Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 29 stycznia 2026 02:34
  • Data zakończenia: 29 stycznia 2026 02:49

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Symbol graficzny którego przekaźnika przedstawiono na rysunku?

Ilustracja do pytania
A. Nadprądowego.
B. Podczęstotliwościowego.
C. Nadnapięciowego.
D. Podnapięciowego.
Symbol graficzny przekaźnika podnapięciowego jest istotnym elementem w projektowaniu systemów elektrycznych i automatyki. Oznaczenie "U" wewnątrz prostokąta wskazuje, że przekaźnik działa w odpowiedzi na spadek napięcia poniżej ustalonego poziomu. Przekaźniki podnapięciowe są używane do ochrony urządzeń przed niewłaściwym działaniem spowodowanym niskim napięciem, co może prowadzić do uszkodzenia elementów elektronicznych lub niestabilnej pracy systemu. Przykłady zastosowania obejmują systemy zasilania, w których kluczowe jest utrzymanie napięcia w odpowiednich granicach, na przykład w zasilaczach UPS, gdzie przekaźnik może odłączyć obciążenie w przypadku spadku napięcia. Zgodnie z normą IEC 60947-5-1, przekaźniki te powinny być używane w odpowiednich warunkach, aby zapewnić bezpieczeństwo i niezawodność działania. Zrozumienie symboliki i działania przekaźników podnapięciowych jest fundamentem w dziedzinie elektrotechniki i automatyki, co podkreśla ich znaczenie w codziennej praktyce inżynieryjnej.

Pytanie 2

Na podstawie wyników pomiarów przedstawionych w tabeli określ, który z obwodów nie spełnia warunków ochrony przeciwporażeniowej.

ObwódNazwa urządzenia elektrycznegoZastosowane zabezpieczeniePrąd wyłączalny z charakterystykiCzas wyłączeniaZmierzona impedancjaPrąd zwarcia obliczeniowy
Ib w AIw w AT≤... w sZz w ΩIzw w A
A.gniazdo jednofazoweB16800,22,30100,00
B.gniazdo jednofazoweB16800,22,5390,09
C.gniazdo jednofazoweB16800,23,3668,45
D.gniazdo jednofazoweB16800,21,32174,24
A. C.
B. D.
C. B.
D. A.
Wybór obwodu, który spełnia warunki ochrony przeciwporażeniowej, wymaga zrozumienia kilku kluczowych zasad i norm stosowanych w branży elektrycznej. Często mylone są różne wartości prądów, co prowadzi do nieprawidłowych wniosków o bezpieczeństwie obwodów. W przypadku, gdy obwód A, B lub D zostałby wybrany, można zauważyć, że prąd różnicowy dla tych obwodów mógłby znajdować się w odpowiednich granicach, co oznaczałoby, że zabezpieczenie różnicowe działa zgodnie z wymaganiami. Często popełnianym błędem jest zrozumienie, że wszystkie obwody muszą mieć prąd różnicowy wyższy niż prąd wyzwalający. W rzeczywistości, ważne jest, aby te wartości były odpowiednio dostosowane do specyfiki danego obwodu i jego zastosowania. Dodatkowo, w kontekście ochrony przeciwporażeniowej, kluczowe jest, aby zrozumieć różnicę między prądem różnicowym a prądem wyzwalającym. Wybór obwodu, który nie wykazuje rzetelnych wartości, może prowadzić do nieodpowiednich zabezpieczeń oraz stwarzać ryzyko niebezpiecznych sytuacji. Aby uniknąć takich błędów, istotne jest zasięgnięcie wiedzy na temat standardów, takich jak IEC oraz zapoznanie się z najlepszymi praktykami branżowymi w zakresie projektowania obwodów elektrycznych.

Pytanie 3

Aby zapewnić dodatkową ochronę, obwody zasilające gniazda wtyczkowe, w których prąd nie przekracza 32 A, powinny być chronione przez wyłącznik RCD o prądzie różnicowym

A. 100 mA
B. 1 000 mA
C. 30 mA
D. 500 mA
Odpowiedź 30 mA jest prawidłowa, ponieważ wyłączniki różnicowoprądowe (RCD) o prądzie różnicowym 30 mA są zalecane do ochrony osób przed porażeniem prądem elektrycznym w instalacjach domowych i komercyjnych. W przypadku gniazd wtyczkowych, które obsługują urządzenia przenośne, istotne jest, aby ochrona była jak najszybsza i najskuteczniejsza, co osiąga się stosując RCD o niskim prądzie różnicowym. Wyłącznik 30 mA działa na zasadzie wykrywania różnicy prądów między przewodami fazowym a neutralnym, co pozwala na natychmiastowe odłączenie zasilania w przypadku wykrycia upływu prądu, który może być wynikiem zwarcia lub kontaktu z ciałem człowieka. Użycie wyłącznika o wyższym prądzie różnicowym, jak 100 mA lub 500 mA, nie zapewnia wystarczającej ochrony i może prowadzić do tragicznych skutków w przypadku porażenia. Przykładowo, w łazienkach, gdzie ryzyko kontaktu z wodą i prądem jest szczególnie wysokie, stosowanie RCD 30 mA jest wręcz obowiązkowe zgodnie z normami bezpieczeństwa elektrycznego.

Pytanie 4

W celu oceny stanu technicznego silnika prądu stałego dokonano jego oględzin i pomiarów. Na podstawie wyników pomiarów zamieszczonych w tabeli określ stan techniczny tego silnika.

Wartość rezystancji pomiędzy zaciskami:
A1-A2D1-D2E1-E2A1-PED1-PEE1-PE
0,8 Ω0,9 Ω4,7 Ω123,1 MΩ102,5 MΩ166,6 MΩ
A. Zwarcie międzyzwojowe w uzwojeniu bocznikowym.
B. Pogorszony stan połączeń uzwojenia twornika w tabliczce zaciskowej.
C. Przebicie izolacji uzwojenia bocznikowego do obudowy.
D. Pogorszony stan izolacji między uzwojeniem szeregowym, a obudową.
Analizowane odpowiedzi sugerują różne problemy, które mogą wystąpić w silniku prądu stałego, jednak żadna z nich nie odnosi się właściwie do zidentyfikowanego stanu technicznego silnika. Pogorszenie stanu połączeń uzwojenia twornika w tabliczce zaciskowej mogłoby mieć wpływ na wydajność silnika, ale nie jest to głównym czynnikiem, który prowadzi do podwyższonej rezystancji E1-E2. Z kolei przebicie izolacji uzwojenia bocznikowego do obudowy jest poważnym problemem, który można zidentyfikować poprzez niskie wartości rezystancji między uzwojeniem a masą, co w tym przypadku nie miało miejsca, ponieważ pomiary wykazały wysokie wartości w tych punktach. Z kolei pogorszenie stanu izolacji między uzwojeniem szeregowym a obudową również nie znajduje potwierdzenia w analizowanych wynikach, które pokazują brak przebicia. Pojęcie zwarcia międzyzwojowego jest kluczowe, ponieważ jego skutki mogą prowadzić do znacznych strat mocy i przegrzewania się silnika. Często mylone są objawy zwarć z innymi rodzajami uszkodzeń, co może prowadzić do właściwego zdiagnozowania problemu. Ważne jest, aby w praktyce prowadzić regularne kontrole rezystancji uzwojeń oraz stosować się do wytycznych zawartych w normach branżowych, aby uniknąć nieprawidłowej diagnozy i niepotrzebnych kosztów napraw.

Pytanie 5

Obwody zasilające gniazda wtyczkowe o maksymalnym prądzie 32 A powinny być chronione przez wyłącznik RCD o prądzie różnicowym nominalnym

A. 30 mA
B. 1 000 mA
C. 500 mA
D. 100 mA
Wyłącznik RCD o znamionowym prądzie różnicowym 30 mA jest zalecany do ochrony osób przed porażeniem elektrycznym, szczególnie w obwodach zasilających gniazda wtyczkowe, gdzie może wystąpić kontakt z wodą lub innymi substancjami przewodzącymi. Zgodnie z normami, takimi jak PN-EN 61008-1, wyłączniki te są projektowane w celu wykrywania niewielkich różnic prądowych, które mogą wskazywać na niebezpieczne sytuacje. Przykładowo, w łazienkach, kuchniach czy miejscach narażonych na wilgoć, użycie RCD 30 mA znacząco zwiększa bezpieczeństwo użytkowników, minimalizując ryzyko porażenia prądem. Dodatkowo, warto zauważyć, że wyłączniki o wyższych wartościach prądów różnicowych, jak 100 mA czy 500 mA, są zazwyczaj stosowane w obwodach ochrony przeciwpożarowej, a nie w zastosowaniach bezpośrednio związanych z użytkownikami, co czyni 30 mA optymalnym wyborem w kontekście ochrony osób.

Pytanie 6

Podczas naprawy obwodu zasilania silnika indukcyjnego trójfazowego o mocy 7,5 kW technik ma wymienić uszkodzony przewód OWY 4×4 mm2 450 V/750 V na nowy. Która z poniższych właściwości przewodu H03RR-F 4G4 uniemożliwia jego wykorzystanie w miejsce dotychczasowego?

A. Zbyt mały przekrój znamionowy żył przewodu
B. Zbyt niskie napięcie znamionowe przewodu
C. Niewłaściwy materiał izolacji przewodu
D. Brak żyły izolowanej w kolorze żółtozielonym
Zastosowanie przewodu H03RR-F 4G4 w miejsce przewodu OWY 4×4 mm² 450 V/750 V jest niewłaściwe, ponieważ jego napięcie znamionowe wynosi zaledwie 300 V/500 V, co jest zbyt niskie w kontekście wymagań dla obwodu zasilania silnika indukcyjnego o mocy 7,5 kW. Przewody muszą być dobierane zgodnie z maksymalnym napięciem, jakie mogą występować w danej instalacji. Standardy, takie jak PN-IEC 60228, określają dopuszczalne wartości dla przewodów, a dla silników często rekomendowane jest używanie przewodów o wyższym napięciu znamionowym, aby zapewnić nie tylko sprawność, ale również bezpieczeństwo użytkowania. W praktyce, stosowanie przewodów o adekwatnym napięciu znamionowym chroni przed ryzykiem przebicia izolacji, co mogłoby prowadzić do awarii urządzeń oraz potencjalnie niebezpiecznych sytuacji. W przypadku, gdyby przewód uległ uszkodzeniu, niskie napięcie znamionowe mogłoby nie zapewnić odpowiedniej ochrony, dlatego kluczowe jest przestrzeganie norm branżowych przy doborze materiałów. Właściwy dobór przewodów nie tylko wpływa na wydajność instalacji, ale również na bezpieczeństwo operacyjne, co jest priorytetem w każdej branży związanej z instalacjami elektrycznymi.

Pytanie 7

Jakie czynności oraz w jakiej kolejności powinny zostać dokonane podczas wymiany uszkodzonego łącznika elektrycznego?

A. Odłączyć zasilanie, wymontować uszkodzony łącznik, sprawdzić ciągłość połączeń
B. Załączyć zasilanie, sprawdzić ciągłość połączeń, wymontować uszkodzony łącznik
C. Odłączyć zasilanie, sprawdzić brak napięcia, wymontować uszkodzony łącznik
D. Wymontować uszkodzony łącznik, odłączyć zasilanie, sprawdzić ciągłość połączeń
Odpowiedź "Odłączyć napięcie, sprawdzić brak napięcia, wymontować uszkodzony łącznik" jest prawidłowa, ponieważ obejmuje kluczowe kroki niezbędne do bezpiecznej wymiany łącznika elektrycznego. Pierwszym krokiem jest odłączenie napięcia, co jest absolutnie konieczne, aby zapobiec porażeniu prądem. Takie działanie jest zgodne z zasadą bezpieczeństwa elektrycznego, zgodnej z normą PN-IEC 60364. Następnie, sprawdzenie braku napięcia za pomocą odpowiednich narzędzi, takich jak wskaźnik napięcia, pozwala upewnić się, że instalacja jest całkowicie bezpieczna do pracy. To kluczowy krok, który chroni technika przed niebezpieczeństwem. Po potwierdzeniu braku napięcia można przystąpić do demontażu uszkodzonego łącznika. Dobrą praktyką jest również sprawdzenie stanu przewodów, co zapewnia, że nowy łącznik będzie poprawnie funkcjonować. Przykład zastosowania tej procedury można zaobserwować podczas serwisów i konserwacji instalacji elektrycznych w domach i biurach, gdzie przestrzeganie zasad bezpieczeństwa może zapobiec poważnym wypadkom.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Która z poniższych przyczyn powoduje, że przekaźnik Buchholza działa na wyłączenie transformatora?

A. Niesymetryczne obciążenie transformatora
B. Brak uziemienia punktu neutralnego
C. Zwarcie między uzwojeniem pierwotnym a wtórnym
D. Brak w uzwojeniu pierwotnym
Zwarcie między uzwojeniem pierwotnym i wtórnym to jedna z najpoważniejszych awarii, które mogą wystąpić w transformatorze. Przekaźnik Buchholza jest specjalnie zaprojektowany do detekcji i reagowania na tego typu problemy. W momencie, gdy dochodzi do zwarcia, prąd płynący przez uzwojenia gwałtownie wzrasta, co powoduje nagłe zmiany w przepływie oleju w transformatorze. Czujniki w przekaźniku Buchholza wykrywają te zmiany, co skutkuje jego aktywacją i wyłączeniem transformatora. Takie działanie ma na celu ochronę urządzenia przed dalszymi uszkodzeniami oraz minimalizację ryzyka wystąpienia poważnych awarii. W praktyce, stosowanie przekaźnika Buchholza jest normą w przemyśle energetycznym, działając zgodnie z wytycznymi Międzynarodowej Komisji Elektrotechnicznej (IEC) oraz krajowymi standardami ochrony urządzeń elektroenergetycznych. Regularne inspekcje i testy przekaźników Buchholza są kluczowe dla zapewnienia ich niezawodności i skuteczności w diagnostyce awarii, co jest istotne dla ciągłości dostaw energii.

Pytanie 10

Wystąpienie zwarcia przewodu neutralnego z ochronnym w gnieździe wtyczkowym w przedstawionej instalacji elektrycznej spowoduje zadziałanie wyłącznika oznaczonego symbolem

Ilustracja do pytania
A. S304 C25
B. P301 40A
C. P301 25A
D. S301 B16
Wybór P301 25A lub S304 C25 jako odpowiedzi jest błędny, ponieważ nie odpowiada on wymaganym parametrom wyłącznika w przypadku zwarcia przewodu neutralnego z ochronnym. Wyłącznik P301 25A, mimo że jest również wyłącznikiem różnicowoprądowym, ma niższą wartość prądową niż P301 40A, co wpływa na jego zdolność do zadziałania w sytuacji wysokiego prądu zwarciowego. Użycie wyłącznika o niższym prądzie znamionowym prowadzi do sytuacji, w której może on nie zareagować w odpowiednim czasie, co stwarza zagrożenie dla bezpieczeństwa. Z kolei S304 C25 jest wyłącznikiem nadprądowym, a nie różnicowoprądowym, co oznacza, że jego działanie nie jest w stanie wykryć zwarcia między przewodami N i PE. Wyłączniki różnicowoprądowe i nadprądowe mają różne mechanizmy działania i zastosowanie. Wyłączenie zasilania w przypadku zwarcia przewodu neutralnego z przewodem ochronnym wymaga użycia wyłącznika różnicowoprądowego, który jest zaprojektowany specjalnie do reagowania na różnice prądowe spowodowane przez prąd upływowy. Typowe błędy myślowe, które prowadzą do takich wyborów, to mylenie funkcji wyłączników oraz niepełne zrozumienie ich zastosowań w systemach zabezpieczeń elektrycznych. Właściwy dobór wyłącznika jest kluczowy dla zapewnienia bezpieczeństwa instalacji elektrycznej, a ignorowanie tego aspektu może prowadzić do poważnych konsekwencji.

Pytanie 11

Jakie urządzenie wykorzystuje się do określenia prędkości obrotowej wału silnika?

A. prądnicę tachometryczną
B. induktor
C. przekładnik napięciowy
D. pirometr
Prądnica tachometryczna jest urządzeniem służącym do pomiaru prędkości obrotowej wału silnika poprzez generowanie napięcia elektrycznego proporcjonalnego do tej prędkości. Jej działanie opiera się na zasadzie elektromechanicznej, gdzie wirnik prądnicy obracany przez wał silnika wytwarza napięcie elektryczne, które jest bezpośrednio związane z prędkością obrotową. W praktyce, prądnice tachometryczne są szeroko stosowane w różnych zastosowaniach przemysłowych, takich jak automatyka, robotyka czy systemy sterowania silnikami. Dzięki ich wysokiej dokładności, stosowane są w precyzyjnych układach regulacji prędkości, co pozwala na optymalne zarządzanie procesami technologicznymi. W branży inżynieryjnej, prądnice tachometryczne są często preferowane ze względu na ich stabilność i niezawodność, co wpisuje się w najlepsze praktyki projektowania systemów z kontrolą prędkości. Dodatkowo, są one zgodne z normami IEC oraz ISO, co zapewnia ich uniwersalność i szerokie zastosowanie w przemyśle. Dzięki tym cechom, prądnice tachometryczne stanowią kluczowy element w nowoczesnych systemach pomiarowych i kontrolnych.

Pytanie 12

Podczas wymiany uzwojeń w transformatorze jednofazowym o parametrach: SN = 200 VA, U1N = 230 V, U2N = 14,6 V, uzwojenie pierwotne powinno być wykonane z drutu nawojowego

A. o większej średnicy i mniejszej ilości zwojów niż uzwojenie wtórne
B. o większej średnicy i większej liczbie zwojów niż uzwojenie wtórne
C. o mniejszej średnicy i mniejszej liczbie zwojów niż uzwojenie wtórne
D. o mniejszej średnicy i większej liczbie zwojów niż uzwojenie wtórne
Stwierdzenia dotyczące wykonania uzwojenia pierwotnego z drutu o większej średnicy i większej liczbie zwojów, a także o mniejszej średnicy i mniejszej liczbie zwojów, są związane z niewłaściwym zrozumieniem zasad transformacji napięcia w transformatorze. Uzwojenie pierwotne, które przyjmuje napięcie 230 V, wymaga odpowiedniego doboru liczby zwojów w porównaniu do uzwojenia wtórnego, które działa na napięciu 14,6 V. W każdym przypadku, gdy napięcie na uzwojeniu wtórnym jest znacznie niższe niż na pierwotnym, liczba zwojów uzwojenia wtórnego musi być znacznie mniejsza w odniesieniu do uzwojenia pierwotnego. Taki dobór przekłada się na to, że uzwojenie pierwotne musi mieć więcej zwojów, co jest sprzeczne z koncepcją grubszej średnicy drutu, ponieważ większa średnica skutkowałaby zmniejszeniem liczby zwojów na danej długości. Często błędy te wynikają z mylenia pojęć dotyczących impedancji i rezystancji, co prowadzi do nieprawidłowych wniosków na temat wymagań dotyczących wymiany uzwojeń. Ponadto, nieprawidłowe podejście do średnicy drutu może skutkować niewłaściwym przewodnictwem i zwiększoną stratą ciepła, co jest nieefektywne i niezgodne z dobrymi praktykami w projektowaniu transformatorów. Właściwe zrozumienie tych zasad jest kluczowe dla zapewnienia efektywności energetycznej i trwałości urządzeń elektronicznych.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Jaka jest maksymalna wartość skuteczna napięcia przemiennego, która może być wykorzystana do zasilania lamp oświetleniowych umieszczonych w strefie 0 łazienki?

A. 25 V
B. 12 V
C. 30 V
D. 60 V
Maksymalna dopuszczalna wartość skuteczna napięcia przemiennego do zasilania lamp oświetleniowych zainstalowanych w strefie 0 łazienki wynosi 12 V. Strefa 0 to obszar, w którym istnieje bezpośrednie ryzyko kontaktu z wodą, co stwarza większe zagrożenie porażeniem prądem. Z tego powodu normy elektryczne, takie jak PN-IEC 60364, nakładają restrykcje na używanie napięcia w tych strefach. Użycie niskiego napięcia, takiego jak 12 V, minimalizuje ryzyko wystąpienia niebezpiecznych sytuacji, które mogłyby prowadzić do porażenia prądem. W praktyce, lampy LED, które są zaprojektowane do pracy w takich warunkach, zwykle wykorzystują zasilacze transformujące napięcie sieciowe na 12 V, a ich instalacja jest zgodna z zasadami ochrony przeciwporażeniowej. Ponadto, stosowanie niskonapięciowych źródeł światła w strefie 0 jest nie tylko zgodne z przepisami, ale również sprzyja efektywności energetycznej oraz wydłuża żywotność urządzeń oświetleniowych.

Pytanie 15

W instalacji elektrycznej w celu stwierdzenia skuteczności ochrony przeciwporażeniowej dokonano pomiarów i otrzymano wartości napięcia fazowego oraz impedancji pętli zwarcia wskazywane przez zamieszczony na rysunku miernik MZC-304. Które z zabezpieczeń nadprądowych przy tym stanie technicznym instalacji spełni warunek samoczynnego wyłączenia zasilania?

Ilustracja do pytania
A. C25
B. D32
C. C32
D. D25
Zabezpieczenie nadprądowe C25 jest w porządku w tej sytuacji, bo jego maksymalny prąd wyzwalania to 250A. Jakby doszło do zwarcia w instalacji, to prąd zwarcia wynosi około 315A, a to już więcej niż C25 może znieść. To zabezpieczenie działa tak, że automatycznie odłącza zasilanie, a to jest naprawdę ważne dla bezpieczeństwa, żeby uniknąć porażenia. W praktyce, takie zabezpieczenia z charakterystyką C są często stosowane tam, gdzie mamy duże obciążenia, które przy zwarciu mogą dawać spore prądy. Różne normy, jak PN-IEC 60364-4-41, mówią o tym, jak ważne jest dobranie odpowiednich zabezpieczeń. Dlatego użycie C25 w tym przypadku jest zgodne z tym, co mówią te normy i daje większą pewność, jeśli chodzi o bezpieczeństwo użytkowników instalacji.

Pytanie 16

Układ przedstawiony na schemacie umożliwia regulację prędkości obrotowej silnika elektrycznego przez zmianę

Ilustracja do pytania
A. częstotliwości wraz ze zmianą napięcia zasilającego.
B. liczby par biegunów.
C. prądu wzbudzenia.
D. rezystancji w obwodzie wirnika.
Analiza niepoprawnych odpowiedzi ujawnia kilka kluczowych błędów myślowych. Odpowiedź dotycząca "prądu wzbudzenia" odnosi się do silników prądu stałego, gdzie regulacja prędkości obrotowej rzeczywiście może być osiągnięta przez zmianę prądu wzbudzenia. Jednakże w przypadku silników z falownikami, takie podejście nie jest odpowiednie. W silnikach asynchronicznych, które są najczęściej używane w aplikacjach z falownikami, regulacja prędkości nie opiera się na zmianie prądu wzbudzenia, ponieważ te silniki nie mają wirnika wzbudzanego. Kolejna odpowiedź sugerująca "liczbę par biegunów" jest również myląca. Liczba par biegunów jest stała dla danego silnika i nie może być zmieniana w czasie pracy. Zmiana liczby biegunów to procedura zbyt skomplikowana i czasochłonna, a w praktyce nie jest to sposób na regulację prędkości obrotowej silnika. Ostatnia odpowiedź, odnosząca się do "rezystancji w obwodzie wirnika", również nie jest właściwa. Właściwie dobrane napięcia i częstotliwości zasilania są kluczowe dla efektywności działania silnika, a zmiana rezystancji w obwodzie wirnika nie przyczyni się do precyzyjnej regulacji prędkości. W rzeczywistości, zwiększenie rezystancji może prowadzić do strat mocy i zjawiska przegrzewania. W sumie, wszystkie błędne odpowiedzi są oparte na niewłaściwym zrozumieniu zasad działania falowników oraz charakterystyki różnych typów silników elektrycznych, co prowadzi do mylnych wniosków dotyczących regulacji prędkości obrotowej.

Pytanie 17

Podczas użytkowania instalacji elektrycznych w pobliżu urządzeń elektrycznych znajdujących się pod napięciem niedozwolone są prace (z wyłączeniem prac określonych w instrukcji eksploatacji dotyczących obsługi)?

A. dotyczące wymiany wkładek bezpiecznikowych oraz żarówek lub świetlówek w nienaruszonej obudowie i oprawie
B. przy realizacji prób i pomiarów zgodnie z instrukcjami lub wskazówkami bhp na poszczególnych stanowiskach pracy
C. związane z konserwacją i renowacjami instalacji oraz odbiorników elektrycznych
D. przy użyciu specjalnych środków wskazanych w szczegółowych instrukcjach stanowiskowych, zapewniających bezpieczne wykonanie pracy
Odpowiedź, którą zaznaczyłeś, jest w porządku. Przy pracach nad konserwacją i remontem instalacji elektrycznych rzeczywiście trzeba zawsze wyłączać zasilanie. Bezpieczeństwo jest najważniejsze, a prąd potrafi być groźny, więc lepiej nie ryzykować. Zawsze przed wymianą jakiejkolwiek części warto upewnić się, że napięcie nie płynie. Na przykład, jeśli zmieniasz uszkodzoną instalację, to najlepszym pomysłem jest wyłączenie odpowiednich obwodów. No i procedura Lockout-Tagout (LOTO) jest po prostu kluczowa! Dzięki niej nie ma szans, że ktoś przez przypadek włączy prąd, gdy ty akurat pracujesz. Wydaje mi się, że trzymanie się tych zasad nie tylko chroni ludzi, ale także sprawia, że wszystko jest zgodne z BHP i normami bezpieczeństwa, które są naprawdę ważne w tej branży.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Który z wymienionych zestawów narzędzi jest niezbędny podczas wymiany łożysk silnika przedstawionego na rysunku?

Ilustracja do pytania
A. Komplet kluczy, komplet wkrętaków płaskich, szczypce boczne, ściągacz łożysk.
B. Komplet wkrętaków PH, młotek, przecinak, szczypce uniwersalne.
C. Klucz francuski nastawny, komplet wkrętaków PH, młotek gumowy, nóż monterski.
D. Komplet kluczy, komplet wkrętaków PZ, ściągacz łożysk, tuleja do łożysk.
Wybór zestawu narzędzi oznaczonego jako poprawny jest kluczowy dla prawidłowego i bezpiecznego przeprowadzenia wymiany łożysk w silniku elektrycznym. Ściągacz łożysk jest absolutnie niezbędny, ponieważ umożliwia skuteczny demontaż starych łożysk bez uszkodzenia obudowy silnika oraz innych kluczowych komponentów. Tuleja do łożysk zapewnia precyzyjny montaż nowych łożysk, co jest istotne dla ich długowieczności i prawidłowego funkcjonowania. Użycie kompletu kluczy oraz wkrętaków PZ ułatwia rozkręcanie obudowy silnika oraz odkręcanie śrub mocujących. Warto zauważyć, że każdy z tych elementów narzędziowych jest zgodny z najlepszymi praktykami branżowymi, które zalecają posiadanie odpowiednich narzędzi specjalistycznych podczas prac serwisowych. Niezbędne jest również przestrzeganie zasad BHP, aby uniknąć kontuzji podczas wymiany łożysk.

Pytanie 20

Która z poniższych przyczyn powoduje nagły wzrost obrotów w trakcie działania silnika bocznikowego prądu stałego?

A. Przerwa w obwodzie twornika
B. Zwarcie w obwodzie twornika
C. Zwarcie w uzwojeniu komutacyjnym
D. Przerwa w uzwojeniu wzbudzenia
Przerwa w uzwojeniu wzbudzenia silnika bocznikowego prądu stałego prowadzi do nagłego wzrostu prędkości obrotowej, ponieważ uzwojenie wzbudzenia jest odpowiedzialne za generowanie pola magnetycznego, które współdziała z wirnikiem. Gdy uzwojenie wzbudzenia jest przerwane, pole magnetyczne gwałtownie słabnie, co skutkuje zmniejszeniem oporu elektromotorycznego. W efekcie, prąd w obwodzie twornika wzrasta, co prowadzi do przyspieszenia prędkości obrotowej wirnika. To zjawisko jest zgodne z zasadą działania silników prądu stałego, gdzie zmiana pola magnetycznego wpływa bezpośrednio na obroty silnika. W praktyce, takie nagłe zmiany mogą prowadzić do uszkodzenia silnika, a zatem w przypadku silników stosowanych w przemyśle, niezbędne jest monitorowanie stanu uzwojeń oraz stosowanie zabezpieczeń, takich jak urządzenia do detekcji przerwy w uzwojeniu, aby uniknąć niepożądanych skutków operacyjnych.

Pytanie 21

Trójfazowy silnik indukcyjny, obciążony połową swojej mocy znamionowej, działa z prędkością n = 1450 obr/min. W pewnym momencie doszło do spadku prędkości obrotowej, co spowodowało charakterystyczne "buczenie" silnika. Jakie mogły być przyczyny tego zakłócenia w pracy silnika?

A. Odłączenie przewodu ochronnego od zacisku PE
B. Brak napięcia w jednej z faz
C. Kilku procentowy wzrost napięcia zasilania
D. Podwojony moment obciążenia
Zanik napięcia w jednej z faz silnika indukcyjnego trójfazowego prowadzi do nierównomiernego przepływu prądu w uzwojeniach, co skutkuje spadkiem momentu obrotowego oraz zwiększeniem prędkości ślizgu. Silnik, zamiast stabilnie pracować, zaczyna generować wibracje i dźwięki, co objawia się charakterystycznym "buczeniem". W przypadku pracy z obciążeniem wynoszącym połowę mocy znamionowej, silnik może być w stanie tolerować pewne zakłócenia, ale zanik napięcia w jednej fazie jest krytycznym problemem. Przykładowo, w przemyśle, awarie zasilania w jednej fazie mogą prowadzić do uszkodzeń silników oraz innych komponentów systemu, dlatego ważne jest stosowanie zabezpieczeń, takich jak wyłączniki różnicowoprądowe oraz monitoring jakości zasilania. Aby poprawić niezawodność systemów elektrycznych, stosuje się również układy równoważące obciążenia międzyfazowe. Stosując te zasady, można znacząco zwiększyć bezpieczeństwo i efektywność pracy silników.

Pytanie 22

Który z wymienionych rozwiązań powinien być zastosowany w warsztacie remontowym, aby zapewnić podstawową ochronę przed porażeniem prądem elektrycznym?

A. Separacja elektryczna
B. Obudowy i osłony
C. Wyłączniki różnicowoprądowe
D. Miejscowe połączenia wyrównawcze
Miejscowe połączenia wyrównawcze, separacja elektryczna oraz wyłączniki różnicowoprądowe to metody ochrony przed porażeniem prądem, które są istotne, jednak nie stanowią podstawowego zabezpieczenia w kontekście warsztatu remontowego. Miejscowe połączenia wyrównawcze są stosowane w celu eliminacji różnic potencjałów między elementami instalacji, co może być istotne w sytuacjach, gdy różne części instalacji mogą mieć inne napięcia. To podejście nie eliminuje jednak bezpośredniego ryzyka kontaktu z elementami pod napięciem. Separacja elektryczna, z kolei, polega na oddzieleniu obwodów elektrycznych od innych obwodów, co również nie wystarcza jako główna forma ochrony, gdyż nie zabezpiecza przed przypadkowym dotknięciem żywych części. Wyłączniki różnicowoprądowe, choć bardzo ważne w systemach zabezpieczeń elektrycznych, działają jako dodatkowa warstwa ochrony, a nie jako podstawowe zabezpieczenie. Ich funkcja polega na szybkim odcięciu zasilania w przypadku wykrycia różnicy między prądem wpływającym a prądem wypływającym, co nie zastąpi fizycznej ochrony urządzeń poprzez obudowy i osłony. Te metody powinny być traktowane jako uzupełnienie, a nie substytut dla podstawowego zabezpieczenia, jakim są obudowy i osłony, które chronią przed bezpośrednim dotykiem.

Pytanie 23

Jaki stopień ochrony powinny mieć oprawy oświetleniowe w silnie zapylonych pomieszczeniach?

A. IP2X
B. IP4X
C. IP3X
D. IP5X
Stopień ochrony IP5X oznacza, że oprawa oświetleniowa jest pyłoszczelna, co jest kluczowe w pomieszczeniach mocno zapylonych. Oznaczenie IP (Ingress Protection) jest standardem międzynarodowym, który określa poziom ochrony urządzeń elektrycznych przed ciałami stałymi oraz cieczami. W przypadku IP5X urządzenie jest całkowicie chronione przed pyłem, co zapewnia jego niezawodność i długowieczność w trudnych warunkach. Przykładem zastosowania IP5X mogą być zakłady przemysłowe, magazyny, czy strefy produkcyjne, gdzie obecność pyłów może wpływać na działanie oświetlenia. Stosowanie opraw oświetleniowych z tym stopniem ochrony minimalizuje ryzyko uszkodzenia komponentów elektrycznych i zwiększa bezpieczeństwo pracy. Dodatkowo, zastosowanie opraw oświetleniowych z wysokim stopniem ochrony jest zgodne z normami takimi jak EN 60529, które regulują wymagania dotyczące stopni ochrony w sprzęcie elektrycznym. W praktyce, wybierając oświetlenie do zapylonych pomieszczeń, warto zawsze kierować się tymi standardami, aby zapewnić zarówno efektywność, jak i bezpieczeństwo działania urządzeń.

Pytanie 24

Kto jest zobowiązany do opracowania planów regularnych przeglądów oraz konserwacji instalacji elektrycznej w obiekcie mieszkalnym?

A. Użytkownicy mieszkań
B. Organ inspekcji technicznej
C. Dostawca energii elektrycznej
D. Właściciel lub zarządca nieruchomości
Właściciel lub zarządca budynku jest odpowiedzialny za sporządzenie planów okresowych kontroli i napraw instalacji elektrycznej, co wynika z przepisów prawa budowlanego oraz standardów dotyczących zarządzania budynkami. Właściciel budynku ma obowiązek zapewnienia bezpieczeństwa instalacji elektrycznej, co obejmuje regularne przeglądy, które mogą wykryć potencjalne zagrożenia, takie jak przestarzałe komponenty, uszkodzenia mechaniczne czy nieprawidłowe połączenia. W praktyce, właściciele i zarządcy często korzystają z usług wyspecjalizowanych firm zajmujących się audytem i konserwacją instalacji elektrycznych. Dobre praktyki branżowe wskazują, że takie kontrole powinny być przeprowadzane co najmniej raz w roku, a szczególnie w przypadku starszych budynków, gdzie ryzyko awarii jest wyższe. Dodatkowo, zgodnie z normą PN-IEC 60364-6, regularne inspekcje są kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz minimalizacji ryzyka pożarowego. Właściciele powinni również prowadzić dokumentację tych przeglądów, co jest istotne nie tylko dla utrzymania standardów, ale także w kontekście ewentualnych roszczeń ubezpieczeniowych.

Pytanie 25

Na ilustracji przedstawiono tabliczkę zaciskową typowego silnika trójfazowego z uzwojeniami stojana połączonymi w gwiazdę. Które pary zacisków po zdjęciu metalowych zwieraczy należy ze sobą zewrzeć, aby uzwojenia silnika zostały skojarzone w trójkąt?

Ilustracja do pytania
A. 1-5, 2-6, 3-4
B. 1-5, 2-4, 3-6
C. 1-4, 2-5, 3-6
D. 1-6, 2-4, 3-5
Połączenie uzwojeń silnika trójfazowego w gwiazdę i trójkąt jest kluczowe dla dostosowania jego parametrów pracy do różnych warunków zasilania. W przypadku połączenia w trójkąt, zewrzeć należy zaciski 1-4, 2-5 oraz 3-6, co pozwala na efektywne wykorzystanie napięcia zasilania. Dlaczego ta kombinacja jest poprawna? Zaciski 1-4 łączą początek pierwszego uzwojenia z jego końcem, co umożliwia przepływ prądu przez to uzwojenie. Analogicznie, zaciski 2-5 i 3-6 pełnią tę samą funkcję dla drugiego i trzeciego uzwojenia. W praktyce, takie połączenie zwiększa moc silnika oraz jego moment obrotowy, co jest szczególnie istotne w aplikacjach wymagających wyższych obciążeń, np. w przemyśle ciężkim lub przy napędzie maszyn. Warto zauważyć, że zgodnie z normami IEC w przypadku silników elektrycznych, właściwe ustawienie uzwojeń jest kluczowe dla ich bezpieczeństwa i wydajności. Dobrze skonfigurowany silnik z połączeniem trójkątnym będzie pracował stabilnie i wydajnie, co jest zgodne z najlepszymi praktykami w inżynierii elektrycznej.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Jakie wymagania muszą być spełnione podczas pomiaru rezystancji izolacyjnej w instalacji elektrycznej po wcześniejszym odłączeniu zasilania?

A. Wyłączone urządzenia z gniazd wtyczkowych, aktywne łączniki oświetleniowe, usunięte źródła światła
B. Wyłączone urządzenia z gniazd wtyczkowych, aktywne łączniki oświetleniowe, zamontowane źródła światła
C. Włączone urządzenia do gniazd wtyczkowych, aktywne łączniki oświetleniowe, zamontowane źródła światła
D. Włączone urządzenia do gniazd wtyczkowych, aktywne łączniki oświetleniowe, usunięte źródła światła
Prawidłowa odpowiedź wskazuje na konieczność wyłączenia odbiorników z gniazd wtyczkowych oraz wymontowania źródeł światła przed przystąpieniem do pomiaru rezystancji izolacji. To kluczowe kroki, które mają na celu zapewnienie bezpieczeństwa oraz dokładności pomiarów. W czasie testów rezystancji izolacji, włączenie odbiorników lub pozostawienie źródeł światła w obwodzie mogłoby prowadzić do błędnych wyników, które nie oddają rzeczywistego stanu izolacji. Przykładowo, podłączenie urządzeń może stworzyć drogę dla prądu, co zafałszuje pomiar rezystancji. W branży elektrycznej zaleca się, aby przed każdym pomiarem izolacji, upewnić się, że wszystkie urządzenia są odłączone, co jest zgodne z normą PN-EN 61557, która określa wymagania dotyczące pomiarów. Tylko w ten sposób można rzetelnie ocenić stan izolacji oraz wykryć ewentualne uszkodzenia, co jest kluczowe dla bezpieczeństwa użytkowników i integrności instalacji.

Pytanie 28

Jakiego z wymienionych przyrządów należy użyć wraz z watomierzem, aby obliczyć współczynnik mocy urządzenia elektrycznego zasilanego prądem sinusoidalnym?

A. Waromierza
B. Częstościomierza
C. Woltomierza
D. Amperomierza
Amperomierz, woltomierz i częstościomierz to urządzenia pomiarowe, które, choć mają swoje zastosowania, nie są wystarczające do precyzyjnego określenia współczynnika mocy w obwodach prądu sinusoidalnego. Amperomierz mierzy natężenie prądu w obwodzie, co jest ważne, ale samodzielny pomiar nie dostarcza informacji o fazie prądu w stosunku do napięcia. W przypadku pomiaru mocy, kluczowe znaczenie ma określenie nie tylko wartości prądu, ale również jego relacji do napięcia, co nie jest możliwe bez urządzenia mierzącego różnicę fazową, jakim jest waromierz. Woltomierz, z kolei, mierzy napięcie w obwodzie, co także jest istotne, ale jego zastosowanie w obliczeniach mocy wymaga dodatkowego kontekstu fazowego. Częstościomierz mierzy częstotliwość sygnału, co nie ma bezpośredniego wpływu na obliczanie mocy czynnej czy współczynnika mocy. Typowym błędem w myśleniu o pomiarach mocy jest przekonanie, że wystarczy znać wartości prądu i napięcia, aby obliczyć moc, ignorując istotne aspekty związane z fazą sygnałów. Dlatego, aby uzyskać dokładne dane dotyczące współczynnika mocy, konieczne jest użycie waromierza w parze z watomierzem, co pozwala na pełne zrozumienie efektywności energetycznej danego urządzenia elektrycznego.

Pytanie 29

Który z poniższych kabli nadaje się do realizacji instalacji siłowej osadzonej w tynku w konfiguracji sieci TN-S?

A. YDYżo 5x2,5 mm2
B. YADY 3x4 mm2
C. YStY 5xl mm2
D. YSLY 3x2,5 mm2
Odpowiedź YDYżo 5x2,5 mm2 jest poprawna, ponieważ przewód ten spełnia wymagania dotyczące instalacji siłowych w układzie sieciowym TN-S, który jest jednym z systemów zasilania o uziemieniu neutralnym. Przewody YDYżo charakteryzują się dobrą odpornością na działanie wysokich temperatur oraz chemikaliów, co czyni je odpowiednimi do użytku w tynku. W przypadku instalacji siłowych, przewody te muszą być odpowiednio dobrane do obciążenia, co w tym przypadku jest realizowane przez przekrój 2,5 mm2, wystarczający do zasilania urządzeń elektrycznych o średnich wymaganiach mocy. Dobrą praktyką jest stosowanie przewodów wielożyłowych w instalacjach, co pozwala na lepsze zarządzanie przewodami i ułatwia ich montaż. Przewody YDYżo są również zgodne z normą PN-EN 60228, która określa wymagania dla przewodów miedzianych, co dodatkowo podkreśla ich odpowiedniość do zastosowań w instalacjach elektrycznych.

Pytanie 30

Jakie urządzenie powinno zostać użyte do zasilenia obwodu SELV z sieci 230 V, 50 Hz?

A. Transformator bezpieczeństwa
B. Dzielnik napięcia
C. Autotransformator
D. Przekładnik
Transformator bezpieczeństwa jest kluczowym urządzeniem stosowanym do zasilania obwodów SELV (Safety Extra Low Voltage) z sieci 230 V, 50 Hz. Jego główną funkcją jest zapewnienie izolacji galwanicznej pomiędzy wysokim napięciem a niskim napięciem, co znacząco minimalizuje ryzyko porażenia prądem elektrycznym. Transformator bezpieczeństwa działa na zasadzie obniżania napięcia do poziomu, który jest bezpieczny dla użytkowników. Przykładem zastosowania transformatora bezpieczeństwa może być oświetlenie w obiektach, gdzie wymagana jest szczególna ochrona przed porażeniem, takie jak baseny, łazienki czy miejsca z dużą wilgotnością. Zgodnie z normą IEC 61140, urządzenia te muszą spełniać określone wymagania dotyczące bezpieczeństwa, co czyni je niezastąpionymi w instalacjach niskonapięciowych. Transformator bezpieczeństwa, w przeciwieństwie do innych urządzeń, zapewnia nie tylko redukcję napięcia, ale i odpowiednie zabezpieczenie przed skutkami awarii, co czyni go odpowiednim wyborem w kontekście bezpieczeństwa użytkowników.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Na wartość impedancji pętli zwarcia w systemie sieciowym TN-C mają wpływ

A. liczba zamontowanych ochronników przeciwprzepięciowych
B. wytrzymałość napięciowa izolacji przewodów
C. rodzaj zamontowanych ochronników przeciwprzepięciowych
D. pole przekroju poprzecznego żył przewodów
Wartość impedancji pętli zwarcia w układzie sieciowym TN-C jest ściśle związana z polem przekroju poprzecznego żył przewodów. Pole to wpływa na opór przewodzenia prądu, co z kolei ma istotne znaczenie dla działania zabezpieczeń w przypadku zwarcia. Przewody o większym przekroju charakteryzują się mniejszym oporem, co pozwala na szybsze zadziałanie zabezpieczeń, takich jak wyłączniki nadprądowe. W praktyce oznacza to, że zwiększenie przekroju przewodów w instalacji elektrycznej może poprawić bezpieczeństwo, zmniejszając ryzyko uszkodzenia urządzeń oraz zapewniając lepszą ochronę osób. W Polskich Normach i europejskich standardach, takich jak PN-HD 60364-5-54, podkreśla się znaczenie odpowiedniego doboru przekrojów przewodów w kontekście ich zastosowania, zwłaszcza w instalacjach narażonych na zwarcia. Dlatego kluczowe jest, aby projektanci instalacji elektrycznych zwracali uwagę na te aspekty, aby zapewnić optymalną funkcjonalność oraz bezpieczeństwo systemów elektrycznych.

Pytanie 33

W tabeli zamieszczono wyniki pomiarów rezystancji wybranych zestyków układu przedstawionego na schemacie. Pomiary przeprowadzono w wyjściowym położeniu styków w stanie beznapięciowym. Na podstawie analizy wyników pomiarów wskaż uszkodzony element.

ZestykRezystancja w Ω
S0:21 ÷ S0:220
S1:13 ÷ S1:14
F2:95 ÷ F2:960
K3:21 ÷ K3:22
Ilustracja do pytania
A. S1
B. F2
C. S0
D. K3
Wybór odpowiedzi, która nie wskazuje zestyku K3, może wynikać z kilku typowych błędów analitycznych. Zestyk S1 wykazuje również nieskończoną rezystancję, co może wprowadzać w błąd, sugerując, że to on jest uszkodzony. Jednakże, w kontekście całego układu, K3 jest kluczowym elementem, który, gdy uszkodzony, uniemożliwia prawidłowe funkcjonowanie obwodu. W analizie układów elektrycznych nie wystarczy jedynie sprowadzić problemu do jednego uszkodzonego elementu. Niezbędne jest zrozumienie pełnego kontekstu działania i interakcji między zestykami. Zestyk S0 i F2 mają rezystancję równą 0, co oznacza, że są w pełni sprawne, co powinno również wzmocnić argumentację dla odpowiedzi na K3. Kolejnym często popełnianym błędem jest brak koncentracji na specyfice danych elementów w kontekście schematu obwodu. W praktyce diagnostycznej, zrozumienie pełnej charakterystyki działania obwodu i umiejscowienia poszczególnych zestyku, a także ich wpływu na pozostałe elementy, jest kluczowe. Z tego powodu, przy analizie wyników pomiarów, istotne jest, aby nie ulegać pokusie prostego przyporządkowania rezystancji do stanu uszkodzenia, ale przemyśleć, jakie konsekwencje ma to dla całego układu. Brak takiej analizy prowadzi do błędnych wniosków i może skutkować nieefektywną naprawą urządzeń.

Pytanie 34

W tabeli zamieszczono wyniki kontrolnych pomiarów rezystancji uzwojeń stojana silnika trójfazowego połączonych jak na przedstawionym schemacie. Przedstawione wyniki świadczą o

Rezystancja uzwojeń stojana
między zaciskami
Wartość
Ω
U1 – V1
V1 – W1
W1 – U115
Ilustracja do pytania
A. zwarciu międzyzwojowym w uzwojeniu U1 – U2
B. zwarciu międzyzwojowym w uzwojeniu V1 – V2
C. przerwie w uzwojeniu W1 – W2
D. przerwie w uzwojeniu V1 – V2
Wyniki pomiarów rezystancji uzwojeń stojana silnika trójfazowego jednoznacznie wskazują na przerwę w uzwojeniu V1 – V2. Wartości rezystancji między zaciskami U1 – V1 oraz V1 – W1 wynoszą nieskończoność, co jest klasycznym objawem przerwy w obwodzie. W praktyce, przerwy w uzwojeniach silników trójfazowych są poważnym problemem, który może prowadzić do niewłaściwego działania silnika, a nawet jego uszkodzenia. W przypadku silników elektrycznych, które są kluczowe w wielu aplikacjach przemysłowych, takie sytuacje mogą prowadzić do przestojów i strat finansowych. Standardy branżowe, takie jak IEC 60034, podkreślają korzyści z regularnych pomiarów rezystancji, co pozwala na wcześniejsze wykrywanie potencjalnych problemów. Zastosowanie metod diagnostycznych, jak testy rezystancji, powinno być integralną częścią programów utrzymania prewencyjnego w zakładach produkcyjnych, co zwiększa niezawodność i żywotność maszyn.

Pytanie 35

Na których rysunkach przedstawiono elementy stosowane do bezpośredniego zabezpieczenia przed przegrzaniem urządzeń i maszyn małej mocy?

Ilustracja do pytania
A. 2 i 3
B. 1 i 2
C. 3 i 4
D. 4 i 1
Wybór odpowiedzi, która nie uwzględnia rysunków 3 i 4, opiera się na błędnych założeniach dotyczących funkcji poszczególnych elementów. Rysunek 1, przedstawiający przekaźnik termiczny, jest używany do monitorowania temperatury, ale jego działanie różni się od tego, co oferują wyłączniki bezpieczeństwa. Przekaźnik termiczny może reagować na wysoką temperaturę, jednak jego głównym celem nie jest bezpośrednie zabezpieczenie przed przegrzaniem, lecz sygnalizacja warunków eksploatacyjnych. Z kolei rysunek 2, ilustrujący bezpiecznik topikowy, pełni rolę zabezpieczenia przed przeciążeniem prądowym, ale nie jest zaprojektowany do bezpośredniego reagowania na zmiany temperatury, co czyni go niewłaściwym wyborem w kontekście ochrony przed przegrzaniem. Typowym błędem jest mylenie różnych rodzajów zabezpieczeń w urządzeniach elektrycznych, co może prowadzić do nieprawidłowej oceny ich funkcji. Odpowiednie zabezpieczenia, takie jak termiczne wyłączniki bezpieczeństwa oraz termistory PTC, są kluczowe w zapobieganiu uszkodzeniom w urządzeniach, a ich właściwe zrozumienie i zastosowanie jest niezbędne do zapewnienia bezpieczeństwa i efektywności pracy maszyn. Dobrą praktyką jest projektowanie systemów zabezpieczeń z myślą o specyficznych potrzebach danego urządzenia oraz przestrzeganie norm branżowych, aby uniknąć niebezpieczeństw związanych z przegrzaniem i awariami.

Pytanie 36

Podczas remontu układu napędowego zawierającego silnik, którego schemat połączeń przedstawiono na rysunku, wymieniono rozrusznik na inny, o rezystancji Rr dwukrotnie wyższej niż pierwotnie. Spowoduje to w przybliżeniu dwukrotne zmniejszenie

Ilustracja do pytania
A. czasu rozruchu.
B. strumienia magnetycznego wzbudzenia.
C. prądu uzwojenia wzbudzenia.
D. prądu rozruchowego.
Wybór prądu rozruchowego jako odpowiedzi jest poprawny, ponieważ opiera się na fundamentalnych zasadach prawa Ohma. Prawo to mówi, że prąd (I) w obwodzie elektrycznym jest odwrotnie proporcjonalny do rezystancji (R), przy stałym napięciu (U). W sytuacji, gdy rezystancja rozrusznika wzrasta dwukrotnie, skutkuje to spadkiem prądu o połowę, gdyż prąd można określić równaniem I = U/R. W praktyce, zmniejszenie prądu rozruchowego jest kluczowe, gdyż nadmierny prąd może prowadzić do uszkodzenia komponentów, a nawet do awarii systemu. W branży elektrycznej i motoryzacyjnej, optymalizacja prądu rozruchowego jest istotna dla wydajności oraz trwałości silników. Przykładem mogą być instalacje, w których zbyt wysoki prąd rozruchowy prowadzi do przeciążenia i uszkodzenia akumulatorów. Dobrze zaprojektowane systemy rozruchowe powinny uwzględniać odpowiednie wartości rezystancji, aby osiągnąć pożądany prąd rozruchowy, co podkreśla standardy związane z bezpieczeństwem i efektywnością energetyczną.

Pytanie 37

Na podstawie informacji przedstawionych na zamieszczonym na rysunku ekranie urządzenia pomiarowego oceń stan techniczny wyłącznika różnicowoprądowego 40 A/0,03 A.

Ilustracja do pytania
A. Aparat jest sprawny, właściwa wartość prądu zadziałania.
B. Aparat jest uszkodzony, zbyt duża wartość rezystancji przewodu ochronnego RE.
C. Aparat jest uszkodzony, niewłaściwa wartość prądu zadziałania.
D. Aparat jest sprawny, miernik ustawiono w nieodpowiedni dla badanego RCD tryb.
Wybór odpowiedzi sugerującej, że aparat jest sprawny z właściwą wartością prądu zadziałania, opiera się na błędnym zrozumieniu zasad działania wyłączników różnicowoprądowych. Wartość prądu zadziałania 9.0 mA, która jest znacznie poniżej granicy 30 mA, nie oznacza, że wyłącznik działa prawidłowo. W rzeczywistości, dla wyłącznika różnicowoprądowego o parametrach 40 A/0,03 A, jego funkcja ochronna jest skuteczna tylko wtedy, gdy zadziała w odpowiednim zakresie prądów różnicowych, czyli od 15 mA do 30 mA. Poniżej tego zakresu, może być uznany za sprawny, ale wynik 9.0 mA sugeruje, że wyłącznik nie reaguje w sposób zgodny z normą. Często błędnie zakłada się, że jedynie wysokie wartości prądu zadziałania wskazują na uszkodzenia, co prowadzi do niebezpiecznych sytuacji. Takie myślenie może powodować, że użytkownicy będą ignorować problemy z urządzeniem, co jest szczególnie niebezpieczne w kontekście ochrony przeciwporażeniowej. Warto również zauważyć, że każdy wyłącznik różnicowoprądowy powinien być regularnie testowany, a jego wyniki powinny być analizowane w kontekście bezpieczeństwa instalacji elektrycznych. Ignorowanie norm dotyczących wartości prądu zadziałania może prowadzić do poważnych konsekwencji, takich jak porażenie prądem lub uszkodzenie sprzętu. Dlatego kluczowe jest zrozumienie, że niska wartość prądu zadziałania nie zawsze jest oznaką sprawności urządzenia.

Pytanie 38

Który z opisów dotyczy prawidłowego sposobu wymiany uszkodzonego łożyska tocznego w silniku elektrycznym?

A. Demontaż uszkodzonego łożyska za pomocą ściągacza i montaż nowego za pomocą tulei o średnicy dopasowanej do zewnętrznego pierścienia łożyska.
B. Demontaż uszkodzonego łożyska za pomocą młotka i montaż nowego za pomocą tulei o średnicy dopasowanej do zewnętrznego pierścienia łożyska.
C. Demontaż uszkodzonego łożyska za pomocą ściągacza i montaż nowego za pomocą prasy i tulei o średnicy dopasowanej do wewnętrznego pierścienia łożyska.
D. Demontaż uszkodzonego łożyska za pomocą młotka i montaż nowego za pomocą prasy i tulei o średnicy dopasowanej do wewnętrznego pierścienia łożyska.
Prawidłowa odpowiedź opisuje dokładnie taki sposób wymiany łożyska, jaki jest zalecany w praktyce warsztatowej i w instrukcjach producentów silników oraz łożysk. Uszkodzone łożysko w silniku elektrycznym powinno się demontować za pomocą odpowiedniego ściągacza, a nie młotkiem. Ściągacz pozwala równomiernie wywierać siłę na pierścień łożyska, dzięki czemu nie obciąża się nadmiernie wału ani obudowy. Wał silnika jest elementem precyzyjnym, często hartowanym i szlifowanym, więc każde uderzenie może spowodować mikropęknięcia, skrzywienie lub zadzior, który potem utrudni montaż nowego łożyska i pogorszy współosiowość. Z mojego doświadczenia wynika, że raz „dobity” młotkiem wał potem potrafi mścić się wibracjami przez lata. Przy montażu nowego łożyska kluczowe jest, gdzie jest pasowanie ciasne. W silniku elektrycznym najczęściej ciasne pasowanie jest na wale, czyli na wewnętrznym pierścieniu łożyska. Dlatego siłę montażu należy przekazywać właśnie na ten pierścień, stosując prasę i tuleję o średnicy dopasowanej do wewnętrznego pierścienia. Jeśli będziemy naciskać na pierścień zewnętrzny, a ciasno siedzi pierścień wewnętrzny, to obciążamy elementy toczne (kulki, wałeczki) i bieżnie w sposób zupełnie nienaturalny. Może to prowadzić do mikrozgnieceń, tzw. brinellowania, i łożysko będzie od nowości uszkodzone, choć na pierwszy rzut oka wygląda ok. Dobra praktyka mówi: demontaż – kontrolowany, równomierny, bez udarów; montaż – powolny, osiowy nacisk, bez przegrzewania i bez przechodzenia siły przez elementy toczne. Profesjonalne warsztaty używają prasy hydraulicznej lub mechanicznej, zestawów tulei montażowych i często też nagrzewnic indukcyjnych do łożysk, żeby jeszcze bardziej ograniczyć siłę potrzebną do osadzenia. W małych silnikach w zakładach utrzymania ruchu standardem jest właśnie ściągacz przy demontażu i prasa z odpowiednią tuleją przy montażu. W praktyce, przy wymianie łożysk w silnikach wentylatorów, pomp, sprężarek itp., stosowanie tej metody znacząco wydłuża żywotność nowych łożysk i zmniejsza ryzyko reklamacji. Dodatkowo warto pamiętać o dokładnym oczyszczeniu czopa wału, sprawdzeniu luzu w gnieździe łożyskowym i zachowaniu czystości – łożyska nie lubią pyłu ani opiłków. Takie podejście jest zgodne z zaleceniami producentów łożysk (SKF, FAG, NSK i inni) oraz z typowymi procedurami serwisowymi dla maszyn elektrycznych.

Pytanie 39

Jaki będzie skutek zwiększenia rezystancji regulatora Rfr w obwodzie wzbudzenia silnika bocznikowego prądu stałego pracującego przy stałym momencie obciążającym, którego schemat układu połączeń zamieszczono na rysunku?

Ilustracja do pytania
A. Zwiększy się prędkość obrotowa, a prąd pobierany z sieci nie ulegnie zmianie.
B. Zmniejszy się prędkość obrotowa, a prąd pobierany z sieci nie ulegnie zmianie.
C. Zmniejszy się prędkość obrotowa i prąd pobierany z sieci.
D. Zwiększy się prędkość obrotowa i prąd pobierany z sieci.
Zwiększenie rezystancji regulatora Rfr w obwodzie wzbudzenia silnika bocznikowego prądu stałego prowadzi do zmniejszenia prądu wzbudzenia (If). W rezultacie zmniejsza się strumień magnetyczny (Φ), co zgodnie z zasadą indukcji elektromagnetycznej, skutkuje wzrostem prędkości obrotowej (n) silnika. W przypadku, gdy moment obciążający pozostaje stały, wyższa prędkość obrotowa oznacza, że silnik będzie pobierał większy prąd (Ia) z sieci, aby dostarczyć wymaganą moc. Taki mechanizm jest kluczowy w zastosowaniach przemysłowych, gdzie regulacja prędkości i momentu obrotowego jest istotna dla wydajności procesów. W praktyce, inżynierowie często stosują podobne mechanizmy w systemach automatyki i sterowania silnikami, aby optymalizować pracę maszyn i urządzeń, dbając o ich efektywność energetyczną oraz minimalizując straty związane z nieprawidłowym doborem parametrów. Wzrost prędkości obrotowej ma również znaczenie w kontekście wydajności energetycznej, co jest szczególnie istotne w kontekście dzisiejszych norm i standardów zrównoważonego rozwoju.

Pytanie 40

Które z wymienionych czynności nie należą do zadań eksploatacyjnych pracowników obsługujących urządzenia elektryczne?

A. Wykonywanie przeglądów niewymagających demontażu.
B. Uruchamianie i zatrzymywanie urządzeń.
C. Dokonywanie oględzin wymagających demontażu.
D. Nadzorowanie urządzeń w czasie pracy.
Prawidłowo wskazana odpowiedź to „dokonywanie oględzin wymagających demontażu”, bo taka czynność wykracza poza typowe, podstawowe zadania eksploatacyjne zwykłego pracownika obsługującego urządzenia elektryczne. Standardowa obsługa to głównie nadzorowanie pracy urządzeń, reagowanie na sygnały alarmowe, bezpieczne uruchamianie i zatrzymywanie oraz proste przeglądy wizualne bez rozbierania osłon czy obudów. Zgodnie z praktyką zakładową i wymaganiami BHP (np. wynikającymi z instrukcji eksploatacji, przepisów SEP czy ogólnych zasad prac przy urządzeniach pod napięciem), wszelkie czynności wymagające demontażu elementów konstrukcyjnych, zdejmowania osłon, ingerencji w część czynną urządzenia traktuje się już jako prace konserwacyjne, remontowe albo specjalistyczne. Takie prace powinny wykonywać osoby z wyższymi kwalifikacjami, odpowiednimi uprawnieniami eksploatacyjnymi i często z uprawnieniami do prac pod napięciem lub przy wyłączonym, zabezpieczonym urządzeniu. W praktyce wygląda to tak, że operator silnika czy rozdzielnicy kontroluje wskazania przyrządów, nasłuchuje nietypowych dźwięków, sprawdza temperaturę obudowy, kontroluje lampki sygnalizacyjne, ale nie rozbiera urządzenia, żeby zajrzeć do środka. Oględziny z demontażem obudów, zacisków, szyn prądowych to już zadanie dla ekipy utrzymania ruchu, elektryków serwisowych lub działu remontowego. Moim zdaniem to bardzo sensowny podział: minimalizuje ryzyko porażenia, zwarcia, uszkodzenia sprzętu i sprawia, że za bardziej ryzykowne czynności odpowiadają osoby faktycznie do tego przeszkolone i wyposażone w odpowiednie środki ochrony indywidualnej i procedury odłączenia, uziemienia i sprawdzenia braku napięcia.