Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 31 stycznia 2026 14:01
  • Data zakończenia: 31 stycznia 2026 14:14

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Pasek zębaty przenosi moc pomiędzy kołami pasowymi. W trakcie rutynowej inspekcji paska należy ocenić jego poziom zużycia oraz

A. temperaturę.
B. bicie osiowe.
C. nawilżenie.
D. stan napięcia.
Sprawdzanie stanu napięcia paska zębatego jest kluczowym etapem w jego konserwacji, ponieważ niewłaściwe napięcie może prowadzić do przedwczesnego zużycia lub uszkodzeń zarówno paska, jak i kół pasowych. Odpowiednie napięcie zapewnia właściwe przenoszenie napędu, co jest niezbędne dla efektywnego działania całego systemu. Przykładem dobrych praktyk jest stosowanie narzędzi do pomiaru napięcia, które mogą pomóc w ocenie, czy pasek jest odpowiednio napięty, zgodnie z zaleceniami producenta. Niedostateczne napięcie może skutkować ślizganiem się paska, natomiast zbyt duże napięcie może prowadzić do uszkodzenia łożysk lub nadmiernego zużycia paska. W przemyśle stosuje się także standardy, takie jak normy ISO, które definiują procesy konserwacji i inspekcji elementów napędowych, w tym pasków zębatych, aby zapewnić ich niezawodność i długotrwałe użytkowanie. Regularne inspekcje i dostosowywanie napięcia to kluczowe działania, które mogą znacząco wpłynąć na wydajność maszyny oraz zredukować ryzyko awarii.

Pytanie 2

Jaka powinna być wartość znamionowego napięcia zasilania urządzenia, aby mogło być zasilane przez zasilacz impulsowy o charakterystyce obciążeniowej przedstawionej na rysunku?

Ilustracja do pytania
A. 150 V
B. 160 V
C. 60 V
D. 80 V
Wartość znamionowego napięcia zasilania wynosząca 150 V została określona na podstawie analizy charakterystyki obciążeniowej zasilacza impulsowego. Na wykresie można zauważyć, że przy tym napięciu zasilacz osiąga optymalny punkt pracy, co oznacza, że jego parametry są zgodne z wymaganiami urządzenia. Użycie napięcia 150 V jest istotne, ponieważ zasilacz impulsowy powinien działać w swoim zakresie znamionowym, aby zapewnić efektywność energetyczną oraz stabilność pracy. W praktyce, stosowanie zasilaczy impulsowych o odpowiednich wartościach znamionowych jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności urządzeń. Przykładem może być system zasilania w automatyce przemysłowej, gdzie zasilacz impulsowy o napięciu 150 V zasila różne komponenty, takie jak czujniki, siłowniki czy kontrolery. Dlatego ważne jest, aby dobierać zasilacze zgodnie z określonymi wartościami znamionowymi, co wpływa na ich długowieczność oraz minimalizuje ryzyko uszkodzenia sprzętu.

Pytanie 3

Ciągłe sensory oraz wzmacniacze operacyjne stanowią standardowe komponenty systemu sterowania?

A. programowalnego
B. cyfrowego
C. binarnego
D. analogowego
Wybór odpowiedzi związanej z układami cyfrowymi nie jest najlepszy. Układy cyfrowe działają na dyskretnych wartościach, a nie na ciągłych sygnałach. Sensory i wzmacniacze analogowe muszą być najpierw odpowiednio przetworzone, na przykład przez konwersję analogowo-cyfrową, zanim będą mogły współpracować z systemami cyfrowymi. Odpowiedzi związane z układami programowalnymi czy binarnymi również nie mają sensu, bo nie odnoszą się do kluczowych cech analogowych sygnałów. Układy programowalne, jak PLC, łączą zarówno analogowe, jak i cyfrowe komponenty, ale same działają na zupełnie innych zasadach. Trzeba zrozumieć, że układy binarne nie mogą współpracować bezpośrednio z elementami działającymi w trybie ciągłym, ponieważ wymaga to zastosowania konwerterów. Kluczowe jest, żeby znać podstawy przetwarzania sygnałów, co pomoże lepiej zrozumieć różnice między tymi układami.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Który z wymienionych parametrów nie odnosi się do frezarki CNC?

A. Gramatura wtrysku.
B. Liczba wrzecion.
C. Dokładność pozycjonowania.
D. Najwyższa prędkość ruchu dla poszczególnych osi.
Liczba wrzecion, powtarzalność pozycjonowania oraz maksymalna prędkość ruchu dla poszczególnych osi to kluczowe parametry, które w znacznym stopniu wpływają na wydajność i jakość obróbki w frezarkach numerycznych. Liczba wrzecion odnosi się do ilości narzędzi, które mogą być zainstalowane w danej maszynie jednocześnie, co pozwala na realizację różnych operacji jednocześnie, zmniejszając czas przestoju i zwiększając wydajność produkcji. Powtarzalność pozycjonowania jest miarą precyzji, z jaką maszyna może powtórzyć te same ruchy, co jest kluczowe w kontekście produkcji części o ścisłych tolerancjach. Im wyższa powtarzalność, tym mniejsze ryzyko błędów produkcyjnych i mniejsze straty materiałowe. Z kolei maksymalna prędkość ruchu dla poszczególnych osi jest istotna dla ogólnego czasu cyklu obróbczej, co jest niezwykle ważne w kontekście konkurencyjności na rynku. Wybierając frezarkę numeryczną, inżynierowie muszą brać pod uwagę te parametry, aby dostosować wybór maszyny do specyficznych potrzeb produkcyjnych. Błędne rozumienie, że gramatura wtrysku jest istotna dla frezarek, może prowadzić do pominięcia kluczowych aspektów przy wyborze odpowiedniego sprzętu, co w konsekwencji może skutkować nieefektywnością produkcji oraz wyższymi kosztami operacyjnymi.

Pytanie 6

Przedstawiony na rysunku układ jest symbolem regulatora typu

Ilustracja do pytania
A. PID
B. I
C. PD
D. PI
Regulator PID, którym jest prezentowany na rysunku, składa się z trzech kluczowych elementów: proporcjonalnego (P), całkującego (I) oraz różniczkującego (D). Każdy z tych składników odgrywa istotną rolę w osiągnięciu stabilności i szybkości reakcji w systemach regulacji. Część proporcjonalna odpowiada za dostosowanie wyjścia regulatora wprost proporcjonalnie do błędu, co pozwala na szybkie reagowanie na zmiany. Część całkująca zbiera błąd w czasie, eliminując błąd ustalony i stabilizując system, natomiast część różniczkująca przewiduje przyszłe zmiany błędu, co pozwala na szybsze dostosowanie wyjścia regulatora. Przykłady zastosowania regulatora PID obejmują aplikacje w automatyce przemysłowej, gdzie precyzyjne kontrolowanie temperatury, ciśnienia czy prędkości jest kluczowe. W praktyce stosowanie regulatora PID zgodnie z dobrymi praktykami inżynieryjnymi wymaga odpowiedniego dostrojenia wartości współczynników Kp, Ki, Kd, co można osiągnąć poprzez różne metody, takie jak metoda Zieglera-Nicholsa czy symulacje komputerowe. Poprawne zrozumienie działania regulatora PID jest niezbędne dla inżynierów i techników pracujących w dziedzinie automatyki oraz kontroli procesów.

Pytanie 7

Co koniecznie trzeba skonfigurować w urządzeniu, aby mogło funkcjonować w sieci Ethernet?

A. Z szybkość przesyłania danych
B. Adres serwera DNS
C. Bity stopu
D. Niepowtarzalny adres IP
Aby urządzenie mogło pracować w sieci Ethernet, konieczne jest przypisanie mu niepowtarzalnego adresu IP. Adres IP jest unikalnym identyfikatorem, który umożliwia komunikację pomiędzy urządzeniami w sieci. W kontekście protokołu TCP/IP, który jest fundamentem komunikacji w sieciach Ethernet, każdy host musi posiadać swój własny adres IP, aby móc wysyłać i odbierać dane. Przykładowo, w małej sieci lokalnej (LAN) adresy IP mogą być przydzielane dynamicznie przez serwer DHCP, ale każde urządzenie musi być w stanie zostać zidentyfikowane przez unikalny adres. W praktyce, ustawiając adres IP, administratorzy sieci muszą również upewnić się, że nie koliduje on z innymi adresami w sieci, co jest kluczowe dla prawidłowego funkcjonowania i unikania konfliktów. Warto również pamiętać, że adres IP może być w wersji IPv4 lub IPv6, a ich odpowiedni wybór jest istotny w kontekście rozwoju i przyszłości sieci. Dobre praktyki obejmują przydzielanie adresów z odpowiednich pul adresowych oraz dokumentowanie przydzielonych adresów, aby zminimalizować ryzyko błędów.

Pytanie 8

Weryfikacja połączeń nitowanych, realizowana poprzez uderzanie młotkiem w nit, ma na celu wykrycie nieprawidłowości

A. odkształcenia nitu
B. luźnego osadzenia nitu
C. nieprawidłowego kształtu zakuwki
D. pęknięcia powierzchni łba i zakuwki nitu
Luźne osadzenie nitu jest kluczowym problemem, którego identyfikacja jest niezbędna dla zapewnienia trwałości i bezpieczeństwa połączeń nitowanych. Kontrola połączeń nitowanych, przeprowadzona poprzez ostukiwanie młotkiem nitu, pozwala na ocenę jego stabilności w obrębie materiału, z którym jest połączony. Jeśli nit jest luźny, może to prowadzić do osłabienia całej struktury, co jest szczególnie niebezpieczne w konstrukcjach lotniczych oraz budowlanych, gdzie wymagana jest wysoka niezawodność. Przykładem zastosowania tej metody kontroli może być ocena połączeń w kadłubach samolotów, gdzie każda wada może prowadzić do katastrofalnych skutków. W praktyce, jeśli po uderzeniu młotkiem następuje wyraźny dźwięk, może to sugerować luźne osadzenie nitu. Standardy takie jak ISO 13920 definiują wymagania dla jakości i kontroli połączeń, co podkreśla znaczenie skutecznych metod diagnostycznych, jak ta opisana.

Pytanie 9

Przy wykonaniu elementu przedstawionego na rysunku była zastosowana obróbka

Ilustracja do pytania
A. toczenia.
B. tłoczenia.
C. frezowania.
D. ciągnięcia.
Wybór innych metod obróbki, takich jak tłoczenie, ciągnięcie czy frezowanie, jest niewłaściwy i wynika z błędnego rozumienia charakterystyki tych procesów. Tłoczenie to technika, w której materiał jest formowany przy użyciu matryc, co skutkuje tworzeniem elementów o złożonych kształtach, jednak nie osiąga się w niej gładkich powierzchni cylindrycznych, jak w przypadku toczenia. W obróbce ciągnienia materiał jest rozciągany przez narzędzia, co również nie odpowiada cechom elementu przedstawionego na rysunku. Z kolei frezowanie to proces, w którym narzędzie skrawające obraca się, a element jest przymocowany, prowadząc do usuwania materiału w różnych kierunkach, co skutkuje innym typem geometrii i wykończenia powierzchni. Typowe błędy myślowe polegają na myleniu tych procesów ze względu na podobieństwa w użyciu narzędzi skrawających, ale różnice w metodach działania oraz wynikających kształtach są kluczowe. Rozumiejąc te różnice, można lepiej dobierać odpowiednie techniki obróbcze do konkretnych zastosowań, co jest niezbędne w praktyce inżynieryjnej oraz produkcyjnej.

Pytanie 10

Na podstawie przedstawionej tabliczki znamionowej transformatora wskaż zależność, która określa jego przekładnię napięciową.

Ilustracja do pytania
A. K = 230/12 U
B. K = 80/0,83 U
C. K = 12/230 U
D. K = 12/0,83 U
Przekładnia napięciowa w transformatorze to po prostu relacja między napięciem na uzwojeniu pierwszym a tym na uzwojeniu drugim. Jeśli mamy transformator, który ma na tabliczce 230V dla napięcia pierwotnego i 12V dla wtórnego, to obliczamy przekładnię jako K = 230/12. Taki wybór parametrów pasuje do standardów w branży, gdzie transformator używa się do obniżania napięcia w aplikacjach niskonapięciowych. To jest naprawdę ważne w instalacjach elektrycznych, bo umożliwia korzystanie z urządzeń, które działają przy niższym napięciu, a przy tym dba o bezpieczeństwo i efektywność całego systemu. Zrozumienie tego zagadnienia to podstawa w projektowaniu i użytkowaniu systemów elektroenergetycznych. Ta wiedza jest też istotna w codziennej praktyce, a normy IEC dotyczące transformatorów podkreślają, jak ważne jest prawidłowe liczenie przekładni, szczególnie w kontekście efektywności energetycznej i bezpieczeństwa użytkowników.

Pytanie 11

Do montażu elektrozaworu przy pomocy wkrętów, których nacięcie łba przedstawia rysunek, należy użyć wkrętaka z końcówką (bitem) typu

Ilustracja do pytania
A. Torx
B. PZ.1
C. Hex
D. TriWing
Odpowiedź "Torx" jest prawidłowa, ponieważ nacięcie łba wkręta przedstawione na zdjęciu ma charakterystyczny kształt gwiazdy, który jest typowy dla wkrętów typu Torx. Wkręty te są powszechnie stosowane w wielu zastosowaniach, w tym w elektronice, motoryzacji i meblarstwie, dzięki swojej odporności na poślizg i dużej sile przenoszenia momentu obrotowego. Użycie odpowiedniego wkrętaka z końcówką typu Torx pozwala na dokładne i skuteczne dokręcanie wkrętów, co jest istotne w kontekście zapewnienia stabilności montażu. Warto również zauważyć, że wkręty Torx posiadają różne rozmiary, dlatego ważne jest, aby dopasować odpowiednią końcówkę do konkretnego wkręta, co znacząco ułatwia pracę i przeciwdziała uszkodzeniom elementów podczas montażu. Przykładem zastosowania wkrętów Torx może być montaż obudów komputerowych, gdzie ich użycie gwarantuje nie tylko estetykę, ale także funkcjonalność i bezpieczeństwo urządzenia.

Pytanie 12

Jakie urządzenie jest używane do mierzenia prędkości obrotowej wału silnika?

A. mostek tensometryczny
B. prądnica tachometryczna
C. czujnik termoelektryczny
D. potencjometr obrotowy
Czujnik termoelektryczny, mostek tensometryczny oraz potencjometr obrotowy, mimo że są to urządzenia pomiarowe, nie są przeznaczone do pomiaru prędkości obrotowej wału silnika. Czujniki termoelektryczne, takie jak termopary, służą do pomiaru temperatury, a ich zasada działania opiera się na efekcie Seebecka, gdzie różnica temperatury generuje napięcie. W kontekście pomiaru prędkości obrotowej, zastosowanie czujników termoelektrycznych jest niewłaściwe, ponieważ nie są one w stanie dokładnie rejestrować zmian w szybkości obrotu. Mostki tensometryczne są używane do pomiaru naprężeń i deformacji materiałów, co również nie jest związane z pomiarem prędkości obrotowej. Ich działanie bazuje na zjawisku zmiany oporu elektrycznego pod wpływem deformacji, co jest zupełnie innym rodzajem pomiaru. Potencjometry obrotowe, chociaż mogą być używane do pomiaru kątów obrotu, nie dostarczają informacji o prędkości obrotowej, ponieważ mierzą jedynie położenie wału w danym momencie, a nie jego szybkość obrotu. Typowym błędem myślowym jest mylenie pomiaru położenia z pomiarem prędkości, co prowadzi do nieporozumień w doborze odpowiednich narzędzi pomiarowych. Dlatego, aby prawidłowo zmierzyć prędkość obrotową, kluczowe jest stosowanie właściwych urządzeń, takich jak prądnice tachometryczne.

Pytanie 13

W przypadku oparzenia kwasem siarkowym, jak najszybciej należy usunąć kwas z oparzonej powierzchni dużą ilością wody, a potem zastosować kompres z

A. 1% roztworu kwasu cytrynowego
B. wody destylowanej
C. 3% roztworu sody oczyszczonej
D. 1% roztworu kwasu octowego
Zastosowanie 1% kwasu cytrynowego lub 1% kwasu octowego w celu złagodzenia skutków oparzenia kwasem siarkowym jest niewłaściwe i może prowadzić do dalszego poważnego uszkodzenia skóry. Zarówno kwas cytrynowy, jak i kwas octowy są substancjami kwasowymi, które mogą w reakcji chemicznej z kwasem siarkowym prowadzić do powstania dodatkowych produktów reakcji, co zintensyfikuje proces oparzenia. Zamiast neutralizacji, ich użycie może spowodować dalsze uszkodzenia tkanek oraz zaostrzenie objawów. W przypadku chemicznych poparzeń, kluczowe jest szybkie usunięcie czynnika drażniącego, co powinno być realizowane przede wszystkim poprzez płukanie wodą. Woda działa jako rozpuszczalnik, a jej obfite użycie może pomóc w usunięciu resztek kwasu z powierzchni skóry. Ponadto, 3% roztwór sody oczyszczonej jest neutralizatorem, który może pomóc w przywróceniu równowagi pH i zminimalizować szkodliwe skutki oparzeń. Zrozumienie tych zasad jest kluczowe dla skutecznego udzielania pierwszej pomocy w przypadku kontaktu ze szkodliwymi substancjami chemicznymi, co podkreśla znaczenie znajomości właściwych protokołów postępowania oraz dobrych praktyk w dziedzinie ochrony zdrowia i bezpieczeństwa.

Pytanie 14

Urządzenie przedstawione na zdjęciu to

Ilustracja do pytania
A. autotransformator.
B. transformator rozdzielczy.
C. transformator bezpieczeństwa.
D. transformator separacyjny.
Wybór innych typów transformatorów, takich jak autotransformator, transformator rozdzielczy czy transformator bezpieczeństwa, jest wynikiem braku zrozumienia podstawowych zasad funkcjonowania tych urządzeń. Autotransformator, który łączy obwody pierwotne i wtórne, nie izoluje ich od siebie, co jest kluczowym aspektem funkcji transformatora separacyjnego. Przykładem zastosowania autotransformatora jest regulacja napięcia w aplikacjach, gdzie niezbędne jest jedynie przekształcanie napięcia bez separacji obwodów, co może prowadzić do zagrożenia w przypadku awarii. Transformator rozdzielczy, z drugiej strony, jest używany w systemach energetycznych do rozdzielania mocy na różne linie, ale jego działanie również nie obejmuje izolacji obwodów, co jest niezbędne w kontekście bezpieczeństwa. Transformator bezpieczeństwa ma na celu ochronę przed porażeniem prądem, jednak różni się od transformatora separacyjnego szczegółami konstrukcyjnymi i przeznaczeniem. Zrozumienie tych różnic jest kluczowe dla skutecznego projektowania i implementacji systemów elektroenergetycznych, gdzie bezpieczeństwo i niezawodność są priorytetami. Każda z tych pomyłek wskazuje na nieprzemyślane podejście do tematu i potrzebę głębszej analizy oraz przyswojenia wiedzy na temat funkcji i zastosowań różnych typów transformatorów w praktyce.

Pytanie 15

Jaki typ licencji pozwala na używanie oprogramowania przez określony czas, po którym konieczna jest rejestracja lub usunięcie go z komputera?

A. Adware
B. Trial
C. Freeware
D. GNU GPL
Odpowiedź 'Trial' jest poprawna, ponieważ odnosi się do rodzaju licencji oprogramowania, która pozwala użytkownikom na korzystanie z programu przez określony czas, zazwyczaj od kilku dni do kilku miesięcy. Po upływie tego czasu użytkownik jest zobowiązany do zakupu licencji lub usunięcia oprogramowania z urządzenia. Licencje trial są powszechnie stosowane w branży oprogramowania, aby umożliwić użytkownikom przetestowanie produktu przed podjęciem decyzji o zakupie. Przykłady takich programów to popularne aplikacje biurowe, programy graficzne czy oprogramowanie antywirusowe. Dzięki modelowi trial, dostawcy mogą zwiększyć zainteresowanie ich produktami oraz umożliwić użytkownikom dokonanie świadomego wyboru, co jest zgodne z zasadami transparentności i uczciwości w marketingu oprogramowania. Warto zauważyć, że niektóre wersje trial mogą mieć ograniczone funkcje lub mogą wymuszać dodatkowe rejestracje, co również jest stosowane jako element strategii sprzedażowej.

Pytanie 16

Jaką metodę łączenia metali należy wybrać, gdy maksymalna temperatura w trakcie łączenia nie może przekroczyć 450OC?

A. Lutowanie miękkie
B. Spawanie elektryczne
C. Spawanie gazowe
D. Lutowanie twarde
Lutowanie miękkie jest techniką, która polega na łączeniu materiałów metalowych za pomocą stopów lutowniczych, których temperatura topnienia nie przekracza 450°C. Dzięki temu proces lutowania miękkiego jest idealnym rozwiązaniem w sytuacjach, gdzie ważne jest, aby nie narażać łączonych materiałów na wysokie temperatury, które mogłyby prowadzić do ich deformacji, osłabienia struktury lub innych niepożądanych efektów. Lutowanie miękkie znajduje zastosowanie w elektronice, gdzie łączenie elementów na płytkach drukowanych wymaga precyzyjnego podejścia i ochrony delikatnych komponentów przed ciepłem. Warto również zaznaczyć, że ta metoda jest szeroko stosowana w produkcji biżuterii, gdzie pożądana jest estetyka oraz trwałość połączeń bez ryzyka zagrożenia dla materiałów bazowych. Stosowanie lutowania miękkiego jest zgodne z normami branżowymi, takimi jak ISO 9453, które regulują wymagania dotyczące lutów i procesów lutowania, zapewniając wysoką jakość i bezpieczeństwo połączeń.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Podczas użytkowania urządzenia laserowego do obróbki metali, ryzyko dla zdrowia pracownika może wynikać między innymi z

A. odprysków cząsteczek metalu
B. zanieczyszczenia pyłem wdychanego powietrza
C. hałasu generowanego w trakcie obróbki
D. zanieczyszczenia powietrza wdychanego oparami metalu
W analizie zagrożeń w czasie eksploatacji urządzeń laserowych do cięcia metali, różne warianty odpowiedzi wskazują na różne rodzaje potencjalnych zagrożeń, jednak nie wszystkie z nich są związane bezpośrednio z poważnymi konsekwencjami dla zdrowia. Zanieczyszczenie wdychanego powietrza pyłem, chociaż istotne, zazwyczaj w przypadku laserowego cięcia nie przekłada się na tak dramatyczne skutki zdrowotne jak opary metalu. Wysoka temperatura generowana podczas cięcia prowadzi do utleniania metalu i tworzenia się toksycznych oparów, co jest znacznie bardziej niebezpieczne. Emisja hałasu w czasie obróbki, choć sama w sobie jest uciążliwa i może prowadzić do uszkodzenia słuchu, niekoniecznie stanowi bezpośrednie zagrożenie zdrowia w kontekście ekspozycji na substancje chemiczne. Odpryski drobin metalu, mimo że mogą powodować urazy mechaniczne, nie mają tak istotnego wpływu na zdrowie w kontekście zagrożeń chemicznych związanych z oparami. Często mylące mogą być również postrzegane zagrożenia związane z hałasem i odpryskami, które choć istotne, nie są głównym źródłem zagrożeń zdrowotnych w tym kontekście, co prowadzi do błędnych konkluzji, że dotyczą one zdrowia na równi z oparami metalu.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Na podstawie zamieszczonych danych technicznych wybierz model zasilacza do układu elektropneumatycznego, w którym cewki elektrozaworów przystosowane są do zasilania napięciem stałym o wartości 24 V.

Dane techniczne

ModelMDR-40-5MDR-40-12MDR-40-24MDR-40-48
WyjścieNapięcie wyjściowe DC5V12V24V48V
Prąd znamionowy6A3,33A1,7A0,83A
Zakres prądu0-6A0~3,33A0-1,7A0-0,83A
Moc znamionowa30W40W40W40W
Tętnienia i szumy (max.)2)80mVp-p120mVp-p150mVp-p200mVp-p
Regulacja napięcia5-6V12-15V24-30V48-56V
Tolerancja napięcia3)±2,0%±1,0%±1,0%±1,0%
Tolerancja napięcia przy
zmianach zasilania
±1,0%±1,0%±1,0%±1,0%
Tolerancja napięcia przy
zmianach obciążenia
±5,0%±3,0%±3,0%±2,0%
Czas ustalania, narastania500ms, 30ms/230VAC500ms, 30ms/115VAC przy znamionowym obciążeniu
Czas podtrzymania50ms/230VAC20ms/115VAC przy znamionowym obciążeniu
WejścieZakres napięcia85-264VAC120-370VDC
Zakres częstotliwości47-63 Hz
Sprawność (typ.)78%86%88%88%
A. MDR-40-48
B. MDR-40-5
C. MDR-40-12
D. MDR-40-24
Model zasilacza MDR-40-24 jest właściwy dla układu elektropneumatycznego z cewkami elektrozaworów zaprojektowanymi do zasilania napięciem stałym 24 V. W kontekście aplikacji przemysłowych, takie zasilacze są kluczowe, ponieważ zapewniają stabilne i niezawodne napięcie, co jest niezbędne do prawidłowego działania elektrozaworów. Użycie odpowiedniego zasilacza wpływa bezpośrednio na wydajność systemu pneumatycznego, a także na jego bezpieczeństwo, zapobiegając uszkodzeniom komponentów z powodu niewłaściwego napięcia. Przykładowo, w systemach automatyki przemysłowej, wybór zasilacza zgodnego z wymaganiami napięciowymi cewki elektrozaworów gwarantuje, że siłowniki będą mogły działać w odpowiednich parametrach. Stosując zasilacz MDR-40-24, spełniamy normy wydajności i niezawodności, co jest zgodne z najlepszymi praktykami w dziedzinie automatyki oraz elektropneumatyki.

Pytanie 25

Które z wymienionych narzędzi należy zastosować podczas wymiany układu scalonego na płytce drukowanej, widocznej na zdjęciu?

Ilustracja do pytania
A. Śrubokręt i szczypce.
B. Lutownicę i odsysacz.
C. Ucinaczki i pilnik.
D. Pęsetę i zaciskarkę.
Lutownica i odsysacz to kluczowe narzędzia w procesie wymiany układu scalonego na płytce drukowanej. Lutownica, jako narzędzie do podgrzewania cyny, pozwala na jej roztopienie, co jest niezbędne do skutecznego odłączenia układu od płytki. Odsysacz jest równie ważny, gdyż umożliwia usunięcie nadmiaru roztopionej cyny, co minimalizuje ryzyko uszkodzenia ścieżek przewodzących na płytce. Użycie tych narzędzi zgodnie z najlepszymi praktykami branżowymi zapewnia nie tylko efektywność, ale także bezpieczeństwo całego procesu. Na przykład, podczas pracy z płytkami PCB, ważne jest, aby unikać przegrzania komponentów, co może prowadzić do ich uszkodzenia lub zmniejszenia wydajności. Dobrze jest również używać odsysacza w celu precyzyjnego usunięcia cyny, co z kolei pozwala na łatwiejsze umiejscowienie nowego układu scalonego. Warto również zwrócić uwagę na to, że lutownica powinna być odpowiednio kalibrowana, a temperatura lutowania dostosowana do specyfiki używanej cyny.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Ilustracja przedstawia proces

Ilustracja do pytania
A. frezowania.
B. nitowania.
C. gwintowania.
D. wiercenia.
Odpowiedź "nitowania" to strzał w dziesiątkę! Ilustracja dobrze pokazuje, jak ten proces działa. Nitowanie jest naprawdę popularne w takich branżach jak lotnictwo, motoryzacja czy budownictwo, gdzie odporne połączenia są super ważne. Cała robota z nitowaniem zaczyna się od włożenia nitu w otwory elementów, które chcemy połączyć. Potem używamy odpowiedniego narzędzia, żeby uformować końcówkę nitu, co sprawia, że połączenie jest mocne. Na końcu zgniecione zostaje drugie końcówka nitu, co zapewnia trwałe złączenie. W praktyce często wybiera się nitowanie, bo spawanie czasem może osłabić materiał. Warto znać te techniki, żeby inżynierowie i technicy mogli zadbać o bezpieczeństwo i trwałość konstrukcji.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Na podstawie przedstawionej tabliczki znamionowej transformatora wskaż zależność, która określa jego przekładnię napięciową.

Ilustracja do pytania
A. Ku=12/0,83
B. Ku=80/0,83
C. Ku=230/12
D. Ku=12/230
Odpowiedź Ku=230/12 jest poprawna, ponieważ przekładnia napięciowa transformatora jest definiowana jako stosunek napięcia na uzwojeniu pierwotnym do napięcia na uzwojeniu wtórnym. W przypadku tego konkretnego transformatora, napięcie pierwotne wynosi 230V, a napięcie wtórne wynosi 12V. Dlatego, stosując wzór Ku = U1/U2, uzyskujemy wartości 230V/12V, co daje przekładnię 230/12. Przekładnia ta jest kluczowa w projektowaniu systemów zasilania, ponieważ pozwala określić, jak zmienia się napięcie w transformatorze. W praktyce, odpowiednia przekładnia napięciowa jest istotna dla zapewnienia, że urządzenia zasilane z transformatora działają w optymalnych warunkach. Na przykład, w instalacjach oświetleniowych oraz w systemach zasilania różnego rodzaju urządzeń elektronicznych, znajomość przekładni napięciowej pozwala inżynierom na właściwe dobieranie transformatorów do konkretnych aplikacji, co jest zgodne z najlepszymi praktykami w dziedzinie elektrotechniki i elektroniki.

Pytanie 31

Moc wyjściowa zasilacza przedstawionego na rysunku wynosi

Ilustracja do pytania
A. 24 W
B. 12 W
C. 120 W
D. 240 W
Moc wyjściowa zasilacza wynosi 120 W, co można obliczyć przy użyciu wzoru P = U x I, gdzie P to moc, U to napięcie, a I to natężenie prądu. W tym przypadku mamy zasilacz o napięciu wyjściowym 12 V i natężeniu 10 A. Po podstawieniu wartości otrzymujemy P = 12 V x 10 A = 120 W. Zrozumienie tej zależności jest kluczowe w praktyce, szczególnie w kontekście zastosowań elektronicznych, gdzie dobór odpowiedniego zasilacza ma istotne znaczenie dla stabilności pracy urządzeń. W przemyśle elektronicznym stosuje się standardy, takie jak IEC 61000, które regulują kwestie związane z zasilaniem urządzeń. Prawidłowy dobór mocy zasilacza pozwala na uniknięcie uszkodzeń urządzeń oraz zapewnia ich wydajną pracę. Wysokiej jakości zasilacze są niezbędne w projektach, gdzie stabilność zasilania jest kluczowa, na przykład w systemach audio czy komputerowych.

Pytanie 32

Tłok siłownika pneumatycznego zasilanego sprężonym powietrzem o ciśnieniu P = 600 000 Pa powinien oddziaływać z siłą F = 1 200 N. Jaka powinna być powierzchnia czynna tłoka, jeżeli w siłowniku nie występują straty powietrza?

P = F/S
A. 0,500 m2
B. 0,002 m2
C. 0,020 m2
D. 0,050 m2
Odpowiedź 0,002 m2 jest prawidłowa, ponieważ w celu obliczenia powierzchni czynnej tłoka w siłowniku pneumatycznym, należy zastosować wzór: A = F / P, gdzie A to powierzchnia, F to siła, a P to ciśnienie. W tym przypadku, dzieląc siłę 1200 N przez ciśnienie 600 000 Pa, otrzymujemy 0,002 m2. W praktyce, wiedza na temat doboru odpowiedniej powierzchni tłoka jest kluczowa w inżynierii pneumatycznej, ponieważ wpływa na efektywność i wydajność systemu. W wielu zastosowaniach, takich jak automatyka przemysłowa czy maszyny pakujące, wybór właściwej powierzchni tłoka pozwala na precyzyjne sterowanie ruchem oraz zminimalizowanie zużycia energii. Warto dodać, że zgodnie z normami branżowymi, odpowiednia powierzchnia czynna tłoka wpływa także na żywotność urządzenia oraz jego bezpieczeństwo, dlatego inżynierowie powinni zawsze brać pod uwagę zarówno parametry techniczne, jak i warunki pracy siłowników pneumatycznych.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Który z poniższych czujników nie może być użyty jako czujnik zbliżeniowy?

A. Indukcyjnego
B. Optycznego
C. Pojemnościowego
D. Rezystancyjnego
Zastosowanie czujników pojemnościowych, optycznych i indukcyjnych jako czujników zbliżeniowych opiera się na różnych zasadach fizycznych, które są fundamentalne dla ich funkcjonalności. Czujniki pojemnościowe działają na zasadzie zmian pojemności elektrycznej, gdy obiekt zbliża się do ich pola. To sprawia, że są w stanie wykrywać różne materiały, w tym dielektryki, co czyni je bardzo wszechstronnymi w zastosowaniach automatyki. Z kolei czujniki optyczne wykorzystują promieniowanie świetlne do detekcji obecności obiektów, co jest przydatne w wielu aplikacjach, takich jak zliczanie obiektów w linii produkcyjnej czy monitorowanie przepływu materiałów. Czujniki indukcyjne, bazujące na zmianach pola elektromagnetycznego, są idealne do wykrywania metalowych obiektów bez kontaktu, co jest niezwykle istotne w przemyśle, gdzie czystość i nienaruszalność komponentów są kluczowe. Wybór niewłaściwego czujnika, takiego jak rezystancyjny, może prowadzić do istotnych ograniczeń w aplikacjach, gdzie wymagana jest detekcja obiektów w ruchu lub w trudnych warunkach, co podkreśla znaczenie znajomości zasad działania różnych technologii czujnikowych. Dlatego ważne jest, aby zrozumieć różnice między tymi rodzajami czujników oraz ich właściwe zastosowania, aby zminimalizować ryzyko nieefektywności w projektach inżynieryjnych.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

W tabeli podano dane techniczne sterownika PLC Jakim maksymalnym prądem można obciążyć sterownik dołączając do jego wyjścia silnik?

Dane techniczne
Napięcie zasilająceAC/DC 24 V
Wejścia:
Zakres dopuszczalnyDC 20,4 ... 28,8 V
Przy sygnale „0"maks. AC/DC 5 V
Przy sygnale „1"min. AC/DC 12 V
Prąd wejściowy2,5 mA
Wyjścia:
Rodzaj4 przekaźnikowe
Prąd ciągły10 A - przy obciążeniu rezystancyjnym,
3 A - przy obciążeniu indukcyjnym
A. 10 A
B. 2,5 A
C. 3 A
D. 0,75 A
Wybór odpowiedzi, które wskazują na inne wartości prądu, może wynikać z kilku typowych błędów myślowych obowiązujących w temacie doboru komponentów do systemów automatyki. Podawanie wartości takich jak 0,75 A, 2,5 A czy 10 A może sugerować nieporozumienie dotyczące charakterystyki silników indukcyjnych oraz ich wymagań prądowych. Na przykład, wybranie niskiego prądu, jak 0,75 A, może wynikać z założenia, że silnik o niewielkiej mocy wymaga niewielkiego prądu. Jednakże, nawet małe silniki mogą mieć prąd rozruchowy, który jest znacznie wyższy od prądu nominalnego, co może prowadzić do uszkodzenia sterownika, jeśli jego maksymalny prąd nie jest wystarczający. Z kolei podanie 10 A jako limitu jest całkowicie błędne, ponieważ wiele typowych sterowników PLC nie jest zaprojektowanych do obsługi tak dużych obciążeń bez dodatkowych urządzeń zabezpieczających. Zrozumienie zasadności obliczeń dotyczących prądu oraz ich konsekwencji w praktyce jest kluczowe w doborze odpowiednich komponentów. W automatyce przemysłowej, ignorowanie tych zasad może prowadzić do poważnych uszkodzeń sprzętu, co z kolei wiąże się z kosztami naprawy oraz przestojami w produkcji. Dlatego, przed podłączeniem jakiegokolwiek obciążenia do sterownika, zawsze należy dokładnie zapoznać się z jego specyfikacjami technicznymi i warunkami pracy.

Pytanie 38

Aby chronić silnik przed wystąpieniem napięcia zasilającego po krótkim zgaśnięciu, należy użyć przekaźnika

A. podnapięciowy zwłoczny
B. nadprądowy zwłoczny
C. nadnapięciowy zwłoczny
D. różnicowoprądowy
Wybór innych typów przekaźników, takich jak nadnapięciowy zwłoczny, nadprądowy zwłoczny czy różnicowoprądowy, nie jest odpowiedni w kontekście zabezpieczania silnika przed pojawieniem się napięcia zasilania po krótkotrwałym zaniku. Przekaźnik nadnapięciowy zwłoczny jest zaprojektowany do wyłączania obwodu, gdy napięcie przekracza ustaloną wartość, co w przypadku zaniku napięcia nie zabezpiecza silnika, lecz może doprowadzić do niebezpiecznej sytuacji, gdy napięcie powraca. Nadprądowy zwłoczny z kolei ma na celu zabezpieczenie przed przeciążeniem, a nie przed zanikami napięcia, więc jego funkcjonalność w tym kontekście będzie niewystarczająca. Przekaźnik różnicowoprądowy wykrywa różnice w prądzie między przewodami roboczymi, chroniąc przed porażeniem elektrycznym, ale nie zareaguje na zmiany w napięciu zasilania. Wybór niewłaściwego przekaźnika może prowadzić do potencjalnych uszkodzeń silnika, a także stwarzać ryzyko dla osób pracujących w pobliżu. Dlatego istotne jest zrozumienie specyfiki działania różnych typów przekaźników, aby skutecznie zabezpieczyć urządzenia w warunkach zmienności napięcia zasilania.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Który rodzaj smaru powinien być regularnie uzupełniany w smarownicy pneumatycznej?

A. Pastę
B. Proszek
C. Olej
D. Silikon
Olej jest kluczowym środkiem smarnym w smarownicach pneumatycznych, ponieważ zapewnia niezbędne smarowanie ruchomych części oraz minimalizuje tarcie, co przekłada się na dłuższa żywotność urządzenia. W kontekście smarownic pneumatycznych, olej ułatwia również transport powietrza, co jest istotne dla efektywności działania systemu. W praktyce, regularne uzupełnianie oleju w smarownicach zapewnia optymalne warunki pracy, co jest zgodne z zaleceniami producentów urządzeń oraz normami branżowymi. Na przykład, w systemach pneumatycznych stosuje się oleje syntetyczne lub mineralne, które są dedykowane do konkretnego zastosowania, co zwiększa ich skuteczność oraz zmniejsza ryzyko awarii. Przy odpowiednim doborze oleju, można także poprawić efektywność energetyczną urządzeń, co jest istotne w kontekście oszczędności oraz zrównoważonego rozwoju.