Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 9 grudnia 2025 14:36
  • Data zakończenia: 9 grudnia 2025 14:45

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Jaką funkcję pełni czasza w antenie satelitarnej?

A. odbicie fal i skierowanie ich do konwertera
B. umożliwienie odbioru konkretnych częstotliwości sygnału
C. umożliwienie zamontowania konwertera pod właściwym kątem
D. skierowanie konwertera w stronę wybranego satelity
Czasza w antenie satelitarnej odgrywa kluczową rolę w procesie odbioru sygnałów satelitarnych. Jej głównym zadaniem jest odbicie fal elektromagnetycznych, które są następnie skierowane do konwertera. Dzięki temu, antena może efektywnie zbierać sygnały o różnych częstotliwościach, co ma szczególne znaczenie w kontekście różnorodności usług satelitarnych, takich jak transmisja telewizyjna, internet satelitarny czy telekomunikacja. Odbicie fal jest możliwe dzięki odpowiedniej geometrii czaszy, która jest najczęściej paraboliczna. Ta geometria pozwala na skupienie fal na konwerterze, co zwiększa efektywność odbioru. Przykładem zastosowania tej zasady są instalacje antenowe w telewizji satelitarnej, gdzie precyzyjne ustawienie czaszy pozwala na odbiór sygnałów z satelitów, które znajdują się na różnych orbitach geostacjonarnych. Zgodnie z najlepszymi praktykami, odpowiednie ustawienie kąta nachylenia oraz azymutu czaszy jest kluczowe dla uzyskania optymalnej jakości sygnału, co podkreśla znaczenie wiedzy na temat zasady działania czaszy w antenach satelitarnych.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Tłumienność wynosząca 1 dB/km wskazuje, że na odcinku światłowodu o długości 10 km dochodzi do rozproszenia

A. 80% wartości mocy sygnału przychodzącego
B. 20% wartości mocy sygnału przychodzącego
C. 10% wartości mocy sygnału przychodzącego
D. 90% wartości mocy sygnału przychodzącego
Tłumienność światłowodu wynosząca 1 dB/km oznacza, że na każdy kilometr sygnał traci 1 dB mocy. Czyli jak mamy odcinek 10 km, to całkowite tłumienie wynosi 10 dB. Można to zobaczyć w wzorze: P_out = P_in * 10^(-L/10), gdzie L to tłumienie w dB, a P_in to moc sygnału na początku. Jak L wynosi 10 dB, to P_out wychodzi tak: P_out = P_in * 10^(-10/10) = P_in * 0.1. Ostatecznie oznacza to, że 10% mocy sygnału przechodzi na końcu, co sugeruje, że 90% mocy ucieka. Ta wiedza jest naprawdę przydatna, jak się projektuje systemy komunikacji optycznej, bo musimy ogarniać, jak najmniej stracić na jakości sygnału. Na przykład, w sieciach telekomunikacyjnych inżynierowie muszą planować długości odcinków światłowodów i ich tłumienność, żeby wszystko działało jak najlepiej.

Pytanie 5

Aby zabezpieczyć drogi oddechowe przed szkodliwymi oparami, podczas lutowania należy używać

A. półmaski filtracyjnej bez zaworka
B. wiatraka
C. odsysacza cyny
D. odsysacza dymu
Odsysacz dymu jest kluczowym urządzeniem do ochrony dróg oddechowych podczas lutowania, gdyż skutecznie eliminuje toksyczne opary i cząstki, które powstają w procesie lutowania. Dym lutowniczy zawiera m.in. substancje chemiczne, takie jak opary metali oraz substancje lotne, które mogą mieć negatywny wpływ na zdrowie, w tym powodować podrażnienia dróg oddechowych, a w dłuższym okresie prowadzić do poważnych problemów zdrowotnych. Odsysacze dymu działają na zasadzie lokalnego odsysania, co oznacza, że są w stanie zbierać dym w bezpośrednim sąsiedztwie miejsca pracy. Dobrą praktyką jest również ich regularne serwisowanie i wymiana filtrów, aby zapewnić ich maksymalną efektywność. W normach dotyczących BHP oraz w wytycznych dotyczących ochrony zdrowia w miejscu pracy, takich jak normy OSHA, podkreśla się znaczenie stosowania odpowiednich środków ochrony osobistej oraz systemów wentylacyjnych. W sytuacjach, gdzie nie można zastosować odsysacza dymu, zaleca się stosowanie wentylacji ogólnej, jednak jej skuteczność w eliminowaniu toksycznych substancji jest znacznie niższa. Dlatego, aby zapewnić sobie bezpieczne warunki pracy, należy zawsze korzystać z odsysaczy dymu.

Pytanie 6

Sprawdzanie działania elektronicznego wzmacniacza akustycznego nie obejmuje

A. uaktualniania oprogramowania
B. znajdowania anomalii w działaniu urządzenia
C. kontroli temperatury elementów
D. pomiaru parametrów
Odpowiedź "uaktualnianie oprogramowania" jest poprawna, ponieważ testowanie elektronicznego wzmacniacza akustycznego koncentruje się głównie na aspektach związanych z jego wydajnością i funkcjonalnością w kontekście audio. W procesie testowania, kluczowe jest przeprowadzenie pomiaru parametrów, takich jak zniekształcenia harmoniczne, pasmo przenoszenia, czy moc wyjściowa, co pozwala na ocenę jakości dźwięku generowanego przez wzmacniacz. Kontrola temperatury elementów jest również istotna, aby zapewnić, że urządzenie nie przegrzewa się podczas pracy, co mogłoby prowadzić do uszkodzeń lub obniżenia jakości dźwięku. Dodatkowo, identyfikacja anomalii w działaniu urządzenia jest kluczowa w utrzymaniu jakości i niezawodności sprzętu. Uaktualnianie oprogramowania może być istotne w kontekście poprawy funkcjonalności, ale nie jest to kluczowy element testowania samego wzmacniacza akustycznego. Przykłady dobrych praktyk w tej dziedzinie obejmują korzystanie z analizatorów widma i oscyloskopów do dokładnej analizy parametrów akustycznych.

Pytanie 7

Jakim urządzeniem należy się posłużyć, aby zmierzyć amplitudę sygnału z generatora taktującego mikroprocesorowy układ o częstotliwości f = 25 MHz?

A. Amperomierzem prądu zmiennego z rezystorem szeregowym 10 kOhm
B. Częstościomierzem o maksymalnym zakresie 50 MHz
C. Woltomierzem prądu zmiennego o wewnętrznej rezystancji 100 kOhm/V
D. Oscyloskopem o podstawie czasu 100 ns/cm
Odpowiedź dotycząca oscyloskopu o podstawie czasu 100 ns/cm jest prawidłowa, ponieważ oscyloskop jest urządzeniem zaprojektowanym do analizy sygnałów czasowych i ich amplitudy w bardzo wysokich częstotliwościach. W przypadku sygnału o częstotliwości 25 MHz, czas trwania jednego okresu wynosi 40 ns. Podstawa czasu 100 ns/cm pozwala na uchwycenie co najmniej dwóch pełnych cykli sygnału, co jest niezbędne do dokładnej analizy jego kształtu oraz amplitudy. Oscyloskopy umożliwiają również pomiar parametrów takich jak pik-pik, co jest kluczowe przy badaniu sygnałów cyfrowych. W praktyce, oscyloskop jest często używany w laboratoriach elektronicznych i podczas testowania układów cyfrowych, co czyni go standardowym narzędziem w branży. Zastosowanie oscyloskopu przy pomiarze sygnałów o wysokiej częstotliwości jest zgodne z najlepszymi praktykami inżynieryjnymi, zapewniając precyzyjny i wiarygodny pomiar, który jest nieoceniony w procesie projektowania i diagnozowania układów elektronicznych. Warto również zaznaczyć, że oscyloskopy są wyposażone w różne tryby analizy, co pozwala na monitorowanie sygnałów w czasie rzeczywistym oraz ich zapisanie do późniejszej analizy.

Pytanie 8

Fotografia przedstawia konwerter typu

Ilustracja do pytania
A. Quatro
B. Octo
C. Monoblock
D. Quad
Odpowiedź Monoblock jest poprawna, ponieważ konwerter typu Monoblock jest zaprojektowany do jednoczesnego odbioru sygnałów z dwóch satelitów znajdujących się na bliskich pozycjach orbitalnych. Posiada on dwie głowice (LNB) umieszczone na jednej wspólnej podstawie, co pozwala na efektywne zarządzanie sygnałem bez konieczności używania dwóch oddzielnych konwerterów. Dzięki swojej konstrukcji pozwala na podłączenie dwóch tunerów satelitarnych, co umożliwia równoczesne oglądanie różnych programów z dwóch satelitów. Monoblock jest często stosowany w instalacjach, gdzie użytkownicy chcą mieć dostęp do szerokiego zakresu programów telewizyjnych, na przykład z różnych operatorów satelitarnych. W kontekście standardów branżowych, konwertery Monoblock są zgodne z wymaganiami instalacji typu multiswitch i są szeroko rekomendowane w przypadku anten o dużych średnicach, co zwiększa ich wydajność. Ich prostota w instalacji oraz wielofunkcyjność czynią je popularnym wyborem wśród użytkowników anten satelitarnych.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Jakie urządzenie należy zastosować do pomiaru rezystancji w układzie elektronicznym?

A. woltomierza
B. częstotliwościomierza
C. omomierza
D. amperomierza
Omomierz to specjalistyczne urządzenie pomiarowe, które służy do pomiaru rezystancji. Jego działanie opiera się na zasadzie pomiaru napięcia i prądu w obwodzie, co pozwala obliczyć wartość rezystancji zgodnie z prawem Ohma. W praktyce, omomierz jest niezbędny w diagnostyce elektronicznych układów, ponieważ umożliwia identyfikację uszkodzonych komponentów, takich jak rezystory, diody czy tranzystory. W kontekście instalacji elektronicznych, omomierz pozwala na sprawdzenie ciągłości połączeń oraz identyfikację ewentualnych przerw czy zwarć w obwodzie. Używanie omomierza jest zgodne z najlepszymi praktykami w branży, które zalecają regularne testowanie komponentów w celu zapewnienia ich poprawnego działania oraz bezpieczeństwa. Cały proces pomiaru powinien być przeprowadzany z zachowaniem odpowiednich środków ostrożności, aby uniknąć uszkodzenia sprzętu oraz zapewnić dokładność pomiarów.

Pytanie 11

Maksymalny poziom natężenia dźwięku w biurze dla osoby zajmującej się projektowaniem układów elektronicznych, zgodnie z obowiązującymi normami, nie powinien przekraczać wartości

A. 55 dB
B. 25 dB
C. 35 dB
D. 45 dB
Odpowiedź 55 dB jest prawidłowa, ponieważ zgodnie z obowiązującymi przepisami dotyczącymi ochrony zdrowia w miejscu pracy, poziom natężenia dźwięku w pomieszczeniach biurowych, w których wykonywane są zadania wymagające koncentracji, nie powinien przekraczać 55 dB. Wartość ta odnosi się do normy PN-EN ISO 11690-1, która określa na dopuszczalny poziom hałasu w środowisku pracy. W praktyce oznacza to, że w biurze, w którym projektowane są układy elektroniczne, powinno się dążyć do minimalizacji hałasu, aby zapewnić komfort i efektywność pracy. Przykłady działań, które mogą pomóc w osiągnięciu tego celu, to zastosowanie dźwiękoszczelnych paneli akustycznych, ograniczenie liczby urządzeń generujących hałas oraz optymalizacja układu biura w celu stworzenia cichych stref pracy. Utrzymanie poziomu hałasu poniżej 55 dB sprzyja nie tylko wydajności, ale również zdrowiu pracowników, co jest kluczowe w kontekście długotrwałego wpływu hałasu na samopoczucie oraz zdrowie psychiczne.

Pytanie 12

Jakie jest zastosowanie symetryzatora antenowego?

A. aby zwiększyć zysk energetyczny anteny
B. w celu zmiany charakterystyki kierunkowej anteny
C. do dopasowania impedancyjnego anteny i odbiornika
D. do przesyłania sygnałów z kilku anten do jednego odbiornika
Symetryzator antenowy, znany również jako transformator impedancji, jest kluczowym elementem w systemach komunikacji radiowej, który zapewnia odpowiednie dopasowanie impedancyjne między anteną a odbiornikiem. Główna funkcja symetryzatora polega na minimalizowaniu strat energii, co jest niezbędne do uzyskania optymalnej wydajności systemu. Impedancja anteny i odbiornika powinna być zgodna, aby zapewnić maksymalny transfer energii, co jest zgodne z zasadami dotyczących projektowania systemów RF (Radio Frequency). Przykładowo, w zastosowaniach takich jak radioamatorstwo, stosowanie symetryzatora może prowadzić do znacznego zwiększenia jakości sygnału i zasięgu, zwłaszcza w przypadku anten o różnej impedancji. Standardy takie jak IEC 62232 wskazują na znaczenie dopasowania impedancji w kontekście efektywności energetycznej i jakości sygnału. W praktyce, nieprawidłowe dopasowanie może skutkować odbiciem sygnału i stratami, które negatywnie wpływają na działanie całego systemu. Dlatego symetryzatory są niezbędne w profesjonalnych zastosowaniach oraz w systemach amatorskich, gdzie właściwe dopasowanie jest kluczowe dla osiągnięcia satysfakcjonujących wyników.

Pytanie 13

Zdjęcie przedstawia

Ilustracja do pytania
A. generator.
B. mostek Maxwella.
C. zasilacz.
D. oscyloskop.
Odpowiedź "generator" jest poprawna, ponieważ urządzenie przedstawione na zdjęciu to generator sygnałów, który jest kluczowym narzędziem w elektronice i telekomunikacji. Generatory sygnałów są wykorzystywane do tworzenia przebiegów elektrycznych w różnych zastosowaniach, takich jak testowanie układów elektronicznych, symulacje, a także edukacja w dziedzinie elektroniki. Na panelu przednim widoczne są elementy takie jak pokrętło regulacji częstotliwości (FREQ RANGE) oraz poziomu sygnału (SIGNAL), które umożliwiają precyzyjne dostosowanie wyjściowego sygnału. W praktyce, generatory są wykorzystywane do wytwarzania sygnałów sinusoidalnych, prostokątnych czy trójkątnych, co jest niezbędne w testowaniu odpowiedzi częstotliwościowej różnych urządzeń. Zgodnie z dobrymi praktykami, użytkowanie generatorów powinno być zgodne z określonymi normami, takimi jak ANSI/ISA-5.1, które definiują standardy dla instrumentów pomiarowych, co zapewnia ich poprawne działanie oraz dokładność pomiarów.

Pytanie 14

Z którego materiału wykonane są listwy instalacyjne przedstawione na rysunku?

Ilustracja do pytania
A. Kamionki elektrotechnicznej.
B. Stali.
C. Tworzywa sztucznego.
D. Aluminium.
Listwy instalacyjne wykonane z tworzywa sztucznego są popularnym wyborem w zastosowaniach elektrycznych i budowlanych ze względu na ich właściwości izolacyjne, lekkość oraz łatwość w obróbce. Tworzywa sztuczne, takie jak PVC czy polipropylen, są odporne na korozję oraz działanie chemikaliów, co czyni je idealnymi do stosowania w różnych środowiskach. Dodatkowo, dzięki możliwości produkcji w różnych kolorach i kształtach, listwy te nie tylko pełnią funkcje praktyczne, ale również estetyczne, co jest szczególnie istotne w architekturze wnętrz. W kontekście norm i standardów, stosowanie tworzyw sztucznych w instalacjach elektrycznych jest zgodne z wytycznymi IEC oraz lokalnymi przepisami budowlanymi, które podkreślają znaczenie materiałów o odpowiednich właściwościach dielektrycznych. W praktyce, najczęściej spotykane zastosowania obejmują maskowanie przewodów elektrycznych, co nie tylko polepsza estetykę, ale również zapewnia bezpieczeństwo użytkowników przez minimalizowanie ryzyka zwarcia.

Pytanie 15

Wymiana bezpiecznika 500 mA na bezpiecznik 2 A w urządzeniu elektronicznym może prowadzić do

A. wzrostu strat cieplnych
B. zwiększenia zużycia prądu
C. uszkodzenia urządzenia
D. zmniejszenia efektywności
Zastąpienie bezpiecznika 500 mA bezpiecznikiem 2 A w sprzęcie elektronicznym może prowadzić do uszkodzenia urządzenia z kilku kluczowych powodów. Przede wszystkim, bezpiecznik jest elementem zabezpieczającym, którego zadaniem jest przerwanie obwodu w przypadku nadmiernego prądu, co zapobiega przeciążeniu i potencjalnym uszkodzeniom komponentów. Wymiana na bezpiecznik o znacznie wyższej wartości nominalnej oznacza, że urządzenie będzie mogło pracować z prądem, który znacznie przekracza jego nominalne parametry. Na przykład, jeśli urządzenie zostało zaprojektowane do pracy z maksymalnym prądem 500 mA, przepływ prądu 2 A może prowadzić do przegrzania elementów, takich jak kondensatory czy tranzystory, co skutkuje ich uszkodzeniem. Takie działania są sprzeczne z zasadami ochrony urządzeń i mogą prowadzić do kosztownych napraw. W kontekście standardów branżowych, takich jak IEC 60950 dotyczący bezpieczeństwa sprzętu IT, dobór odpowiednich bezpieczników jest kluczowy dla zapewnienia bezpieczeństwa i niezawodności urządzeń. Warto również wspomnieć, że odpowiedni dobór bezpieczników w sprzęcie elektronicznym jest istotnym elementem inżynierii elektrycznej, który powinien być starannie przemyślany na etapie projektowania.

Pytanie 16

Do wykonywania złącz typu F metodą kompresyjną wykorzystuje się narzędzie ze zdjęcia

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Odpowiedź B jest poprawna, ponieważ narzędzie przedstawione na zdjęciu to zaciskarka kompresyjna do złącz typu F. Te narzędzia są niezbędne w instalacjach telewizji kablowej i satelitarnej, gdzie kluczowe jest zapewnienie solidnych połączeń. Zaciskarki kompresyjne stosują metodę kompresji, aby dokładnie dopasować złącze do kabla, co minimalizuje straty sygnału i poprawia jakość transmisji. W praktyce, prawidłowe użycie zaciskarki pozwala na uzyskanie trwałych i odpornych na zakłócenia połączeń, co jest zgodne z najlepszymi praktykami w branży telekomunikacyjnej. Ponadto, stosowanie zaciskarek kompresyjnych zgodnie z normami producentów złączy zapewnia optymalne rezultaty, co jest szczególnie ważne w kontekście instalacji profesjonalnych. Warto również zwrócić uwagę, że odpowiednie narzędzia i techniki montażowe, takie jak użycie zaciskarki kompresyjnej, są kluczowe dla osiągnięcia wysokiej jakości usług w branży telewizyjnej.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Zgodnie z dyrektywą 2002/95/EC Parlamentu Europejskiego z dnia 27 stycznia 2003, w sprzęcie ogólnego przeznaczenia (z wyjątkiem wybranych urządzeń techniki komputerowej oraz systemów telekomunikacyjnych) zabrania się stosowania w stopach lutowniczych

A. cyny
B. ołowiu
C. kalafonii
D. pasty lutowniczej
Zgodnie z dyrektywą 2002/95/EC, znaną jako dyrektywa RoHS (Restriction of Hazardous Substances), stosowanie ołowiu w sprzęcie powszechnego użytku jest zabronione ze względu na jego potencjalnie szkodliwy wpływ na zdrowie ludzi i środowisko. Ołów jest substancją toksyczną, która może prowadzić do poważnych problemów zdrowotnych, w tym uszkodzenia układu nerwowego, szczególnie u dzieci. Dlatego dyrektywa RoHS ma na celu ograniczenie obecności niebezpiecznych substancji w produktach elektronicznych. Przykładowo, w produkcji lutowia stosuje się alternatywne materiały, takie jak lutowie bezołowiowe, które może zawierać cynę, srebro i miedź, aby spełniać wymagania środowiskowe i zdrowotne. Warto również zauważyć, że zgodność z dyrektywą RoHS jest kluczowym elementem procesów certyfikacji produktów elektronicznych, co przekłada się na ich akceptację na rynkach europejskich.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Elementy R, C w układzie generatora, którego schemat przedstawiono na rysunku, spełniają rolę

Ilustracja do pytania
A. układu polaryzacji.
B. blokady składowej stałej.
C. blokady składowej zmiennej.
D. przesuwnika fazy.
Wybranie odpowiedzi, która nie uwzględnia roli przesuwnika fazy, może prowadzić do nieporozumień dotyczących działania układów elektronicznych. Elementy R i C w układzie generatora sinusoidalnego są kluczowe dla generowania oscylacji, a ich głównym zadaniem jest właśnie wprowadzenie przesunięcia fazowego między sygnałem wejściowym a wyjściowym. Wybór odpowiedzi dotyczącej układu polaryzacji jest nieprawidłowy, ponieważ układ polaryzacji dotyczy ustalania punktu pracy tranzystorów, a nie generacji sygnałów. Ponadto, odpowiedzi odnoszące się do blokady składowej zmiennej oraz blokady składowej stałej sugerują, że zrozumienie funkcji elementów w kontekście ich zastosowania w generatorach jest niewłaściwe. Blokada składowej zmiennej odnosi się do eliminacji niepożądanych sygnałów AC w układach, co nie ma związku z wytwarzaniem sygnałów sinusoidalnych. Z kolei blokada składowej stałej to technika stosowana w celu wyeliminowania wpływu składowej stałej w sygnałach, co również nie koresponduje z funkcją przesuwnika fazy. Zrozumienie tych różnic jest kluczowe w elektronice, gdzie precyzyjne projektowanie i zastosowanie odpowiednich komponentów jest niezbędne dla osiągnięcia pożądanych parametrów układu.

Pytanie 21

Jaką funkcję pełni PTY w radiu?

A. Automatyczną "regulację głośności"
B. Odbiór wiadomości tekstowych
C. Wybieranie i przeszukiwanie typu programu
D. Odbiór informacji drogowych
Wybór odpowiedzi dotyczącej automatycznej regulacji siły głosu, odbioru komunikatów tekstowych czy komunikatów drogowych wskazuje na pewne nieporozumienia związane z rolą i funkcjonalnością systemu RDS. Automatyczna regulacja siły głosu dotyczy zarządzania poziomem głośności sygnału audio w odbiorniku, ale nie ma związku z PTY, które koncentruje się na klasyfikacji programów. Odbiór komunikatów tekstowych, chociaż jest funkcją RDS, nie jest bezpośrednio związany z PTY. System RDS rzeczywiście umożliwia przesyłanie tekstowych informacji, ale PTY ma zupełnie inny cel - identyfikację rodzaju programów. Podobnie, komunikaty drogowe to osobna funkcjonalność, często związana z inną specyfikacją RDS, taką jak TMC (Traffic Message Channel), a nie z PTY. Typowe błędy myślowe to mylenie różnych funkcji systemu RDS, co może prowadzić do nieporozumień przy wyborze odpowiednich stacji radiowych. Ważne jest zrozumienie, że PTY to narzędzie do klasyfikacji programów, a nie do regulacji dźwięku czy przesyłania tekstów, co jest kluczowe dla prawidłowego odbioru i używania technologii radiowej.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Jaką kamerę można rozpoznać na zdjęciu na podstawie złącz, w które jest wyposażona?

Ilustracja do pytania
A. Monitoringu przemysłowego CCTV.
B. Zasilaną napięciem przemiennym.
C. Z oświetlaczem IR.
D. Internetową monitoringu IP.
Odpowiedź "Internetową monitoringu IP" jest poprawna, ponieważ złącze RJ45, które jest widoczne na zdjęciu, jest standardowym złączem używanym w kamerach IP. Kamery te są zazwyczaj podłączane do lokalnej sieci komputerowej, co umożliwia przesyłanie strumieniowego wideo oraz zasilanie przez Ethernet (PoE). To rozwiązanie jest szeroko stosowane w nowoczesnych systemach monitoringu ze względu na swoją elastyczność i łatwość instalacji. Dzięki zastosowaniu kamer IP, użytkownicy mogą korzystać z zaawansowanych funkcji, takich jak zdalny dostęp do obrazu, detekcja ruchu oraz integracja z systemami alarmowymi. Warto zauważyć, że kamery IP są zgodne z różnymi standardami, takimi jak ONVIF, co pozwala na ich integrację z różnorodnymi systemami zarządzania wideo. Właściwe zrozumienie formatu złącza oraz zastosowania kamer IP jest kluczowe dla efektywnego projektowania systemów monitoringu w różnych środowiskach, od domów prywatnych po obiekty przemysłowe.

Pytanie 24

W firmie produkującej radiatory z aluminiowych kształtowników pracuje pięć osób. Każda z nich wytwarza codziennie 30 radiatorów. Na wykonanie 10 radiatorów potrzebny jest jeden kształtownik aluminiowy. Ile wynosi dzienny koszt nabycia materiałów do produkcji, jeśli jeden kształtownik kosztuje 50 zł?

A. 150 zł
B. 2 500 zł
C. 500 zł
D. 750 zł
Aby obliczyć dzienny koszt zakupu materiałów do produkcji radiatorów, należy najpierw ustalić, ile radiatorów produkują wszyscy pracownicy razem. Każdy z pięciu pracowników wykonuje 30 radiatorów dziennie, co daje 5 * 30 = 150 radiatorów. Ponieważ jeden kształtownik aluminiowy wystarcza na wykonanie 10 radiatorów, potrzebujemy 150 / 10 = 15 kształtowników. Koszt jednego kształtownika wynosi 50 zł, zatem całkowity koszt zakupu materiałów wyniesie 15 * 50 zł = 750 zł. W praktyce, znajomość kosztów materiałowych jest kluczowa dla efektywnego zarządzania produkcją w zakładach przemysłowych. Monitorowanie tych kosztów pozwala na optymalizację procesów i zwiększenie rentowności firmy. Zastosowanie odpowiednich standardów dotyczących zarządzania materiałami, takich jak Just-In-Time, może również przyczynić się do redukcji nadmiarów materiałowych oraz kosztów magazynowania.

Pytanie 25

W zainstalowanym wideodomofonie nie ma obrazu, jednak dźwięk działa poprawnie. Która z wymienionych usterek nie może wystąpić w tym urządzeniu?

A. Uszkodzenie monitora
B. Usterka kamery bramofonu
C. Awaria zasilacza zestawu wideodomofonowego
D. Zniszczenie przewodu łączącego bramofon z monitorem
Awaria zasilacza zestawu wideodomofonowego nie może być przyczyną braku wizji, ponieważ dźwięk działa prawidłowo. W systemach wideodomofonowych zasilacz odpowiada za dostarczenie energii zarówno do kamery, jak i do monitora. Jeśli zasilacz jest sprawny, obie funkcje powinny działać poprawnie. W przypadku awarii zasilacza, zarówno obraz, jak i dźwięk przestałyby działać. Przykładem zastosowania tej wiedzy jest regularne sprawdzanie zasilania w instalacjach wideodomofonowych, aby zapewnić ich niezawodność. Warto również wspomnieć, że w profesjonalnych instalacjach zaleca się stosowanie zasilaczy o odpowiedniej mocy, aby uniknąć problemów z funkcjonowaniem urządzeń, co jest zgodne z zaleceniami producentów i standardami branżowymi. Zrozumienie tej zasady pozwala na szybsze diagnozowanie problemów oraz skuteczniejsze planowanie instalacji.

Pytanie 26

Technik zajmował się naprawą odbiornika radiowego bez odłączania zasilania i doznał porażenia prądem elektrycznym. W udzielaniu mu pierwszej pomocy, co powinno być zrobione w pierwszej kolejności?

A. położyć poszkodowanego na brzuchu z głową odchyloną na bok
B. ocenić parametry życiowe poszkodowanego
C. ustawić poszkodowanego w stabilnej pozycji bocznej
D. usunąć poszkodowanego spod wpływu prądu
W sytuacji, gdy pracownik uległ porażeniu prądem elektrycznym, najważniejszym krokiem jest jak najszybsze uwolnienie go spod działania prądu. To jest kluczowe działanie, które powinno być wykonane jako pierwsze. Porażenie prądem elektrycznym może prowadzić do groźnych konsekwencji zdrowotnych, w tym do zatrzymania akcji serca, dlatego natychmiastowe odłączenie źródła prądu jest niezbędne. W praktyce, jeśli to możliwe, należy wyłączyć zasilanie w obwodzie elektrycznym, z którego korzystał poszkodowany. W przypadku, gdy wyłączenie zasilania jest niemożliwe, należy zastosować materiały izolacyjne (np. drewniane lub gumowe) do usunięcia poszkodowanego z miejsca porażenia. Po uwolnieniu z działania prądu, możemy przystąpić do oceny stanu poszkodowanego i udzielania dalszej pomocy, w tym ewentualnego wykonania resuscytacji krążeniowo-oddechowej. Zgodnie z wytycznymi organizacji zajmujących się bezpieczeństwem pracy, takie jak OSHA, kluczowe jest przestrzeganie zasad BHP i podejmowanie działań zgodnie z ustalonymi procedurami.

Pytanie 27

W tabeli przedstawiono fragment danych technicznych bezprzewodowego czujnika temperatury. Określ, który z czynników może wpływać na niewłaściwą pracę czujnika.

DANE TECHNICZNE
Pasmo częstotliwości pracy868,0 MHz ÷ 868,6 MHz
Zasięg komunikacji radiowej (w terenie otwartym)do 500 m
Zasilaniebateria litowa CR123A 3 V
Czas pracy na bateriiokoło 3 lata
Pobór prądu w stanie gotowości50 μA
Maksymalny pobór prądu16 mA
Dokładność pomiaru temperatury±2%
Zakres temperatur pracy-10 °C...+55 °C
Maksymalna wilgotność93±3%
Wymiary obudowy24 x 110 x 27 mm
Waga56 g
A. Napięcie zasilania czujnika 2,9 V.
B. Zakres zmian temperatury 15°C÷30°C.
C. Odbiornik słuchawek bezprzewodowych 433 MHz.
D. Obce źródło fal radiowych 868 MHz.
Czynniki, które mogą wpływać na działanie czujnika temperatury, wymagają zrozumienia zasad jego funkcjonowania oraz kontekstu jego zastosowania. Zakres zmian temperatury 15°C÷30°C to parametry, w których czujnik powinien prawidłowo działać, ponieważ są zgodne z jego specyfikacją. Odpowiedź sugerująca, że problemem może być odbiornik słuchawek bezprzewodowych pracujący na częstotliwości 433 MHz, jest mylna, ponieważ różne urządzenia pracujące na różnych częstotliwościach nie wchodzą w interakcję, co pozwala na ich jednoczesne działanie w tym samym pomieszczeniu. Napięcie zasilania 2,9 V również mieści się w dopuszczalnym zakresie dla tego typu czujnika, co wyklucza je jako źródło problemów. Często nieprawidłowe wnioski oparte są na mylnym założeniu, że wszystkie urządzenia bezprzewodowe mogą zakłócać swoje działanie, niezależnie od częstotliwości. W rzeczywistości, aby zakłócenia miały miejsce, muszą one występować na tej samej częstotliwości operacyjnej. Zrozumienie zasad działania systemów bezprzewodowych oraz znajomość specyfikacji technicznych urządzeń są kluczowe dla ich prawidłowego wykorzystania, co pozwala na uniknięcie błędnych interpretacji dotyczących wpływu różnych czynników na ich funkcjonowanie.

Pytanie 28

Zidentyfikowanie usterek w urządzeniach elektronicznych powinno rozpocząć się od weryfikacji

A. bezpieczników
B. tranzystorów
C. elementów biernych
D. diod zabezpieczających
Zaczynając od sprawdzenia tranzystorów, diod zabezpieczających lub elementów biernych, można wpaść w pułapkę, która prowadzi do nieefektywnej diagnostyki. Tranzystory są kluczowymi elementami aktywnymi w układach elektronicznych, ale zaczynanie diagnostyki od nich bez uprzedniego sprawdzenia bezpieczników może być mylące. W przypadku, gdy bezpieczniki są przepalone, tranzystory mogą również ulec uszkodzeniu, a ich testowanie bez wcześniejszej oceny stanu bezpieczników może prowadzić do fałszywych wniosków na temat ich funkcjonalności. Dodatkowo, diody zabezpieczające pełnią istotną rolę w ochronie obwodów, jednak ich uszkodzenie zazwyczaj występuje w wyniku wcześniejszych awarii w obwodzie, więc ich sprawdzanie na początku diagnostyki może być nieproduktywne. Elementy bierne, takie jak rezystory czy kondensatory, są mniej prawdopodobnymi źródłami problemów, jeśli obwód nie jest aktywny. Błędne podejście do lokalizacji uszkodzeń może prowadzić do długotrwałych i kosztownych napraw, dlatego kluczowe jest przestrzeganie dobrych praktyk, takich jak najpierw sprawdzenie bezpieczników, co pozwala szybko zidentyfikować potencjalne źródła problemów w układzie.

Pytanie 29

Przedstawiony na rysunku element łączący dwa światłowody oraz pozwalający na trwałe ustawienie włókien względem siebie tak, aby sygnał przechodził między ich czołami przy zachowaniu minimalnego tłumienia, to

Ilustracja do pytania
A. spaw optyczny.
B. spaw mechaniczny.
C. splot magnetyczny.
D. splot elektryczny.
Spaw mechaniczny to kluczowe narzędzie w technologii łączenia światłowodów, które umożliwia osiągnięcie minimalnego tłumienia sygnału. Dzięki precyzyjnemu ustawieniu włókien względem siebie, spaw mechaniczny zapewnia doskonałą ciągłość optyczną, co jest istotne w instalacjach telekomunikacyjnych, gdzie jakość sygnału ma kluczowe znaczenie dla wydajności sieci. Przykładem zastosowania spawów mechanicznych jest ich wykorzystanie w sieciach FTTH (Fiber To The Home), gdzie istotne jest, aby sygnał docierał do użytkowników końcowych z jak najmniejszymi stratami. W branży stosuje się również standardy, takie jak IEC 61280-1-3, które określają metody testowania spawów optycznych oraz ich wpływ na wydajność sieci. Warto zaznaczyć, że spaw mechaniczny różni się od innych typów łączeń, takich jak spaw optyczny, który wymaga bardziej skomplikowanego procesu technologicznego oraz kosztowniejszego sprzętu. Spaw mechaniczny jest zatem bardziej dostępną i łatwiejszą w zastosowaniu metodą, co czyni go popularnym wyborem w projektach związanych z infrastrukturą światłowodową.

Pytanie 30

Gdy w wzmacniaczu użyjemy ujemnego sprzężenia zwrotnego równoległego o charakterze napięciowym, to wzmocnienie

A. napięciowe wzrośnie
B. prądowe pozostanie na tym samym poziomie
C. napięciowe zmniejszy się
D. napięciowe zostanie niezmienne
Rozważając inne odpowiedzi, należy zwrócić uwagę na koncepcje związane z działaniem sprzężenia zwrotnego. Przykładowo, stwierdzenie, że wzmocnienie prądowe będzie stałe, jest mylnym podejściem, ponieważ ujemne sprzężenie zwrotne wpływa przede wszystkim na wzmocnienie napięciowe, a nie prądowe. Wzmocnienie prądowe może się zmieniać w zależności od obciążenia i warunków pracy wzmacniacza. Z kolei wskazanie, że napięciowe wzrośnie, jest błędne, ponieważ zastosowanie ujemnego sprzężenia zwrotnego ma na celu redukcję wzmocnienia, a nie jego zwiększenie. Stabilizacja wzmocnienia wiąże się z efektem ograniczenia wzmocnienia do wartości określającej funkcjonalność wzmacniacza, co z kolei zapobiega nieliniowości w jego działaniu. Odpowiedzi sugerujące, że napięciowe może zmaleć, także są nieprawidłowe, gdyż wzmocnienie napięciowe nie maleje w wyniku wprowadzenia sprzężenia zwrotnego, ale stabilizuje się na określonym poziomie. Błędne przekonania w tej kwestii często wynikają z braku zrozumienia mechanizmów działania sprzężenia zwrotnego oraz ich wpływu na parametry wzmacniacza. Wzmacniacze, w których zastosowano odpowiednią konfigurację sprzężenia zwrotnego ujemnego, są projektowane zgodnie z najlepszymi praktykami inżynieryjnymi, co pozwala na uzyskanie wysokiej jakości sygnału przy jednoczesnym unikaniu zniekształceń.

Pytanie 31

Symbol graficzny tyrystora przedstawia rysunek oznaczony literą

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Wybór odpowiedzi, która nie odnosi się do rysunku oznaczonego literą B, może wynikać z nieporozumienia dotyczącego struktury i funkcji tyrystora. Tyrystor, jako element półprzewodnikowy, posiada specyficzny układ warstw i elektrod, który jest kluczowy dla jego działania. Wybierając inne litery, można nieświadomie skojarzyć tyrystor z innymi elementami, takimi jak diody czy tranzystory, które mają odmienne symbole graficzne. Przykładowo, symbol diody przedstawia jedynie dwie elektrody, co jest niewystarczające do reprezentacji tyrystora, który wymaga dodatkowej elektrody sterującej. Tego rodzaju nieprawidłowości mogą prowadzić do błędnej interpretacji działania obwodów elektronicznych, co w kontekście inżynierii może skutkować poważnymi błędami w projektach. Ponadto, brak znajomości standardów graficznych, takich jak te określone przez IEC, może wpływać na czytelność dokumentacji technicznej. Kluczowe jest, aby zrozumieć, że tyrystor ma unikalne właściwości, które odróżniają go od innych elementów, co powinno być odzwierciedlone w jego symbolu graficznym. Brak zrozumienia tych różnic może prowadzić do nieefektywnego projektowania obwodów, a nawet do ich uszkodzenia w wyniku niewłaściwego doboru komponentów.

Pytanie 32

Podczas kontroli czujki czadu stwierdzono, że emituje ona co 30 sekund dwa krótkie sygnały dźwiękowe i czerwona dioda LED miga dwukrotnie. Oznacza to, że

FunkcjaCo to oznaczaJakie działanie należy podjąć
Zielona dioda LED miga co 30 sekundNormalne działanieBrak
Czujnik emituje krótki sygnał dźwiękowy co 60 sekund i miga czerwona dioda LEDNiski poziom bateriiNiezwłocznie wymienić baterie
Czujnik emituje dwa krótkie sygnały co 30 sekund i czerwona dioda LED miga dwukrotnieKoniec okresu eksploatacyjnego czujnikaWymienić czujnik
Czujnik emituje dwa krótkie sygnały co 30 sekund i czerwona dioda LED miga co 30 sekundNieprawidłowe działanieWymienić czujnik
Czerwona dioda LED świeci się i ciągły dźwięk alarmowyAwariaWymienić czujnik
Głośny, ciągły alarm i świecąca się czerwona dioda LEDWykryto niebezpieczne stężenie COPostępować zgodnie z procedurą awaryjną
A. baterie są rozładowane i należy je wymienić.
B. okres użytkowania czujki przewidziany przez producenta dobiegł końca i należy ją wymienić.
C. czujka działa poprawnie i wykryła niebezpieczne stężenie tlenku węgla.
D. czujka działa poprawnie i jest w stanie czuwania.
Odpowiedź jest prawidłowa, ponieważ sygnały emitowane przez czujkę czadu wskazują na koniec jej okresu funkcjonowania. W przypadku czujników tlenku węgla, producenci zazwyczaj przewidują określony czas eksploatacji, zazwyczaj od 5 do 10 lat, po którym czujnik powinien zostać wymieniony, nawet jeśli nie wykrywa on zagrożeń. Emitowanie co 30 sekund dwóch krótkich sygnałów dźwiękowych oraz migająca dioda LED to standardowy sygnał ostrzegawczy używany przez większość producentów, co potwierdzają normy branżowe, takie jak EN 50291. Dlatego w przypadku takiego sygnału należy jak najszybciej wymienić czujkę na nową, aby zapewnić bezpieczeństwo domowników. Przykładowo, po wymianie czujnika warto przeprowadzić regularne kontrole, aby upewnić się, że nowy czujnik działa prawidłowo i jest w stanie skutecznie identyfikować niebezpieczne stężenia czadu.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Jakie będzie powiązanie prądu spoczynkowego z temperaturą w tranzystorowej końcówce mocy wzmacniacza m.cz., gdy układ kompensacji temperaturowej nie funkcjonuje?

A. Prąd spoczynkowy wzrośnie w miarę zwiększania się temperatury
B. Prąd spoczynkowy zmaleje w miarę wzrostu temperatury
C. Brak powiązania prądu spoczynkowego z temperaturą
D. Prąd spoczynkowy może wzrosnąć lub zmaleć w zależności od użytych tranzystorów
Zrozumienie zależności prądu spoczynkowego od temperatury w tranzystorach mocy jest kluczowe dla prawidłowego projektowania układów elektronicznych. Odpowiedzi sugerujące brak zależności prądu spoczynkowego od temperatury są nieprawidłowe, ponieważ tranzystory, takie jak BJT, wykazują wyraźny wzrost prądu przy wzroście temperatury. Ignorowanie tego zjawiska prowadzi do poważnych problemów w działaniu urządzeń elektronicznych. Zmniejszenie prądu spoczynkowego w odpowiedzi na wzrost temperatury jest również błędne, ponieważ efektywnie obniżyłoby to wydajność tranzystora, co mogłoby prowadzić do zniekształceń sygnału. Istotnym błędem myślowym jest założenie, że różne rodzaje tranzystorów mogą działać w ten sposób, jednak w praktyce wszystkie tranzystory typu BJT mają podobne właściwości temperaturowe, co powoduje, że prąd spoczynkowy wzrasta wraz z temperaturą. Użytkownicy powinni być świadomi, że bez odpowiedniego zarządzania termicznego i kompensacji, wzrastający prąd spoczynkowy może prowadzić do nieodwracalnych szkód w komponentach. Dobrą praktyką w projektowaniu układów elektronicznych jest przewidywanie tych zmian i implementacja układów zabezpieczających, które dostosowują parametry pracy do zmieniających się warunków, co jest istotnym elementem w zapewnieniu długotrwałej i niezawodnej pracy urządzeń.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Jakie urządzenie jest łączone za pomocą interfejsu SATA?

A. drukarka
B. karta graficzna
C. napęd dyskietek
D. dysk twardy
Interfejs SATA (Serial ATA) jest standardem używanym do podłączania urządzeń pamięci masowej, głównie dysków twardych oraz dysków SSD, do płyty głównej komputera. Dzięki swojej architekturze, SATA oferuje znaczące zalety w porównaniu do starszych rozwiązań, takich jak PATA (Parallel ATA). Prędkość transferu danych za pomocą SATA jest znacznie wyższa, co jest kluczowe w przypadku nowoczesnych dysków o dużej pojemności. Na przykład, SATA III, który jest najnowszą wersją tego standardu, pozwala na transfer danych z prędkością do 6 Gb/s. W praktyce oznacza to szybsze ładowanie systemu operacyjnego i aplikacji, a także efektywniejszą pracę z dużymi plikami multimedialnymi. Dobre praktyki branżowe zalecają stosowanie interfejsu SATA w większości nowoczesnych systemów komputerowych, zarówno w komputerach stacjonarnych, jak i laptopach. Warto również zauważyć, że standard SATA jest szeroko stosowany nie tylko w komputerach osobistych, ale także w serwerach i systemach nas, co potwierdza jego uniwersalność i niezawodność.

Pytanie 38

Brak uziemiającej opaski na nadgarstku pracownika podczas montażu układów CMOS może prowadzić do

A. poparzenia gorącym spoiwem
B. uszkodzenia układów scalonych
C. uszkodzenia sprzętu lutowniczego
D. porażenia prądem elektrycznym
Brak opaski uziemiającej na przegubie ręki podczas montażu układów CMOS to spory błąd, bo może prowadzić do uszkodzenia tych układów przez gromadzenie się ładunków elektrostatycznych. Układy CMOS są na to mega wrażliwe, co może skutkować ich trwałym uszkodzeniem, na przykład zmianami w ich właściwościach elektrycznych. Dlatego właśnie używanie opaski jest super ważne w miejscach, gdzie pracuje się z delikatnymi komponentami elektronicznymi. Opaska ta sprawia, że ładunek jest odprowadzany i przez to zmniejsza się ryzyko uszkodzeń. Z własnego doświadczenia wiem, że przestrzeganie norm jak ANSI/ESD S20.20 czy IEC 61340-5-1, które mówią o najlepszych praktykach w ochronie przed ESD, naprawdę się opłaca, jeśli chcemy mieć pewność co do jakości naszych produktów. Regularne szkolenia dla pracowników oraz stosowanie odpowiednich środków ochrony jak maty ESD czy opaski są kluczowe, by zminimalizować ryzyko przy montażu wrażliwych komponentów.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Jakim stosunkiem uciśnięć klatki piersiowej do oddechów powinno się prowadzić resuscytację krążeniowo-oddechową u osoby nieprzytomnej, która została porażona prądem elektrycznym i nie oddycha?

A. 2:30
B. 30:2
C. 2:15
D. 15:2
Właściwy stosunek uciśnięć mostka do wentylacji podczas resuscytacji krążeniowo-oddechowej (RKO) dla osoby dorosłej wynosi 30:2. Oznacza to, że wykonujemy 30 uciśnięć klatki piersiowej, a następnie 2 wdechy. Ten protokół odzwierciedla standardy wytycznych opublikowanych przez Europejską Radę Resuscytacji oraz American Heart Association. Uciśnięcia klatki piersiowej mają na celu zapewnienie odpowiedniego przepływu krwi do najważniejszych narządów, w tym serca i mózgu. Prawidłowe tempo uciśnięć wynosi 100-120 na minutę, a ich głębokość powinna wynosić co najmniej 5 cm, co jest kluczowe dla efektywności resuscytacji. Włączenie wentylacji po 30 uciśnięciach jest istotne, aby dostarczyć tlen do płuc, co zwiększa szansę na powrót spontanicznego krążenia. W praktyce, podczas resuscytacji, ważne jest, aby osoba prowadząca RKO nie traciła rytmu i zachowała skupienie, co jest kluczowe dla skuteczności akcji ratunkowej. W sytuacjach, gdy jest więcej niż jedna osoba, warto rotować między wykonawcami, aby uniknąć zmęczenia, które może obniżyć jakość uciśnięć.