Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 18 grudnia 2025 01:47
  • Data zakończenia: 18 grudnia 2025 02:15

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W jaki sposób należy połączyć zaciski sieci zasilającej L, N, PE do zacisków puszki zasilającej instalację elektryczną, której schemat przedstawiono na rysunku, aby połączenia były zgodne z przedstawionym schematem ideowym?

Ilustracja do pytania
A. L - 2, N - 3, PE - 4
B. L - 1, N - 4, PE - 3
C. L - 1, N - 3, PE - 4
D. L - 3, N - 4, PE - 1
Poprawna odpowiedź to L - 1, N - 3, PE - 4, co jest zgodne z obowiązującymi normami instalacji elektrycznych w Polsce. Zacisk L, odpowiadający za przesył energii elektrycznej, powinien być połączony z punktem 1. Jest to istotne, ponieważ zapewnia to prawidłowe zasilanie obwodu. Zacisk N, który jest neutralny, łączy się z punktem 3, co umożliwia bezpieczne odprowadzenie prądu wstecz do źródła. Wreszcie, zacisk PE, pełniący funkcję ochrony przed porażeniem elektrycznym, powinien być połączony z punktem 4. Takie połączenie minimalizuje ryzyko awarii oraz zapewnia bezpieczeństwo użytkowników. W praktyce, przy wykonywaniu instalacji elektrycznych, zgodność z tym schematem jest kluczowa. Ponadto, należy pamiętać o regularnych przeglądach instalacji oraz stosowaniu się do norm PN-IEC 60364, aby zapewnić trwałość oraz niezawodność sieci zasilającej.

Pytanie 2

Jakie rury instalacyjne powinny być używane do kładzenia przewodów na łatwopalnym podłożu?

A. Tylko z PVC
B. Z PVC lub gumowe
C. Metalowe lub gumowe
D. Tylko metalowe
Wybór rur z PVC czy gumy do układania przewodów na podłożu palnym to niezbyt mądra decyzja z kilku powodów. Po pierwsze, te materiały są palne, co naprawdę zwiększa ryzyko pożaru, jeśli instalacja się uszkodzi. PVC, mimo że jest popularne w budownictwie, nie spełnia wymogów bezpieczeństwa dla podłoży palnych, bo w wysokiej temperaturze może się deformować albo topnieć, przez co odsłania przewody elektryczne. Teoretycznie można by pomyśleć, że rury gumowe są jakąś alternatywą dla metalowych, ale w praktyce to się nie sprawdza, bo gumowe materiały, mimo że elastyczne i odporne na niektóre chemikalia, nie wytrzymują wysokich temperatur i są mniej trwałe. Normy, takie jak PN-IEC 60364 i przepisy przeciwpożarowe, jednoznacznie pokazują, że metalowe rury to najlepszy wybór tam, gdzie może wystąpić ryzyko pożaru. Wybierając złe materiały, narażamy nie tylko instalację, ale też zdrowie i życie ludzi w danym budynku, a to naprawdę nieodpowiedzialne podejście.

Pytanie 3

Jakie oznaczenie, zgodnie z Europejskim Komitetem Normalizacyjnym Elektrotechniki CENELEC posiada przewód przedstawiony na rysunku?

Ilustracja do pytania
A. NAYY-O
B. H03VV-F
C. NYM-J
D. H07V-U
Przewody 'NAYY-O' i 'H07V-U' niestety nie spełniają wymagań do tej instalacji, co można zauważyć na rysunku. 'NAYY-O' to przewody aluminiowe, które zazwyczaj wykorzystuje się w instalacjach na zewnątrz. Mają inną konstrukcję izolacyjną, więc nie nadają się do stałych instalacji w budynkach. Natomiast 'H07V-U' to przewód jednożyłowy, który również nie pasuje do wielożyłowych przewodów, jakie były potrzebne, by zapewnić prawidłowe zasilanie. Użycie takich przewodów może prowadzić do różnych błędów, bo jak źle dobierzesz przewód, to wpływa na bezpieczeństwo i funkcjonowanie całego systemu elektrycznego. Oznaczenie 'H03VV-F' odnosi się do przewodów elastycznych, używanych głównie w urządzeniach przenośnych, a nie w stałych instalacjach. Wybór niewłaściwego typu przewodu to nie tylko obniżona efektywność, ale też większe ryzyko awarii systemu, co jest wbrew normom CENELEC, które sugerują dobór przewodów odpowiednich do danej instalacji. Warto pamiętać, żeby wybierając przewody, kierować się ich przeznaczeniem oraz obowiązującymi normami, by zapewnić bezpieczeństwo i niezawodność instalacji elektrycznych.

Pytanie 4

Wskaż symbol graficzny przycisku zwiernego.

Ilustracja do pytania
A. Symbol 2.
B. Symbol 4.
C. Symbol 3.
D. Symbol 1.
Symbol 1 jest prawidłowym przedstawieniem graficznego symbolu przycisku zwiernego. Graficzne oznaczenie to jest zgodne z międzynarodowymi standardami, takimi jak IEC 60417, które definiują symbole dla urządzeń elektrycznych. Przyciski zwierne są powszechnie stosowane w różnych aplikacjach, takich jak systemy alarmowe, automatyka budynkowa i interfejsy użytkownika w urządzeniach elektronicznych. Ich funkcjonowanie polega na zamykaniu obwodu elektrycznego po naciśnięciu przycisku, co powoduje rozpoczęcie określonego działania, na przykład włączenie światła lub aktywację alarmu. W praktycznej aplikacji, przyciski zwierne mogą być używane w różnych konfiguracjach, takich jak przyciski chwilowe, które wracają do stanu początkowego po zwolnieniu, lub przyciski z latarką, które mogą być używane do aktywacji procedur awaryjnych. Zrozumienie tego symbolu jest więc kluczowe dla projektantów systemów elektrycznych i automatyki, ponieważ umożliwia im prawidłowe dobieranie elementów w projekcie oraz zapewnienie zgodności z wiodącymi normami branżowymi.

Pytanie 5

Zamiast starego bezpiecznika trójfazowego 25A, należy zastosować wysokoczuły wyłącznik różnicowoprądowy. Który z przedstawionych w katalogu, należy wybrać?

WyłącznikOznaczenie
A.BPC 425/030 4P AC
B.BDC 225/030 2P AC
C.BPC 425/100 4P AC
D.BDC 440/030 4P AC
A. A.
B. B.
C. C.
D. D.
Wybór niewłaściwego rodzaju wyłącznika różnicowoprądowego może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa elektrycznego. W przypadku zastosowania wyłącznika o niewłaściwej charakterystyce, takiego jak wyłączniki jednofazowe lub o nieodpowiedniej wartości prądowej, istnieje ryzyko, że nie dostosuje się on do wymagań instalacji trójfazowej. Wyłączniki różnicowoprądowe, które nie mają certyfikacji dla obciążeń trójfazowych, mogą nie zadziałać w przypadku wystąpienia awarii, co naraża użytkowników na niebezpieczeństwo porażenia prądem. Często błędem jest także wybór wyłącznika o wyższej wartości różnicowoprądowej, co nie tylko zmniejsza skuteczność ochrony, ale również jest niezgodne z normami, które zalecają zastosowanie 30mA w instalacjach, gdzie ochrona przed porażeniem jest kluczowa. Przy doborze sprzętu elektrycznego ważne jest również zrozumienie, że każda instalacja ma swoje specyficzne wymagania i jest istotne, aby dostosować parametry wyłącznika do warunków użytkowania. Zastosowanie niewłaściwego typu wyłącznika może nawet prowadzić do niewłaściwej pracy pozostałych urządzeń elektrycznych, co naraża je na uszkodzenia. Dlatego kluczowe jest, aby podejmować decyzje oparte na wiedzy o standardach branżowych i dobrych praktykach w zakresie instalacji elektrycznych.

Pytanie 6

Jaki minimalny przekrój, ze względu na obciążalność długotrwałą, powinny mieć przewody DY ułożone w rurze izolacyjnej, zasilające odbiornik trójfazowy o mocy 10 kW z sieci trójfazowej o napięciu 400 V?

Ilustracja do pytania
A. 4 mm2
B. 6 mm2
C. 1,5 mm2
D. 2,5 mm2
Wybór przekroju przewodu w instalacjach elektrycznych jest kluczowym elementem projektowania układów zasilających. Odpowiedzi, które wskazują na większe przekroje, jak 6 mm2, 4 mm2 oraz 2,5 mm2, mogą sugerować nadmierne zabezpieczenie, jednak nie uwzględniają one rzeczywistych potrzeb obciążeniowych. Przykładowo, wybór 6 mm2 dla obciążenia 14,5 A jest nie tylko nieekonomiczny, ale i zbędny, ponieważ istnieją bardziej odpowiednie przekroje, które spełniają wymagania. Z kolei odpowiedź 2,5 mm2, choć jest bardziej zbliżona do właściwego przekroju, również nie jest zgodna z normami, ponieważ przy takiej obciążalności przewody 1,5 mm2 są wystarczające. Warto przypomnieć, że dobór przekroju przewodu powinien być oparty na rzeczywistym obciążeniu oraz warunkach ułożenia. W praktyce, przed podjęciem decyzji, należy przeanalizować obciążenie prądowe w kontekście całej instalacji oraz zastosować odpowiednie współczynniki korekcyjne. Niezastosowanie się do tych zasad może prowadzić do nieprawidłowości w funkcjonowaniu instalacji, co w dłuższym czasie może skutkować awariami lub niebezpiecznymi sytuacjami, takimi jak przegrzewanie się przewodów. Ostatecznie, kluczowe jest, aby decyzje o doborze przekroju przewodów były zgodne z obowiązującymi normami, co nie tylko zapewnia bezpieczeństwo, ale także przyczynia się do efektywności energetycznej systemów elektrycznych.

Pytanie 7

Na której ilustracji przedstawiono pomiar rezystancji izolacji między przewodami czynnymi w układzie TN-C?

Ilustracja do pytania
A. Na ilustracji 2.
B. Na ilustracji 4.
C. Na ilustracji 1.
D. Na ilustracji 3.
W przypadku niepoprawnych odpowiedzi, takich jak wskazanie ilustracji 2, 3 lub 4, ważne jest zrozumienie, dlaczego te opcje nie są właściwe. Ilustracje te nie przedstawiają prawidłowego schematu pomiaru rezystancji izolacji w układzie TN-C, co jest kluczowe dla bezpieczeństwa. Na przykład, niektóre z tych ilustracji mogą sugerować podłączenie miernika w sposób, który nie obejmuje przewodu PEN lub błędnie wskazują na pomiar innego rodzaju, co prowadzi do mylnych wniosków na temat metodyki pracy z instalacjami elektrycznymi. Często popełnianym błędem jest mylenie pomiarów rezystancji izolacji z pomiarami rezystancji przewodów czy innych wartości elektrycznych, co może prowadzić do ignorowania kluczowych aspektów bezpieczeństwa. Pamiętaj, że poprawne zrozumienie układu TN-C oraz jego właściwe pomiary są nie tylko kwestią techniczną, ale również istotnym elementem bezpieczeństwa użytkowników instalacji. Zastosowanie nieodpowiednich metod pomiarowych może nie tylko zafałszować wyniki, ale również narazić osoby pracujące w pobliżu instalacji na niebezpieczeństwo. Wykształcenie właściwych nawyków w zakresie przeprowadzania pomiarów jest kluczowe dla każdego technika elektryka i powinno być zgodne z obowiązującymi normami oraz zaleceniami branżowymi.

Pytanie 8

Na którym rysunku przedstawiono przewód który należy zastosować do wykonywania instalacji podtynkowej oświetlenia klatki schodowej?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Przewód z literą B super nadaje się do oświetlenia klatki schodowej, bo jest wielożyłowy. Dzięki temu można go podłączyć do różnych rzeczy, jak łączniki schodowe albo krzyżowe. W klatkach schodowych często trzeba sterować światłem z różnych miejsc, więc musimy mieć odpowiednie przewody. Ten wielożyłowy to fajna opcja, bo można podpiąć dodatkowe żyły, co daje nam większą elastyczność. I pamiętaj, że zgodnie z normą PN-IEC 60364, dobrze jest zaprojektować te instalacje tak, żeby zmniejszyć ryzyko zwarcia i mieć odpowiednie zabezpieczenia. Moim zdaniem, wybierając ten przewód B, ułatwiasz sobie życie, bo można łatwo dostosować oświetlenie w przyszłości, zmienić coś bez konieczności całkowitej wymiany systemu. Pamiętaj też, żeby zawsze sprawdzić specyfikacje techniczne oraz wymagania dotyczące zabezpieczeń elektrycznych w Twoim kraju.

Pytanie 9

Którego z przedstawionych narzędzi należy użyć do zamontowania zworek w tabliczce silnikowej?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Wybór klucza oczkowego, oznaczonego jako 'C.', do montażu zworek w tabliczce silnikowej jest uzasadniony. Klucz oczkowy jest narzędziem, które idealnie pasuje do standardowych nakrętek stosowanych w takich aplikacjach. Użycie klucza o odpowiednim rozmiarze zapewnia pewny chwyt i minimalizuje ryzyko uszkodzenia nakrętek. W praktyce, przy montażu zworek, klucz oczkowy umożliwia łatwe i precyzyjne dokręcanie, co jest kluczowe dla zapewnienia prawidłowego działania silnika oraz bezpieczeństwa całego układu elektrycznego. Warto zauważyć, że nienałożenie odpowiedniej siły na nakrętki może prowadzić do ich poluzowania się w trakcie eksploatacji, co z kolei może powodować awarie lub uszkodzenia. Korzystając z dobrze dobranego narzędzia, zgodnego z wytycznymi producenta, możemy również zwiększyć efektywność prac i zmniejszyć ryzyko wystąpienia problemów eksploatacyjnych. Dlatego też, znajomość i umiejętność stosowania właściwych narzędzi jest kluczowa w pracy z instalacjami elektrycznymi.

Pytanie 10

Która z wymienionych przyczyn może spowodować samoczynne wyłączenie wyłącznika nadprądowego obwodu gniazd wtyczkowych kuchni w przedstawionej instalacji?

Ilustracja do pytania
A. Zwarcie przewodu ochronnego z przewodem neutralnym.
B. Przerwa w przewodzie uziemiającym instalację.
C. Włączenie odbiornika drugiej klasy ochronności.
D. Jednoczesne podłączenie odbiorników o zbyt dużej mocy.
Analizując pozostałe odpowiedzi, można zauważyć, że włączenie odbiornika drugiej klasy ochronności nie powinno wpływać na działanie wyłącznika nadprądowego. Odbiorniki te są zaprojektowane tak, aby nie wymagały uziemienia, co czyni je bezpiecznymi w użytkowaniu, o ile są prawidłowo zainstalowane. Przerwa w przewodzie uziemiającym również nie jest bezpośrednią przyczyną wyłączenia wyłącznika nadprądowego, aczkolwiek może prowadzić do niebezpiecznych sytuacji w przypadku awarii, gdyż brak odpowiedniego uziemienia stwarza ryzyko porażenia prądem. Zwarcie przewodu ochronnego z przewodem neutralnym, z drugiej strony, może być poważnym błędem, ale w kontekście wyłącznika nadprądowego nie prowadzi ono do jego samoczynnego wyłączenia, chyba że to zwarcie spowoduje przeciążenie lub zwarcie w instalacji. Typowym błędem myślowym jest zakładanie, że każdy problem z instalacją elektryczną prowadzi do automatycznego zadziałania wyłącznika nadprądowego, podczas gdy w rzeczywistości ten mechanizm jest zaprojektowany do ochrony przed określonymi rodzajami awarii, a nie każdą możliwą sytuacją. Wiedza o tym, jak działają zabezpieczenia oraz jakie są ich ograniczenia, jest kluczowa dla prawidłowego użytkowania instalacji elektrycznej.

Pytanie 11

Który środek ochrony przeciwporażeniowej przy uszkodzeniu zastosowano w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. Połączenie wyrównawcze.
B. Użycie odbiorników II klasy ochronności.
C. Separację odbiornika.
D. Samoczynne wyłączenie zasilania.
Wybór połączenia wyrównawczego, separacji odbiornika lub użycia odbiorników II klasy ochronności jako środków ochrony przeciwporażeniowej nie jest wystarczający w kontekście przedstawionego układu. Połączenie wyrównawcze, chociaż ważne, ma na celu jedynie zminimalizowanie różnicy potencjałów na obudowie urządzeń, a nie automatyczne przerwanie obwodu. W przypadku uszkodzenia izolacji, połączenie wyrównawcze nie zapewni szybkiej reakcji, co może prowadzić do niebezpiecznych sytuacji. Separacja odbiornika również nie jest skuteczną metodą w przypadku awarii, ponieważ choć eliminuje ryzyko porażenia w pewnych warunkach, nie uniemożliwia bezpośredniego kontaktu z napięciem. Z kolei odbiorniki II klasy ochronności, choć zapewniają dodatkową warstwę ochrony, wymagają ciągłej kontroli i nie są wystarczające, gdy wystąpi awaria. Ważne jest, aby pamiętać, że w sytuacjach awaryjnych, takich jak uszkodzenie izolacji, kluczowe jest natychmiastowe odcięcie zasilania, co realizuje samoczynne wyłączenie zasilania. Wybór niewłaściwych środków ochrony często wynika z niepełnego zrozumienia ich funkcji oraz odpowiednich norm bezpieczeństwa, co może prowadzić do poważnych konsekwencji dla użytkowników systemu. Zrozumienie różnic między tymi metodami jest kluczowe dla zapewnienia skutecznej ochrony przed porażeniem prądem elektrycznym.

Pytanie 12

Które z poniższych parametrów technicznych odnoszą się do przekaźnika bistabilnego?

A. Typ modułu, zakres zliczania, rodzaj wyjścia, parametry wyjścia, napięcie zasilania, tryby pracy licznika
B. Napięcie zasilania, prąd obciążenia, wartość prądu impulsu sterującego, opóźnienie zadziałania, sygnalizacja załączenia
C. Napięcie znamionowe, znamionowy prąd różnicowy zadziałania, prąd znamionowy ciągły, obciążalność zwarciowa, częstotliwość znamionowa, liczba biegunów
D. Liczba biegunów, rodzaj charakterystyki, prąd znamionowy, szerokość w modułach
Analizując podane odpowiedzi, można zauważyć, że wiele z nich odnosi się do parametrów technicznych innych typów urządzeń, co prowadzi do zamieszania. Na przykład, odpowiedź dotycząca typów modułów, zakresu zliczania czy rodzajów wyjścia jest bardziej związana z licznikami elektronicznymi niż przekaźnikami bistabilnymi. Liczniki mają swoje unikalne funkcje, takie jak zliczanie impulsów, co nie ma zastosowania w kontekście przekaźnika bistabilnego. Wiele osób może mylić te dwa urządzenia, myśląc, że mają one podobne zastosowania, co jest błędne. Kolejny przykład to podanie parametrów takich jak prąd znamionowy czy liczba biegunów, które są bardziej związane z przekaźnikami jedno- lub wielobiegunowymi, a nie z bistabilnymi. Niezrozumienie różnicy między tymi typami przekaźników może prowadzić do błędnych decyzji przy doborze komponentów w projektach automatyzacji. Ponadto, niektóre odpowiedzi zawierają specyfikacje dotyczące obciążalności zwarciowej oraz częstotliwości znamionowej, co jest charakterystyczne dla urządzeń zabezpieczających, takich jak wyłączniki różnicowoprądowe. W kontekście przekaźników bistabilnych, te informacje są zbędne, ponieważ ich działanie opiera się na mechanizmie zatrzymaniu stanu, a nie na regularnym przełączaniu. Zrozumienie tych różnic jest kluczowe dla skutecznego projektowania systemów automatyki i unikania kosztownych błędów w doborze komponentów.

Pytanie 13

W celu sprawdzenia poprawności wykonania fragmentu instalacji oświetleniowej, przystosowanej do zasilania napięciem 230 V, zwarto łączniki P1 i P2 i zmierzono rezystancję obwodu. Schemat instalacji wraz z włączonym omomierzem pokazano na rysunku.

Ilustracja do pytania
A. w obwodzie zastosowano żarówki o napięciu znamionowym U = 24 V.
B. w obwodzie wykonano dodatkowe połączenia nieuwzględnione na schemacie.
C. nieprawidłowo odczytano wynik pomiaru.
D. obwód połączony jest prawidłowo.
Obwód został połączony tak, jak należy, co można łatwo zauważyć, analizując schemat instalacji oświetleniowej. Z mojego doświadczenia wynika, że każda żarówka powinna działać niezależnie, dlatego stosujemy połączenia równoległe. Dzięki temu, jak jedna żarówka padnie, reszta nadal świeci. Gdy łączniki P1 i P2 są zwarte, obwód zamyka się, co pozwala na mierzenie rezystancji. W domowych instalacjach standardowe napięcie to 230 V, i to jest całkiem zgodne z normami. Dobrze jest też regularnie sprawdzać instalację, żeby wyłapać ewentualne błędy wcześniej. A przy pomiarach rezystancji, pamiętaj, że wyniki zależą od tego, jakie elementy zastosowano i jak są one połączone, co w tym przypadku masz na właściwym poziomie.

Pytanie 14

Podczas przeprowadzania inspekcji instalacji elektrycznej w budynku mieszkalnym nie jest wymagane sprawdzanie

A. poprawności działania wyłącznika różnicowoprądowego
B. wartości rezystancji izolacji przewodów
C. stanu obudów wszystkich elementów instalacji
D. nastaw urządzeń zabezpieczających w instalacji
Wiesz, wartość rezystancji izolacji przewodów mówi nam, jak dobrze te przewody są izolowane. Fajnie, że znasz tę definicję! Ale w praktyce, w trakcie sprawdzania instalacji elektrycznych w mieszkaniach nie ma wymogu, żeby to sprawdzać. Normy, jak PN-IEC 60364, mówią głównie o bezpieczeństwie użytkowników i tym, żeby instalacja działała jak należy. Gdy przeglądasz instalację, skup się na tym, żeby ocenić stan obudów i elementów zabezpieczających. Te rzeczy są na prawdę ważne. Wyłączniki różnicowoprądowe też warto sprawdzić, bo są kluczowe dla ochrony przed porażeniem elektrycznym. Możesz to zrobić, wciskając przycisk testowy, co jest dość standardowe. Dzięki temu łatwiej zauważysz, czy coś jest nie tak. Taki sposób działania pomaga uniknąć problemów i sprawia, że instalacja będzie bezpieczna i zgodna z normami.

Pytanie 15

Przedstawiona na ilustracji oprawka jest przeznaczona do źródeł światła z trzonkiem

Ilustracja do pytania
A. E14
B. G9
C. GU10
D. MR11
Odpowiedź GU10 jest prawidłowa, ponieważ oprawka przedstawiona na ilustracji jest zgodna z charakterystyką trzonka bajonetowego typu GU10. Trzonek ten zawiera dwie wypustki, które umożliwiają łatwe wsunięcie żarówki oraz jej zablokowanie poprzez obrót. To rozwiązanie jest powszechnie stosowane w nowoczesnych systemach oświetleniowych, gdzie wymagane jest szybkie i efektywne montowanie źródeł światła. Trzonki GU10 są często wykorzystywane w lampach sufitowych oraz reflektorach, co czyni je wszechstronnym wyborem w projektowaniu oświetlenia. Warto również zauważyć, że źródła światła z trzonkiem GU10 mogą być zarówno halogenowe, jak i LED, co pozwala na elastyczny dobór technologii w zależności od potrzeb użytkownika. Dzięki zastosowaniu standardów takich jak IEC 60400, trzonek GU10 zyskał akceptację w branży oświetleniowej, co zapewnia jego szeroką dostępność i kompatybilność z różnorodnymi systemami oświetleniowymi.

Pytanie 16

Na którym rysunku przedstawiono oprawkę do źródła światła dużej mocy, nagrzewającego się do temperatur rzędu 300°C?

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Oprawka oznaczona literą D jest właściwa, ponieważ została wykonana z ceramiki, co czyni ją idealnym materiałem do zastosowania w źródłach światła o dużej mocy. Ceramika charakteryzuje się wysoką odpornością na temperatury, które mogą osiągać nawet 300°C, co jest kluczowe dla zapewnienia bezpieczeństwa i wydajności systemu oświetleniowego. W praktyce, oprawki ceramiczne są szeroko stosowane w lampach halogenowych i LED o dużej mocy, gdzie efektywne odprowadzanie ciepła jest niezbędne. Materiał ten nie tylko dobrze przewodzi ciepło, ale również minimalizuje ryzyko deformacji pod wpływem wysokich temperatur. Zastosowanie ceramiki w takich oprawkach wpisuje się w standardy branżowe, które uwzględniają bezpieczeństwo i efektywność energetyczną. Warto również zauważyć, że w przypadku źródeł światła dużej mocy, niewłaściwie dobrane materiały mogą prowadzić do uszkodzeń zarówno oprawki, jak i samego źródła światła, co może skutkować awarią i zwiększonym ryzykiem pożaru. Dlatego wybór ceramiki jako materiału na oprawki jest zgodny z najlepszymi praktykami inżynieryjnymi.

Pytanie 17

Który z wymienionych zestawów materiałów i narzędzi, oprócz wiertarki i poziomnicy, umożliwia ułożenie podtynkowej instalacji elektrycznej prowadzonej w rurkach stalowych?

Bruzdownica
Gips
Młotek
Otwornica koronkowa
Punktak
Bruzdownica
Drut wiązałkowy
Młotek
Otwornica koronkowa
Stalowe gwoździe
Drut wiązałkowy
Młotek
Otwornica koronkowa
Przecinak
Punktak
Bruzdownica
Drut wiązałkowy
Pistolet do kleju
Stalowe gwoździe
Zestaw wierteł
A.B.C.D.
A. D.
B. C.
C. A.
D. B.
Odpowiedź B jest poprawna, ponieważ zestaw ten zawiera wszystkie niezbędne narzędzia i materiały potrzebne do ułożenia podtynkowej instalacji elektrycznej w rurkach stalowych. Bruzdownica jest kluczowym narzędziem, które umożliwia precyzyjne wykonanie bruzd w ścianie, co jest niezbędne do umieszczenia rurek. Dodatkowo, drut wiązałkowy oraz stalowe gwoździe są zbawienne przy mocowaniu rurek, zapewniając ich stabilność i bezpieczeństwo instalacji. Młotek wykorzystywany jest do prac montażowych, co podkreśla znaczenie precyzyjnych prac ręcznych w instalacjach elektrycznych. Otwornica koronowa pozwala natomiast na wykonanie otworów pod puszki instalacyjne, co jest istotnym elementem końcowego wykończenia każdej instalacji. W kontekście standardów branżowych, wybór odpowiednich narzędzi i materiałów jest kluczowy dla zapewnienia bezpieczeństwa i trwałości instalacji, co jest zgodne z normami PN-IEC dotyczących instalacji elektrycznych. Wiedza o właściwym doborze narzędzi oraz materiałów przekłada się na efektywność i bezpieczeństwo pracy, co jest niezbędne w każdym projekcie budowlanym.

Pytanie 18

Z oznaczenia kabla YDYp 3x1 mm2 300/500 V wynika, że maksymalne wartości skuteczne napięć pomiędzy żyłą przewodu a ziemią oraz pomiędzy poszczególnymi żyłami wynoszą odpowiednio

A. 300 V i 500 V
B. 500 V i 300 V
C. 200 V i 500 V
D. 200 V i 300 V
Wybór 300 V i 500 V jest jak najbardziej trafny. Przewód YDYp 3x1 mm2 300/500 V ma dwa ważne parametry. Pierwszy, 300 V, to maksymalne napięcie między żyłą a ziemią, a drugi, 500 V, dotyczy napięcia między żyłami. Te oznaczenia są zgodne z normami bezpieczeństwa, co jest istotne, gdy instalujemy elektrykę w domach czy biurach. W praktyce używa się takich przewodów do zasilania różnych rzeczy, jak oświetlenie czy gniazdka. Dzięki tym wartościom nie tylko efektywnie działamy, ale przede wszystkim dbamy o bezpieczeństwo, zmniejszając ryzyko porażenia prądem. Pamiętaj, że wybór odpowiednich przewodów jest kluczowy, by spełniały one polskie normy PN-IEC dotyczące instalacji elektrycznych.

Pytanie 19

Działanie którego środka ochrony przeciwporażeniowej w instalacji elektrycznej o napięciu znamionowym 230 V, pozwala ocenić miernik przedstawiony na rysunku?

Ilustracja do pytania
A. Zasilania napięciem bezpiecznym.
B. Izolacji roboczej.
C. Połączeń wyrównawczych.
D. Samoczynnego wyłączenia zasilania.
Izolacja robocza jest kluczowym elementem w zapewnieniu bezpieczeństwa w instalacjach elektrycznych. Miernik izolacji, przedstawiony na rysunku, służy do oceny stanu tej izolacji poprzez pomiar rezystancji. Wysoka rezystancja izolacji wskazuje na dobrą kondycję izolacji, co zapobiega przebiciu prądu do ziemi i potencjalnemu porażeniu elektrycznemu. W kontekście standardów, zgodnie z normą PN-EN 60204-1, regularne pomiary izolacji są wymagane w celu zapewnienia bezpieczeństwa urządzeń elektrycznych. W praktyce, miernik ten jest szczególnie użyteczny w okresowych przeglądach instalacji oraz w przypadku napraw i modyfikacji, aby upewnić się, że izolacja zachowuje odpowiednie właściwości, co jest niezbędne w każdej instalacji elektrycznej. Prawidłowe przeprowadzanie takich pomiarów jest elementem dobrych praktyk w branży elektroinstalacyjnej, co na pewno podnosi poziom bezpieczeństwa użytkowania instalacji.

Pytanie 20

Na której ilustracji przedstawiono kabel typu YAKY?

Ilustracja do pytania
A. Na ilustracji 3.
B. Na ilustracji 1.
C. Na ilustracji 2.
D. Na ilustracji 4.
Kabel typu YAKY jest szczególnym rodzajem kabla elektroenergetycznego, który charakteryzuje się żyłami aluminiowymi oraz izolacją wykonaną z polichlorku winylu (PVC). Na ilustracji 4 widać kabel z żyłami aluminiowymi, co jest kluczową cechą tego typu kabla. Kabel YAKY jest powszechnie stosowany w instalacjach elektrycznych, gdzie wymagane są wysokie parametry przewodzenia prądu oraz odporność na warunki atmosferyczne. Dzięki zastosowaniu żył aluminiowych, kabel ten jest lżejszy i tańszy niż jego miedziane odpowiedniki, co czyni go popularnym wyborem w gospodarce energetycznej. W praktyce, kable YAKY są często używane w rozdzielniach, do zasilania budynków, a także w instalacjach przesyłowych. Warto również podkreślić, że standardy branżowe, takie jak PN-EN 50525, regulują parametry techniczne dla kabli tego typu, zapewniając ich bezpieczeństwo i efektywność w eksploatacji.

Pytanie 21

Które urządzenie przedstawiono na rysunku?

Ilustracja do pytania
A. Wyłącznik zmierzchowy.
B. Ogranicznik przepięć.
C. Prostownik dwupołówkowy.
D. Przekaźnik bistabilny.
Ogranicznik przepięć to kluczowe urządzenie stosowane w systemach elektrycznych, mające na celu ochronę przed skutkami przepięć, które mogą być spowodowane na przykład wyładowaniami atmosferycznymi lub nagłymi zmianami w sieci energetycznej. Urządzenie to charakteryzuje się specyficzną obudową, często oznaczoną standardami ochrony, takimi jak IEC 61643-11, co pozwala na jego identyfikację. Przykładem zastosowania ograniczników przepięć jest instalacja w obiektach przemysłowych, gdzie występuje duża ilość wrażliwych urządzeń elektronicznych. Dzięki zastosowaniu ograniczników, możliwe jest zminimalizowanie ryzyka uszkodzeń sprzętu oraz zapewnienie ciągłości działania systemów. Doświadczenia wskazują, że odpowiednio dobrany i zainstalowany ogranicznik przepięć może znacząco wydłużyć żywotność urządzeń elektrycznych oraz zmniejszyć koszty napraw i konserwacji. W każdej instalacji elektrycznej istotne jest przestrzeganie zasad doboru i montażu, aby maksymalizować skuteczność działania tych urządzeń. Warto również pamiętać, że regularne przeglądy i testy ograniczników przepięć są niezbędne do utrzymania ich w dobrym stanie operacyjnym.

Pytanie 22

Który rodzaj wirującej maszyny elektrycznej przedstawiono na ilustracji?

Ilustracja do pytania
A. Komutatorową prądu przemiennego.
B. Asynchroniczną pierścieniową.
C. Bocznikową prądu stałego.
D. Synchroniczną.
Wybór innej odpowiedzi może wynikać z nieporozumień dotyczących budowy i zasad działania różnych typów maszyn elektrycznych. Odpowiedź wskazująca na maszynę bocznikową prądu stałego jest niewłaściwa, ponieważ maszyny te charakteryzują się komutacją prądu stałego, co nie jest zgodne z przedstawionym trójfazowym uzwojeniem. Ponadto, maszyny bocznikowe nie mają stałych biegunów magnetycznych, co jest kluczowym elementem widocznym na ilustracji. Wybór odpowiedzi dotyczącej maszyny asynchronicznej pierścieniowej jest również błędny, ponieważ maszyny te działają na zasadzie różnicy prędkości między wirnikiem a polem magnetycznym, co nie znajduje odzwierciedlenia w podanej strukturze. W przypadku odpowiedzi dotyczącej komutatorowej prądu przemiennego, należy zauważyć, że takie maszyny wykorzystują komutatory, co nie jest zgodne z synchronicznym działaniem przedstawionej maszyny. Często błędy w ocenie wynikają z braku zrozumienia podstawowych zasad działania maszyn elektrycznych oraz ich klasyfikacji. Ważne jest, aby przed podjęciem decyzji dokładnie zapoznać się z charakterystykami i zastosowaniami różnych typów maszyn elektrycznych, co można osiągnąć poprzez studiowanie aktualnych norm i standardów w branży, takich jak IEC 60034.

Pytanie 23

Wymagana izolacja przewodów używanych w trójfazowej sieci niskiego napięcia 230/400 V powinna wynosić co najmniej

A. 300/300 V
B. 100/100 V
C. 450/750 V
D. 300/500 V
Izolacja przewodów stosowanych w sieci trójfazowej niskiego napięcia 230/400 V powinna być wykonana na poziomie co najmniej 300/500 V, co jest zgodne z obowiązującymi normami IEC 60227 oraz IEC 60502. Tego rodzaju izolacja zapewnia odpowiednią ochronę przed przebiciem i krótko-terminowymi napięciami, które mogą wystąpić w trakcie normalnej eksploatacji instalacji elektrycznej. Przykładowo, w systemach zasilania budynków komercyjnych, gdzie przewody muszą być odporne na różne warunki otoczenia, zastosowanie przewodów o klasie izolacji 300/500 V jest standardem, który zapewnia długotrwałość oraz bezpieczeństwo użytkowników. Warto również zauważyć, że wyższe klasy izolacji, takie jak 450/750 V, są stosowane w bardziej wymagających aplikacjach, jak instalacje przemysłowe, ale w przypadku typowych instalacji niskonapięciowych, klasa 300/500 V jest wystarczająca i zalecana.

Pytanie 24

Jaki jest najmniejszy błąd pomiaru natężenia prądu wynoszącego 30 mA, gdy używamy cyfrowego miliamperomierza z wyświetlaczem do 2 miejsc po przecinku oraz miernika o określonej dokładności?

A. ±1,0% + 4 cyfry
B. ±2,5% + 1 cyfra
C. ±1,5% + 3 cyfry
D. ±2,0% + 2 cyfry
Wybór błędnych opcji wynika często z niepełnego zrozumienia zasad działania mierników oraz błędnego interpretowania wartości procentowych i cyfr. Na przykład odpowiedzi z dokładnością ±2,0% + 2 cyfry czy ±1,5% + 3 cyfry oferują znacznie większy margines błędu, co sprawia, że ​​są mniej odpowiednie do precyzyjnych pomiarów. Przy odpowiedzi ±2,0% + 2 cyfry, maksymalny błąd wyniósłby 30 mA × 2,0% + 2 cyfry, co daje 0,6 mA + 0,02 mA, czyli 0,62 mA, a to już znacznie przekracza akceptowalny poziom dokładności w wielu zastosowaniach. Podobnie, dla ±1,5% + 3 cyfry, obliczenia prowadzą do maksymalnego błędu 0,45 mA + 0,03 mA, czyli 0,48 mA. Te wartości są niewystarczające w kontekście aplikacji, które wymagają dużej precyzji. W praktyce, większa dokładność miernika pozwala na dokładniejsze przyrządzanie obwodów elektronicznych oraz zmniejsza ryzyko wystąpienia błędów w obliczeniach związanych z analizą danych. W branży inżynieryjnej, ważne jest, aby dobierać urządzenia zgodnie z wymaganiami pomiarowymi, co przekłada się na jakość i wiarygodność wyników.

Pytanie 25

Którym z kluczy nie da się skręcić stojana silnika elektrycznego śrubami jak przedstawiona na ilustracji?

Ilustracja do pytania
A. Płaskim.
B. Imbusowym.
C. Nasadowym.
D. Oczkowym.
Odpowiedź "imbusowym" jest poprawna, ponieważ klucz imbusowy jest przeznaczony do stosowania ze śrubami, które mają gniazdo sześciokątne wewnętrzne. W przypadku przedstawionym na ilustracji mamy do czynienia z klasyczną śrubą o sześciokątnej główce, co oznacza, że do jej dokręcenia można zastosować inne rodzaje kluczy, takie jak klucz nasadowy, oczkowy lub płaski. Każdy z tych kluczy posiada odpowiedni kształt, który umożliwia odpowiednie dopasowanie do główki śruby, co zapewnia efektywne przenoszenie momentu obrotowego. Klucz nasadowy jest powszechnie używany w mechanice, ponieważ jego konstrukcja pozwala na łatwe dokręcanie oraz odkręcanie śrub w trudnodostępnych miejscach. Klucz oczkowy z kolei umożliwia precyzyjne dokręcanie w ciasnych przestrzeniach, a klucz płaski jest podstawowym narzędziem w warsztatach mechanicznych. Wiedza na temat właściwego doboru narzędzi jest kluczowa dla zapewnienia efektywności i bezpieczeństwa pracy w każdej aplikacji mechanicznej.

Pytanie 26

Który z poniższych przewodów jest przeznaczony do stosowania na zewnątrz budynków?

A. YKY
B. NYM
C. LNY
D. YDY
Wybór przewodów do zastosowań zewnętrznych wymaga zrozumienia, jakie właściwości powinny one posiadać. Przewód YDY, pomimo że jest powszechnie stosowany w instalacjach elektrycznych, nie jest przeznaczony do użytku na zewnątrz budynków ze względu na brak odpowiedniej ochrony przed czynnikami atmosferycznymi. Przewody tego typu są głównie stosowane wewnątrz budynków, gdzie nie są narażone na deszcz, słońce czy zmiany temperatur. Podobna sytuacja dotyczy przewodu LNY, który również nie posiada powłoki ochronnej przystosowanej do użytku zewnętrznego. Natomiast przewód NYM, choć bardziej odporny niż YDY, nadal nie spełnia wszystkich wymagań, które stawia się przewodom przeznaczonym do pracy na zewnątrz. NYM jest często stosowany w pomieszczeniach zamkniętych lub suchych, a jego użycie na zewnątrz wymaga dodatkowej ochrony. Typowym błędem jest zakładanie, że wszystkie przewody polwinitowe mają podobną odporność na warunki atmosferyczne, co nie jest prawdą. Wybierając przewody do użytku zewnętrznego, należy zwrócić uwagę na ich specyfikacje techniczne oraz zgodność z normami, które precyzują ich odporność na czynniki zewnętrzne. Dlatego tak ważne jest, aby dokładnie analizować właściwości przewodów przed ich zastosowaniem w instalacjach zewnętrznych.

Pytanie 27

Ile maksymalnie gniazd wtyczkowych można zainstalować w jednym obwodzie w systemach odbiorczych?

A. 2 szt.
B. 6 szt.
C. 10 szt.
D. 12 szt.
Podając liczby inne niż 10, można napotkać kilka nieporozumień dotyczących zasad projektowania obwodów w instalacjach elektrycznych. Odpowiedzi, które sugerują mniejszą liczbę gniazd, takie jak 2 czy 6, mogą wynikać z mylnego przekonania, że mniejsze obciążenie jest zawsze bezpieczniejsze. W rzeczywistości, zbyt mała liczba gniazd może prowadzić do nieefektywnego wykorzystania energii oraz konieczności korzystania z rozgałęźników, co wprowadza dodatkowe ryzyko. Z kolei odpowiedź wskazująca na 12 gniazd przekracza ustalone normy, co zagraża bezpieczeństwu instalacji. Przekroczenie odpowiedniej liczby gniazd w kontekście obciążenia obwodu może prowadzić do gwałtownego wzrostu temperatury przewodów, co stanowi poważne zagrożenie pożarowe. Zasady ustalania liczby gniazd bazują na analizie przewidywanego obciążenia oraz zabezpieczeń instalacyjnych. Warto również zwrócić uwagę na różnice pomiędzy różnymi rodzajami instalacji, takimi jak instalacje domowe, przemysłowe czy biurowe, które mogą mieć różne wymogi. Kluczowe jest zawsze dostosowanie liczby gniazd do rzeczywistych potrzeb oraz zapewnienie odpowiednich zabezpieczeń, co minimalizuje ryzyko awarii oraz poprawia komfort użytkowania.

Pytanie 28

Na którym rysunku przedstawiono żarówkę halogenową?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Żarówka halogenowa, przedstawiona na rysunku B, jest jedną z najczęściej stosowanych źródeł światła w zastosowaniach, gdzie istotna jest jakość oświetlenia oraz jego efektywność. Charakteryzuje się specyficznym kształtem, gdzie szklana bańka jest często kulista, a w jej wnętrzu znajduje się mały żarnik. Dzięki zastosowaniu halogenów, żarówki te są w stanie osiągnąć wyższą temperaturę, co z kolei przekłada się na lepszą jakość emitowanego światła oraz dłuższą żywotność. Przykładem zastosowania żarówek halogenowych są reflektory w domach oraz w oświetleniu samochodowym, gdzie ważne jest uzyskanie intensywnego, a zarazem przyjemnego dla oka światła. Warto również zauważyć, że żarówki te spełniają wiele standardów wydajności energetycznej, co czyni je dobrym wyborem w kontekście zrównoważonego rozwoju i oszczędności energii.

Pytanie 29

Jakie wartości krotności prądu znamionowego obejmuje obszar działania wyzwalaczy elektromagnetycznych w samoczynnych wyłącznikach instalacyjnych nadprądowych typu C?

A. (3÷5) · In
B. (5÷10) · In
C. (2÷3) · In
D. (5÷20) · In
Wybrałeś wartość (5÷10) · In, czyli zakres krotności prądu znamionowego, w którym uruchamia się wyzwalacz elektromagnetyczny w wyłączniku instalacyjnym typu C. To jest właśnie zgodne z normą PN-EN 60898-1 – tzw. „eski” typu C mają za zadanie chronić instalację przed skutkami zwarć i większych przeciążeń. Moim zdaniem dobrze znać ten przedział, bo pozwala to dobrać charakterystykę zabezpieczeń do rodzaju obciążenia w instalacji. Typ C jest najbardziej uniwersalny – stosuje się go w mieszkaniach, biurach, czasem w niewielkich zakładach, czyli wszędzie tam, gdzie mogą się pojawić wyższe prądy rozruchowe, np. od silników czy transformatorów. Prąd wyzwalający elektromagnetycznie musi być wystarczająco wysoki, żeby nie rozłączać obwodu przy każdym chwilowym skoku, ale też na tyle niski, żeby chronić przed zwarciem. Z mojego doświadczenia, jeśli założy się wyłącznik o zbyt „czułej” charakterystyce, to potem są telefony od użytkowników, że „wywala korki” przy włączaniu odkurzacza czy wiertarki. Typ C ze swoim zakresem 5 do 10 razy prądu znamionowego naprawdę dobrze sprawdza się w praktyce, bo łączy szybkość reakcji na zwarcie z odpornością na krótkie impulsy prądowe.

Pytanie 30

W którym układzie sieciowym występuje przewód oznaczany przedstawionym symbolem graficznym?

Ilustracja do pytania
A. TT
B. IT
C. TN-S
D. TN-C
Wybór odpowiedzi TN-S, IT lub TT może wynikać z nieporozumienia dotyczącego podstawowych zasad ochrony i neutralizacji w instalacjach elektrycznych. W układzie TN-S przewody ochronne (PE) i neutralne (N) są rozdzielone, co oznacza, że nie ma miejsca na przewód PEN. To rozdzielenie jest istotne w kontekście bezpieczeństwa, ponieważ zapewnia niezależność ochrony przed porażeniem, co jest kluczowe w przypadku awarii. Z kolei układ IT jest stosowany przede wszystkim w miejscach, gdzie wymagana jest wysoka niezawodność zasilania, a jego konstrukcja opiera się na izolacji od ziemi, co sprawia, że nie stosuje się w nim przewodu PEN. W układzie TT, podobnie jak w TN-S, przewody są także rozdzielone, a dodatkowo zastosowanie uziemienia lokalnego zwiększa bezpieczeństwo. Typowym błędem myślowym jest założenie, że wszystkie układy, w których występują przewody ochronne, będą miały tę samą funkcjonalność. Dlatego ważne jest, aby zapoznać się z zasadami działania różnych układów oraz ich zastosowaniem w praktyce. Bez właściwej wiedzy na temat tych układów można łatwo wprowadzić się w błąd, co może prowadzić do poważnych konsekwencji w projektowaniu i eksploatacji instalacji elektrycznych.

Pytanie 31

Który z wymienionych symboli literowych odnosi się do przewodu samonośnego?

A. GsLGs
B. AsXSn
C. OMY
D. YKY
Odpowiedź AsXSn jest poprawna, ponieważ odnosi się do przewodów samonośnych, które są szeroko stosowane w instalacjach energetycznych. Przewody te są zaprojektowane z myślą o przenoszeniu energii elektrycznej na dużych odległościach, co wymaga zastosowania materiałów o wysokiej odporności na warunki atmosferyczne oraz wytrzymałości mechanicznej. Oznaczenie AsXSn wskazuje na konstrukcję przewodu, w której zastosowano aluminium (As) oraz stal ocynkowaną (Sn) jako materiał osłonowy, co zapewnia odpowiednie parametry elektryczne oraz mechaniczne. Przewody samonośne są wykorzystywane w liniach energetycznych, gdzie ich konstrukcja pozwala na montaż bez dodatkowych podpór, co zmniejsza koszty instalacji i utrzymania. W branży energetycznej, stosowanie przewodów samonośnych zgodnie z normami PN-EN 50182 i PN-EN 60228 jest kluczowe dla zapewnienia bezpieczeństwa oraz efektywności działania sieci energetycznych.

Pytanie 32

Który z przyrządów służy do bezpośredniego pomiaru współczynnika mocy?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Odpowiedź C jest prawidłowa, ponieważ watomierz jest specjalistycznym przyrządem pomiarowym, który umożliwia bezpośredni pomiar mocy czynnej w obwodach elektrycznych. W kontekście współczynnika mocy, który jest kluczowym parametrem w systemach prądu przemiennego, watomierz pozwala na precyzyjne określenie wartości mocy czynnej, co jest niezbędne do obliczenia współczynnika mocy (cosφ). W praktyce, stosując wzór: cosφ = P/S, gdzie P to moc czynna, a S to moc pozorna, można z łatwością ustalić współczynnik mocy. Użycie watomierza jest nieocenione w zastosowaniach takich jak optymalizacja zużycia energii w instalacjach elektrycznych, co pozwala na identyfikację strat energii i poprawę efektywności energetycznej. Współczesne standardy, takie jak IEC 61557, podkreślają znaczenie pomiarów współczynnika mocy dla zapewnienia efektywności systemów zasilania oraz jakości energii elektrycznej.

Pytanie 33

Jaką wartość ma znamionowa sprawność silnika jednofazowego, którego dane to: PN = 3,7 kW (moc mechaniczna na wale), UN = 230 V, IN = 21,4 A, cos φ = 0,95?

A. 0,79
B. 0,75
C. 0,71
D. 0,95
Znamionowa sprawność silnika jednofazowego wynosi 0,79, co oznacza, że 79% energii elektrycznej dostarczonej do silnika przekształca się w moc mechaniczną na wale. Obliczenie sprawności silnika można przeprowadzić na podstawie wzoru: η = P_N / (U_N * I_N * cos φ), gdzie P_N to moc mechaniczna na wale, U_N to napięcie znamionowe, I_N to prąd znamionowy, a cos φ to współczynnik mocy. Dla tego silnika mamy: η = 3,7 kW / (230 V * 21,4 A * 0,95) = 0,79. Taka sprawność jest typowa dla silników elektrycznych, które są projektowane z myślą o jak najwyższej efektywności energetycznej. W praktyce, silniki o wysokiej sprawności są szczególnie poszukiwane w przemyśle, ponieważ pozwalają na znaczne oszczędności kosztów energii, a także redukcję emisji CO2. W dobie rosnących cen energii elektrycznej i rosnącej presji na ochronę środowiska, wybór silników o wysokiej sprawności staje się kluczowy.

Pytanie 34

Wskaż symbol graficzny monostabilnego łącznika przyciskowego z zestykiem NO.

Ilustracja do pytania
A. Symbol 2.
B. Symbol 3.
C. Symbol 4.
D. Symbol 1.
Monostabilny łącznik przyciskowy z zestykiem NO (normalnie otwartym) jest kluczowym elementem w wielu systemach elektrycznych i automatyce. Symbol 1 przedstawia ten łącznik, ilustrując otwarty styk, który zamyka się po naciśnięciu przycisku, co jest zgodne z zasadami oznaczania w normach IEC 60617. W praktyce, tego rodzaju łączniki są powszechnie używane w urządzeniach, które wymagają chwilowego włączenia obwodu, jak na przykład w urządzeniach sterujących, alarmach czy systemach oświetleniowych. Dzięki swojej konstrukcji, monostabilne przyciski są bardziej energooszczędne, ponieważ nie wymagają stałego zasilania do utrzymania stanu włączenia. Zrozumienie tego symbolu i funkcji jest kluczowe dla właściwego projektowania i implementacji systemów elektrycznych. Używanie poprawnych symboli graficznych w dokumentacji technicznej jest istotne dla komunikacji między inżynierami i technikami, co wpływa na jakość i bezpieczeństwo instalacji elektrycznych.

Pytanie 35

Jaką oprawę oświetleniową pokazano na rysunku?

Ilustracja do pytania
A. Uliczną.
B. Biurową.
C. Przenośną.
D. Punktową.
Oprawa oświetleniowa przedstawiona na rysunku jest klasycznym przykładem oświetlenia ulicznego. Charakteryzuje się ona specyficznym kształtem i montażem, które są dostosowane do oświetlania przestrzeni publicznych, takich jak ulice, parki czy chodniki. W praktyce, oprawy uliczne są projektowane z myślą o maksymalnej efektywności świetlnej oraz odporności na warunki atmosferyczne. Standardy branżowe, takie jak normy PN-EN 13201, określają wymagania dotyczące oświetlenia dróg, co zapewnia bezpieczeństwo użytkowników dróg. W zależności od specyfiki terenu, oprawy te mogą być stosowane z różnymi źródłami światła, w tym LED, co zwiększa ich efektywność energetyczną i żywotność. Dobre praktyki w zakresie instalacji oświetlenia ulicznego uwzględniają także odpowiednie rozmieszczenie opraw, co ma kluczowe znaczenie dla zapewnienia równomiernego oświetlenia i minimalizacji efektu olśnienia dla kierowców i pieszych. Odpowiednia oprawa uliczna nie tylko poprawia widoczność, ale również wpływa na bezpieczeństwo oraz komfort użytkowników dróg.

Pytanie 36

Na którym rysunku przedstawiono schemat połączeń umożliwiający pomiar energii elektrycznej pobranej przez użytkownika?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Błędne odpowiedzi mogą być wynikiem nieporozumień co do tego, jak działają liczniki energii i ich podłączenie w obwodach elektrycznych. Schematy A, B i D mogą mieć błędy w połączeniu przewodów fazowych i neutralnych, co prowadzi do złego pomiaru energii. Często myli się, że licznik może być podłączony równolegle do obciążenia, a to wcale nie działa, bo licznik wtedy nie zmierzy przepływu prądu. Właściwy pomiar wymaga szeregowego połączenia, żeby licznik był w torze prądowym. Dodatkowo, jeśli źle rozumie się rolę przewodów, można mieć problem z ich zidentyfikowaniem, co może być niebezpieczne. Warto zwrócić uwagę na normy i przepisy dotyczące instalacji elektrycznych, bo pokazują, jak ważne jest bezpieczeństwo i poprawność podłączeń. Zrozumienie zasad działania systemów pomiarowych oraz ich prawidłowego podłączenia jest kluczowe, żeby zapewnić bezpieczeństwo i efektywność energetyczną w codziennym użytkowaniu energii.

Pytanie 37

Która z przedstawionych opraw oświetleniowych charakteryzuje się najwyższym stopniem ochrony IK ze względu na wytrzymałość mechaniczną?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Odpowiedź C jest prawidłowa, ponieważ oprawa oświetleniowa przedstawiona w tej opcji wykazuje najwyższy stopień ochrony IK, co odzwierciedla jej zdolność do wytrzymywania uderzeń mechanicznych. W standardach IEC 62262 klasyfikacja IK odnosi się do stopnia ochrony obudów urządzeń elektrycznych przed uderzeniami, co jest kluczowe w warunkach, gdzie oświetlenie jest narażone na uszkodzenia. Oprawa C jest zaprojektowana z myślą o wytrzymałości; jej płaska i zamknięta powierzchnia ogranicza dostęp do delikatnych elementów, co znacząco zwiększa jej odporność na mechaniczne uszkodzenia. Przykłady zastosowań takich opraw obejmują miejsca przemysłowe, magazyny oraz przestrzenie zewnętrzne, gdzie narażone są na intensywne użytkowanie. Wybór oprawy z wysokim stopniem ochrony IK jest zgodny z dobrą praktyką w projektowaniu instalacji oświetleniowych, zwłaszcza w trudnych warunkach. Zastosowanie opraw o wysokiej odporności mechanicznej przyczynia się do zwiększenia żywotności oświetlenia oraz obniżenia kosztów konserwacji.

Pytanie 38

W elektrycznych instalacjach w mieszkaniach oraz budynkach użyteczności publicznej prace konserwacyjne nie obejmują

A. wymiany gniazd zasilających
B. czyszczenia lamp oświetleniowych
C. czyszczenia urządzeń w rozdzielniach
D. montażu nowych punktów świetlnych
Fajnie, że zauważyłeś, że montaż nowych wypustów oświetleniowych to nie konserwacja. Konserwacja polega głównie na utrzymaniu istniejących systemów w dobrym stanie, jak czyszczenie lamp czy wymiana starych gniazdek. Nowe wypusty wymagają więcej planowania i czasem też papierkowej roboty, żeby wszystko było zgodne z przepisami. W praktyce chodzi o to, żeby przedłużać żywotność tego, co już mamy, natomiast nowe instalacje to zupełnie inna bajka, która wiąże się z projektowaniem i dodatkowymi formalnościami.

Pytanie 39

Którą z funkcji umożliwia układ zasilania silnika elektrycznego przedstawiony na schemacie?

Ilustracja do pytania
A. Przełączanie uzwojeń z gwiazdy na trójkąt.
B. Pracę ze zmiennym kierunkiem obrotów.
C. Hamowanie dynamiczne.
D. Rozruch za pomocą rozrusznika rezystorowego.
Rozruch silnika elektrycznego z użyciem rozrusznika rezystorowego to jedna z popularnych metod w przemyśle. Jak to wygląda w praktyce? No, na schemacie widzimy styczniki K1M, K2M, K3M oraz rezystory R1 i R2, które współpracują, żeby stopniowo podnosić napięcie do silnika M1. Na początku rozruchu te rezystory ograniczają prąd, co zmniejsza ryzyko przeciążenia i udaru. Dzięki temu silnik osiąga pełną prędkość w kontrolowany sposób. Z mojego doświadczenia wiem, że to ważne dla trwałości maszyn. Rozruszniki rezystorowe są zgodne z normami IEC i są dobrym rozwiązaniem, bo ograniczają zakłócenia w sieci energetycznej i zwiększają bezpieczeństwo. Przy dużych mocach, taki układ to wręcz konieczność, by utrzymać integralność elektryczną i mechaniczną urządzenia.

Pytanie 40

Na której ilustracji przedstawiono symbol graficzny przewodu neutralnego?

Ilustracja do pytania
A. Na ilustracji 3.
B. Na ilustracji 1.
C. Na ilustracji 4.
D. Na ilustracji 2.
Symbol graficzny przewodu neutralnego, oznaczony jako linia z kropką na końcu, jest kluczowym elementem w instalacjach elektrycznych. Na ilustracji 1 widzimy ten symbol, co potwierdza jego zgodność z międzynarodowymi standardami, takimi jak IEC 60446, które regulują oznaczanie przewodów i kolorów w systemach elektroenergetycznych. Przewód neutralny odgrywa ważną rolę w systemie elektrycznym, odpowiedzialny za zamknięcie obwodu i zapewnienie równowagi w instalacji. W praktyce, poprawne zidentyfikowanie przewodu neutralnego jest niezwykle istotne, aby uniknąć błędów w podłączaniu urządzeń oraz zapewnić bezpieczeństwo użytkowników. Wiedza o tym, jak rozpoznać symbol przewodu neutralnego, wspiera właściwe wykonywanie instalacji elektrycznych i konserwacji, co jest zgodne z najlepszymi praktykami branżowymi. Dodatkowo, zrozumienie ról poszczególnych przewodów w obwodzie elektrycznym, takich jak przewód fazowy oraz przewód ochronny, przyczynia się do tworzenia bezpiecznych i efektywnych instalacji.