się zgodnie z obowiązującymi normami, takimi jak PN-EN 61557-5, która określa metody pomiaru i dopuszczalne wartości rezystancji dla uziemienia. Zgodnie z tą normą, dla efektywnego zabezpieczenia zaleca się, aby rezystancja uziomu nie przekraczała 10 Ω, jednak w niektórych sytuacjach wartość ta może być niższa. W praktyce, przy pomocy MRU-20 można wykonać pomiary w różnych warunkach, zarówno w instalacjach nowo budowanych, jak i istniejących, co pozwala na bieżące kontrolowanie stanu ochrony przeciwporażeniowej.

Pytanie 9

Na którym rysunku przedstawiono źródło światła z trzonkiem typu B?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Wybór odpowiedzi, która nie wskazuje na źródło światła z trzonkiem typu B, może wynikać z nieznajomości podstawowych różnic między różnymi typami trzonków. Trzonek igiełkowy, jak w przypadku odpowiedzi B, ma zupełnie inny mechanizm mocowania, który polega na osadzeniu żarówki w oprawie poprzez włożenie jej w odpowiednie gniazdo, a nie na blokowaniu poprzez wystające elementy. Tego typu trzonki są popularne w halogenach, które charakteryzują się większą efektywnością energetyczną, ale nie są kompatybilne z oprawami zaprojektowanymi dla trzonków baionetowych. Świetlówki, przedstawione w odpowiedzi C, wykorzystują całkowicie odmienną technologię, opartą na zasadzie wyładowania elektrycznego, co czyni je nieodpowiednimi dla zastosowań wymagających trzonka typu B. Na zakończenie, trzonek gwintowy, jak w przypadku odpowiedzi D, jest powszechnie używany w tradycyjnych żarówkach i różni się konstrukcyjnie oraz funkcjonalnie od trzonka baionetowego, co może prowadzić do błędnych założeń o kompatybilności. Kluczowym błędem w ocenie tej kwestii jest nieprawidłowe rozumienie różnorodności typów trzonków w kontekście ich zastosowań, co może prowadzić do niewłaściwych wyborów przy zakupie źródeł światła.

Pytanie 10

W zakres inspekcji instalacji elektrycznej nie wchodzi

A. weryfikacja poprawności oznaczeń przewodów neutralnych oraz ochronnych
B. sprawdzenie oznaczeń obwodów i urządzeń zabezpieczających
C. pomiar rezystancji uziemienia
D. ocena dostępu do urządzeń, co umożliwia ich wygodną obsługę oraz eksploatację
Pomiar rezystancji uziemienia to kluczowy element zapewnienia bezpieczeństwa i prawidłowego funkcjonowania instalacji elektrycznych. Uziemienie ma na celu odprowadzenie nadmiaru prądu do ziemi, co chroni przed porażeniem elektrycznym i uszkodzeniem urządzeń. Przykładowo, w instalacjach przemysłowych, gdzie stosowane są maszyny o wysokich mocach, pomiar rezystancji uziemienia jest niezbędny do zapewnienia, że układ uziemiający jest skuteczny. Zgodnie z normą PN-EN 61557-4, rezystancja uziemienia powinna być mniejsza niż 10 Ω, co zapewnia odpowiednią ochronę przed skutkami udarów elektrycznych. Regularne pomiary rezystancji uziemienia pozwalają na wczesne wykrywanie problemów, takich jak korozja elementów uziemiających, co może prowadzić do ich degradacji. W praktyce, takie pomiary powinny być przeprowadzane co najmniej raz w roku lub częściej w przypadku instalacji narażonych na zmienne warunki atmosferyczne. Właściwe utrzymanie systemu uziemiającego jest nie tylko wymogiem prawnym, ale także kluczowym elementem ochrony osób i mienia.

Pytanie 11

W układzie przedstawionym na rysunku łącznik nie powoduje wyłączenia żarówki. W celu zdiagnozowania usterki wykonano pomiary, których wyniki zapisano w tabeli.

Lp.Pomiar rezystancji między punktamiWartość
Ω
12 – 30
23 – 50
35 – 6 (łącznik w pozycji otwarty)0
45 – 6 (łącznik w pozycji zamknięty)0
54 – 70
Ilustracja do pytania
A. zwarcie międzyprzewodowe między punktami 5 – 6.
B. niepewne zamocowanie puszki rozgałęźnej do podłoża.
C. uszkodzenie przewodu między punktami 2 – 3.
D. przerwa w przewodzie neutralnym.
Wybór odpowiedzi dotyczącej uszkodzenia przewodu między punktami 2 – 3 jest często wynikiem błędnego rozumienia pojęcia obwodu elektrycznego oraz sposobu działania łączników. Użytkownicy mogą myśleć, że każde uszkodzenie przewodu prowadzi do braku działania urządzenia, jednak w przypadku otwartego obwodu żarówka nie świeci. Z drugiej strony, niepewne zamocowanie puszki rozgałęźnej do podłoża nie ma wpływu na działanie obwodu elektrycznego, gdyż fizyczne położenie nie wpływa na przewodnictwo elektryczne, o ile połączenia są właściwie wykonane. Podobnie, przerwa w przewodzie neutralnym może wydawać się problematyczna, jednak w przypadku obwodu z żarówką i wyłącznikiem nie spowoduje stałego świecenia. Kluczowym błędem myślowym jest przypisywanie problemów z oświetleniem do uszkodzeń przewodów, gdy w rzeczywistości może to być efekt zwarcia, jak wskazuje analiza pomiarów. Takie myślenie wprowadza w błąd i może prowadzić do nieprawidłowych diagnoz oraz nieefektywnego usuwania usterek w instalacji elektrycznej. W celu uniknięcia takich pomyłek, ważne jest zrozumienie działania obwodów oraz umiejętność analizy wyników pomiarów, co powinno być częścią każdych badań nad układami elektrycznymi.

Pytanie 12

Którą wstawkę kalibrową należy zastosować w bezpieczniku o wkładce topikowej pokazanej na rysunku?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Odpowiedź C jest prawidłowa, ponieważ wstawka kalibrowa posiada oznaczenie zgodne z parametrami wkładki topikowej bezpiecznika, która wynosi 25A przy napięciu 500V. W przypadku bezpieczników, kluczowe jest, aby zastosowana wstawka kalibrowa odpowiadała nominalnym wartościom prądu i napięcia. W przeciwnym razie, może to prowadzić do niewłaściwego działania obwodu elektrycznego, co w konsekwencji może spowodować uszkodzenie urządzeń lub stanowić zagrożenie dla bezpieczeństwa. Stosując odpowiednią wkładkę, zapewniamy, że obwód będzie chroniony przed przeciążeniami oraz zwarciami, co jest zgodne z normami bezpieczeństwa elektrycznego. Wiedza na temat doboru odpowiednich wkładek kalibrowych jest niezbędna w każdej instalacji elektrycznej; pozwala to na zminimalizowanie ryzyka awarii oraz zapewnienie długotrwałej i stabilnej pracy urządzeń elektrycznych.

Pytanie 13

Której końcówki wkrętaka należy użyć do demontażu wyłącznika nadprądowego z szyny TH 35?

Ilustracja do pytania
A. Końcówki 2.
B. Końcówki 1.
C. Końcówki 3.
D. Końcówki 4.
Wybór niewłaściwej końcówki wkrętaka do demontażu wyłącznika nadprądowego z szyny TH 35 może prowadzić do szeregu problemów technicznych oraz zwiększenia ryzyka uszkodzeń. Końcówki 1., 3. i 4. są nieodpowiednie, ponieważ mają różne kształty, które nie są dostosowane do typowych złączy śrubowych stosowanych w tej aplikacji. Końcówka 1. najprawdopodobniej jest typu krzyżowego lub pozbawiona odpowiedniej płaskości, co utrudni prawidłowe wkręcanie czy wykręcanie. Z kolei końcówki 3. i 4. mogą być przeznaczone do specyficznych zastosowań, takich jak śruby torx czy inne nietypowe złącza, a ich użycie w montażu wyłączników nadprądowych może spowodować uszkodzenia elementów lub niepewne połączenia. Błędem myślowym jest zatem założenie, że wszelkie końcówki mogą być stosowane zamiennie, co jest sprzeczne z dobrymi praktykami w branży elektroinstalacyjnej. W praktyce kluczowe jest korzystanie z narzędzi, które są odpowiednio dobrane do specyfiki i standardów instalacji, aby zapewnić bezpieczeństwo oraz niezawodność działania urządzeń. Niezastosowanie się do tych zasad może prowadzić do awarii systemu elektrycznego oraz stwarzać ryzyko wystąpienia zagrożeń, takich jak zwarcia czy przegrzanie.

Pytanie 14

Jakie napięcie należy stosować podczas określania rezystancji izolacji w obwodach SELV lub PELV?

A. 1000 V
B. 750 V
C. 250 V
D. 500 V
Odpowiedź 250 V jest prawidłowa, ponieważ w obwodach SELV (Safety Extra Low Voltage) i PELV (Protected Extra Low Voltage) stosuje się ograniczone napięcia, które nie mogą przekraczać wartości 250 V przy pomiarze rezystancji izolacji. Te standardy są zgodne z międzynarodowymi zasadami bezpieczeństwa, takimi jak normy IEC 60364. W praktyce, pomiar rezystancji izolacji w obwodach SELV i PELV przy napięciu 250 V pozwala na zapewnienie bezpieczeństwa użytkowników i minimalizowanie ryzyka porażenia prądem. Przykładem zastosowania tego typu pomiarów jest inspekcja instalacji elektrycznych w obiektach użyteczności publicznej, gdzie kluczowe jest utrzymanie wysokiego poziomu ochrony. Dodatkowo, w obwodach SELV i PELV, które są zazwyczaj używane w aplikacjach niskonapięciowych, zaleca się regularne kontrole rezystancji izolacji, aby wykryć ewentualne uszkodzenia oraz degradację izolacji, co jest niezbędne dla zapewnienia długoterminowej niezawodności i bezpieczeństwa systemów elektrycznych.

Pytanie 15

Kiedy należy dokonać przeglądu instalacji elektrycznej w obiekcie przemysłowym?

A. Tylko przed uruchomieniem nowych maszyn
B. Po każdej naprawie maszyn
C. Co pięć lat
D. Co najmniej raz na rok
Przegląd instalacji elektrycznej w obiektach przemysłowych powinien być dokonywany co najmniej raz na rok. Częstotliwość ta jest zgodna z normami i przepisami dotyczącymi bezpieczeństwa w przemyśle, które wymagają regularnych przeglądów w celu zapewnienia bezpiecznego i efektywnego działania instalacji. Przykładowo, roczne przeglądy pozwalają na wczesne wykrycie potencjalnych uszkodzeń, które mogą prowadzić do awarii lub zagrożeń dla bezpieczeństwa pracowników. Dodatkowo, regularne przeglądy umożliwiają identyfikację zużycia podzespołów i przewodów, co jest kluczowe w kontekście ich konserwacji i wymiany. W praktyce, podczas takiego przeglądu sprawdza się m.in. stan izolacji przewodów, działanie zabezpieczeń oraz poprawność połączeń, co ma na celu zminimalizowanie ryzyka porażenia prądem czy pożaru. Ponadto, zgodnie z dobrymi praktykami branżowymi, przeglądy roczne są uznawane za minimalny standard dla utrzymania optymalnego stanu technicznego instalacji w intensywnie eksploatowanych środowiskach przemysłowych.

Pytanie 16

Aby chronić przewód przed przeciążeniem i zwarciem, wykorzystuje się wyłącznik

A. z wyzwalaczami przeciążeniowymi oraz zwarciowymi
B. posiadający aparat różnicowoprądowy
C. który działa z przekaźnikiem czasowym
D. który współdziała z przekaźnikiem sygnalizacyjnym
Wyłącznik zabezpieczający przewody przed przeciążeniem i zwarciem jest kluczowym elementem systemu elektroinstalacyjnego. Właściwie dobrany wyłącznik, wyposażony w wyzwalacze przeciążeniowe i zwarciowe, automatycznie odcina zasilanie w przypadku, gdy prąd przekroczy dozwoloną wartość. Wyzwalacze przeciążeniowe działają na zasadzie detekcji nadmiernego natężenia prądu, co może prowadzić do przegrzania przewodów i ryzyka pożaru. Z kolei wyzwalacze zwarciowe są odpowiedzialne za natychmiastowe odłączenie obwodu w przypadku zwarcia, co chroni zarówno urządzenia, jak i instalację elektryczną. Przykładem zastosowania takiego wyłącznika może być jego instalacja w domowych instalacjach elektrycznych, gdzie chroni obwody zasilające gniazda elektryczne i urządzenia gospodarstwa domowego. Zgodnie z normami IEC oraz polskimi standardami, instalacje powinny być zabezpieczone przed skutkami przeciążeń i zwarć, co podkreśla znaczenie tego typu wyłączników w zapewnieniu bezpieczeństwa.

Pytanie 17

Które urządzenie przedstawiono na ilustracji?

Ilustracja do pytania
A. Automat zmierzchowy.
B. Regulator temperatury.
C. Przekaźnik priorytetowy.
D. Przekaźnik czasowy.
Urządzenie przedstawione na ilustracji to przekaźnik czasowy, co można stwierdzić na podstawie charakterystycznych oznaczeń obecnych na jego obudowie, w tym symboli związanych z czasem oraz pokręteł służących do ustawiania opóźnień. Przekaźniki czasowe są kluczowymi elementami w systemach automatyki, umożliwiającymi kontrolowanie działania urządzeń w określonych odstępach czasu. Na przykład, w instalacjach oświetleniowych, przekaźniki czasowe mogą być ustawiane tak, aby włączać światło o zmierzchu i wyłączać je o świcie, co jest zgodne z zasadami efektywnego zarządzania energią. Dodatkowo, oznaczenia takie jak 'T1' i 'T2' na urządzeniu wskazują na różne funkcje czasowe, co potwierdza jego przeznaczenie. Zastosowanie przekaźników czasowych jest powszechne w różnych sektorach, od budynków mieszkalnych, gdzie automatyzują oświetlenie, po przemysł, gdzie kontrolują maszyny w zależności od czasu pracy. Stosowanie przekaźników czasowych w zgodzie z normami branżowymi, takimi jak IEC 60947, zapewnia bezpieczeństwo oraz efektywność operacyjną systemów elektrycznych i elektronicznych.

Pytanie 18

Korzystając z podanego wzoru i tabeli wyznacz wartość rezystancji izolacji uzwojeń silnika w temperaturze
20 oC, jeżeli rezystancja izolacji uzwojeń tego silnika zmierzona w temperaturze 23 oC wyniosła 6,8 MΩ.

Współczynniki przeliczeniowe K20 dla rezystancji izolacji uzwojeń silników
R20 = K20·Rx
Temperatura, w °C0111417202326293235445262
Współczynnik przeliczeniowy K200,670,730,810,901,01,101,211,341,481,642,503,335,00
A. 6,18 MΩ
B. 6,73 MΩ
C. 7,48 MΩ
D. 6,87 MΩ
Obliczenie rezystancji izolacji uzwojeń silnika w temperaturze 20°C wymaga zastosowania odpowiednich współczynników przeliczeniowych, które uwzględniają zmiany rezystancji w zależności od temperatury. W tym przypadku zastosowaliśmy wzór R20 = K20 * Rs, gdzie Rs to zmierzona rezystancja w temperaturze 23°C, a K20 to współczynnik przeliczeniowy dla temperatury 20°C. Z tabeli uzyskujemy wartości K20 = 1,0 dla 20°C i K23 = 1,1 dla 23°C. Zatem, dzieląc zmierzoną rezystancję 6,8 MΩ przez 1,1, uzyskujemy rezystancję w niższej temperaturze, co daje wynik 6,18 MΩ. Jednak w praktyce, biorąc pod uwagę zastosowania w przemyśle, znajomość tych wartości jest kluczowa do oceny stanu izolacji silnika. Izolacja musi spełniać normy, aby zapewniać bezpieczeństwo operacyjne i zapobiegać awariom. Takie obliczenia są standardem w diagnostyce stanu technicznego maszyn elektrycznych.

Pytanie 19

Jakie działania oraz w jakiej sekwencji powinny zostać przeprowadzone przy wymianie uszkodzonego fragmentu przewodu w instalacji umieszczonej w rurach peszla?

A. Odłączenie zasilania, otwarcie puszek instalacyjnych, odkręcenie końców uszkodzonego przewodu, wymiana uszkodzonego odcinka przewodu, połączenie wymienionego przewodu w puszkach, zamknięcie puszek, włączenie zasilania, sprawdzenie poprawności działania instalacji
B. Odłączenie napięcia, rozkuwanie tynku, poprowadzenie nowej rury peszla z przewodami, uzupełnienie tynku, włączenie napięcia
C. Odłączenie zasilania, rozkuwanie tynku w miejscu uszkodzenia, wymiana rury peszla z przewodami, włączenie napięcia, sprawdzenie funkcjonowania instalacji
D. Pomiar rezystancji przewodu, odłączenie napięcia, wymiana uszkodzonego przewodu, włączenie zasilania, sprawdzenie działania instalacji
Wymiana uszkodzonego odcinka przewodu w instalacji elektrycznej to poważna sprawa, więc trzeba to robić według ustalonej procedury, żeby wszystko działało jak należy i było bezpiecznie. Na początek odłączamy napięcie, bo to kluczowe, żeby nie dostać porażenia. Potem otwieramy puszki instalacyjne, żeby dostać się do przewodów. Kolejno odkręcamy końcówki uszkodzonego przewodu, a następnie zakładamy nowy. Ważne, żeby dobrze połączyć ten nowy przewód z innymi, które są w puszkach, żeby obwód działał bez problemu. Na koniec zamykamy puszki, żeby chronić przewody przed uszkodzeniami. Po wszystkim, włączamy napięcie i robimy test, żeby sprawdzić, czy wszystko działa. Taka procedura to co najmniej standard w branży, a jak wiadomo, bezpieczeństwo i efektywność to podstawa.

Pytanie 20

Jaki parametr trójfazowego gniazda wtyczkowego jest określany symbolem IP20?

A. Stopień zabezpieczenia przed dostępem ciał stałych oraz wody
B. Minimalny przekrój przewodów podłączonych do zacisków
C. Klasę ochronności przed porażeniem energią elektryczną
D. Najwyższą temperaturę otoczenia podczas eksploatacji
Symbol IP20 mówi nam o tym, jak dobrze urządzenia elektryczne są chronione przed różnymi rzeczami, jak np. kurz i woda. W praktyce oznacza to, że urządzenie jest ok, jeśli chodzi o duże obiekty (czyli te, które mają więcej niż 12,5 mm), ale niestety nie ma żadnej ochrony przed wodą. To jest ważne, zwłaszcza gdy myślimy o tym, gdzie te urządzenia będą używane. Na przykład gniazdka w biurze – nie jesteśmy tam narażeni na wodę, ale dobrze, że są zbudowane tak, żeby nikt nie mógł łatwo zajrzeć do środka. Fajnie, że istnieją standardy IEC 60529, bo dzięki nim można lepiej dobierać urządzenia do konkretnych miejsc, zwłaszcza tam, gdzie bezpieczeństwo elektryczne to mega ważna sprawa.

Pytanie 21

Parametry której maszyny elektrycznej zapisano na przedstawionej tabliczce znamionowej?

Ilustracja do pytania
A. Silnika jednofazowego.
B. Transformatora jednofazowego.
C. Dławika.
D. Prądnicy synchronicznej.
Tabliczka znamionowa, którą analizujesz, zawiera kluczowe informacje dotyczące silnika jednofazowego. W szczególności, moc znamionowa wynosząca 1.1 kW oraz prąd znamionowy 7.1 A są typowe dla tego typu silników, które są powszechnie stosowane w aplikacjach domowych oraz przemysłowych. Napięcie 230 V / 50 Hz wskazuje na standardowe parametry zasilania w Europie, co czyni ten silnik odpowiednim do zasilania z sieci elektrycznej. Dodatkowo, prędkość obrotowa 1400 min-1 sugeruje, że silnik jest przystosowany do zastosowań wymagających umiarkowanej prędkości, takich jak małe pompy czy wentylatory. Również obecność kondensatora rozruchowego, o wartości 160 µF/320V, jest charakterystyczna dla silników jednofazowych, które w przeciwieństwie do silników trójfazowych, często wymagają takiego elementu do uruchomienia. Takie silniki są szeroko stosowane w codziennych urządzeniach, takich jak pralki czy odkurzacze, co potwierdza ich znaczenie w nowoczesnym świecie. Zrozumienie tych parametrów jest kluczowe dla prawidłowego doboru silnika do konkretnej aplikacji, co jest zgodne z zasadami efektywnego projektowania systemów elektrycznych.

Pytanie 22

Wskaż prawidłowy schemat sterowania oświetleniem z dwóch niezależnych miejsc.

Ilustracja do pytania
A. Schemat 2.
B. Schemat 3.
C. Schemat 1.
D. Schemat 4.
Schemat 4. przedstawia powszechnie stosowany układ schodowy, który umożliwia efektywne i wygodne sterowanie oświetleniem z dwóch niezależnych lokalizacji. W tym układzie zastosowanie dwóch przełączników krzyżowych pozwala na pełną kontrolę nad oświetleniem, niezależnie od ich pozycji. Dzięki temu użytkownik może włączać oraz wyłączać światło zarówno z korytarza, jak i z pokoju, co znacząco poprawia komfort użytkowania oraz elastyczność systemu oświetleniowego. To podejście jest zgodne z normami i dobrymi praktykami stosowanymi w instalacjach elektrycznych, gdzie priorytetem jest zarówno funkcjonalność, jak i bezpieczeństwo. W praktyce, instalacje schodowe są szczególnie przydatne w dużych domach lub biurach, gdzie odległość między przełącznikami może być znaczna. Dodatkowo, poprzez odpowiednie planowanie i zastosowanie schematu schodowego, można uzyskać znaczną oszczędność energii, eliminując niepotrzebne pozostawianie włączonego oświetlenia. Warto także zaznaczyć, że prawidłowe wykonanie takiej instalacji wymaga znajomości zasad elektryki oraz umiejętności czytania schematów elektrycznych, co stanowi ważny element edukacji zawodowej w dziedzinie elektrotechniki.

Pytanie 23

Jakie narzędzia powinny być użyte do montażu urządzeń oraz realizacji połączeń elektrycznych w rozdzielnicy w budynku mieszkalnym?

A. Szczypce do cięcia przewodów, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji, zestaw wkrętaków
B. Szczypce do zaciskania końcówek, przyrząd do ściągania powłoki, nóż monterski, zestaw wkrętaków
C. Szczypce płaskie, nóż monterski, przymiar taśmowy, przyrząd do ściągania izolacji, wkrętarka
D. Szczypce płaskie, młotek, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji
Wybrany zestaw narzędzi jest idealny do montażu aparatury oraz wykonywania połączeń elektrycznych w rozdzielnicy mieszkaniowej. Szczypce do cięcia przewodów umożliwiają precyzyjne przycinanie przewodów do żądanej długości, co jest kluczowe dla zapewnienia dobrego połączenia. Przyrząd do ściągania powłoki pozwala na łatwe usunięcie zewnętrznej izolacji z przewodów, dzięki czemu można uzyskać dostęp do żył przewodów. Z kolei przyrząd do ściągania izolacji jest niezbędny do delikatnego usunięcia izolacji z końców przewodów, co jest ważne dla uniknięcia uszkodzeń drutów. Zestaw wkrętaków jest kluczowy przy montażu elementów rozdzielnicy, takich jak złącza, bezpieczniki czy przekaźniki. Wszystkie te narzędzia są zgodne z najlepszymi praktykami w branży elektrycznej, co zapewnia bezpieczeństwo oraz efektywność pracy. Dobrze dobrany zestaw narzędzi znacząco wpływa na jakość i trwałość wykonanej instalacji elektrycznej.

Pytanie 24

Na ilustracji przedstawiony jest

Ilustracja do pytania
A. kabel telekomunikacyjny.
B. przewód spawalniczy.
C. przewód sterowniczy.
D. kabel elektroenergetyczny.
Kabel elektroenergetyczny, który został przedstawiony na ilustracji, charakteryzuje się specyficzną budową oraz solidną izolacją, co jest kluczowe dla jego funkcji w systemach elektroenergetycznych. Te kable są zaprojektowane do przesyłania dużych ilości energii elektrycznej i zazwyczaj mają grubszą średnicę oraz wytrzymałe materiały izolacyjne, które chronią je przed uszkodzeniami mechanicznymi i wpływem warunków atmosferycznych. W kontekście standardów branżowych, kable elektroenergetyczne muszą spełniać rygorystyczne normy, takie jak normy IEC (Międzynarodowa Komisja Elektrotechniczna) czy EN (Europejskie Normy). W praktyce, ich zastosowanie obejmuje przesył energii do budynków, instalacji przemysłowych i infrastruktury miejskiej, co czyni je fundamentalnym elementem w systemach energetycznych. Wiedza na temat różnic między kablami energetycznymi, telekomunikacyjnymi a innymi przewodami jest istotna dla każdego inżyniera elektryka, aby zapewnić odpowiedni dobór materiałów i bezpieczeństwo instalacji.

Pytanie 25

Jakie urządzenia elektryczne są częścią instalacji przyłączeniowej obiektu budowlanego?

A. Zabezpieczenia nadprądowe poszczególnych obwodów
B. Transformator słupowy z rozłącznikiem
C. Zabezpieczenia przedlicznikowe oraz licznik energii elektrycznej
D. Wyłącznik różnicowoprądowy oraz ograniczniki przepięć
Zabezpieczenia przedlicznikowe i licznik energii to naprawdę ważne elementy, które wchodzą w skład przyłącza budynku. Te zabezpieczenia, jak wyłączniki nadprądowe i różnicowoprądowe, mają za zadanie chronić zarówno instalację, jak i nas samych przed przeciążeniem czy porażeniem prądem. Licznik energii z kolei pozwala nam śledzić, ile energii zużywamy, co jest potrzebne przy rozliczeniach z dostawcą prądu. Jeśli dobrze dobierzemy te zabezpieczenia, to zgodnie z normami PN-IEC 60364, będziemy w lepszej sytuacji. W razie awarii, zabezpieczenia powinny odciąć zasilanie, co chroni sprzęt i nas, ludzi, w budynku. Wszystko sprowadza się do tego, żeby dobrze zamontować i dobrać te elementy, bo to klucz do bezpieczeństwa i sprawności energetycznej budynku. Dlatego ważne, żeby wartości prądowe były dopasowane tak, by instalacja działała optymalnie i uniknęła nagłych przerw w dostawie energii.

Pytanie 26

Na której ilustracji przedstawiono rastrową oprawę oświetleniową?

Ilustracja do pytania
A. Na ilustracji 1.
B. Na ilustracji 4.
C. Na ilustracji 3.
D. Na ilustracji 2.
Rastrowa oprawa oświetleniowa jest kluczowym elementem w projektowaniu oświetlenia wnętrz, szczególnie w przestrzeniach biurowych oraz przemysłowych. Oprawy te wyposażone są w rastrowe klosze, które mają za zadanie efektywne rozpraszanie światła, minimalizując olśnienie i poprawiając komfort pracy. Na ilustracji 2 widoczna jest właśnie taka oprawa, której klosz wykonany jest z materiałów takich jak metal lub plastik, z charakterystycznym wzorem przypominającym kratkę, co pozwala na lepsze rozproszenie światła. Dobre praktyki w projektowaniu oświetlenia sugerują stosowanie rastrowych opraw w miejscach, gdzie wymagane jest równomierne oświetlenie dużych powierzchni roboczych, co wpływa na wydajność pracy. Warto również zwrócić uwagę na standardy dotyczące natężenia oświetlenia, które wskazują, jakie wartości są optymalne dla różnych typów przestrzeni. Wybierając odpowiednią oprawę oświetleniową, należy również uwzględnić efektywność energetyczną, co jest kluczowe w kontekście zrównoważonego rozwoju. Takie podejście przyczynia się do zmniejszenia kosztów eksploatacji oraz oszczędności energii.

Pytanie 27

Którą klasę ochronności posiada oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Klasę 0
B. Klasę I
C. Klasę II
D. Klasę III
Odpowiedź "Klasę I" jest prawidłowa, ponieważ symbol przedstawiony na zdjęciu jednoznacznie wskazuje na tę klasę ochronności. Klasa I opraw oświetleniowych charakteryzuje się tym, że są one wyposażone w uziemienie, co jest kluczowe dla bezpieczeństwa użytkowników. Uziemienie zapewnia, że w przypadku wystąpienia awarii, prąd będzie odprowadzany do ziemi, minimalizując ryzyko porażenia elektrycznego. W praktyce, oprawy tej klasy stosowane są w miejscach, gdzie istnieje ryzyko kontaktu z wodą lub w obiektach przemysłowych, gdzie warunki eksploatacji są trudniejsze. Warto zauważyć, że zgodnie z normą IEC 60598-1, wszystkie oprawy oświetleniowe klasy I muszą posiadać odpowiednie połączenie z przewodem ochronnym. W konsekwencji, stosowanie opraw klasy I w odpowiednich warunkach zwiększa bezpieczeństwo, co jest zgodne z najlepszymi praktykami w branży elektrycznej.

Pytanie 28

Jak długo maksymalnie może trwać samoczynne wyłączenie zasilania w obwodzie odbiorczym z napięciem przemiennym 230 V i prądem obciążenia do 32 A, w sieci TN, spełniający wymagania dotyczące ochrony przed dotykiem pośrednim?

A. 5 sekund
B. 1 sekundę
C. 0,2 sekundy
D. 0,4 sekundy
Podawana maksymalna wartość czasu samoczynnego wyłączenia zasilania w obwodzie odbiorczym o napięciu 230 V i prądzie do 32 A w sieci TN wynosząca 5 sekund, 1 sekundę czy 0,2 sekundy jest niezgodna z obowiązującymi standardami ochrony elektrycznej, co może prowadzić do niebezpiecznych sytuacji. Różne wartości czasowe dla samoczynnego wyłączenia mają swoje uzasadnienie w kontekście skuteczności ochrony przed dotykiem pośrednim, a czas 0,4 sekundy został ustalony jako maksymalny, po to aby zapewnić minimalizację ryzyka porażenia prądem w przypadku awarii. Czas 5 sekund jest zdecydowanie zbyt długi i nie zapewnia odpowiedniego poziomu ochrony, zwłaszcza w sytuacjach, gdy człowiek ma kontakt z uszkodzonym urządzeniem lub przewodem. Z kolei 1 sekunda, choć jest znacznie krótsza, również nie spełnia wymaganych norm w kontekście niektórych zastosowań, gdzie szybka reakcja jest kluczowa. Odpowiedzi 0,2 sekundy mogą wydawać się bardziej bezpieczne, jednak nie są zgodne z określoną normą, a ich zastosowanie w realnych warunkach użytkowania mogłoby prowadzić do fałszywych alarmów i niepotrzebnych wyłączeń, co w praktyce zakłócałoby funkcjonowanie urządzeń. Niezrozumienie zasad bezpieczeństwa elektrycznego, jak również wymagań normatywnych, prowadzi do nieprawidłowych decyzji i zagrożeń w codziennym użytkowaniu instalacji elektrycznych.

Pytanie 29

Który przewód jest oznaczony literami PE?

A. Fazowy
B. Ochronno-neutralny
C. Ochronny
D. Neutralny
Odpowiedź "Ochronny" jest poprawna, ponieważ przewód oznaczony symbolem literowym PE (Protective Earth) jest przewodem ochronnym, który ma na celu zapewnienie bezpieczeństwa użytkowników instalacji elektrycznych. Jego główną funkcją jest odprowadzenie prądu do ziemi w przypadku wystąpienia awarii, co minimalizuje ryzyko porażenia prądem elektrycznym. W praktyce, przewód PE powinien być zawsze połączony z metalowymi częściami urządzeń elektrycznych, co tworzy skuteczną barierę ochronną. W zgodzie z normami IEC 60439 oraz PN-EN 60204-1, stosowanie przewodów ochronnych jest obowiązkowe w każdym systemie elektrycznym, aby zminimalizować ryzyko wystąpienia niebezpiecznych sytuacji. Warto również pamiętać, że przewód PE nie należy mylić z przewodem neutralnym (N), który pełni inną rolę w obiegu prądu, a ich pomylenie może prowadzić do poważnych problemów w instalacji. Dlatego wiedza o odpowiednich oznaczeniach przewodów jest kluczowa w zapewnieniu bezpieczeństwa i prawidłowego funkcjonowania systemów elektrycznych.

Pytanie 30

Jak często powinny być wykonywane konserwacje urządzeń w instalacji elektrycznej w budynkach mieszkalnych?

A. Zgodnie z instrukcją obsługi danego odbiornika
B. Co najmniej raz na dwa lata
C. Przed każdym uruchomieniem urządzenia
D. Każdorazowo podczas badań okresowych instalacji
Częstość przeprowadzania konserwacji odbiorników elektrycznych w mieszkaniach nie może być uogólniana na podstawie arbitralnych okresów czasu, jak sugerują inne odpowiedzi. Odpowiedź wskazująca na przeprowadzanie konserwacji 'co najmniej raz na dwa lata' może prowadzić do niebezpiecznych sytuacji, ponieważ nie uwzględnia specyfiki danego odbiornika oraz jego warunków pracy. Odbiorniki mogą być narażone na różnorodne czynniki, takie jak temperatura, wilgotność, obecność zanieczyszczeń czy intensywność użytkowania, które wpływają na ich stan techniczny i bezpieczeństwo. Ponadto, odpowiedź sugerująca, że konserwacja powinna się odbywać 'przed każdorazowym uruchomieniem odbiornika' jest niepraktyczna, ponieważ wiele odbiorników, jak np. sprzęt AGD, nie wymaga codziennych kontroli przed użyciem. Wprowadza to błąd myślowy, że wszystkie urządzenia wymagają takiej samej uwagi. Argument zakładający, że konserwacja powinna się odbywać 'każdorazowo w czasie badań okresowych instalacji' ignoruje fakt, że badania okresowe dotyczą całej instalacji, a nie pojedynczych odbiorników. Takie podejście może prowadzić do zaniedbań, gdyż niektóre odbiorniki mogą nie być objęte przeglądami w odpowiednich interwałach. Dlatego kluczowe jest, aby użytkownicy odbiorników kierowali się instrukcjami producentów, co pozwala na odpowiednią i bezpieczną eksploatację urządzeń.

Pytanie 31

Jakie akcesoria, oprócz szczypiec, powinien mieć monter do podłączenia kabla YnKY5x120 w rozdzielnicy?

A. Nóż monterski, praskę, zestaw kluczy
B. Nóż monterski, praskę, ściągacz izolacji
C. Ściągacz izolacji, nóż monterski, wkrętak
D. Lutownicę, zestaw wkrętaków, ściągacz izolacji
Kiedy wybierasz narzędzia do podłączenia kabla YnKY5x120 do rozdzielnicy, warto chwilę się zastanowić, co jest najpotrzebniejsze. Jeśli myślałeś o ściągaczu izolacji czy lutownicy, to pamiętaj, że ściągacz, choć przydatny, nie jest najważniejszy w tej sytuacji. Jasne, że ściągacz się przydaje, gdy trzeba zedrzeć izolację z końców przewodów, ale przy kablach o dużym przekroju, jak YnKY5x120, praska jest o wiele bardziej istotna. Lutownica? Hmm, w nowoczesnych instalacjach elektrycznych, to niezbyt dobry pomysł, bo lutowanie może osłabić połączenia i sprawić, że będą mniej trwałe oraz mniej bezpieczne. Prościej mówiąc, teraz standardem są złącza mechaniczne, które zapewniają lepszą jakość połączeń na dłuższą metę. Nóż monterski, praska i komplet kluczy to są te narzędzia, które według norm branżowych naprawdę powinny znaleźć się w twoim wyposażeniu, bo solidne połączenia to podstawa. Często ludziom zdarza się polegać na narzędziach, które nie pasują do konkretnej instalacji, a to może skutkować różnymi awariami. Żeby zapewnić bezpieczeństwo i niezawodność podłączeń, monterzy muszą znać swoje materiały i narzędzia, kierując się najlepszymi praktykami oraz zaleceniami technicznymi.

Pytanie 32

Jaką funkcję w wyłączniku nadprądowym pełni element wskazany na rysunku czerwoną strzałką?

Ilustracja do pytania
A. Wyzwalacza przeciążeniowego.
B. Styku ruchomego.
C. Komory łukowej.
D. Wyzwalacza zwarciowego.
Element wskazany na rysunku czerwoną strzałką to wyzwalacz zwarciowy, który odgrywa kluczową rolę w działaniu wyłącznika nadprądowego. Jego podstawowym zadaniem jest szybkie reagowanie na sytuacje zwarciowe, co jest niezbędne dla zapewnienia bezpieczeństwa instalacji elektrycznej. W momencie wystąpienia zwarcia, następuje gwałtowny wzrost prądu, który wyzwalacz wykrywa i natychmiast przerywa obwód elektryczny. To działanie zapobiega uszkodzeniom przewodów oraz innych elementów instalacji, a także minimalizuje ryzyko pożaru. W praktyce, zastosowanie wyzwalacza zwarciowego jest normą w instalacjach elektrycznych, a jego obecność jest zgodna z normami takimi jak PN-EN 60947-2, które regulują kwestie bezpieczeństwa urządzeń elektrycznych. Dzięki zastosowaniu wyzwalaczy zwarciowych, użytkownicy mogą mieć pewność, że ich instalacja będzie chroniona przed niebezpiecznymi skutkami awarii. Dodatkowo, w wielu systemach automatyki budynkowej wyzwalacze te mogą być integrowane z systemami monitoringu, co zwiększa poziom ochrony.

Pytanie 33

Którą klasę ochronności posiada oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. 0
B. III
C. II
D. I
Oprawa oświetleniowa oznaczona symbolem graficznym, przedstawiającym dwa kwadraty, jeden wewnątrz drugiego, wskazuje na klasę ochronności II. Oznaczenie to jest kluczowe w kontekście bezpieczeństwa użytkowania urządzeń elektrycznych, ponieważ klasa ta zapewnia podwójną izolację, co znacznie zwiększa ochronę przed porażeniem prądem elektrycznym. W praktyce oznacza to, że urządzenie nie wymaga uziemienia, co ułatwia jego instalację w miejscach, gdzie zainstalowanie przewodu uziemiającego jest trudne lub niemożliwe. Zastosowanie opraw oświetleniowych klasy II jest powszechne w pomieszczeniach mieszkalnych, biurach oraz w miejscach o podwyższonej wilgotności, jak łazienki, gdzie ryzyko kontaktu z wodą jest wyższe. Warto pamiętać, że stosowanie urządzeń z odpowiednim oznaczeniem klas ochronności jest zgodne z normami bezpieczeństwa, takimi jak IEC 60598, co świadczy o odpowiedzialnym podejściu do instalacji elektrycznych.

Pytanie 34

Który licznik należy zamontować w instalacji elektrycznej, aby umożliwić przedpłatowy system rozliczania energii elektrycznej?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Wybór niewłaściwego licznika do instalacji elektrycznej, jak w przypadku odpowiedzi A, C czy D, może prowadzić do poważnych problemów w zakresie zarządzania zużyciem energii. Liczniki, które nie są przystosowane do systemu przedpłatowego, nie mogą umożliwić użytkownikom wprowadzania kodów doładowujących, co jest kluczowym elementem tego systemu. Liczniki tradycyjne, które są powszechnie instalowane w domach, umożliwiają jedynie pomiar zużycia energii bez interakcji ze stroną użytkownika w zakresie przedpłat. Takie urządzenia są zgodne z innymi standardami, ale nie mają funkcjonalności, która jest istotna w kontekście nowoczesnych systemów zarządzania energią. Typowym błędem myślowym jest założenie, że każdy licznik energii może funkcyjnie zastąpić licznik przedpłatowy. Różnice te są kluczowe, szczególnie w sytuacjach, gdy użytkownicy chcą mieć większą kontrolę nad swoimi wydatkami. Aby wdrożyć skuteczny system zarządzania energią w budynkach mieszkalnych czy komercyjnych, konieczne jest zrozumienie specyfiki liczników i ich przeznaczenia. Dlatego właściwy wybór licznika, który wspiera system przedpłatowy, jest nie tylko kwestią techniczną, ale również finansową.

Pytanie 35

Jaki najniższy przekrój może mieć przewód ochronny w instalacji oświetleniowej, gdy jest umieszczony w tej samej osłonie co przewody robocze?

A. 10 mm2
B. 4 mm2
C. 1,5 mm2
D. 2,5 mm2
Wybór niewłaściwego przekroju przewodu ochronnego, jak 2,5 mm2, 4 mm2 czy 10 mm2, może wydawać się na pierwszy rzut oka uzasadniony, jednak nie odpowiada on wymaganiom przepisów i zasad bezpieczeństwa. Przekrój 2,5 mm2 jest często stosowany dla przewodów zasilających, ale nie jest przewidziany dla przewodów ochronnych w obwodach oświetleniowych. Kluczowym aspektem przy doborze przekroju przewodu ochronnego jest jego funkcja, a nie tylko zdolność do przewodzenia prądu. Głównym celem przewodu ochronnego jest zapewnienie bezpieczeństwa użytkowników poprzez odprowadzenie prądów zwarciowych; zbyt duży przekrój może opóźnić działanie zabezpieczeń, co stwarza ryzyko poważnych wypadków. Przewody o większym przekroju, jak 4 mm2 czy 10 mm2, są nieadekwatne w kontekście ochrony, ponieważ mogą prowadzić do niepoprawnej oceny stanu instalacji, co może skutkować brakiem odpowiednich reakcji w sytuacji awaryjnej. Powszechnym błędem jest również założenie, że im większy przekrój, tym lepsza ochrona. Ważne jest, aby pamiętać, że każdy element instalacji elektrycznej musi być dobrany zgodnie z jego przeznaczeniem oraz obowiązującymi normami, co w tym przypadku jasno określa minimalny przekrój przewodu ochronnego na 1,5 mm2.

Pytanie 36

Na rysunku przedstawiono wynik uzyskany podczas pomiaru rezystancji izolacji silnika indukcyjnego między zaciskami W2 i PE tabliczki silnikowej. Uzyskany wynik świadczy o

Ilustracja do pytania
A. dobrym stanie izolacji uzwojenia W1 – W2.
B. zbyt dużej wartości rezystancji izolacji uzwojenia W1 – W2.
C. zwarciu uzwojenia z obudową silnika.
D. zbyt małej wartości rezystancji izolacji uzwojenia W1 – W2.
Wybierając odpowiedzi, które sugerują zbyt dużą wartość rezystancji izolacji W1 – W2, zwarcie uzwojenia z obudową silnika lub zbyt małą wartość rezystancji, można wpaść w szereg błędnych wniosków. Każda z tych odpowiedzi nie uwzględnia kluczowych aspektów dotyczących analizy wyników pomiaru rezystancji izolacji. Zbyt duża wartość rezystancji nie jest problematyczna, a wręcz przeciwnie - wskazuje na dobrą izolację. Twierdzenie o zwarciu uzwojenia z obudową jest również mylne, ponieważ pomiar wykazał bardzo wysoką rezystancję, co jasno świadczy o braku takiego zwarcia. Z kolei niska wartość rezystancji izolacji zazwyczaj sugeruje problemy z izolacją, takie jak uszkodzenia mechaniczne lub degradacja materiału, co może prowadzić do poważnych konsekwencji, takich jak uszkodzenia silnika czy zagrożenie dla bezpieczeństwa użytkowników. Należy pamiętać, że interpretacja wyników pomiaru rezystancji izolacji wymaga zrozumienia zasad działania silników oraz praktyk inżynieryjnych związanych z bezpieczeństwem elektrycznym. Właściwa analiza danych pomiarowych jest kluczowa do prawidłowej oceny stanu technicznego urządzeń elektrycznych oraz podejmowania odpowiednich działań prewencyjnych.

Pytanie 37

Co oznacza symbol PE na przewodach elektrycznych?

A. Przewód uziemiający
B. Przewód neutralny
C. Przewód fazowy
D. Przewód ochronny
Symbol <em>PE</em> na przewodach elektrycznych oznacza przewód ochronny. Jest to kluczowy element każdej instalacji elektrycznej, ponieważ zapewnia bezpieczeństwo użytkownikom i chroni urządzenia przed uszkodzeniem w przypadku awarii. W praktyce przewód ochronny jest używany do uziemienia różnych urządzeń elektrycznych, co zapobiega gromadzeniu się ładunków elektrostatycznych i minimalizuje ryzyko porażenia prądem. Normy dotyczące instalacji elektrycznych, takie jak PN-HD 60364, podkreślają znaczenie poprawnego uziemienia i użycia przewodów ochronnych. Takie przewody są zazwyczaj oznaczone żółto-zielonym kolorem i nie powinny być używane do innych celów niż ochrona. Dzięki stosowaniu przewodów ochronnych, możliwe jest odprowadzenie niebezpiecznych prądów zwarciowych do ziemi, co jest standardową praktyką w branży elektrycznej. Z praktycznego punktu widzenia, przewód ochronny jest nieodłącznym elementem instalacji w każdym domu, biurze czy zakładzie przemysłowym.

Pytanie 38

Jakie elementy nie są kontrolowane podczas oględzin urządzeń napędowych w czasie ich postoju?

A. poziomu drgań i skuteczności układu chłodzenia
B. stanu pierścieni ślizgowych oraz komutatorów
C. stanu przewodów ochronnych oraz ich połączeń
D. ustawienia zabezpieczeń i stanu osłon części wirujących
Odpowiedź dotycząca stanu pierścieni ślizgowych i komutatorów jest właściwa, ponieważ podczas przeprowadzania oględzin urządzeń napędowych w czasie postoju nie jest to element, który zazwyczaj podlega rutynowym kontrolom. Pierścienie ślizgowe i komutatory są kluczowymi komponentami w silnikach prądu stałego oraz w niektórych alternatorach, jednak ich stan ocenia się głównie podczas przeglądów większych, planowanych konserwacji. W codziennych oględzinach, które mają na celu zapewnienie bezpieczeństwa i operacyjności urządzeń, bardziej koncentruje się na aspektach takich jak kontrola przewodów ochronnych, które zapewniają bezpieczeństwo operatorów, poziom drgań, które mogą wskazywać na problemy mechaniczne, oraz działania układu chłodzenia, aby zapobiec przegrzewaniu. Przykładowo, w praktyce inżynieryjnej standardy takie jak ISO 9001 obejmują kontrolę jakości i bezpieczeństwa, kładąc nacisk na utrzymanie systemów w dobrym stanie operacyjnym, co potwierdza, że elementy takie jak osłony części wirujących oraz zabezpieczenia są kluczowe w codziennych kontrolach.

Pytanie 39

Który z poniższych sposobów ochrony przed porażeniem elektrycznym jest weryfikowany przez pomiar rezystancji pętli zwarcia w instalacji elektrycznej?

A. Uziemienie ochronne
B. Separacja elektryczna
C. Samoczynne wyłączanie zasilania
D. Umieszczenie części dostępnych poza zasięgiem ręki
Uziemienie ochronne jest istotnym elementem systemów ochrony przed porażeniem, jednak polega na stworzeniu niskooporowego połączenia z ziemią, a nie na pomiarze rezystancji pętli zwarcia. Jego głównym celem jest zapewnienie, że w przypadku awarii prądu, nadmiar energii zostanie bezpiecznie odprowadzony do ziemi. Choć ważne, nie jest to metoda, która sama w sobie gwarantuje szybkie odłączenie zasilania. Separacja elektryczna to inny środek, który ma na celu unikanie niebezpiecznych kontaktów między różnymi obwodami, ale również nie jest bezpośrednio związana z pomiarem rezystancji pętli zwarcia. Działa na zasadzie fizycznego oddzielenia części instalacji, co minimalizuje ryzyko porażenia, ale nie zmienia parametrów elektrycznych samej instalacji. Umieszczenie części dostępnych poza zasięgiem ręki, mimo że może zmniejszyć ryzyko kontaktu z niebezpiecznymi elementami, nie jest odpowiednim rozwiązaniem, gdyż nie eliminuje ryzyka porażenia w sytuacjach awaryjnych. W każdej z tych koncepcji brakuje kluczowego odniesienia do mechanizmu działania samoczynnego wyłączania zasilania, który jest bezpośrednio związany z pomiarem rezystancji pętli zwarcia. To pomiar ten dostarcza informacji, które są kluczowe dla oceny, czy instalacja elektryczna jest w stanie bezpiecznie odciąć zasilanie w sytuacji awaryjnej, co czyni go fundamentalnym dla zapewnienia bezpieczeństwa elektrycznego.

Pytanie 40

Jakie czynności powinny być przeprowadzone po serwisie silnika elektrycznego?

A. Sprawdzenie układów sterowania i sygnalizacji
B. Pomiar rezystancji izolacji i próbne uruchomienie
C. Impregnację uzwojeń i wyważenie wirnika
D. Sprawdzenie układów rozruchowych i regulacyjnych
Pomiar rezystancji izolacji oraz wykonanie próbnego uruchomienia silnika elektrycznego to kluczowe czynności po jego konserwacji. Rezystancja izolacji jest istotnym wskaźnikiem stanu izolacji uzwojeń silnika; jej wysoka wartość sygnalizuje dobrą izolację, co jest niezbędne do zapewnienia bezpieczeństwa eksploatacji. Standardy takie jak IEC 60034-1 zalecają, aby rezystancja izolacji była co najmniej 1 MΩ na każdy kV napięcia roboczego, co chroni przed przebiciem i zwarciem. Próbne uruchomienie pozwala na ocenę rzeczywistej pracy silnika, w tym jego momentu obrotowego, prędkości i stabilności działania. W praktyce, te czynności pozwalają na wczesne wykrycie potencjalnych usterek, co może zapobiec poważnym awariom i zwiększyć trwałość urządzenia. Regularne pomiary izolacji i testy operacyjne są zgodne z najlepszymi praktykami w branży, co przekłada się na wydajność i bezpieczeństwo operacyjne.