Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 19 grudnia 2025 17:24
  • Data zakończenia: 19 grudnia 2025 17:38

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaki element przedstawiono na rysunku?

Ilustracja do pytania
A. Tulejkę.
B. Wkrętkę redukcyjną.
C. Złączkę.
D. Wkrętkę dławikową.
Wybór wkrętki redukcyjnej, złączki lub tulejki nie jest właściwy w kontekście przedstawionego elementu. Wkrętka redukcyjna, jak sama nazwa wskazuje, jest używana do zmiany średnicy gwintu, co nie ma zastosowania w przypadku uszczelniania przewodów. Ta koncepcja często prowadzi do mylenia funkcji złączek w instalacjach elektrycznych, gdzie kluczowym aspektem jest nie tylko łączenie, ale przede wszystkim zabezpieczenie przewodów. Złączki, które są bardziej uniwersalne, nie oferują specyficznego uszczelnienia, co jest istotne w kontekście ochrony przed kurzem, wilgocią czy uszkodzeniami mechanicznymi. Natomiast tulejki służą zazwyczaj do wzmocnienia połączeń, a nie do ich uszczelnienia, co również nie odpowiada funkcji wkrętki dławikowej. Właściwe zrozumienie różnic między tymi elementami ma kluczowe znaczenie, ponieważ stosowanie niewłaściwych rozwiązań w instalacjach elektrycznych może prowadzić do poważnych problemów, takich jak zwarcia czy uszkodzenia sprzętu. W procesie projektowania instalacji elektrycznych, znajomość właściwych komponentów oraz ich zastosowań jest niezbędna dla zapewnienia bezpieczeństwa oraz niezawodności systemu.

Pytanie 2

Na rysunku przedstawiono oprawę oświetlenia

Ilustracja do pytania
A. pośredniego - klasy V.
B. bezpośredniego - klasy I.
C. przeważnie bezpośredniego - klasy II.
D. przeważnie pośredniego - klasy IV.
Wybrane odpowiedzi, które nie wskazują na pośrednie emitowanie światła, mogą prowadzić do mylnych wniosków dotyczących realnych właściwości opraw oświetleniowych. Na przykład, odpowiedź sugerująca, że oprawa emituje światło przeważnie bezpośrednio, zakłada, że źródło światła jest skierowane bezpośrednio na oświetlaną powierzchnię, co jest sprzeczne z przedstawionym rysunkiem. Oprawy oświetleniowe klasy I najczęściej wiążą się z bezpośrednim oświetleniem, które może powodować intensywne cienie oraz oślepienie, co negatywnie wpływa na komfort użytkowników. Podobnie, klasy IV i V, które z reguły dotyczą więcej pośredniego lub rozproszonego światła, nie są odpowiednie dla opraw, które mają emitować światło w sposób przeważnie bezpośredni. Kluczowym błędem w analizie tego pytania jest niezrozumienie różnicy między tymi dwoma typami oświetlenia oraz ich wpływem na środowisko pracy. Na rysunku powinno być zauważone, że emisja światła poprzez mleczne szkło wskazuje na zamierzenie projektanta, aby zminimalizować oślepienie, co nie jest zgodne z oprawami klasy I. Zrozumienie zasad projektowania systemów oświetleniowych oraz ich klasyfikacji jest niezbędne dla prawidłowego doboru rozwiązań w dziedzinie architektury i ergonomii oświetleniowej.

Pytanie 3

Jakie z podanych powodów może wywołać nagłe rozłączenie pracującego silnika szeregowego prądu stałego?

A. Uszkodzenie łożysk silnika
B. Przerwa w obwodzie wzbudzenia
C. Zerwanie połączenia wału silnika z maszyną napędzającą
D. Zwarcie międzyzwojowe w uzwojeniu twornika
Przerwa w obwodzie wzbudzenia, zwarcie międzyzwojowe w uzwojeniu twornika oraz uszkodzenie łożysk silnika to sytuacje, które mogą powodować różne problemy w pracy silnika, jednak nie prowadzą one bezpośrednio do rozbiegu silnika szeregowego prądu stałego w taki sposób, jak zerwanie połączenia wału z maszyną napędzaną. Przerwa w obwodzie wzbudzenia powoduje, że silnik traci pole magnetyczne, co skutkuje znacznym spadkiem momentu obrotowego. W efekcie, silnik może zatrzymać się, ale nie będzie miał tendencji do rozbiegu. Zwarcie międzyzwojowe w uzwojeniu twornika również prowadzi do nieprawidłowego działania silnika. To zjawisko wpływa na rozkład prądów w uzwojeniu oraz może generować nadmierne ciepło, co w skrajnych przypadkach prowadzi do uszkodzeń, ale nie wywołuje rozbiegu. Uszkodzenie łożysk silnika, chociaż może powodować zwiększenie oporu obrotowego, również nie prowadzi do rozbiegu. Typowym błędem myślowym jest uznanie, że każdy problem z silnikiem natychmiast prowadzi do niebezpiecznych zjawisk, takich jak rozbieg. Kluczowe jest zrozumienie interakcji pomiędzy różnymi elementami systemu oraz znajomość specyfiki działania silników szeregowych, co pozwala na właściwe diagnozowanie problemów oraz podejmowanie adekwatnych działań naprawczych.

Pytanie 4

Który z poniższych przewodów powinien być użyty do zasilania ruchomego odbiornika w II klasie ochronności z sieci jednofazowej?

A. H03VVH2-F 2×0,75
B. H05VV-K 3×1,5
C. H05VV-U 2×1,5
D. H03VV-F 3×0,75
Wybór przewodów H03VV-F 3×0,75, H05VV-K 3×1,5 oraz H05VV-U 2×1,5 do zasilenia ruchomego odbiornika wykonane w II klasie ochronności nie jest odpowiedni z kilku powodów. Przewód H03VV-F, chociaż elastyczny, jest przewodem o trzech żyłach, co sugeruje możliwość uziemienia, co nie jest zgodne z zasadami dotyczącymi urządzeń w II klasie ochronności. II klasa nie wymaga dodatkowej żyły uziemiającej, a zatem użycie przewodu z uziemieniem może prowadzić do niepotrzebnych komplikacji w instalacji elektrycznej. Przewód H05VV-K, pomimo że oferuje dobry poziom elastyczności, ma również dodatkową żyłę, co jest zbędne dla urządzeń tej klasy ochronności. Zastosowanie przewodów z uziemieniem w przypadkach, gdzie nie jest to wymagane, może prowadzić do nieprawidłowego podłączenia oraz zwiększać ryzyko uszkodzenia sprzętu. Natomiast H05VV-U, będący przewodem sztywnym, nie jest zalecany do aplikacji ruchomych, ponieważ jego konstrukcja ogranicza elastyczność, co jest kluczowe w przypadku sprzętu, który może być często przestawiany. Wybór niewłaściwego przewodu do zasilania ruchomych odbiorników może skutkować nieefektywną pracą urządzenia, a w najgorszym przypadku stwarzać zagrożenie dla użytkownika oraz dla samego sprzętu, gdyż niektóre przewody mogą nie wytrzymać obciążeń mechanicznych czy niekorzystnych warunków środowiskowych.

Pytanie 5

Zgodnie z polskim prawem budowlanym, instalacje elektryczne oraz piorunochronne w obiektach mieszkalnych powinny być poddawane okresowym badaniom

A. co najmniej raz na 5 lat
B. raz na pół roku
C. co najmniej raz na 10 lat
D. raz na rok
Instalacja elektryczna oraz piorunochronna w budynkach mieszkalnych jest kluczowym elementem zapewniającym bezpieczeństwo użytkowników oraz ochronę mienia. Zgodnie z obowiązującymi przepisami prawa budowlanego, takie instalacje powinny być poddawane okresowym badaniom co najmniej raz na 5 lat. Taki harmonogram przeglądów ma na celu wczesne wykrywanie potencjalnych usterek, które mogą prowadzić do poważnych zagrożeń, takich jak pożary czy porażenia prądowe. Regularne kontrole pozwalają na ocenę stanu technicznego instalacji, w tym ich zgodności z aktualnymi normami oraz skutecznością w ochronie przed skutkami wyładowań atmosferycznych. Przykładem praktycznego zastosowania tej wiedzy może być sytuacja, w której w wyniku regularnych przeglądów wykryto zużycie izolacji, co mogłoby prowadzić do niebezpiecznych warunków. W przypadku instalacji piorunochronnych, ich skuteczność w odprowadzaniu prądów piorunowych również wymaga regularnych ocen, aby zapewnić maksymalną ochronę budynku. Warto zaznaczyć, że zgodność z normami PN-IEC 62305 oraz PN-EN 61439 jest kluczowa dla bezpieczeństwa obiektów.

Pytanie 6

Który rodzaj źródła światła przedstawiono na ilustracji?

Ilustracja do pytania
A. Wyładowcze niskoprężne.
B. Półprzewodnikowe.
C. Wyładowcze wysokoprężne.
D. Żarowe.
Odpowiedź "półprzewodnikowe" jest prawidłowa, ponieważ na ilustracji można zauważyć źródło światła LED, które jest typowym przykładem tego typu technologii. Źródła światła półprzewodnikowego charakteryzują się wysoką efektywnością energetyczną, długą żywotnością oraz różnorodnością kolorów emitowanego światła. Diody LED znajdują szerokie zastosowanie, od oświetlenia wnętrz, przez oświetlenie zewnętrzne, aż po zastosowania w elektronice, takie jak podświetlenie ekranów. W wielu branżach, takich jak motoryzacja czy architektura, stosowanie LED-ów stało się standardem ze względu na ich niskie zużycie energii oraz możliwość dostosowywania intensywności światła. Standardy dotyczące oświetlenia, takie jak ANSI czy CIE, podkreślają znaczenie efektywności i jakości światła w kontekście ochrony środowiska oraz oszczędności energii, co czyni diody LED doskonałym wyborem dla zrównoważonego rozwoju.

Pytanie 7

Na której ilustracji przedstawiono symbol graficzny rozłącznika?

Ilustracja do pytania
A. Na ilustracji III.
B. Na ilustracji I.
C. Na ilustracji IV.
D. Na ilustracji II.
Wybór innej ilustracji jako symbolu graficznego rozłącznika może wynikać z nieporozumień dotyczących interpretacji symboli elektrycznych. Na ilustracji I, III i IV przedstawione są inne elementy schematów elektrycznych, które mają różne funkcje i zastosowania. Na przykład, ilustracja I może przedstawiać symbol przekaźnika, który ma za zadanie automatyczne włączanie i wyłączanie obwodów, co jest zupełnie inną funkcją niż rozłącznik. Z kolei ilustracja III może pokazować symbol bezpiecznika, który chroni obwód przed przeciążeniem, a ilustracja IV może przedstawiać symbol wyłącznika, który manualnie przerywa obwód. Tego rodzaju błędy w identyfikacji symboli wynikają często z braku znajomości standardów IEC 60617, które definiują różne symbole używane w schematach elektrycznych. Kluczowe jest zrozumienie, że każdy symbol ma swoje specyficzne oznaczenie oraz funkcję, dlatego mylenie ich może prowadzić do nieprawidłowych wniosków i potencjalnych zagrożeń w pracy z instalacjami elektrycznymi. Aby uniknąć tego typu pomyłek, zaleca się systematyczne zapoznawanie się z normami i dobrymi praktykami w zakresie projektowania oraz czytania schematów elektrycznych.

Pytanie 8

Którego z symboli należy użyć na schemacie wielokreskowym w celu oznaczenia łącznika schodowego?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Wybór symboli A, B lub D do oznaczenia łącznika schodowego jest nieprawidłowy i wynika z nieporozumienia dotyczącego funkcji oraz konstrukcji tych elementów. Symbol A przedstawia zwykły łącznik, który jest używany do włączania i wyłączania obwodu z jednego miejsca. Nie ma on możliwości zarządzania oświetleniem z dwóch różnych lokalizacji, co jest kluczowe dla łącznika schodowego. Użycie tego symbolu w tym kontekście prowadzi do błędnej interpretacji możliwości instalacji. Symbol B, z kolei, może odnosić się do innego typu przełącznika, który nie jest przystosowany do działania w systemach schodowych. Oznaczenia te mogą mylić, ponieważ nie oddają rzeczywistych funkcji, które powinny być jasno sprecyzowane w dokumentacji technicznej. Natomiast symbol D może reprezentować elementy, które nie są powiązane z funkcjonalnością zarządzania oświetleniem w kontekście schodów. Te błędne wybory wynikają z typowych nieporozumień w interpretacji rysunków technicznych oraz braku znajomości norm dotyczących oznaczania symboli elektrycznych. Ważne jest, aby przy projektowaniu instalacji elektrycznych zwracać uwagę na specyfikację i zastosowanie poszczególnych symboli, aby zapewnić ich poprawne użytkowanie i efektywność działania systemu. Dobrą praktyką jest konsultacja z dokumentacją normatywną oraz specjalistami w dziedzinie elektrotechniki przed podjęciem decyzji o wyborze odpowiednich elementów instalacji.

Pytanie 9

Przeglądy instalacji elektrycznej w budynkach mieszkalnych powinny być przeprowadzane nie rzadziej niż co

A. 1 rok
B. 10 lat
C. 5 lat
D. 2 lata
Przeglądy mieszkaniowej instalacji elektrycznej należy wykonywać nie rzadziej niż co 5 lat, zgodnie z obowiązującymi normami i przepisami prawa, w tym z ustawą Prawo budowlane oraz normami PN-IEC 60364. Regularne przeglądy są kluczowe dla zapewnienia bezpieczeństwa użytkowania instalacji elektrycznych oraz zapobiegania pożarom i porażeniom prądem. W ramach takiego przeglądu oceniana jest nie tylko stan techniczny przewodów i osprzętu elektrycznego, ale także zgodność z aktualnymi przepisami. Przykład: jeśli w ciągu 5 lat nie zrealizujesz przeglądu, możesz być narażony na ryzyko awarii instalacji, co może prowadzić do poważnych konsekwencji. Dobrą praktyką jest dokumentowanie wykonanych przeglądów oraz przechowywanie protokołów w celu ułatwienia ewentualnych kontroli oraz zapewnienia, że instalacja jest w dobrym stanie przez cały okres jej użytkowania.

Pytanie 10

Dokonując oględzin powykonawczych zabezpieczeń w instalacji elektrycznej przedstawionej na schemacie można stwierdzić, że zamieniono miejscami bezpieczniki

Ilustracja do pytania
A. B1 z B2
B. B3 z B2
C. B1 z B4
D. B2 z B4
Wybór odpowiedzi, która wskazuje na zamianę innych bezpieczników, jest nieprawidłowy i wynika z kilku kluczowych błędów myślowych. Przede wszystkim, nie można zrozumieć roli i funkcjonowania bezpieczników w instalacji elektrycznej bez znajomości podstawowych zasad ich doboru. Bezpieczniki służą do zabezpieczania obwodów przed przeciążeniem oraz zwarciem. Każdy bezpiecznik powinien być dobrany do odpowiedniej wartości prądowej, co jest kluczowe dla bezpieczeństwa całego systemu. Podczas oględzin powykonawczych istotne jest, aby zauważyć, że umiejscowienie bezpiecznika B1, który ma nominalną wartość 10A, jest krytyczne dla prawidłowego działania instalacji. Przesunięcie go na obwód wymagający większego zabezpieczenia może prowadzić do sytuacji, w której obwód będzie narażony na przeciążenie, co z kolei może skutkować uszkodzeniem urządzeń. W przypadku błędnego wskazania zamiany bezpieczników B3 z B2 czy B1 z B4, pominięto istotne aspekty, takie jak dobór odpowiednich wartości nominalnych oraz ich funkcję w kontekście całej instalacji. W rezultacie, takie odpowiedzi prowadzą do zniekształcenia zrozumienia funkcji zabezpieczeń w instalacjach elektrycznych, co może mieć poważne konsekwencje w praktyce.

Pytanie 11

Którego przyrządu należy użyć do pomiarów rezystancji izolacji w instalacji elektrycznej?

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Poprawna odpowiedź to D. Pomiar rezystancji izolacji w instalacjach elektrycznych jest kluczowy dla zapewnienia bezpieczeństwa i niezawodności infrastruktury elektroenergetycznej. Do tego celu używa się megomierza, który umożliwia pomiar wysokich rezystancji, często w zakresie od miliona omów do miliarda omów. Wysoka rezystancja izolacji jest niezbędna, aby zapobiec niepożądanym upływom prądu, które mogą prowadzić do uszkodzeń sprzętu, pożarów lub porażeń elektrycznych. Zgodnie z normą PN-EN 61557, pomiar rezystancji izolacji powinien być wykonywany regularnie, zwłaszcza w instalacjach, które są narażone na działanie wilgoci lub chemikaliów. Przykładem praktycznego zastosowania megomierza jest kontrola instalacji w budynkach przemysłowych, gdzie niezawodność systemów elektrycznych jest kluczowa dla ciągłości produkcji. Użycie megomierza w takich przypadkach pozwala szybko identyfikować potencjalne problemy z izolacją, umożliwiając szybkie działanie w celu ich naprawy.

Pytanie 12

W którym układzie sieciowym występuje przewód oznaczany przedstawionym symbolem graficznym?

Ilustracja do pytania
A. IT
B. TN-C
C. TN-S
D. TT
Odpowiedź TN-C jest prawidłowa, ponieważ przedstawiony symbol graficzny oznacza przewód PEN, który pełni zarówno funkcję przewodu ochronnego, jak i neutralnego. W układzie TN-C przewód PEN jest używany do ochrony przed porażeniem elektrycznym oraz zapewnia powrotną drogę prądu w przypadku awarii. Taki układ jest szczególnie popularny w instalacjach przemysłowych oraz w budynkach mieszkalnych, gdzie wymagane jest zwiększenie poziomu bezpieczeństwa. Dobre praktyki branżowe wskazują, że zastosowanie przewodu PEN w układzie TN-C zapewnia optymalne warunki pracy urządzeń oraz minimalizuje ryzyko uszkodzeń. Warto również dodać, że stosowanie układu TN-C jest zgodne z normami PN-IEC 60364, które określają zasady projektowania instalacji elektrycznych w budynkach. Dlatego zrozumienie roli przewodu PEN w tym układzie jest kluczowe dla każdego specjalisty zajmującego się elektryką.

Pytanie 13

Przyrząd przedstawiony na rysunku służy do

Ilustracja do pytania
A. wyznaczania trasy przewodów.
B. pomiaru rezystancji żył przewodów.
C. sprawdzania ciągłości żył przewodów.
D. szacowania długości przewodów.
Odpowiedzi, które wskazują na wyznaczanie trasy przewodów, szacowanie długości przewodów czy pomiar rezystancji żył, nie uwzględniają fundamentalnych zasad działania urządzeń pomiarowych w elektryce. Wyznaczanie trasy przewodów wymaga zastosowania innych narzędzi, takich jak lokalizatory kabli, które działają na zasadzie detekcji sygnałów w przewodach. Te urządzenia nie są w stanie ocenić ciągłości obwodu, a jedynie lokalizować przewody w ścianach czy ziemi. Szacowanie długości przewodów natomiast wiąże się z użyciem taśmy mierniczej lub innego urządzenia mierniczego, co różni się od funkcji testera ciągłości. Pomiar rezystancji żył wymaga zastosowania specjalistycznych multimetrach, które są w stanie dokonać pomiaru wartości oporu elektrycznego, lecz nie zajmują się bezpośrednio sprawdzaniem ciągłości obwodu. Typowe błędy, prowadzące do tych nieprawidłowych wniosków, to mylenie funkcji różnych urządzeń pomiarowych oraz niewłaściwe zrozumienie ich zastosowania w praktyce. Zrozumienie, jaki dokładnie rodzaj przyrządów jest potrzebny w konkretnych sytuacjach, jest kluczowe dla efektywnej pracy w obszarze elektryki.

Pytanie 14

Którego z przedstawionych narzędzi należy użyć do zamontowania zworek w tabliczce silnikowej?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Wybór klucza oczkowego, oznaczonego jako 'C.', do montażu zworek w tabliczce silnikowej jest uzasadniony. Klucz oczkowy jest narzędziem, które idealnie pasuje do standardowych nakrętek stosowanych w takich aplikacjach. Użycie klucza o odpowiednim rozmiarze zapewnia pewny chwyt i minimalizuje ryzyko uszkodzenia nakrętek. W praktyce, przy montażu zworek, klucz oczkowy umożliwia łatwe i precyzyjne dokręcanie, co jest kluczowe dla zapewnienia prawidłowego działania silnika oraz bezpieczeństwa całego układu elektrycznego. Warto zauważyć, że nienałożenie odpowiedniej siły na nakrętki może prowadzić do ich poluzowania się w trakcie eksploatacji, co z kolei może powodować awarie lub uszkodzenia. Korzystając z dobrze dobranego narzędzia, zgodnego z wytycznymi producenta, możemy również zwiększyć efektywność prac i zmniejszyć ryzyko wystąpienia problemów eksploatacyjnych. Dlatego też, znajomość i umiejętność stosowania właściwych narzędzi jest kluczowa w pracy z instalacjami elektrycznymi.

Pytanie 15

Który sposób podłączenia instalacji oświetleniowej jest poprawny?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Odpowiedź C jest poprawna, ponieważ przedstawia prawidłowy sposób podłączenia instalacji oświetleniowej, który jest zgodny z obowiązującymi normami bezpieczeństwa. W tym schemacie przewód fazowy L1 jest podłączony do włącznika, co umożliwia kontrolowanie zasilania żarówki. Gdy włącznik jest w pozycji wyłączonej, żarówka nie otrzymuje zasilania, co minimalizuje ryzyko porażenia prądem. Z kolei przewód neutralny N jest podłączony bezpośrednio do żarówki, co jest standardową praktyką w instalacjach elektrycznych. Ważnym elementem jest również podłączenie przewodu ochronnego PE do odpowiedniego punktu w oprawie oświetleniowej. Przewód ten ma kluczowe znaczenie dla zapewnienia bezpieczeństwa użytkowników, ponieważ w przypadku uszkodzenia izolacji, prąd popłynie do ziemi, minimalizując ryzyko porażenia. Taki sposób podłączenia gwarantuje, że w momencie, gdy włącznik jest wyłączony, nie ma napięcia na żarówce, co jest fundamentalną zasadą bezpieczeństwa w elektrotechnice.

Pytanie 16

Rodzaj której maszyny wirującej przedstawiono na ilustracji?

Ilustracja do pytania
A. Synchronicznej.
B. Indukcyjnej klatkowej.
C. Indukcyjnej pierścieniowej.
D. Komutatorowej prądu przemiennego.
Maszyna wirująca przedstawiona na ilustracji to maszyna synchroniczna, której główną cechą charakterystyczną jest zsynchronizowanie prędkości obrotowej wirnika z częstotliwością prądu zasilającego. W przypadku maszyn synchronicznych wirnik posiada bieguny magnetyczne, co można zauważyć na ilustracji, gdzie oznaczone są bieguny S i N. Uzwojenie stojana, rozmieszczone wokół wirnika, generuje pole magnetyczne, które synchronizuje się z polem wirnika. Praktycznym zastosowaniem maszyn synchronicznych są elektrownie, gdzie wykorzystywane są jako generatory prądu. Dzięki swojej stabilności i efektywności, maszyny te są również stosowane w napędach elektrycznych, w aplikacjach wymagających precyzyjnej kontroli prędkości i momentu obrotowego, takich jak w systemach automatyki przemysłowej. Warto również zauważyć, że w porównaniu do innych rodzajów maszyn, maszyny synchroniczne oferują wyższą efektywność energetyczną i mniejsze straty, co jest zgodne z najlepszymi praktykami w dziedzinie inżynierii elektrycznej.

Pytanie 17

Jakim przyrządem dokonuje się pomiaru rezystancji izolacyjnej przewodu?

A. Induktorowy miernik uziemień
B. Miernik pętli zwarcia
C. Omomierz
D. Megaomomierz
Megaomomierz jest specjalistycznym urządzeniem zaprojektowanym do pomiaru wysokiej rezystancji izolacji, co czyni go idealnym narzędziem do oceny stanu izolacji przewodów elektrycznych. W przeciwieństwie do zwykłych omomierzy, które mierzą rezystancję w zakresie niskich wartości, megaomomierz generuje napięcia próbne rzędu kilkuset woltów, co pozwala na dokładne określenie jakości izolacji. Przykładowo, podczas testowania instalacji elektrycznych w budynkach, użycie megaomomierza pozwala na wykrycie ewentualnych uszkodzeń izolacji, które mogłyby prowadzić do zwarć lub porażenia prądem. Zastosowanie tego urządzenia jest zgodne z normami IEC 61010 oraz IEC 61557, które definiują wymagania dotyczące bezpieczeństwa i wydajności tego typu pomiarów. Regularne sprawdzanie rezystancji izolacji za pomocą megaomomierza jest kluczowym elementem utrzymania bezpieczeństwa oraz niezawodności instalacji elektrycznych.

Pytanie 18

Jaka jest maksymalna wartość napięcia dotykowego bezpiecznego dla człowieka przy normalnych warunkach eksploatacji?

A. 100 V
B. 230 V
C. 50 V
D. 12 V
Wartość 230 V jest typowym napięciem używanym w domowych instalacjach elektrycznych, ale nie jest to wartość bezpieczna dla dotyku. To napięcie jest wystarczająco wysokie, aby spowodować poważne obrażenia lub nawet śmierć w przypadku kontaktu fizycznego. Z tego powodu instalacje muszą być odpowiednio zabezpieczone, a użytkownicy świadomi zagrożeń. 100 V to wartość, która również przekracza bezpieczny poziom napięcia dotykowego. Choć niższa niż 230 V, nadal pozostaje niebezpieczna i wymaga podobnych środków ostrożności. Przy takim napięciu może dojść do poważnych obrażeń w przypadku jego kontaktu z ciałem ludzkim. 12 V jest napięciem często używanym w niskonapięciowych systemach zasilania, jak np. w elektronice użytkowej czy oświetleniu LED. Jest to wartość uznawana za bezpieczną do dotyku, ale nie spełnia definicji napięcia dotykowego bezpiecznego, które wynosi 50 V, właśnie z uwagi na jego zastosowanie do określenia pewnych standardów ochrony. Bezpieczeństwo w kontekście elektryki nie ogranicza się jedynie do samego napięcia, ale także do warunków, w jakich jest stosowane, co podkreśla wagę przestrzegania norm i standardów branżowych w celu minimalizacji ryzyka.

Pytanie 19

Jak powinno się przeprowadzać zalecane przez producenta okresowe testy działania wyłącznika różnicowoprądowego?

A. Mierząc czas reakcji przy wymuszeniu prądu upływu wynoszącego IΔn
B. Naciskając przycisk "TEST"
C. Wykonując kontrolne doziemienie
D. Określając minimalny prąd upływu, który powoduje zadziałanie wyłącznika
Naciskanie przycisku 'TEST' na wyłączniku różnicowoprądowym (RCD) jest zalecaną metodą przeprowadzania okresowego sprawdzenia jego działania. To działanie symuluje sytuację, w której dochodzi do prądu upływu, co powinno spowodować natychmiastowe zadziałanie urządzenia. Dzięki temu można zweryfikować, czy wyłącznik działa prawidłowo i czy jest w stanie skutecznie chronić przed porażeniem prądem elektrycznym. Warto podkreślić, że producenci urządzeń elektrycznych oraz normy takie jak PN-EN 61008-1 zalecają regularne testowanie RCD co najmniej raz w miesiącu. Przykład praktycznego zastosowania to wykonanie testu przed rozpoczęciem sezonu letniego, kiedy to wiele osób korzysta z urządzeń elektrycznych na świeżym powietrzu, co zwiększa ryzyko wystąpienia porażenia prądem. Regularne testowanie wyłączników różnicowoprądowych nie tylko zapewnia bezpieczeństwo, ale również może zaoszczędzić koszty związane z naprawami czy stratami energoelektrycznymi wynikającymi z niewłaściwego działania instalacji elektrycznej.

Pytanie 20

Jakie akcesoria, oprócz szczypiec, trzeba pobrać z magazynu, aby zasilić zamontowany plafon sufitowy, kiedy instalacja została wykonana przewodami YDYp?

A. Lutownicę, wiertarkę, ściągacz izolacji
B. Wiertarkę, lutownicę, wkrętak
C. Nóż monterski, wiertarkę, ściągacz izolacji
D. Ściągacz izolacji, nóż monterski, wkrętak
Odpowiedź, która wskazuje na konieczność użycia ściągacza izolacji, noża monterskiego i wkrętaka, jest prawidłowa, ponieważ te narzędzia są kluczowe w procesie podłączania plafonu sufitowego do instalacji elektrycznej. Ściągacz izolacji pozwala na dokładne usunięcie izolacji z końców przewodów YDYp, co jest niezbędne do ich prawidłowego połączenia. Nóż monterski jest przydatny do precyzyjnego cięcia przewodów oraz do ogólnych prac związanych z instalacją. Wkrętak natomiast jest podstawowym narzędziem do mocowania plafonu do sufitu, co wymaga użycia odpowiednich śrub. W kontekście praktyki instalacyjnej, ważne jest, aby przestrzegać standardów BHP oraz zasad dotyczących instalacji elektrycznych, co zwiększa bezpieczeństwo i funkcjonalność wykonanej pracy. Dobre praktyki obejmują również upewnienie się, że zasilanie jest wyłączone przed przystąpieniem do jakichkolwiek prac elektrycznych, co minimalizuje ryzyko porażenia prądem.

Pytanie 21

Na podstawie tabeli dobierz dopuszczalny prąd znamionowy zabezpieczenia nadprądowego w instalacji jednofazowej dla przewodu YDY 3x1,5 mm2 przy sposobie ułożenia A2?

Ilustracja do pytania
A. 25 A
B. 20 A
C. 16 A
D. 13 A
Wybór niewłaściwego prądu znamionowego zabezpieczenia nadprądowego może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa i funkcjonowania instalacji elektrycznej. Z odpowiedziami takimi jak 20 A, 13 A czy 25 A wiąże się kilka kluczowych błędów myślowych. W przypadku prądu 20 A, użytkownik może sądzić, że wyższy prąd zabezpieczenia jest korzystny, co w rzeczywistości może prowadzić do sytuacji, gdzie przewody będą narażone na przeciążenia, gdyż zabezpieczenie nie zareaguje na wzrost prądu. Z kolei odpowiedź 13 A, mimo że może być uznana za bardziej konserwatywną, nie spełnia wymagań dla tego konkretnego przekroju i metody układania, co skutkuje zbyt dużym ryzykiem uszkodzenia instalacji. Natomiast 25 A, będąc jeszcze bardziej niebezpiecznym wyborem, może całkowicie zignorować prawidłowe normy bezpieczeństwa, prowadząc do przegrzania przewodów i w konsekwencji do zagrożeń pożarowych. Ważne jest, aby zrozumieć, że dobór zabezpieczeń nie powinien opierać się na intuicji czy przybliżeniu, ale na dokładnych danych technicznych, które są dostępne w normach branżowych. Wszystkie te czynniki podkreślają znaczenie przestrzegania przepisów i dobrych praktyk w projektowaniu i eksploatacji instalacji elektrycznych.

Pytanie 22

Które wyprowadzenia czujnika kontroli i zaniku faz należy włączyć szeregowo z cewką stycznika zgodnie z przedstawionymi schematami z jego instrukcji fabrycznej?

Ilustracja do pytania
A. 1 i 7
B. 1 i 4
C. 7 i 8
D. 4 i 8
Wybrane odpowiedzi sugerują błędne podejście do analizy schematu połączeń czujnika kontroli i zaniku faz z cewką stycznika. W przypadku odpowiedzi 1 i 4, wyprowadzenia 1 oraz 4 nie są przeznaczone do szeregowego połączenia z cewką, co oznacza, że nie będą monitorować obecności faz w sposób wymagany do zabezpieczenia silnika. Podobnie, połączenie 1 i 7 oraz 4 i 8 również nie spełnia kryteriów, które pozwoliłyby na efektywne działanie czujnika. Typowym błędem myślowym jest zakładanie, że wystarczą dowolne wyprowadzenia czujnika do zabezpieczenia urządzenia. Ważne jest, aby zrozumieć, że czujnik zaniku faz ma specyficzne wyprowadzenia, które muszą być stosowane zgodnie z zaleceniami producenta, aby uniknąć niepożądanych sytuacji, takich jak zbyt wczesne wyłączenie silnika lub jego uszkodzenie w wyniku pracy w warunkach braku zasilania. Niezrozumienie zasad działania systemów zabezpieczeń może prowadzić do poważnych awarii, a w konsekwencji do wysokich kosztów napraw i przestojów produkcji. W związku z tym kluczowe jest, aby każdy inżynier miał pełne zrozumienie schematów oraz zasad działania urządzeń, z którymi pracuje.

Pytanie 23

Jaki najniższy przekrój może mieć przewód ochronny w instalacji oświetleniowej, gdy jest umieszczony w tej samej osłonie co przewody robocze?

A. 4 mm2
B. 10 mm2
C. 2,5 mm2
D. 1,5 mm2
Minimalny przekrój przewodu ochronnego w obwodzie oświetleniowym, ułożonym we wspólnej osłonie z przewodami roboczymi, wynosi 1,5 mm2. Zgodnie z Polskimi Normami, takimi jak PN-IEC 60364, przewody ochronne muszą być odpowiednio wymiarowane, aby zapewnić skuteczną ochronę przed porażeniem elektrycznym. Przewód ochronny, często oznaczany jako PE (Protective Earth), ma za zadanie odprowadzenie prądu zwarciowego do ziemi w przypadku uszkodzenia izolacji innych przewodów. W praktyce oznacza to, że zastosowanie przewodu o odpowiednim przekroju jest kluczowe dla bezpieczeństwa instalacji. W przypadku oświetlenia, które często jest wykorzystywane w różnych warunkach, zachowanie tych norm jest szczególnie istotne. Warto również zwrócić uwagę, że w przypadku dłuższych odcinków przewodów lub większych obciążeń zaleca się użycie przewodów o większym przekroju, co zwiększa ich zdolność do przewodzenia prądu bez ryzyka przegrzania. Właściwe dobranie przekroju przewodu ochronnego to kluczowy element projektowania bezpiecznej instalacji elektrycznej.

Pytanie 24

Jakim symbolem oznacza się przewód jednożyłowy z żyłą wykonaną z drutu aluminiowego, w izolacji PCV, o przekroju żyły 2,5 mm2?

A. YDY 2,5 mm2
B. ADY 2,5 mm2
C. YLY 2,5 mm2
D. ALY 2,5 mm2
Odpowiedź ADY 2,5 mm² jest poprawna, ponieważ oznaczenie to odnosi się do przewodów jednożyłowych wykonanych z drutu aluminiowego, które są izolowane polwinitą (PVC). Przewody te charakteryzują się odpowiednimi właściwościami elektrycznymi i mechanicznymi, co czyni je odpowiednimi do stosowania w różnorodnych instalacjach elektrycznych, w tym w budownictwie, przemyśle czy instalacjach domowych. Przekrój żyły wynoszący 2,5 mm² jest standardowym rozwiązaniem dla obwodów o niewielkim poborze prądu, takich jak oświetlenie czy gniazdka. Zastosowanie przewodów aluminiowych staje się coraz bardziej popularne ze względu na ich niską masę i korzystne właściwości przewodzące, pod warunkiem, że są odpowiednio dobrane do obciążenia. W przemyśle elektrycznym ważne jest również, aby wszelkie elementy instalacji spełniały normy bezpieczeństwa, co potwierdza odpowiednia certyfikacja. W kontekście zastosowania, przewody ADY często wykorzystuje się w instalacjach, gdzie nie ma dużych przeciążeń, a warunki pracy są umiarkowane.

Pytanie 25

Jaki parametr trójfazowego gniazda wtyczkowego jest określany symbolem IP20?

A. Minimalny przekrój przewodów podłączonych do zacisków
B. Najwyższą temperaturę otoczenia podczas eksploatacji
C. Stopień zabezpieczenia przed dostępem ciał stałych oraz wody
D. Klasę ochronności przed porażeniem energią elektryczną
Symbol IP20 mówi nam o tym, jak dobrze urządzenia elektryczne są chronione przed różnymi rzeczami, jak np. kurz i woda. W praktyce oznacza to, że urządzenie jest ok, jeśli chodzi o duże obiekty (czyli te, które mają więcej niż 12,5 mm), ale niestety nie ma żadnej ochrony przed wodą. To jest ważne, zwłaszcza gdy myślimy o tym, gdzie te urządzenia będą używane. Na przykład gniazdka w biurze – nie jesteśmy tam narażeni na wodę, ale dobrze, że są zbudowane tak, żeby nikt nie mógł łatwo zajrzeć do środka. Fajnie, że istnieją standardy IEC 60529, bo dzięki nim można lepiej dobierać urządzenia do konkretnych miejsc, zwłaszcza tam, gdzie bezpieczeństwo elektryczne to mega ważna sprawa.

Pytanie 26

Przed przystąpieniem do wymiany uszkodzonej oprawy oświetleniowej w biurze nie jest konieczne

A. oznaczenie i zabezpieczenie obszaru roboczego
B. zabezpieczenie przed przypadkowym włączeniem zasilania przez osoby nieuprawnione
C. pisemne polecenie do wykonania prac
D. wyłączenie zasilania z instalacji
Bezpieczeństwo podczas prac elektroinstalacyjnych wymaga szczególnej uwagi i przestrzegania określonych procedur. Zabezpieczenie przed włączeniem zasilania przez osoby nieuprawnione oraz wyłączenie instalacji spod napięcia to fundamentalne kroki, które nie tylko ograniczają ryzyko wypadków, ale także są zgodne z najlepszymi praktykami branżowymi. Właściwe wyłączenie zasilania przed rozpoczęciem jakiejkolwiek pracy w obrębie instalacji elektrycznej jest kluczowe, aby zapobiec porażeniu prądem. Istotne jest również oznakowanie i zabezpieczenie miejsca pracy. Te czynności są nie tylko wymagane przez przepisy bezpieczeństwa, ale także zalecane w standardach takich jak PN-EN 50110-1, które precyzują zasady eksploatacji urządzeń elektrycznych. Ignorowanie tych kroków może prowadzić do niebezpiecznych sytuacji, w których osoby nieuprawnione mogłyby przypadkowo włączyć zasilanie, co stanowiłoby poważne zagrożenie. Nie należy również lekceważyć znaczenia oznakowania miejsca pracy; odpowiednie oznakowanie obszaru roboczego informuje osoby postronne o prowadzonych pracach i potencjalnym ryzyku. Zatem, kluczowe jest, aby każdy, kto przystępuje do wymiany oprawy oświetleniowej, przestrzegał powyższych zasad, aby zapewnić sobie i innym maksymalne bezpieczeństwo.

Pytanie 27

W celu naprawy kabla przyłączeniowego, który został uszkodzony podczas prac ziemnych i został ułożony bez zapasu, potrzebne są

A. dwie mufy kablowe i odcinek kabla
B. odcinek kabla oraz zgrzewarka
C. odcinek kabla zakończony głowicami
D. mufa rozgałęźna oraz odcinek kabla
Wybór mufy rozgałęźnej i odcinka kabla nie jest adekwatny, ponieważ mufy rozgałęźne służą do rozdzielania sygnałów i energii elektrycznej na różne obwody, a nie do naprawy uszkodzonego kabla. Użycie mufy rozgałęźnej w kontekście naprawy kabla, który nie ma zapasu, prowadzi do ryzyka niewłaściwych połączeń, co może skutkować awarią całego systemu. Ponadto, sugerowanie użycia odcinka kabla i zgrzewarki jest również błędne, ponieważ zgrzewanie nie jest standardową metodą naprawy kabli przyłączeniowych, a realizacja takich operacji wiąże się z dodatkowymi ryzykami, jak na przykład niewłaściwe połączenia, które mogą prowadzić do wzrostu oporu lub przegrzewania się złącza. Ostatnia propozycja polegająca na użyciu odcinka kabla zakończonego głowicami jest niewłaściwa, gdyż głowice kablowe stosowane są głównie w kontekście kończenia kabli do urządzeń elektrycznych, a nie w sytuacji, gdy konieczne jest połączenie uszkodzonego kabla z nowym odcinkiem. Typowe błędy myślowe prowadzące do takich nieprawidłowych decyzji obejmują nieznajomość zasadności użycia konkretnych typów muf oraz ich zastosowania w kontekście naprawy kabli, co może prowadzić do zagrożeń dla bezpieczeństwa i niezawodności całej instalacji elektrycznej.

Pytanie 28

Narzędziem niezbędnym do wymiany łącznika pokazanego na zdjęciu jest wkrętak

Ilustracja do pytania
A. z bitem M8
B. płaski.
C. PH2
D. TROX
Prawidłowa odpowiedź to wkrętak płaski, który jest narzędziem odpowiednim do wymiany łącznika pokazanego na zdjęciu. Wyłączniki instalacyjne wyposażone w zacisk śrubowy wymagają użycia wkrętaka płaskiego, ponieważ jego konstrukcja pozwala na łatwe i precyzyjne wkręcanie lub wykręcanie śrub. W praktyce, wkrętak płaski jest najczęściej wykorzystywany w instalacjach elektrycznych, gdzie śruby mocujące są powszechnie stosowane. W sytuacjach, gdy zachodzi potrzeba wymiany wyłączników, zastosowanie odpowiedniego narzędzia jest kluczowe dla zapewnienia bezpieczeństwa oraz poprawności wykonania instalacji. Warto również dodać, że wkrętaki płaskie są dostępne w różnych rozmiarach, co umożliwia ich dopasowanie do konkretnego typu śrub. W przypadku niewłaściwego narzędzia może dojść do uszkodzenia śruby lub samego wyłącznika, co prowadzi do dodatkowych kosztów i ryzyka w zakresie bezpieczeństwa elektrycznego.

Pytanie 29

Zgodnie z aktualnymi przepisami prawa budowlanego, w nowych budynkach konieczne jest montowanie gniazdek z zabezpieczeniami.

A. we wszystkich pomieszczeniach.
B. w łazienkach.
C. w sypialniach.
D. w holach.
Odpowiedź 'w łazienkach' jest poprawna, ponieważ zgodnie z obowiązującymi przepisami prawa budowlanego oraz normami bezpieczeństwa, w łazienkach powinny być instalowane gniazda z kołkami ochronnymi. Gniazda te mają na celu zwiększenie bezpieczeństwa użytkowników poprzez minimalizację ryzyka porażenia prądem elektrycznym, co jest szczególnie istotne w pomieszczeniach narażonych na wilgoć. Właściwe zastosowanie takich gniazd w łazienkach jest zgodne z normą PN-IEC 60364-7-701, która reguluje wymagania dotyczące instalacji elektrycznych w pomieszczeniach mokrych. Praktycznie oznacza to, że wszelkie urządzenia elektryczne, które mogą być używane w łazienkach, powinny być podłączone do gniazd z zabezpieczeniem przeciwporażeniowym, co znacznie podnosi poziom bezpieczeństwa użytkowników. Na przykład, podłączenie pralki czy suszarki do gniazd z kołkami ochronnymi jest kluczowe, aby zapewnić pełne bezpieczeństwo w codziennym użytkowaniu. W związku z tym, projektując nowe budynki, warto stosować się do tych wymogów, aby chronić użytkowników przed potencjalnymi zagrożeniami elektrycznymi.

Pytanie 30

Podczas ponownej próby załączenia urządzenia przedstawionego na rysunku po około 40 s następuje jego samoczynne wyłączenie. Określ najbardziej prawdopodobną przyczynę zadziałania urządzenia.

Ilustracja do pytania
A. Upływ prądu do uziemienia.
B. Zwarcie przewodów L i N.
C. Zwarcie przewodów L i PE.
D. Przeciążenie w obwodzie.
Poprawna odpowiedź to przeciążenie w obwodzie. Urządzenie na rysunku to wyłącznik różnicowoprądowy z zabezpieczeniem nadprądowym (RCBO), który jest zaprojektowany do ochrony instalacji elektrycznych przed skutkami zarówno przeciążeń, jak i zwarć. Samoczynne wyłączenie po około 40 sekundach sugeruje, że urządzenie wykryło zbyt wysoką wartość prądu, co może prowadzić do uszkodzenia przewodów lub urządzeń podłączonych do obwodu. W praktyce, przeciążenie występuje, gdy łączna moc urządzeń podłączonych do obwodu przekracza maksymalną wartość znamionową zabezpieczenia. W takich sytuacjach RCBO odłącza zasilanie, aby zminimalizować ryzyko pożaru oraz uszkodzeń sprzętu. Zgodnie z normami, takie urządzenia powinny być regularnie testowane i konserwowane, aby zapewnić ich prawidłowe funkcjonowanie. Zrozumienie działania wyłączników nadprądowych i ich roli w zabezpieczaniu instalacji elektrycznych jest kluczowe dla każdego elektryka oraz projektanta instalacji.

Pytanie 31

Z instrukcji obsługi przedstawionego na rysunku miernika wynika, że przed pomiarem rezystancji należy wyzerować omomierz. W tym celu należy przełącznikiem funkcji wybrać pomiar rezystancji i ustawić wskazówkę na 0 Ω przy pomocy pokrętła oznaczonego cyfrą

Ilustracja do pytania
A. 1 przy zwartych przewodach pomiarowych.
B. 1 przy odłączonych przewodach pomiarowych.
C. 2 przy odłączonych przewodach pomiarowych.
D. 2 przy zwartych przewodach pomiarowych.
Wybór niewłaściwej odpowiedzi wynika często z niepełnego zrozumienia zasad działania omomierza oraz błędnych założeń dotyczących pomiarów rezystancji. Użycie pokrętła oznaczonego cyfrą 1 przy odłączonych przewodach pomiarowych jest nieprawidłowe, ponieważ w tej sytuacji omomierz nie będzie miał możliwości zredukowania wpływu oporności przewodów na wynik pomiaru. Z tego powodu wskazanie na 0 Ω nie będzie dokładne, co prowadzi do błędnych danych. Z kolei, ustawienie pokrętła na cyfrę 2 przy odłączonych przewodach także nie jest zasadne; miernik nie jest w stanie przeprowadzić zerowania, gdy przewody są odłączone, ponieważ nie ma obwodu, który mógłby zostać zwartym. Posiadanie wiedzy na temat procesu kalibracji omomierza jest kluczowe w kontekście zapewnienia wysokiej jakości pomiarów. W branży elektrycznej, gdzie precyzja jest kluczowa, pominięcie tego kroku może prowadzić do poważnych konsekwencji w analizie układów. Istotne jest także zrozumienie, że każdy pomiar rezystancji powinien być przeprowadzany w odpowiednich warunkach, a nieprawidłowe przygotowanie urządzenia do pomiaru może skutkować zafałszowaniem wyników, co jest nieakceptowalne w praktyce inżynierskiej.

Pytanie 32

Schemat jakiego łącznika instalacyjnego przedstawiono na rysunku?

Ilustracja do pytania
A. Krzyżowego.
B. Hotelowego.
C. Świecznikowego.
D. Schodowego.
Niezrozumienie charakterystyki poszczególnych typów łączników instalacyjnych może prowadzić do nieprawidłowych wniosków. Łącznik schodowy, który byłby jednym z możliwych wyborów, jest zaprojektowany do sterowania jednym obwodem świetlnym z dwóch miejsc, co różni go od łącznika krzyżowego. Użytkownik, który wybiera łącznik schodowy, może myśleć, że wystarczy go zastosować w każdej sytuacji, co jest błędne, zwłaszcza w przypadku dużych pomieszczeń. Z kolei łącznik hotelowy jest używany w systemach zdalnego sterowania, gdzie np. w pokoju hotelowym można zarządzać oświetleniem z jednego panelu. To z kolei nie odnosi się do funkcji łącznika krzyżowego. Ponadto, łącznik świecznikowy, którego zastosowanie ogranicza się do prostych obwodów, również nie spełni wymagań skomplikowanych instalacji, w których potrzebne jest sterowanie z trzech lub więcej miejsc. Warto zauważyć, że błędne wybory mogą wynikać z niepełnego zrozumienia schematów oraz funkcji poszczególnych łączników, co jest powszechnym problemem wśród osób nieposiadających odpowiedniego przeszkolenia w zakresie instalacji elektrycznych. Właściwe dobieranie komponentów do instalacji elektrycznych jest kluczowe dla zapewnienia ich efektywności i bezpieczeństwa.

Pytanie 33

Jakiej klasy ogranicznik przepięć powinno się montować w instalacjach mieszkalnych?

A. Klasy B
B. Klasy D
C. Klasy C
D. Klasy A
Odpowiedzi wskazujące na klasy B, D oraz A jako odpowiednie dla rozdzielnic mieszkalnych są niepoprawne głównie z powodu różnic w charakterystyce i zastosowaniach tych ograniczników. Klasa B, według normy IEC 61643-11, jest zaprojektowana do ochrony przed bardzo wysokimi przepięciami, które mogą występować w sieciach zasilających, co czyni je bardziej odpowiednimi do zastosowań w instalacjach przemysłowych, gdzie ryzyko wystąpienia takich zdarzeń jest znacznie wyższe. Ograniczniki klasy A z kolei są przeznaczone do ochrony przed bardzo niskimi, ale szybko zmieniającymi się przepięciami, co również nie odpowiada typowym wymaganiom dla mieszkań. Klasa D, zdefiniowana jako ogranicznik przeznaczony do instalacji w obiektach specjalistycznych, takich jak centra danych, również nie jest zalecana do użytku domowego. Sugerowanie tych klas ograniczników dla zastosowań w rozdzielnicach mieszkaniowych może prowadzić do niewłaściwej ochrony i potencjalnych uszkodzeń sprzętu, co jest wynikiem niepełnego zrozumienia standardów ochrony przeciwprzepięciowej oraz różnorodności warunków, w jakich te urządzenia są używane. Kluczowe jest, aby przy wyborze odpowiedniego ogranicznika kierować się wymaganiami specyfikacji technicznych oraz dobrą praktyką inżynieryjną, co pomoże uniknąć kosztownych błędów i zapewni skuteczną ochronę instalacji elektrycznych.

Pytanie 34

Jaką najwyższą wartość powinien mieć wyłącznik silnikowy, chroniący trójfazowy silnik indukcyjny klatkowy o prądzie znamionowym równym 11,1 A, aby zabezpieczyć go przed przeciążeniem przy jednoczesnym zachowaniu możliwości znamionowego obciążenia momentem hamującym?

A. 11,1 A
B. 12,2 A
C. 10,5 A
D. 11,7 A
Wyłącznik silnikowy powinien być ustawiony na wartość, która umożliwi ochronę silnika przed przeciążeniem, ale równocześnie pozwoli na jego pełne wykorzystanie w warunkach znamionowych. Dla silnika indukcyjnego klatkowego o prądzie znamionowym 11,1 A, maksymalna wartość, na którą należy nastawić wyłącznik, wynosi 12,2 A. To podejście jest zgodne z dobrą praktyką stosowania wyłączników silnikowych, gdzie zaleca się ustawienie ich na wartości o 10% wyższej od prądu znamionowego. Taka regulacja zapewnia, że w normalnych warunkach pracy silnik nie będzie się wyłączał, a jednocześnie w sytuacjach przeciążeniowych zostanie skutecznie zabezpieczony. W praktyce oznacza to, że przy pełnym obciążeniu, które może wystąpić w momencie rozruchu lub przy chwilowych wzrostach obciążenia, wyłącznik nie zareaguje, a silnik będzie mógł pracować bez zakłóceń. Ustawienie wyłącznika na 12,2 A jest również zgodne z normami IEC oraz lokalnymi przepisami dotyczącymi instalacji elektrycznych, które podkreślają znaczenie zabezpieczeń przed przeciążeniem.

Pytanie 35

Jaka jest wartość bezwzględna błędu pomiaru natężenia prądu, jeśli multimetr pokazał wynik 35,00 mA, a producent określił dokładność urządzenia dla danego zakresu pomiarowego na
±(1 % +2 cyfry)?

A. ±0,02 mA
B. ±0,35 mA
C. ±0,37 mA
D. ±2,35 mA
W analizie błędów pomiarowych kluczowe jest zrozumienie, jak oblicza się wartość błędu na podstawie specyfikacji urządzenia. Błędne odpowiedzi wynikają często z nieprawidłowego zastosowania wzorów lub zrozumienia zasad dotyczących dokładności. Na przykład, niektóre osoby mogą pomylić 1% z wartością całkowitą pomiaru, co prowadzi do oszacowania błędu jako ±0,35 mA. Jednakże w takim przypadku nie uwzględnia się dodatkowego błędu stałego, który w tym przypadku wynosi 0,02 mA. Z kolei wybranie wartości ±2,35 mA jest zupełnie nieadekwatne, ponieważ w praktyce nie ma podstaw do przyjęcia tak dużego błędu w odniesieniu do wskazania 35 mA, co wskazuje na fundamentalne nieporozumienie w zakresie norm dotyczących dokładności pomiarów. Umożliwia to zrozumienie, że błędy systematyczne i przypadkowe muszą być brane pod uwagę w kontekście całkowitych wartości określonych przez producentów. Dlatego w pomiarach elektrycznych rekomenduje się korzystanie z dokładnych procedur obliczeniowych, które uwzględniają zarówno błędy procentowe, jak i stałe, co pozwala na uzyskanie rzetelnych wyników pomiarów. Ponadto, brak wiedzy na temat tego, jak poprawnie interpretować specyfikacje techniczne urządzeń pomiarowych, może prowadzić do poważnych błędów w ocenie wyników pomiarów, co w praktyce przekłada się na nieefektywność lub błędne decyzje w kontekście zastosowań inżynieryjnych.

Pytanie 36

Jakie wartości krotności prądu znamionowego obejmuje obszar działania wyzwalaczy elektromagnetycznych w samoczynnych wyłącznikach instalacyjnych nadprądowych typu C?

A. (3÷5) · In
B. (2÷3) · In
C. (5÷20) · In
D. (5÷10) · In
Często spotykam się z tym, że osoby uczące się o wyłącznikach nadprądowych mylą zakresy działania wyzwalaczy elektromagnetycznych – pewnie dlatego, że charakterystyki B, C i D różnią się właśnie tą wartością, a w praktyce łatwo się pomylić. Założenie, że wyzwalacz elektromagnetyczny w wyłączniku typu C zadziała np. w zakresie (3÷5)·In albo nawet (2÷3)·In jest charakterystyczne raczej dla charakterystyki B – tam wyłącznik ma zareagować szybciej, bo zabezpiecza bardziej wrażliwe obwody, gdzie nawet niewielki nadmiar prądu może zaszkodzić urządzeniom. Zakres (5÷20)·In natomiast to już bardziej charakterystyka D, która pozwala na naprawdę duże prądy rozruchowe, np. przy silnikach o dużej mocy albo transformatorach – w instalacjach domowych czy biurowych byłoby to zdecydowanie za dużo. Moim zdaniem wybór niewłaściwego zakresu wiąże się często z nieznajomością normy PN-EN 60898-1 oraz z niezrozumieniem praktycznego zastosowania poszczególnych typów wyłączników. Stosując zbyt niską krotność, ryzykujemy niepotrzebne wyłączenia zasilania przy każdym chwilowym przeciążeniu; z kolei za wysoka krotność to potencjalne zagrożenie, bo zabezpieczenie nie zareaguje przy realnym zwarciu. Dlatego zawsze warto dokładnie sprawdzić, do jakiego typu obwodu dobieramy wyłącznik: typu C używa się tam, gdzie występują średnie prądy rozruchowe, a zakres (5÷10)·In gwarantuje właściwy kompromis między skutecznością a praktycznością. Dobre praktyki branżowe uczą, by nie sugerować się tylko jednym parametrem, ale zrozumieć całą charakterystykę pracy i wynikające z niej konsekwencje dla bezpieczeństwa instalacji. To właśnie dlatego znajomość zakresu działania wyzwalaczy elektromagnetycznych w różnych typach wyłączników jest tak istotna; pozwala unikać typowych błędów przy projektowaniu i modernizowaniu instalacji elektrycznych.

Pytanie 37

Jakie narzędzia są konieczne do wytyczenia trasy instalacji przewodów elektrycznych montowanych na powierzchni?

A. Kątownik, młotek, punktak
B. Ołówek traserski, przymiar kreskowy, rysik
C. Ołówek traserski, poziomnica, przymiar taśmowy
D. Kątownik, ołówek traserski, sznurek traserski
Ołówek traserski, poziomnica i przymiar taśmowy to świetny wybór! Te narzędzia naprawdę są niezbędne, gdy chodzi o trasowanie drogi do układania przewodów natynkowych. Ołówek traserski pozwala na dokładne oznaczanie punktów i linii, co jest podstawą do dalszej roboty. Poziomnica zaś to must-have, żeby upewnić się, że wszystko jest równo i w odpowiednich nachyleniach. To ważne, bo estetyka i funkcjonalność idą w parze. Przymiar taśmowy z kolei umożliwia precyzyjne mierzenie, co też jest kluczowe, żeby dobrze rozmieścić przewody na ścianach. W branży mamy różne standardy, jak normy PN-IEC, które podkreślają, jak ważna jest dokładność i planowanie przy instalacjach elektrycznych. Używanie właściwych narzędzi zwiększa wydajność, a także zmniejsza ryzyko błędów, które mogą skończyć się problemami, jak zwarcia czy uszkodzenia sprzętu. Na przykład, korzystając z poziomnicy przy układaniu przewodów, mamy pewność, że będą one prosto, co będzie miało znaczenie przy montażu osprzętu elektrycznego.

Pytanie 38

Metodą oceny efektywności połączeń wyrównawczych powinien być pomiar napięć

A. skutecznych
B. rażeniowych
C. krokowych
D. dotykowych
Pomiar napięć skutecznych jest naprawdę ważny, jeśli chodzi o ocenę, jak dobrze działają połączenia wyrównawcze. Dzięki temu możemy zobaczyć, jak dobrze system radzi sobie z ewentualnymi różnicami napięć w instalacji elektrycznej. Połączenia wyrównawcze mają na celu zminimalizowanie ryzyka porażeń prądem, więc istotne jest, żeby te różnice były na niskim poziomie. Napięcia skuteczne, czyli wartości RMS, pokazują nam, jak system działa w rzeczywistości, co bardzo ułatwia ocenę skuteczności zabezpieczeń. Można to zastosować na przykład w instalacjach przemysłowych, gdzie ochrona ludzi i sprzętu jest kluczowa. Normy, jak PN-IEC 60364, podkreślają, jak ważne są regularne inspekcje i pomiary, żeby mieć pewność, że systemy bezpieczeństwa działają prawidłowo i są w dobrym stanie.

Pytanie 39

Z którym zaciskiem będzie połączony zacisk 23 stycznika K2, jeżeli układ elektryczny zostanie zmontowany zgodnie z przedstawionym schematem montażowym?

Ilustracja do pytania
A. Z zaciskiem 2 listwy zaciskowej X1
B. Z zaciskiem 21 przycisku S1
C. Z zaciskiem 1 listwy zaciskowej X1
D. Z zaciskiem X1 lampki kontrolnej H1
Wybór innych zacisków, takich jak zacisk 21 przycisku S1 lub zacisku 1 listwy zaciskowej X1, jest wynikiem nieporozumienia dotyczącego funkcji poszczególnych elementów w układzie. Zacisk 21 przycisku S1 jest z reguły odpowiedzialny za aktywację obwodu, a nie za bezpośrednie połączenie ze stycznikiem K2. Podobnie, zacisk 1 listwy zaciskowej X1 może pełnić inną rolę, na przykład zasilania, co sprawia, że jego wybór w tej sytuacji jest błędny. Warto zauważyć, że selekcja niewłaściwych połączeń często wynika z niepełnego zrozumienia schematu, co może prowadzić do konsekwencji w postaci niesprawności urządzenia. W przypadku lampki kontrolnej H1, która jest zazwyczaj używana do sygnalizacji stanu pracy układu, jej zacisk także nie ma bezpośredniego związku z zaciskiem 23 stycznika K2. Ignorowanie schematów montażowych i standardowych procesów może prowadzić do poważnych problemów nie tylko w funkcjonowaniu urządzeń, ale również w kontekście bezpieczeństwa elektrycznego. Dlatego kluczowe jest, aby każda osoba pracująca z instalacjami elektrycznymi miała solidne podstawy teoretyczne i praktyczne, co pozwoli uniknąć typowych błędów w analizie schematów i połączeń.

Pytanie 40

W jaki sposób powinna odbywać się wymiana nożowych wkładek topikowych w bezpiecznikach przemysłowych?

A. Uchwytem izolacyjnym pod obciążeniem
B. Przy użyciu kombinerek, pod napięciem
C. Za pomocą kombinerek w braku napięcia
D. Uchwytem izolacyjnym bez obciążenia
Wymiana nożowych wkładek topikowych bezpieczników przemysłowych powinna być przeprowadzana w sposób bezpieczny, najlepiej przy użyciu uchwytu izolacyjnego i tylko wtedy, gdy nie ma obciążenia na obwodzie. Taki sposób działania minimalizuje ryzyko porażenia prądem oraz uszkodzenia sprzętu. Uchwyt izolacyjny, wykonany z materiałów odpornych na działanie wysokich napięć, zapewnia, że osoba dokonująca wymiany nie ma kontaktu z przewodami pod napięciem. Przykładem zastosowania tej metody są procedury serwisowe w zakładach przemysłowych, gdzie kluczowe jest przestrzeganie zasad BHP oraz normy IEC 60947-3 dotyczącej bezpieczników. Dodatkowo, przed przystąpieniem do wymiany, ważne jest upewnienie się, że wyłączono zasilanie, co można zweryfikować przy pomocy wskaźników napięcia, a także zastosowanie blokad, aby zapobiec przypadkowemu włączeniu obwodu. Przestrzeganie tych zasad nie tylko chroni technika, ale również zapewnia, że prace serwisowe są wykonane w sposób efektywny i zgodny z normami branżowymi.