Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik teleinformatyk
  • Kwalifikacja: INF.07 - Montaż i konfiguracja lokalnych sieci komputerowych oraz administrowanie systemami operacyjnymi
  • Data rozpoczęcia: 19 grudnia 2025 19:14
  • Data zakończenia: 19 grudnia 2025 19:26

Egzamin zdany!

Wynik: 34/40 punktów (85,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Protokół, który komputery wykorzystują do informowania ruterów w swojej sieci o zamiarze dołączenia do określonej grupy multicastowej lub jej opuszczenia, to

A. Internet Message Access Protocol (IMAP)
B. Transmission Control Protocol (TCP)
C. Internet Group Management Protocol (IGMP)
D. Interior Gateway Protocol (IGP)
Internet Group Management Protocol (IGMP) to protokół używany w sieciach IP do zarządzania członkostwem w grupach multicastowych. Dzięki IGMP, urządzenia w sieci mogą informować routery o chęci dołączenia do lub odejścia z grup multicastowych. Protokół ten jest kluczowy w kontekście transmisji danych dla wielu użytkowników, jak to ma miejsce w strumieniowaniu wideo, konferencjach online czy transmisjach sportowych. Umożliwia efektywne zarządzanie przepustowością, ponieważ dane są wysyłane tylko do tych urządzeń, które są zainteresowane daną grupą, co eliminuje niepotrzebny ruch w sieci. IGMP działa na poziomie warstwy sieciowej w modelu OSI i jest standardem określonym przez IETF w RFC 3376. W praktyce, IGMP pozwala na efektywne zarządzanie zasobami sieciowymi, co jest kluczowe w dużych środowiskach, gdzie wiele urządzeń korzysta z tych samych zasobów. Przykładem użycia IGMP może być system IPTV, gdzie użytkownicy mogą subskrybować różne kanały telewizyjne bez obciążania całej infrastruktury sieciowej.

Pytanie 2

Aby uzyskać odpowiedź jak na poniższym zrzucie ekranu, należy wydać polecenie:

Server:  Unknown
Address:  192.168.0.1

Non-authoritative answer:
Name:    microsoft.com
Addresses:  104.215.148.63
          13.77.161.179
          40.76.4.15
          40.112.72.205
          40.113.200.201
A. nslookup microsoft.com
B. tracert microsoft.com
C. ipconfig /displaydns
D. netstat -f
Wybór nslookup microsoft.com jest jak najbardziej trafny, bo to narzędzie jest przeznaczone do robienia zapytań DNS. Dzięki temu uzyskujesz informacje o rekordach DNS dotyczących danej domeny. W zrzucie ekranu widać, że odpowiedź pochodzi z serwera DNS, który nie jest autorytatywny dla domeny microsoft.com. Oznacza to, że to info pochodzi od serwera pośredniczącego, a nie bezpośrednio od źródła. Administratrorzy sieci często korzystają z nslookup, żeby diagnozować problemy z DNS i sprawdzać, czy rekordy są poprawnie ustawione. W praktyce, używając tego narzędzia, możesz szybko zobaczyć, jaki adres IP odpowiada na zapytanie dla danej domeny, co jest mega ważne, zwłaszcza gdy masz problemy z dostępnością stron czy z konfiguracją serwerów. Fajnie jest też znać różne opcje nslookup, jak na przykład zmianę serwera DNS, co może się przydać w bardziej skomplikowanych zadaniach administracyjnych.

Pytanie 3

Jakie kanały powinno się wybrać dla trzech sieci WLAN 2,4 GHz, aby zredukować ich wzajemne zakłócenia?

A. 1,3,12
B. 1,6,11
C. 2, 5,7
D. 3, 6, 12
Wybór kanałów 1, 6 i 11 dla trzech sieci WLAN 2,4 GHz jest optymalnym rozwiązaniem, ponieważ te kanały są jedynymi, które są od siebie wystarczająco oddalone, aby zminimalizować zakłócenia. W paśmie 2,4 GHz, które jest ograniczone do 14 kanałów, tylko te trzy kanały nie nachodzą na siebie, co pozwala na skuteczną separację sygnałów. Przykładowo, jeśli używamy kanału 1, to jego widmo interferencyjne kończy się w okolicach 2,412 GHz, co nie koliduje z sygnałami z kanału 6 (2,437 GHz) i 11 (2,462 GHz). W praktyce, zastosowanie tych kanałów w bliskim sąsiedztwie, na przykład w biurze z trzema punktami dostępowymi, zapewnia nieprzerwaną komunikację dla użytkowników i redukcję zakłóceń. Warto również pamiętać, że zgodnie z zaleceniami IEEE 802.11, stosowanie tych trzech kanałów w konfiguracji nie tylko poprawia jakość sygnału, ale także zwiększa przepustowość sieci, co jest szczególnie ważne w środowiskach o dużej gęstości użytkowników.

Pytanie 4

Do ilu sieci należą komputery o adresach IPv4 przedstawionych w tabeli?

NazwaAdres IPMaska
Komputer 110.11.161.10255.248.0.0
Komputer 210.12.161.11255.248.0.0
Komputer 310.13.163.10255.248.0.0
Komputer 410.14.163.11255.248.0.0
A. Czterech.
B. Dwóch.
C. Jednej.
D. Trzech.
Wybór odpowiedzi wskazującej na więcej niż jedną sieć opiera się na nieporozumieniu związanym z pojęciem podsieci i zastosowaniem masek sieciowych. Wiele osób może błędnie zakładać, że różne adresy IP automatycznie sugerują obecność różnych sieci. W rzeczywistości to właśnie maska sieciowa określa, które bity adresu IP są używane do identyfikacji sieci, a które do identyfikacji poszczególnych hostów. Jeśli adresy IP mają tę samą maskę, oznacza to, że mogą należeć do tej samej sieci. Kluczowym błędem myślowym jest założenie, że różne adresy IP muszą oznaczać różne sieci, co jest niezgodne z zasadami działania protokołu IP. Zrozumienie działania maski sieciowej oraz sposobu, w jaki różne bity adresu IP są przypisywane do sieci i hostów, jest kluczowe dla właściwego zarządzania i projektowania sieci. W praktyce, projektanci sieci muszą uwzględniać te zasady, aby unikać większych problemów z komunikacją i zarządzaniem ruchem w przyszłości. Wybierając właściwe wartości masek, można efektywniej zarządzać adresowaniem IP i optymalizować działanie sieci, co jest zgodne ze standardami branżowymi.

Pytanie 5

Komputer w sieci lokalnej ma adres IP 172.16.0.0/18. Jaka jest maska sieci wyrażona w postaci dziesiętnej?

A. 255.255.192.0
B. 255.255.128.0
C. 255.255.255.128
D. 255.255.255.192
Poprawna odpowiedź to 255.255.192.0, co odpowiada masce /18. W tej masce pierwsze 18 bitów adresu IP jest zarezerwowanych dla identyfikacji sieci, co oznacza, że w tej sieci mogą znajdować się adresy IP od 172.16.0.1 do 172.16.63.254. Zgodnie z protokołem IPv4, aby obliczyć maskę w postaci dziesiętnej, musimy przeliczyć 18 bitów maski na odpowiednie wartości w czterech oktetach. Po pierwszych 16 bitach (255.255) pozostaje 2 bity, co daje 2^2 = 4 różne podsieci, a ich maksymalna liczba hostów wynosi 2^14 - 2 = 16382 (odjęcie dwóch zarezerwowanych adresów). W praktyce, znajomość maski sieciowej oraz adresowania IP jest kluczowa, aby efektywnie zaplanować i zarządzać infrastrukturą sieciową. Przykładowo, organizacja wykorzystująca adresację 172.16.0.0/18 może podzielić swoją sieć na mniejsze podsieci, co ułatwi zarządzanie ruchem oraz zwiększy bezpieczeństwo.

Pytanie 6

Powyżej przedstawiono fragment pliku konfiguracyjnego usługi serwerowej w systemie Linux. Jest to usługa

authoritative;
ddns-update-style ad-hoc;
subnet 192.168.1.0 netmask 255.255.255.0 {
    range 192.168.1.2 192.168.1.100;
    option domain-name "egzamin.edu.pl";
    option netbios-name-servers 192.168.1.1;
    option domain-name-servers 194.204.159.1, 194.204.152.34;
    default-lease-time 90000;
    option routers 192.168.1.1;
    option subnet-mask 255.255.255.0;
    option broadcast-address 192.168.1.255;
}
A. SSH2
B. DHCP
C. TFTP
D. DDNS
Wybór odpowiedzi SSH2, DDNS, czy TFTP wskazuje na pewne nieporozumienie związane z rolą i funkcjonalnością protokołów oraz serwisów sieciowych. SSH2 (Secure Shell) jest protokołem służącym do bezpiecznego zdalnego logowania oraz zarządzania systemami, co nie ma żadnego związku z przydzielaniem adresów IP. Użytkownicy, którzy myślą o SSH2 w kontekście konfiguracji sieci, mogą mylnie zakładać, że dotyczy to zarządzania adresacją, podczas gdy jego główną funkcją jest zapewnienie bezpiecznej komunikacji. Z kolei DDNS (Dynamic Domain Name System) jest technologią, która umożliwia dynamiczne aktualizowanie rekordów DNS, co jest przydatne w przypadku, gdy adres IP zmienia się często. Użytkownicy mogą mylić DDNS z DHCP, zakładając, że obie usługi pełnią podobne funkcje w zakresie zarządzania adresami. TFTP (Trivial File Transfer Protocol) to prosty protokół transferu plików, który nie ma funkcji przydzielania adresów IP ani zarządzania konfiguracją sieci, co czyni go nieadekwatnym w tym kontekście. Mylenie tych protokołów często wynika z braku zrozumienia ich specyficznych zastosowań oraz funkcjonalności w architekturze sieciowej. Aby uniknąć takich nieporozumień, istotne jest zrozumienie, że każdy z tych protokołów pełni inną rolę, a ich zastosowanie powinno być ściśle związane z wymaganiami i celami konkretnej usługi sieciowej.

Pytanie 7

Adres MAC (Medium Access Control Address) stanowi sprzętowy identyfikator karty sieciowej Ethernet w warstwie modelu OSI

A. drugiej o długości 48 bitów
B. drugiej o długości 32 bitów
C. trzeciej o długości 32 bitów
D. trzeciej o długości 48 bitów
Adres MAC (Medium Access Control Address) jest unikalnym identyfikatorem przypisanym do interfejsu sieciowego w warstwie drugiej modelu OSI, czyli warstwie łącza danych. Składa się z 48 bitów, co przekłada się na 6 bajtów, a jego zapis często reprezentowany jest w postaci szesnastkowej. Adresy MAC są kluczowe dla komunikacji w sieci Ethernet, ponieważ umożliwiają identyfikację urządzeń i kontrolowanie dostępu do medium transmisyjnego. Zastosowanie adresów MAC w praktyce obejmuje np. konfigurację filtrów adresów MAC w routerach czy przełącznikach, co może zwiększać bezpieczeństwo sieci. W standardzie IEEE 802.3, który definiuje technologie Ethernet, zdefiniowane są zasady dotyczące przydziału adresów MAC oraz ich użycia w sieciach lokalnych. Dobrą praktyką w administracji sieci jest również monitorowanie i zarządzanie adresami MAC, co ułatwia diagnozowanie problemów oraz wykrywanie nieautoryzowanych urządzeń w sieci.

Pytanie 8

Która z warstw modelu ISO/OSI określa protokół IP (Internet Protocol)?

A. Warstwa transportowa
B. Warstwa danych łącza
C. Warstwa sieci
D. Warstwa fizyczna
Warstwa sieci w modelu ISO/OSI jest kluczowa dla działania Internetu, ponieważ to tutaj definiowane są protokoły odpowiedzialne za adresowanie oraz przesyłanie danych pomiędzy różnymi sieciami. Protokół IP (Internet Protocol) działa na tej warstwie i ma za zadanie dostarczać dane pomiędzy hostami w sieci, niezależnie od fizycznych połączeń. Przykładem praktycznym zastosowania IP jest routing, gdzie routery wykorzystują adresy IP do określenia najlepszej trasy dla przesyłanych pakietów. Standardy takie jak IPv4 i IPv6, będące wersjami protokołu IP, są fundamentalne w zapewnieniu komunikacji w sieci. Zrozumienie warstwy sieci i działania protokołu IP jest kluczowe dla specjalistów zajmujących się sieciami, ponieważ umożliwia projektowanie i zarządzanie złożonymi architekturami sieciowymi, zapewniającą efektywną wymianę danych.

Pytanie 9

Proces łączenia sieci komputerowych, który polega na przesyłaniu pakietów protokołu IPv4 przez infrastrukturę opartą na protokole IPv6 oraz w przeciwnym kierunku, nosi nazwę

A. translacją protokołów
B. tunelowaniem
C. mapowaniem
D. podwójnego stosu IP
Tunelowaniem nazywamy mechanizm, który umożliwia przesyłanie pakietów danych z protokołu IPv4 przez infrastrukturę zaprojektowaną dla protokołu IPv6 oraz odwrotnie. Ten proces polega na tworzeniu wirtualnych tuneli, które encapsulują (opakowują) dane protokołu IPv4 w pakiety IPv6, co pozwala na komunikację między sieciami korzystającymi z różnych wersji protokołu IP. W praktyce tunelowanie jest często wykorzystywane w przypadkach, gdzie starsze systemy, które jeszcze nie przeszły na IPv6, muszą komunikować się z nowymi sieciami. Przykładem zastosowania tunelowania jest transfer danych w firmach, które posiadają zarówno starsze, jak i nowoczesne urządzenia sieciowe, co pozwala im na stopniową migrację do IPv6, jednocześnie zapewniając ciągłość działania usług sieciowych. Z perspektywy standardów, tunelowanie jest jednym z kluczowych elementów strategii przejścia na IPv6, co zostało określone w dokumentach IETF, takich jak RFC 3056 oraz RFC 4213. Te dobre praktyki są ważne dla administrowania nowoczesnymi sieciami komputerowymi, umożliwiając elastyczne podejście do migracji.

Pytanie 10

Aby użytkownicy sieci lokalnej mogli przeglądać strony WWW przez protokoły HTTP i HTTPS, zapora sieciowa powinna pozwalać na ruch na portach

A. 80 i 434
B. 80 i 443
C. 90 i 443
D. 90 i 434
Odpowiedź 80 i 443 jest prawidłowa, ponieważ port 80 jest standardowym portem używanym do komunikacji w protokole HTTP, natomiast port 443 jest przeznaczony dla protokołu HTTPS, który zapewnia szyfrowanie danych przesyłanych w sieci. Umożliwiając przepuszczanie ruchu na tych portach, zapora sieciowa pozwala użytkownikom sieci lokalnej na bezpieczne przeglądanie stron internetowych. Przykładem może być środowisko biurowe, w którym pracownicy korzystają z przeglądarek internetowych do dostępu do zasobów online, takich jak platformy chmurowe czy portale informacyjne. W kontekście najlepszych praktyk, wiele organizacji stosuje zasady bezpieczeństwa, które obejmują zezwolenie na ruch tylko na tych portach, aby zminimalizować ryzyko ataków oraz nieautoryzowanego dostępu do sieci. Dodatkowo, stosowanie HTTPS na portach 443 jest zalecane przez organizacje takie jak Internet Engineering Task Force (IETF), co przyczynia się do lepszego zabezpieczenia danych użytkowników.

Pytanie 11

Do ilu sieci należą komputery o podanych w tabeli adresach IP i standardowej masce sieci?

komputer 1172.16.15.5
komputer 2172.18.15.6
komputer 3172.18.16.7
komputer 4172.20.16.8
komputer 5172.20.16.9
komputer 6172.21.15.10
A. Sześciu.
B. Czterech.
C. Jednej.
D. Dwóch.
Wybierając jedną z pozostałych odpowiedzi, można popaść w błąd związany z interpretacją adresacji IP i stosowania masek podsieci. Niektórzy mogą myśleć, że komputery o adresach IP 172.16.1.10, 172.18.2.20, 172.20.3.30 i 172.21.4.40 należą do mniej niż czterech różnych sieci, co jest nieprawidłowe. Przy masce 255.255.0.0, pierwsze dwa oktety adresu IP służą do identyfikacji sieci, co oznacza, że każdy z kombinowanych adresów IP z różnych drugich oktetów, takich jak 16, 18, 20 i 21, stanowi odrębną sieć. Często występującym błędem jest pomijanie znaczenia drugiego oktetu w adresie IP, co prowadzi do nieprawidłowego wnioskowania o przynależności do sieci. W praktyce, administratorzy sieci muszą być świadomi, że każdy unikalny adres sieciowy, wynikający z połączenia pierwszych dwóch oktetów, oznacza oddzielną sieć. Dodatkowo, przy projektowaniu sieci, kluczowe jest, aby zrozumieć zasady przydzielania adresów IP, co pozwala na efektywne zarządzanie zasobami w sieciach komputerowych. Zatem wybór odpowiedzi wskazującej na mniejszą liczbę sieci jest prostym błędem w logice adresacji IP oraz interpretacji używanych masek podsieci.

Pytanie 12

Funkcja roli Serwera Windows 2012, która umożliwia obsługę ruterów NAT oraz ruterów BGP w sieciach lokalnych, to

A. przekierowanie HTTP
B. routing
C. Direct Access oraz VPN (RAS)
D. serwer proxy aplikacji sieci Web
Routing w Windows Server 2012 to kluczowa usługa, która umożliwia zarządzanie trasami przesyłania danych między różnymi sieciami. Jej główną funkcjonalnością jest obsługa ruterów translacji adresów sieciowych (NAT), co pozwala na ukrywanie prywatnych adresów IP w sieci lokalnej za pomocą jednego publicznego adresu IP. Dzięki temu organizacje mogą oszczędzać adresy IPv4, a także zwiększać bezpieczeństwo swojej infrastruktury sieciowej. Dodatkowo, routing wspiera protokoły takie jak BGP (Border Gateway Protocol), stosowane w większych, złożonych sieciach, gdzie zarządzanie trasami między różnymi systemami autonomicznymi jest kluczowe. Przykładem wykorzystania routingu może być konfiguracja zaawansowanych sieci korporacyjnych, gdzie różne oddziały firmy muszą komunikować się ze sobą oraz z internetem, a także zarządzanie dostępem użytkowników do zasobów sieciowych. Dobre praktyki w zakresie routingu obejmują regularne aktualizacje tras, monitorowanie wydajności oraz wdrożenie odpowiednich polityk bezpieczeństwa.

Pytanie 13

Czy po zainstalowaniu roli Hyper-V na serwerze Windows można

A. centralne zarządzanie oraz wsparcie dla rozproszonych aplikacji biznesowych
B. upraszczanie i automatyzowanie zarządzania kluczami licencji zbiorczych
C. tworzenie maszyn wirtualnych oraz ich zasobów i zarządzanie nimi
D. szybkie zdalne wdrażanie systemów operacyjnych Windows na komputerach w sieci
Odpowiedź wskazuje na kluczową funkcjonalność Hyper-V, która polega na tworzeniu i zarządzaniu maszynami wirtualnymi (VM). Hyper-V to wirtualizacyjna platforma oferowana przez Microsoft, która pozwala na uruchamianie wielu instancji systemów operacyjnych na tym samym fizycznym serwerze. Użytkownicy mogą tworzyć maszyny wirtualne z różnymi konfiguracjami sprzętowymi, co umożliwia testowanie aplikacji, uruchamianie serwerów plików, baz danych czy aplikacji webowych w izolowanym środowisku. Przykładem zastosowania może być wykorzystanie Hyper-V do symulacji środowiska produkcyjnego w celu przeprowadzenia testów przed wdrożeniem nowych rozwiązań. Dodatkowo, wirtualizacja za pomocą Hyper-V pozwala na lepsze wykorzystanie zasobów fizycznych, zmniejszenie kosztów operacyjnych i zapewnienie elastyczności w zarządzaniu infrastrukturą IT. W kontekście dobrych praktyk branżowych, używanie Hyper-V jest zgodne z podejściem do wirtualizacji zasobów, które zwiększa skalowalność i redukuje czas przestojów serwerów.

Pytanie 14

W którym rejestrze systemu Windows znajdziemy informacje o błędzie spowodowanym brakiem synchronizacji czasu systemowego z serwerem NTP?

A. Ustawienia.
B. System.
C. Aplikacja.
D. Zabezpieczenia.
Wybór dziennika systemowego jako źródła informacji o błędach synchronizacji czasu z serwerem NTP jest prawidłowy, ponieważ dziennik systemowy w systemie Windows rejestruje wszystkie zdarzenia związane z działaniem systemu operacyjnego, w tym problemy z synchronizacją czasu. Synchronizacja czasu jest kluczowym procesem, który zapewnia, że system operacyjny działa w zgodzie z czasem serwera NTP, co jest istotne dla wielu aplikacji i operacji sieciowych. Problemy z synchronizacją mogą prowadzić do błędów w logowaniu, problemów z certyfikatami SSL oraz niestabilności w aplikacjach zależnych od dokładnego czasu. Aby zdiagnozować problem, administratorzy mogą uruchomić Podgląd zdarzeń (Event Viewer) i przeszukać dziennik systemowy pod kątem wpisów związanych z NTP, takich jak błędy „Time-Service” lub „Sync”. Dobrą praktyką jest również regularne monitorowanie dzienników systemowych, co pozwala na wczesne wykrywanie i rozwiązywanie potencjalnych problemów związanych z synchronizacją czasu.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Stworzenie symulowanego środowiska komputerowego, które jest przeciwieństwem środowiska materialnego, określa się mianem

A. wirtualizacją.
B. aktualizacją.
C. ustawieniem.
D. modernizacją.
Wirtualizacja to proces tworzenia symulowanego środowiska komputerowego, które działa w odseparowanej przestrzeni niż rzeczywiste zasoby fizyczne. Przykładem wirtualizacji jest korzystanie z maszyn wirtualnych, które pozwalają na uruchamianie różnych systemów operacyjnych na jednej fizycznej maszynie. Dzięki wirtualizacji administratorzy mogą efektywnie zarządzać zasobami, zmniejszać koszty operacyjne oraz zwiększać elastyczność i skalowalność infrastruktury IT. W praktyce, wirtualizacja umożliwia tworzenie środowisk testowych, które nie wpływają na działanie produkcyjnych aplikacji, a także pozwala na łatwe przeprowadzanie kopii zapasowych i przywracanie systemów. Ponadto, standardy takie jak VMware vSphere, Microsoft Hyper-V oraz KVM (Kernel-based Virtual Machine) są przykładami dobrych praktyk w zakresie wirtualizacji, które pozwalają na efektywne i bezpieczne zarządzanie wirtualnymi zasobami.

Pytanie 17

W celu zagwarantowania jakości usług QoS, w przełącznikach warstwy dostępu wdraża się mechanizm

A. pozwalający na używanie wielu portów jako jednego łącza logicznego
B. który zapobiega tworzeniu się pętli w sieci
C. przydzielania wyższego priorytetu wybranym typom danych
D. decydujący o liczbie urządzeń, które mogą łączyć się z danym przełącznikiem
Odpowiedź dotycząca nadawania priorytetu określonym rodzajom danych jest prawidłowa, ponieważ mechanizmy QoS (Quality of Service) odgrywają kluczową rolę w zarządzaniu jakością usług w sieciach komputerowych. W kontekście przełączników warstwy dostępu, nadawanie priorytetów polega na klasyfikacji i zarządzaniu ruchem sieciowym, co pozwala na przydzielanie większych zasobów dla bardziej wymagających aplikacji, takich jak VoIP czy transmisje wideo. Przykładem może być wykorzystanie protokołu IEEE 802.1p, który umożliwia oznaczanie ramek Ethernet z odpowiednim poziomem priorytetu. Dzięki temu, w sytuacjach dużego obciążenia sieci, ważniejsze dane mogą być przesyłane szybciej, co ma kluczowe znaczenie dla zapewnienia ciągłości i jakości usług. Dobre praktyki w implementacji QoS obejmują także regularne monitorowanie ruchu oraz dostosowywanie polityk QoS w zależności od zmieniających się wymagań aplikacji oraz użytkowników. W ten sposób, można nie tylko poprawić doświadczenia użytkowników, ale również zoptymalizować wykorzystanie zasobów sieciowych.

Pytanie 18

Usługi na serwerze konfiguruje się za pomocą

A. role i funkcje
B. panel administracyjny
C. Active Directory
D. serwer kontrolujący domenę
Konfiguracja usług na serwerze za pomocą ról i funkcji jest zgodna z najlepszymi praktykami administracyjnymi w środowisku serwerowym. Role i funkcje w tym kontekście oznaczają specyficzne zestawy zadań, które serwer ma realizować, a także pożądane usługi, które mają być dostępne. Na przykład, w systemie Windows Server, administracja serwerem polega na przypisywaniu ról, takich jak serwer plików, serwer aplikacji czy kontroler domeny, co umożliwia skoncentrowanie się na konkretnych zadaniach i ich optymalizacji. Dobrą praktyką jest również korzystanie z Menedżera Serwera, który ułatwia zarządzanie rolami oraz funkcjami, umożliwiając łatwe dodawanie, usuwanie i konfigurowanie. Zrozumienie, jak działają role i funkcje, pozwala administratorom lepiej optymalizować zasoby serwera, a także zadbać o jego bezpieczeństwo i stabilność, co jest kluczowe w każdym środowisku IT.

Pytanie 19

Jaką rolę pełni serwer Windows Server, która pozwala na centralne zarządzanie i ustawianie tymczasowych adresów IP oraz związanych z nimi danych dla komputerów klienckich?

A. Serwer telnet
B. Usługi pulpitu zdalnego
C. Serwer DHCP
D. Usługi udostępniania plików
Serwer DHCP (Dynamic Host Configuration Protocol) jest kluczowym elementem infrastruktury sieciowej, który odpowiada za automatyczne przydzielanie adresów IP komputerom klienckim w sieci. Ta rola serwera umożliwia centralizację zarządzania adresami IP, co przekłada się na uproszczenie konfiguracji i administracji sieci. Przykładowo, w dużych organizacjach, gdzie liczba urządzeń oraz użytkowników jest znaczna, ręczne przypisywanie adresów IP byłoby niepraktyczne i podatne na błędy. Dzięki serwerowi DHCP, adresy IP są przydzielane dynamicznie, co oznacza, że urządzenia mogą uzyskiwać nowe adresy przy każdym ponownym uruchomieniu, co znacznie ułatwia zarządzanie zasobami sieciowymi. Dodatkowo, serwer DHCP może również dostarczać inne istotne informacje konfiguracyjne, takie jak maska podsieci, brama domyślna czy serwery DNS, co jest zgodne z najlepszymi praktykami w zakresie zarządzania sieciami. W kontekście wdrożeń opartych na standardach branżowych, takich jak ITIL, wykorzystanie serwera DHCP przyczynia się do poprawy efektywności operacyjnej oraz zwiększenia bezpieczeństwa poprzez ograniczenie ryzyka konfliktów adresów IP.

Pytanie 20

Protokół używany do konwertowania fizycznych adresów MAC na adresy IP w sieciach komputerowych to

A. ARP (Address Resolution Protocol)
B. RARP (Reverse Address Resolution Protocol)
C. DHCP (Dynamic Host Configuration Protocol)
D. DNS (Domain Name System)
Protokóły DHCP, ARP i DNS pełnią różne funkcje w sieciach komputerowych, co może prowadzić do błędnych wniosków na temat ich zastosowania. DHCP, czyli Dynamic Host Configuration Protocol, koncentruje się na przydzielaniu adresów IP oraz innych parametrów konfiguracyjnych urządzeniom w sieci. Nie przekształca on adresów MAC na IP, lecz dynamicznie zarządza przydzielaniem adresów IP na podstawie zgłoszeń z urządzeń. ARP, czyli Address Resolution Protocol, jest stosowany do odwrotnego procesu, czyli przekształcania adresów IP na adresy MAC. Umożliwia to urządzeniom w sieci lokalnej komunikację z innymi urządzeniami, czyli przetłumaczenie adresu IP na odpowiadający mu adres MAC. DNS, z kolei, odpowiada za tłumaczenie nazw domenowych na adresy IP, co jest kluczowe dla funkcjonowania internetu. Działanie DNS nie ma związku z adresami MAC, co prowadzi do nieporozumień. Zrozumienie różnic między tymi protokołami jest kluczowe do prawidłowego zarządzania i projektowania sieci komputerowych. Często mylone są funkcje tych protokołów, co skutkuje nieefektywnym zarządzaniem adresowaniem i komunikacją w sieciach.

Pytanie 21

Po zainstalowaniu roli usług domenowych Active Directory na serwerze Windows, możliwe jest

A. współdzielenie plików znajdujących się na serwerze
B. automatyczne przypisywanie adresów IP komputerom w sieci
C. udostępnienie użytkownikom witryny internetowej
D. centralne zarządzanie użytkownikami oraz komputerami
Centralne zarządzanie użytkownikami i komputerami jest kluczową funkcjonalnością roli usług domenowych Active Directory (AD DS) na serwerach Windows. Dzięki tej roli administratorzy mogą tworzyć, modyfikować i usuwać konta użytkowników oraz urządzeń w zorganizowany sposób, co znacząco ułatwia zarządzanie dużymi środowiskami IT. W praktyce, AD DS pozwala na wdrażanie polityk bezpieczeństwa i grupowych, co umożliwia określenie, jakie zasoby i aplikacje są dostępne dla poszczególnych użytkowników oraz grup. Na przykład, administrator może przydzielić dostęp do określonej aplikacji tylko pracownikom działu finansowego. Dodatkowo, dzięki integracji z innymi usługami Microsoft, takimi jak Exchange czy SharePoint, AD DS wspiera efektywne zarządzanie infrastrukturą IT w organizacji, umożliwiając centralizację procesów uwierzytelniania i autoryzacji. To podejście jest zgodne z najlepszymi praktykami w zakresie zarządzania tożsamością i dostępem, co przyczynia się do zwiększenia bezpieczeństwa i efektywności operacyjnej w środowiskach korporacyjnych.

Pytanie 22

Administrator systemu Windows Server zamierza zorganizować użytkowników sieci w różnorodne grupy, które będą miały zróżnicowane uprawnienia do zasobów w sieci oraz na serwerze. Najlepiej osiągnie to poprzez zainstalowanie roli

A. usługi domenowe AD
B. usługi wdrażania systemu Windows
C. serwera DNS
D. serwera DHCP
Usługi domenowe Active Directory (AD) to kluczowy element infrastruktury zarządzania użytkownikami i zasobami w systemie Windows Server. Dzięki tej roli administratorzy mogą tworzyć i zarządzać różnymi grupami użytkowników, co pozwala na efektywne przydzielanie uprawnień do zasobów w sieci. Przykładowo, można skonfigurować grupy dla różnych działów w firmie, takich jak sprzedaż, marketing czy IT, co umożliwia wdrażanie polityk bezpieczeństwa oraz kontroli dostępu do plików i aplikacji. Standardy branżowe, takie jak model RBAC (Role-Based Access Control), opierają się na zasadzie, że użytkownicy powinni mieć dostęp tylko do zasobów, które są im niezbędne do wykonywania swoich zadań. Implementacja AD wspiera ten model, co jest zgodne z praktykami zarządzania bezpieczeństwem w organizacjach. Ponadto, AD pozwala na scentralizowane zarządzanie użytkownikami, co upraszcza procesy administracyjne i zwiększa bezpieczeństwo systemu.

Pytanie 23

W biurze rachunkowym potrzebne jest skonfigurowanie punktu dostępu oraz przygotowanie i podłączenie do sieci bezprzewodowej trzech komputerów oraz drukarki z WiFi. Koszt usługi konfiguracji poszczególnych elementów sieci wynosi 50 zł za każdy komputer, 50 zł za drukarkę i 100 zł za punkt dostępu. Jaki będzie całkowity wydatek związany z tymi pracami serwisowymi?

A. 300 zł
B. 100 zł
C. 250 zł
D. 200 zł
Cały koszt serwisu wynosi 300 zł. To wynik dodania kosztów za konfigurację trzech komputerów, drukarki i punktu dostępu. Koszt skonfigurowania jednego komputera to 50 zł, więc jeśli mamy trzy, to wychodzi 150 zł (50 zł razy 3). Do tego jeszcze 50 zł za drukarkę i 100 zł za punkt dostępu. Jak to zsumujesz, to dostaniesz 150 zł + 50 zł + 100 zł, co daje 300 zł. To jest ważne, bo pokazuje, jak kluczowe jest dobre planowanie budżetu w usługach IT. Z mojego doświadczenia, firmy często muszą uważnie oceniać koszty przy wprowadzaniu nowych technologii, bo inaczej mogą się zdziwić. Dlatego dobrze jest przeanalizować wszystko dokładnie przed startem projektu, żeby lepiej nią zarządzać i nie mieć niespodzianek z wydatkami w przyszłości.

Pytanie 24

W lokalnej sieci stosowane są adresy prywatne. Aby nawiązać połączenie z serwerem dostępnym przez Internet, trzeba

A. dodać drugą kartę sieciową z adresem publicznym do każdego hosta
B. przypisać adres publiczny jako dodatkowy adres karty sieciowej na każdym hoście
C. skonfigurować translację NAT na ruterze brzegowym lub serwerze
D. ustawić sieci wirtualne w obrębie sieci lokalnej
Odpowiedź jest prawidłowa, ponieważ translacja adresów sieciowych (NAT) jest kluczowym procesem umożliwiającym komunikację między prywatnymi adresami IP w sieci lokalnej a publicznymi adresami IP w Internecie. NAT działa na routerach brzegowych, które przekształcają adresy prywatne hostów w adresy publiczne, co pozwala na nawiązywanie połączeń z serwerami dostępnymi w sieci globalnej. Przykładem może być sytuacja, gdy użytkownik w domowej sieci lokalnej, korzystając z routera z włączonym NAT, chce uzyskać dostęp do strony internetowej. Router zmienia adres prywatny urządzenia na swój adres publiczny, a odpowiedzi z serwera są następnie kierowane z powrotem do właściwego urządzenia dzięki przechowywaniu informacji o sesji. NAT jest zgodny z protkokłami takimi jak TCP/IP i jest uznawany za standardową praktykę w zarządzaniu adresacją IP, co zwiększa bezpieczeństwo sieci lokalnych poprzez ukrycie rzeczywistych adresów IP. Dodatkowo, NAT umożliwia oszczędność adresów IP, ponieważ wiele urządzeń może korzystać z jednego adresu publicznego.

Pytanie 25

Ustanawianie zaszyfrowanych połączeń pomiędzy hostami w publicznej sieci Internet, wykorzystywane w sieciach VPN (Virtual Private Network), to

A. mapowanie
B. tunelowanie
C. mostkowanie
D. trasowanie
Tunelowanie to technika, która umożliwia tworzenie zaszyfrowanych połączeń między hostami w publicznej sieci Internet, co jest kluczowe w kontekście Virtual Private Network (VPN). Proces ten polega na enkapsulacji danych w dodatkowych nagłówkach, co pozwala na przesyłanie informacji przez niezabezpieczone sieci w sposób bezpieczny i prywatny. Przykładem zastosowania tunelowania są protokoły takie jak PPTP, L2TP oraz OpenVPN, które implementują różne metody szyfrowania i autoryzacji, zapewniając tym samym poufność i integralność przesyłanych danych. W praktyce tunelowanie pozwala użytkownikom na bezpieczne połączenia zdalne do sieci lokalnych, co jest niezbędne dla pracowników zdalnych oraz dla firm, które pragną chronić swoje zasoby przed nieautoryzowanym dostępem. Dobre praktyki w zakresie konfiguracji VPN obejmują stosowanie silnych algorytmów szyfrowania oraz regularne aktualizacje oprogramowania, aby upewnić się, że systemy są odporne na znane zagrożenia.

Pytanie 26

Jakie jest adres rozgłoszeniowy (broadcast) dla hosta z adresem IP 192.168.35.202 oraz 26-bitową maską?

A. 192.168.35.63
B. 192.168.35.192
C. 192.168.35.255
D. 192.168.35.0
Adresy 192.168.35.63, 192.168.35.0 oraz 192.168.35.192 są błędnymi odpowiedziami, ponieważ wynikają z niepoprawnego zrozumienia struktury adresacji IP oraz zasad obliczania adresu rozgłoszeniowego. Rozpoczynając od adresu 192.168.35.0, który jest adresem sieciowym, należy zauważyć, że nie może być użyty jako adres rozgłoszeniowy, ponieważ jest to adres identyfikujący sieć, a nie konkretne urządzenie. Kolejnym błędnym podejściem jest wybranie adresu 192.168.35.192; ten adres jest pierwszym adresem, który może być przypisany do hostów w tej podsieci, a zatem nie może być adresem rozgłoszeniowym. Ostatecznie, 192.168.35.63 nie jest poprawnym adresem rozgłoszeniowym, gdyż mieści się w niewłaściwym zakresie, który wynika z zastosowanej maski. Właściwy sposób obliczania adresów IP wymaga staranności oraz znajomości koncepcji dotyczących podziału sieci i adresowania. Mocna znajomość tych zasad jest kluczowa dla administratorów sieci, aby skutecznie zarządzać połączeniami i optymalizować ruch w sieci, co stanowi fundament dobrej praktyki w inżynierii sieciowej.

Pytanie 27

Które z zestawień: urządzenie – realizowana funkcja jest niepoprawne?

A. Modem – łączenie sieci lokalnej z Internetem
B. Przełącznik – segmentacja sieci na VLAN-y
C. Ruter – łączenie komputerów w tej samej sieci
D. Access Point – bezprzewodowe łączenie komputerów z siecią lokalną
Odpowiedź 'Ruter – połączenie komputerów w tej samej sieci' jest błędna, ponieważ ruter nie służy do bezpośredniego łączenia komputerów w tej samej sieci lokalnej, lecz do kierowania ruchem pomiędzy różnymi sieciami. Ruter działa na warstwie trzeciej modelu OSI (warstwa sieci), a jego główną funkcją jest przekazywanie pakietów danych pomiędzy sieciami, np. z lokalnej sieci komputerowej do Internetu. Przykładowo, w typowej sieci domowej ruter łączy urządzenia lokalne (jak komputery, smartfony) z dostawcą usług internetowych (ISP). Działanie rutera można zobrazować na przykładzie, kiedy użytkownik chce przeglądać strony internetowe – ruter przekazuje żądania z lokalnej sieci do Internetu i odwrotnie, zarządzając jednocześnie trasami danych, co zapewnia optymalizację ich przepływu. Dobrą praktyką jest również skonfigurowanie rutera w taki sposób, aby zapewniał on odpowiednie zabezpieczenia, takie jak zapora ogniowa (firewall) czy system detekcji intruzów (IDS).

Pytanie 28

Jakie numery portów są domyślnie wykorzystywane przez protokół poczty elektronicznej POP3?

A. 143 albo 993
B. 80 albo 8080
C. 587 albo 465
D. 110 albo 995
Protokół poczty elektronicznej POP3, czyli Post Office Protocol version 3, jest standardem używanym do pobierania wiadomości e-mail z serwera pocztowego na lokalne urządzenie użytkownika. Domyślne porty, na których działa POP3, to 110 dla połączeń nieszyfrowanych oraz 995 dla połączeń szyfrowanych z użyciem SSL/TLS. Warto zwrócić uwagę, że używanie szyfrowania jest obecnie standardem w praktykach branżowych, co podnosi bezpieczeństwo przesyłanych danych. Dla użytkowników korzystających z POP3, port 110 umożliwia synchronizację wiadomości bez zabezpieczeń, co może być ryzykowne w dzisiejszych czasach, gdzie ochrona danych jest priorytetem. Użytkownicy powinni stosować port 995, aby zapewnić bezpieczne połączenie, co jest zgodne z zaleceniami organizacji takich jak Internet Engineering Task Force (IETF) dotyczących bezpieczeństwa protokołów pocztowych. Dodatkowo, warto zwrócić uwagę, że POP3 jest często używany w szkołach i małych firmach, gdzie użytkownicy chcą mieć dostęp do swoich wiadomości w trybie offline, co czyni go praktycznym wyborem dla tych środowisk.

Pytanie 29

Gdy użytkownik wprowadza w wierszu poleceń komendę ping www.onet.pl, wyświetla się następujący komunikat: Żądanie polecenia ping nie może odnaleźć hosta www.onet.pl. Proszę sprawdzić nazwę i spróbować ponownie. Natomiast wpisując w wierszu poleceń komendę ping 213.180.141.140 (adres IP dla serwera www.onet.pl), użytkownik otrzymuje odpowiedź z serwera. Jakie mogą być przyczyny takiego zjawiska?

A. Niewłaściwie skonfigurowana brama domyślna
B. Błędnie skonfigurowana maska podsieci
C. Błędny adres IP serwera DNS
D. Niewłaściwy adres IP hosta
Niepoprawny adres IP serwera DNS jest główną przyczyną problemu, który zaobserwował użytkownik. Kiedy użytkownik próbuje wykonać polecenie ping dla adresu URL, system operacyjny musi najpierw przetłumaczyć tę nazwę na odpowiedni adres IP przy użyciu serwera DNS. Jeśli adres IP serwera DNS jest błędny lub serwer DNS nie jest dostępny, system nie będzie w stanie zlokalizować hosta, co skutkuje komunikatem o błędzie. W praktyce, w przypadku problemów z DNS, zaleca się sprawdzenie konfiguracji DNS w ustawieniach sieciowych, a także przetestowanie innych serwerów DNS, takich jak Google DNS (8.8.8.8) lub Cloudflare DNS (1.1.1.1). Warto również pamiętać, że poprawna konfiguracja serwera DNS jest kluczowa dla prawidłowego funkcjonowania wszelkich aplikacji internetowych i usług. Standardy sieciowe, takie jak RFC 1035, określają zasady dotyczące systemu DNS, a ich przestrzeganie jest niezbędne dla zapewnienia funkcjonalności i wydajności internetowych usług.

Pytanie 30

W jakiej warstwie modelu TCP/IP funkcjonuje protokół DHCP?

A. Aplikacji
B. Łącza danych
C. Internetu
D. Transportowej
Protokół DHCP, czyli Dynamic Host Configuration Protocol, działa w warstwie aplikacji w modelu TCP/IP. To oznacza, że zajmuje się tym, co dzieje się na poziomie aplikacji w sieci. Głównym zadaniem DHCP jest automatyczne przydzielanie adresów IP oraz różnych informacji konfiguracyjnych urządzeniom w sieci. Dzięki temu, administratorzy mogą łatwiej zarządzać adresami IP, bo nie muszą ręcznie ustawiać każdego urządzenia. Znajdziesz go w różnych środowiskach - od małych biur do dużych centrów danych, gdzie ręczne zarządzanie setkami adresów IP byłoby totalnie czasochłonne i mogłoby prowadzić do pomyłek. Zresztą, jak wiadomo, standardy IETF mówią, że ten protokół działa w modelu klient-serwer, co sprawia, że zarządzanie adresami jest prostsze i bardziej elastyczne. Co więcej, jeśli coś się zmienia w sieci, to łatwo można wszystko przestawić, a to jest mega ważne w dynamicznych warunkach IT.

Pytanie 31

Za pomocą polecenia netstat w systemie Windows można zweryfikować

A. parametry interfejsów sieciowych komputera
B. aktywną komunikację sieciową komputera
C. zapisy w tablicy routingu komputera
D. ścieżkę połączenia z wybranym adresem IP
Polecenie 'netstat' jest narzędziem w systemie Windows, które pozwala na monitorowanie aktywnych połączeń sieciowych komputera. Dzięki niemu użytkownicy mogą zobaczyć, jakie porty są otwarte, jakie protokoły są używane oraz z jakimi adresami IP komputer nawiązał połączenia. Przykładowo, administratorzy sieci mogą używać 'netstat' do diagnozowania problemów z połączeniem, monitorowania nieautoryzowanych transmisji danych, a także do audytowania bezpieczeństwa sieci. Narzędzie to dostarcza także informacji o stanie połączeń, co jest kluczowe w kontekście zarządzania ruchem sieciowym. Zastosowanie 'netstat' jest zgodne z dobrymi praktykami w zakresie zabezpieczania środowisk IT, ponieważ umożliwia wczesne wykrywanie potencjalnych zagrożeń oraz nieprawidłowości w komunikacji sieciowej.

Pytanie 32

Ile bitów o wartości 1 występuje w standardowej masce adresu IPv4 klasy B?

A. 16 bitów
B. 8 bitów
C. 32 bity
D. 24 bity
Maska adresu IPv4 klasy B składa się z 16 bitów ustawionych na wartość 1, co oznacza, że pierwsze 16 bitów adresu IP identyfikuje sieć, a pozostałe 16 bitów są przeznaczone dla hostów w tej sieci. W praktyce wprowadza to możliwość zaadresowania do 65 536 hostów w każdej z sieci klasy B. Standardowa notacja CIDR dla klasy B to /16, co jasno wskazuje na długość prefiksu sieci. Klasa B jest często używana w średniej wielkości organizacjach oraz w dużych sieciach, gdzie potrzeba wielu hostów, ale nie na tak dużą skalę jak w klasie A. Przykład zastosowania maski klasy B można zobaczyć w dużych przedsiębiorstwach, gdzie wymagane jest rozdzielenie różnych działów, takich jak IT, HR czy marketing, w osobne podsieci, co ułatwia zarządzanie i zwiększa bezpieczeństwo. Zrozumienie maski klasy B jest istotne dla projektowania efektywnych architektur sieciowych oraz dla implementacji odpowiednich strategii IP.

Pytanie 33

Protokół stworzony do nadzorowania oraz zarządzania urządzeniami w sieci, oparty na architekturze klient-serwer, w którym jeden menedżer kontroluje od kilku do kilkuset agentów to

A. SMTP (Simple Mail Transfer Protocol)
B. SNMP (Simple Network Management Protocol)
C. FTP (File Transfer Protocol)
D. HTTP (Hypertext Transfer Protocol)
SNMP, czyli Simple Network Management Protocol, to standardowy protokół sieciowy, który umożliwia monitorowanie i zarządzanie urządzeniami w sieci IP. Opiera się na architekturze klient-serwer, gdzie agent (urządzenie zarządzane) przekazuje dane do menedżera (systemu zarządzającego). Dzięki SNMP administratorzy sieci mogą zbierać dane o stanie urządzeń, takich jak routery, przełączniki czy serwery, co pozwala na szybką identyfikację problemów, optymalizację wydajności oraz planowanie zasobów. Protokół SNMP jest szeroko stosowany w branży IT, będąc częścią standardów IETF. Przykładem zastosowania może być monitorowanie obciążenia serwera w czasie rzeczywistym, co pozwala na podejmowanie decyzji na podstawie zebranych danych. Ponadto, SNMP wspiera różne poziomy bezpieczeństwa i wersje, co pozwala na dostosowanie go do specyficznych potrzeb organizacji. Standardy SNMP są zgodne z najlepszymi praktykami, co daje pewność, że system zarządzania siecią będzie działał w sposób efektywny i bezpieczny.

Pytanie 34

Jaki jest skrócony zapis maski sieci, której adres w zapisie dziesiętnym to 255.255.254.0?

A. /24
B. /23
C. /25
D. /22
Zapis skrócony maski sieci 255.255.254.0 to /23, co oznacza, że w pierwszych 23 bitach znajduje się informacja o sieci, a pozostałe 9 bitów jest przeznaczone na identyfikację hostów. W zapisie dziesiętnym maska 255.255.254.0 ma postać binarną 11111111.11111111.11111110.00000000, co potwierdza, że pierwsze 23 bity są jedynkami, a pozostałe bity zerami. Ta maska pozwala na adresowanie 512 adresów IP w danej podsieci, co jest przydatne w większych środowiskach sieciowych, gdzie liczba hostów może być znacząca, na przykład w biurach czy na uczelniach. Dzięki zapisie skróconemu łatwiej jest administracyjnie zarządzać adresami IP, co jest zgodne z dobrymi praktykami w dziedzinie inżynierii sieciowej. Zrozumienie, jak funkcjonują maski sieciowe, pozwala na efektywne projektowanie sieci oraz optymalizację wykorzystania dostępnych zasobów adresowych.

Pytanie 35

Jakie urządzenie sieciowe pozwoli na przekształcenie sygnału przesyłanego przez analogową linię telefoniczną na sygnał cyfrowy w komputerowej sieci lokalnej?

A. Modem.
B. Switch.
C. Access point.
D. Media converter.
Modem to urządzenie, które pełni kluczową rolę w komunikacji między analogowymi a cyfrowymi systemami. Jego podstawową funkcją jest modulkacja i demodulkacja sygnałow, co oznacza przekształcanie danych cyfrowych z komputera na sygnał analogowy, który może być przesyłany przez tradycyjną linię telefoniczną. Kiedy dane z komputera są przesyłane do modemu, modem przekształca je w sygnał analogowy, co pozwala na ich transmisję. Po drugiej stronie, gdy sygnał analogowy wraca do modemu, proces jest odwracany - sygnał analogowy jest demodulowany i przekształcany z powrotem do formatu cyfrowego. Przykładami zastosowania modemów są domowe połączenia internetowe przez DSL lub dial-up, gdzie modem jest niezbędny do uzyskania dostępu do sieci internetowej. Modemy są zgodne z różnymi standardami, takimi jak V.90 dla połączeń dial-up, co pokazuje ich znaczenie i szerokie zastosowanie w branży telekomunikacyjnej i informatycznej.

Pytanie 36

Jaką maksymalną liczbę komputerów można zaadresować adresami IP w klasie C?

A. 256 komputerów
B. 252 komputery
C. 254 komputery
D. 255 komputerów
Adresy IP klasy C mają strukturę, która pozwala na podział sieci na mniejsze segmenty, co jest idealne w przypadku małych sieci lokalnych. Klasa C posiada 24 bity dla identyfikacji sieci i 8 bitów dla identyfikacji hostów. Wartość 2^8 daje nam 256 możliwych adresów dla hostów. Jednak z tych adresów należy odjąć dwa: jeden jest zarezerwowany dla adresu sieci, a drugi dla adresu rozgłoszeniowego (broadcast). Dlatego maksymalna liczba komputerów, które można zaadresować w sieci klasy C wynosi 254. W praktyce takie sieci są często stosowane w biurach oraz małych organizacjach, gdzie liczy się efektywne wykorzystanie dostępnych adresów IP. Umożliwia to łatwe zarządzanie urządzeniami, a także zwiększa bezpieczeństwo poprzez ograniczenie dostępu do pozostałych segmentów sieci. W branży IT, zgodnie z normami IETF, zaleca się staranne planowanie adresacji IP, aby uniknąć konfliktów i zapewnić płynność działania sieci.

Pytanie 37

Które z komputerów o adresach IPv4 przedstawionych w tabeli należą do tej samej sieci?

KomputerAdres IPv4
1172.50.12.1/16
2172.70.12.1/16
3172.70.50.1/16
4172.80.50.1/16
A. 2 i 4
B. 2 i 3
C. 1 i 2
D. 3 i 4
Odpowiedź 2 i 3 jest poprawna, ponieważ oba adresy IP, 172.70.0.0 i 172.70.1.0, mają tę samą część sieciową zgodnie z maską /16, co oznacza, że ich pierwsze 16 bitów jest identyczne. W praktyce, adresy IP w tej samej sieci mogą komunikować się bezpośrednio, co jest kluczowe w projektowaniu i zarządzaniu infrastrukturą sieciową. Użycie maski /16 pozwala na utworzenie dużej liczby adresów hostów w tej samej podsieci, co jest ważne dla organizacji z wieloma urządzeniami. Rozumienie, jak adresowanie IP działa w kontekście różnych masek, jest niezbędne do skutecznego konfigurowania sieci i zapewnienia ich wydajności. W przypadku adresów 1 i 2 lub 3 i 4, różnice w pierwszych 16 bitach adresów IP wskazują, że znajdują się one w różnych sieciach, co uniemożliwia im komunikację bez pomocy routera. Takie podstawowe zasady adresowania IP są fundamentalne dla architektury sieci i powinny być znane każdemu profesjonalistowi w tej dziedzinie.

Pytanie 38

Urządzenie warstwy dystrybucji, które odpowiada za połączenie odrębnych sieci oraz zarządzanie przepływem danych między nimi, nazywane jest

A. koncentratorem
B. serwerem
C. routerem
D. przełącznikiem
Router jest urządzeniem, które pełni kluczową rolę w łączeniu różnych sieci komputerowych oraz zarządzaniu przepływem danych między nimi. W przeciwieństwie do innych urządzeń sieciowych, jak przełączniki czy koncentratory, routery są zdolne do podejmowania decyzji o trasowaniu pakietów danych na podstawie ich adresów IP. Używają do tego protokołów routingu, takich jak RIP, OSPF czy BGP, co pozwala im na dynamiczne dostosowywanie tras w zależności od warunków w sieci. Przykładem zastosowania routera może być łączenie lokalnej sieci domowej z Internetem, gdzie router zarządza zarówno ruchem lokalnym, jak i komunikacją z siecią globalną. Dobre praktyki w zakresie konfiguracji routerów obejmują zabezpieczanie dostępu do panelu administracyjnego, aktualizowanie oprogramowania oraz stosowanie zapór sieciowych, aby chronić sieć przed nieautoryzowanym dostępem. Zrozumienie funkcji routerów jest kluczowe dla projektowania efektywnych i bezpiecznych architektur sieciowych.

Pytanie 39

Komputery K1 i K2 nie mogą się komunikować. Adresacja urządzeń jest podana w tabeli. Co należy zmienić, aby przywrócić komunikację w sieci?

UrządzenieAdresMaskaBrama
K110.0.0.2255.255.255.12810.0.0.1
K210.0.0.102255.255.255.19210.0.0.1
R1 (F1)10.0.0.1255.255.255.128
R1 (F2)10.0.0.101255.255.255.192
Ilustracja do pytania
A. Adres bramy dla K1.
B. Maskę w adresie dla K1.
C. Maskę w adresie dla K2.
D. Adres bramy dla K2.
Adres bramy dla K2 jest kluczowym elementem w zapewnieniu, że urządzenia K1 i K2 mogą się komunikować. K1, posiadający adres 10.0.0.2 z maską 255.255.255.128, znajduje się w podsieci 10.0.0.0/25, co oznacza, że jego adresy IP w tej podsieci mieszczą się w zakresie od 10.0.0.1 do 10.0.0.126. Z kolei K2 ma adres 10.0.0.102 z maską 255.255.255.192, co wskazuje na podsieć 10.0.0.64/26, obejmującą adresy od 10.0.0.65 do 10.0.0.126. Aby zapewnić komunikację między tymi urządzeniami, muszą one być w tej samej podsieci lub muszą mieć odpowiednio skonfigurowane bramy. W przypadku K2, adres bramy 10.0.0.1 nie jest poprawny, ponieważ znajduje się w innej podsieci. K2 powinno mieć bramę w swojej podsieci, na przykład 10.0.0.65. Takie podejście jest zgodne z dobrymi praktykami projektowania sieci, które zalecają, aby urządzenia komunikujące się ze sobą miały wspólny adres bramy lub znajdowały się w tej samej podsieci. W praktyce, niewłaściwa konfiguracja adresów bramy i submask często prowadzi do problemów z komunikacją w sieciach, co podkreśla znaczenie dokładnej analizy adresacji IP.

Pytanie 40

Komputer ma problem z komunikacją z komputerem w innej sieci. Która z przedstawionych zmian ustawiania w konfiguracji karty sieciowej rozwiąże problem?

Ilustracja do pytania
A. Zmiana maski na 255.255.255.0
B. Zmiana adresu bramy na 10.1.0.2
C. Zmiana adresu serwera DNS na 10.0.0.2
D. Zmiana maski na 255.0.0.0
Decyzja o zmianie adresu bramy na 10.1.0.2 jest średnio trafiona, bo brama to kluczowy element do komunikacji pomiędzy różnymi sieciami. Kiedy adres bramy jest dobrze skonfigurowany, jak w tym przypadku, nie ma sensu go zmieniać. Zmiana może tylko wprowadzić zamieszanie w całej konfiguracji sieci. Propozycje zmiany maski na 255.255.255.0 lub 255.0.0.0 mogą przynieść jeszcze więcej problemów z komunikacją. Maska 255.255.255.0 ogranicza dostęp do maksymalnie 254 adresów w lokalnej sieci, co nie pomoże z połączeniami z innymi sieciami. Często ludzie mylą dużą liczbę adresów IP z możliwością ich używania w różnych sieciach, a tak naprawdę odpowiednia maska jest kluczowa dla wydajności komunikacji. Co więcej, zmiana adresu serwera DNS na 10.0.0.2 nie pomoże w rozwiązaniu problemu, bo DNS zajmuje się tłumaczeniem nazw domen, a nie kierowaniem pakietów. Zrozumienie tych rzeczy jest mega ważne dla efektywnej administracji siecią, a brak takiej wiedzy niestety prowadzi do frustracji i błędnych decyzji.