Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 24 stycznia 2026 20:16
  • Data zakończenia: 24 stycznia 2026 20:24

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Ile wynosi wartość natężenia prądu znamionowego toru głównego wyłącznika różnicowoprądowego przedstawionego na rysunku?

Ilustracja do pytania
A. 30 mA
B. 400 V
C. 800 A
D. 63 A
Odpowiedź 63 A jest poprawna, ponieważ na zdjęciu wyłącznika różnicowoprądowego znajduje się oznaczenie "63 A IΔn 30mA". Oznaczenie to wskazuje, że natężenie prądu znamionowego toru głównego wynosi 63 A, co jest istotne dla prawidłowego doboru wyłączników w instalacjach elektrycznych. Wyłączniki różnicowoprądowe są kluczowe w ochronie przed porażeniem prądem elektrycznym oraz w zapobieganiu pożarom spowodowanym zwarciami. Stosując wyłącznik o odpowiednich parametrach znamionowych, zapewniamy bezpieczeństwo użytkowników oraz zgodność z normami i przepisami, takimi jak PN-EN 61008. W kontekście praktycznym, wyłączniki o natężeniu 63 A są często stosowane w dużych instalacjach przemysłowych oraz w budynkach mieszkalnych z większym zapotrzebowaniem na energię elektryczną. Zastosowanie wyłącznika o niewłaściwych parametrach może prowadzić do awarii systemu ochrony, co podnosi ryzyko wystąpienia awarii elektrycznej.

Pytanie 2

Układ mechatroniczny jest zbudowany z elementu wykonawczego funkcjonującego w specjalnej osłonie, pod wysokim ciśnieniem roboczym, oraz z komponentów sterujących połączonych wzmocnionymi przewodami pneumatycznymi, które są mocowane za pomocą złączy wtykowych. Osoba obsługująca ten układ może być szczególnie narażona na uderzenie

A. tłoczyskiem siłownika
B. nieprawidłowo zamocowanym przewodem pneumatycznym
C. przerwanym przewodem pneumatycznym
D. siłownikiem
Odpowiedź "źle zamocowanym przewodem pneumatycznym" jest prawidłowa, ponieważ nieprawidłowe mocowanie przewodów pneumatycznych może prowadzić do sytuacji, w której przewód może się odłączyć lub spowodować niekontrolowane ruchy elementów wykonawczych. Zgodnie z normami bezpieczeństwa w przemyśle, takimi jak ISO 4414, kluczowe jest, aby przewody pneumatyczne były prawidłowo zamocowane i zabezpieczone przed wszelkimi uszkodzeniami mechanicznymi. Przykładem może być zastosowanie złączy wtykowych, które powinny być regularnie kontrolowane pod kątem ich stanu technicznego. W praktyce, w systemach mechatronicznych, należy także stosować odpowiednie uchwyty i prowadnice, które minimalizują ryzyko przypadkowego usunięcia przewodu. Niezapewnienie prawidłowego mocowania przewodu pneumatycznego może prowadzić do poważnych wypadków, w tym do uderzeń osób pracujących w pobliżu układów mechatronicznych. Dlatego szkolenia dla personelu eksploatującego takie systemy powinny kłaść duży nacisk na techniki prawidłowego mocowania i kontroli stanu przewodów pneumatycznych.

Pytanie 3

Które kolory przewodów należy zastosować do połączenia urządzenia z siecią pokazaną na rysunku?

Ilustracja do pytania
A. PE - żółto-zielony, N - czarny, LI - niebieski.
B. PE - niebieski, N - żółto-zielony, LI - brązowy.
C. PE - żółto-zielony, N - niebieski, LI - czarny.
D. PE - brązowy, N - niebieski, LI - czarny.
Poprawna odpowiedź to PE - żółto-zielony, N - niebieski, LI - czarny. W instalacjach elektrycznych zgodnie z normami PN-EN 60446 oraz PN-IEC 60446, kolory przewodów są ściśle określone dla zapewnienia bezpieczeństwa i poprawności wykonania połączeń. Przewód ochronny (PE) zawsze powinien być oznaczony kolorem żółto-zielonym, co wskazuje na jego funkcję ochronną, zabezpieczającą przed porażeniem prądem. Przewód neutralny (N) powinien mieć kolor niebieski, co jest standardem międzynarodowym, ułatwiającym identyfikację i poprawne podłączenie urządzeń. Przewód fazowy (L1) w tym przypadku oznaczono kolorem czarnym, co jest jedną z akceptowanych opcji. Te standardy nie tylko zwiększają bezpieczeństwo, ale również ułatwiają prace konserwacyjne, gdyż wyraźna kolorystyka pozwala na szybkie rozpoznanie funkcji poszczególnych przewodów. Dla przykładu, w przypadku awarii systemu elektrycznego, znajomość tych standardów pozwala technikom na sprawne diagnozowanie problemów i ich eliminowanie, co jest kluczowe dla zapewnienia ciągłości pracy urządzeń.

Pytanie 4

Przepisy dotyczące usuwania używanych urządzeń elektronicznych nakładają obowiązek

A. wyrzucić je do pojemnika na śmieci po wcześniejszym stłuczeniu szyjki kineskopu
B. przekazać je firmie zajmującej się odbiorem odpadów po wcześniejszym uzgodnieniu
C. wrzucić je do kosza na śmieci
D. pozostawić je obok kontenera na śmieci
Odpowiedź "przekazać je firmie wywożącej śmieci po uprzednim uzgodnieniu" jest prawidłowa, ponieważ zgodnie z przepisami dotyczącymi gospodarki odpadami, w tym szczególnie dotyczy to urządzeń elektronicznych, istnieją ściśle określone procedury ich utylizacji. Utylizacja tego typu odpadów wymaga, aby były one przekazywane do wyspecjalizowanych firm, które mają odpowiednie zezwolenia i zasoby do ich bezpiecznego przetwarzania. Tego rodzaju przedsiębiorstwa posiadają technologie pozwalające na recykling części elektronicznych oraz odpowiednie metody unieszkodliwiania niebezpiecznych substancji, takich jak rtęć czy ołów, które mogą występować w niektórych urządzeniach. Przykładowo, wiele z tych firm oferuje usługi odbioru z miejsca zamieszkania, co ułatwia użytkownikom przestrzeganie przepisów. Przekazanie urządzeń wykwalifikowanym specjalistom nie tylko zapewnia zgodność z prawem, ale również chroni środowisko i zdrowie ludzi, zmniejszając ryzyko zanieczyszczenia.

Pytanie 5

Mocno podgrzana ciecz hydrauliczna wytwarza podczas awarii w słabo wentylowanym pomieszczeniu tzw. "mgłę olejową", która może prowadzić do różnych schorzeń

A. układu pokarmowego
B. układu słuchu
C. dermatologicznych
D. układu sercowego
Silnie rozgrzana ciecz hydrauliczna, która tworzy mgłę olejową w pomieszczeniach o słabej wentylacji, może prowadzić do problemów dermatologicznych. Wysoka temperatura oraz skład chemiczny cieczy hydraulicznej mogą powodować podrażnienie skóry, a nawet alergie kontaktowe. Osoby narażone na długotrwały kontakt z taką mgłą mogą doświadczać objawów takich jak wysypka, swędzenie czy inne zmiany skórne. Dobrą praktyką w środowisku pracy jest stosowanie odpowiednich środków ochrony osobistej, takich jak rękawice ochronne oraz odzież długą, a także zapewnienie odpowiedniej wentylacji pomieszczeń, co jest zgodne z normami BHP. Standardy te są szczególnie istotne w przemysłach, gdzie wykorzystywane są substancje chemiczne, aby minimalizować ryzyko zdrowotne dla pracowników. Warto również przeprowadzać regularne szkolenia dla pracowników dotyczące zagrożeń związanych z substancjami chemicznymi oraz zasad ochrony zdrowia w miejscu pracy.

Pytanie 6

W trakcie serwisowania urządzenia mechatronicznego, w którym istnieje ryzyko wystąpienia napięcia elektrycznego, technik mechatronik powinien stosować

A. rękawic ochronnych i fartucha ochronnego
B. okularów ochronnych i fartucha ochronnego
C. nienaruszonych narzędzi izolowanych
D. szczypiec oraz zestawu wkrętaków
Używanie nieuszkodzonych narzędzi izolowanych jest kluczowym elementem zapewnienia bezpieczeństwa podczas pracy z urządzeniami mechatronicznymi, w których może występować niebezpieczne napięcie elektryczne. Narzędzia izolowane, takie jak śrubokręty, szczypce czy klucze, są zaprojektowane z myślą o minimalizacji ryzyka porażenia prądem elektrycznym. Izolacja narzędzi powinna spełniać odpowiednie normy, takie jak IEC 60900, które określają wymagania dotyczące narzędzi używanych w obszarach narażonych na wysokie napięcia. Przykładem zastosowania izolowanych narzędzi może być naprawa elektrycznych systemów sterowania w robotach przemysłowych, gdzie dostęp do napięciowych elementów urządzenia wiąże się z ryzykiem. W praktyce, stosowanie tych narzędzi powinno być rutyną w codziennej pracy mechatronika, a przed każdym użyciem należy upewnić się, że nie ma widocznych uszkodzeń izolacji. Regularne kontrole i konserwacja narzędzi izolowanych są również niezbędne, aby zapewnić ich niezawodność i skuteczność.

Pytanie 7

Czynniki zagrażające zdrowiu ludzi, związane z użyciem urządzeń hydraulicznych, są w głównej mierze spowodowane przez

A. wysokie temperatury płynów.
B. wysokie ciśnienia płynów oraz ogromne siły.
C. wibracje oraz hałas.
D. duże przepływy prądów.
Odpowiedź dotycząca wysokich ciśnień cieczy i dużych sił jako zagrożeń dla zdrowia człowieka w kontekście urządzeń hydraulicznych jest poprawna. Urządzenia hydrauliczne działają na zasadzie wykorzystania ciśnienia cieczy do przenoszenia sił i momentów, co czyni je niezwykle efektywnymi w wielu zastosowaniach przemysłowych. Wysokie ciśnienie w układach hydraulicznych, które może osiągać wartości kilkuset barów, stwarza ryzyko nie tylko uszkodzenia samych urządzeń, ale również poważnych wypadków, jeśli system ulegnie awarii. Przykładem może być wybuch węża hydraulicznego, który może prowadzić do niebezpiecznych sytuacji, takich jak obrażenia ciała pracowników. Dlatego w branży hydraulicznej istnieją ścisłe normy bezpieczeństwa, takie jak ISO 4413, które określają wymagania dotyczące hydraulicznych systemów zasilania, aby minimalizować ryzyko związane z wysokim ciśnieniem i siłami. Użytkownicy urządzeń hydraulicznych powinni być odpowiednio przeszkoleni, a urządzenia poddawane regularnym inspekcjom, aby zapewnić ich bezpieczeństwo i sprawność działania.

Pytanie 8

Zainstalowanie dodatkowych zaworów bezpieczeństwa w systemie zasilającym zbiornik ciśnieniowy?

A. powiększa ryzyko związane z możliwością rozerwania zbiornika
B. nie wywiera wpływu na wzrost lub zmniejszenie ryzyka, jakie wynika z możliwości rozerwania zbiornika
C. ogranicza ryzyko wynikające z możliwości rozerwania zbiornika
D. całkowicie redukuje ryzyko, jakie wiąże się z możliwością rozerwania zbiornika
Montaż dodatkowych zaworów bezpieczeństwa w instalacji zasilającej zbiornik ciśnieniowy to naprawdę ważny krok, jeśli chodzi o bezpieczeństwo. Te zawory pomagają regulować ciśnienie wewnętrzne, co jest kluczowe, żeby nie doszło do rozerwania zbiornika. W praktyce, dobrze jest stosować zawory zgodnie z międzynarodowymi normami, na przykład ASME czy EN. Wyobraź sobie sytuację w zakładzie przemysłowym, gdzie pompy generują duże ciśnienie; wtedy zawory mogą odprowadzić nadmiar medium, co jest mega przydatne. No i oczywiście pamiętaj o regularnej konserwacji tych zaworów – to też wpływa na bezpieczeństwo całej operacji. Odpowiednio dobrane i zainstalowane zawory naprawdę mogą zmniejszyć ryzyko wypadków, co jest korzystne zarówno dla ludzi, jak i dla samej infrastruktury.

Pytanie 9

Podczas nieostrożnego lutowania pracownik narażony jest przede wszystkim na

A. uszkodzenie wzroku
B. krwawienie z nosa
C. uszkodzenie słuchu
D. poparzenie dłoni
Poparzenia dłoni są jednym z najczęstszych zagrożeń dla pracowników lutujących, ze względu na wysoką temperaturę topnienia materiałów lutowniczych oraz używanych narzędzi. W trakcie lutowania, szczególnie przy użyciu lutownic o dużej mocy, istnieje ryzyko kontaktu nagrzanych elementów z naskórkiem, co może prowadzić do poważnych oparzeń. Przykładem dobrej praktyki w zapobieganiu takim incydentom jest stosowanie odpowiedniej odzieży ochronnej, takiej jak rękawice odporną na wysoką temperaturę oraz osłony na przedramiona. Ponadto, w standardach BHP w przemyśle elektronicznym zaleca się regularne szkolenia dla pracowników, aby zwiększyć ich świadomość na temat zagrożeń związanych z lutowaniem i nauczyć ich technik bezpiecznej pracy. Dodatkowo, stosowanie narzędzi takich jak podkładki izolacyjne oraz zachowanie odpowiedniego dystansu od elementów, które mogą być gorące, jest kluczowe dla minimalizacji ryzyka poparzeń.

Pytanie 10

Zaświecenie której lampki sygnalizacyjnej informuje o niebezpieczeństwie?

Ilustracja do pytania
A. Lampki 4.
B. Lampki 1.
C. Lampki 3.
D. Lampki 2.
Lampka 4, oznaczająca czerwoną sygnalizację, jest kluczowym elementem systemów bezpieczeństwa. Czerwony kolor jest powszechnie akceptowany na całym świecie jako symbolem niebezpieczeństwa, co czyni go łatwo rozpoznawalnym w sytuacjach awaryjnych. W praktyce, w wielu branżach, takich jak przemysł, transport czy energetyka, lampki sygnalizacyjne pełnią istotną rolę w zapewnieniu bezpieczeństwa. Na przykład, w zakładach przemysłowych, czerwona lampka może sygnalizować zatrzymanie maszyny z powodu awarii, a pracownicy są zobowiązani do natychmiastowego reagowania na ten sygnał. W kontekście przepisów BHP, stosowanie czerwonego w sygnalizacji jest zgodne z normami międzynarodowymi, takimi jak ISO 7010, które określają standardy dotyczące oznakowania bezpieczeństwa. Właściwe rozumienie znaczenia lampki sygnalizacyjnej jest kluczowe dla skutecznego zarządzania ryzykiem oraz minimalizacji zagrożeń w miejscu pracy.

Pytanie 11

Po przeprowadzeniu napraw w szafie sterowniczej numerycznej obrabiarki, pracownik doznał porażenia prądem. Jest nieprzytomny, lecz oddycha. W pierwszej kolejności, po odłączeniu go od źródła prądu, powinno się wykonać następujące kroki:

A. ustawić poszkodowanego w stabilnej pozycji bocznej i wezwać pomoc medyczną
B. ułożyć poszkodowanego na noszach w wygodnej pozycji i przetransportować go do lekarza w celu oceny stanu zdrowia
C. ustawić poszkodowanego na boku, zapewnić mu świeże powietrze i rozpocząć sztuczne oddychanie
D. wezwać pomoc medyczną, położyć poszkodowanego na plecach i rozpocząć sztuczne oddychanie
Odpowiedź, w której porażony zostaje ułożony w pozycji bocznej ustalonej, jest prawidłowa, ponieważ zapewnia to drożność dróg oddechowych i minimalizuje ryzyko aspiracji. Pozycja ta jest kluczowa w przypadku osób nieprzytomnych, które oddychają, ponieważ pozwala na swobodne wydostawanie się ewentualnych wydzielin, a jednocześnie chroni przed zadławieniem. Wzywając pomoc lekarską, dbamy o to, aby profesjonalna interwencja mogła zostać podjęta jak najszybciej, co jest szczególnie ważne w przypadku porażenia prądem, które może prowadzić do poważnych uszkodzeń wewnętrznych. W praktyce, osoby pracujące w środowisku przemysłowym powinny być przeszkolone w zakresie udzielania pierwszej pomocy, co jest zgodne z normą ISO 45001 dotyczącą zarządzania bezpieczeństwem i zdrowiem w pracy. Przykładowo, jeśli pracownik ulegnie porażeniu, niezwłocznie należy ocenić jego stan, a po umieszczeniu go w odpowiedniej pozycji, regularnie kontrolować jego oddech i reakcje, co jest kluczowe do oceny jego stanu przed przybyciem służb medycznych.

Pytanie 12

Na podstawie fragmentu instrukcji określ możliwe napięcie zasilające przetwornik ultradźwiękowy zastosowany w urządzeniu pracującym w strefie zagrożonej wybuchem.

A. Zdalny czujnik temperatury (tylko 3108)
B. Czarny: 0 V DC
C. Czerwony: 12 ÷ 40 V DC (w obszarze bezpiecznym), 12 ÷ 30 V DC z bariery ochronnej (w obszarze zagrożonym)
D. Obszar bezpieczny: Ekran kabla podłączyć do standardowego uziemienia (masy) lub obszar zagrożony: Ekran kabla podłączyć do uziemienia iskrobezpiecznego (masy)
Ilustracja do pytania
A. Napięcie przemienne 12 V.
B. Napięcie stałe 30 V.
C. Napięcie stałe 40 V.
D. Napięcie przemienne 30 V.
Wybór napięcia przemiennego, takiego jak 12 V czy 30 V, nie jest właściwym podejściem do zasilania przetwornika ultradźwiękowego w strefach zagrożonych wybuchem. Zasilanie urządzeń pracujących w takich warunkach powinno opierać się na napięciu stałym, co wynika z zasad bezpieczeństwa, które mają na celu zminimalizowanie ryzyka wybuchu. Napięcie przemienne charakteryzuje się zmieniającą się wartością skuteczną, co może prowadzić do indukcji dodatkowych prądów w obwodach, a tym samym zwiększenia ryzyka iskrzenia. Ponadto, napięcia takie jak 40 V są również nieodpowiednie, ponieważ przekraczają maksymalny dopuszczalny limit dla zasilania w strefach zagrożonych, który wynosi 30 V DC. W takich aplikacjach kluczowe jest przestrzeganie zaleceń producentów dotyczących zasilania, aby zapewnić bezpieczeństwo i niezawodność działania urządzeń. Typowym błędem jest także brak uwzględnienia specyfikacji dotyczących warunków pracy urządzenia oraz norm branżowych, co prowadzi do nieprawidłowych wniosków dotyczących dopuszczalnych parametrów zasilania dla przetworników ultradźwiękowych. Zrozumienie tych zasad jest niezbędne nie tylko dla zapewnienia efektywności działania urządzeń, ale także dla ochrony ludzi i środowiska w obszarach, gdzie występuje ryzyko wybuchu.

Pytanie 13

Jakie urządzenie chroni silnik przed zwarciem i przeciążeniem?

A. termistor
B. odgromnik
C. wyłącznik silnikowy
D. przekaźnik termiczny
Choć przekaźnik termiczny, odgromnik i termistor są ważnymi elementami w systemach elektrycznych, nie pełnią one roli zabezpieczenia silników przed zwarciem i przeciążeniem. Przekaźnik termiczny działa na zasadzie detekcji wzrostu temperatury, co może być stosowane w zabezpieczeniach różnych obwodów, ale nie jest bezpośrednim zabezpieczeniem silnika. Jego zastosowanie ogranicza się do obwodów, w których przyczyny przegrzania są inne niż przeciążenie lub zwarcie. Odgromnik, z drugiej strony, jest urządzeniem ochronnym zapobiegającym skutkom przepięć, ale nie zabezpiecza przed problemami związanymi z przeciążeniem silników. Jego rola koncentruje się na ochronie instalacji przed wyładowaniami atmosferycznymi. Termistor, jako element elektroniczny, również nie jest praktycznym rozwiązaniem do zabezpieczania silników, gdyż jego zastosowanie ogranicza się do pomiarów temperatury, a nie do bezpośredniego odcięcia zasilania w przypadku awarii. W praktyce, przy projektowaniu systemów elektrycznych i automatyki, kluczowe jest stosowanie wyłączników silnikowych, które oferują odpowiednią reakcję na zmiany warunków pracy silnika, co gwarantuje jego dłuższą żywotność i bezawaryjność.

Pytanie 14

Wyłącznik silnikowy może zadziałać na skutek

A. braku jednej fazy zasilającej silnik
B. użycia stałego napięcia w obwodzie sterowania silnika
C. uruchomienia silnika przy niewielkim obciążeniu
D. połączenia uzwojeń silnika w gwiazdę zamiast w trójkąt
Skojarzenie uzwojeń silnika w gwiazdę zamiast w trójkąt nie jest przyczyną zadziałania wyłącznika silnikowego, lecz wynika z różnicy w napięciu oraz charakterystyce obciążenia. W przypadku silników małej mocy, skojarzenie w gwiazdę zmniejsza napięcie na uzwojeniach, co jest korzystne przy rozruchu. Włączenie silnika pod niewielkim obciążeniem, co również sugeruje niepoprawna odpowiedź, nie powinno powodować zadziałania wyłącznika, o ile obciążenie jest w granicach dopuszczalnych parametrów silnika. Nieprawidłowe myślenie w tym kontekście często prowadzi do przekonania, że każdy typ obciążenia jest równie niebezpieczny dla silnika, podczas gdy rzeczywistość jest bardziej złożona. Zastosowanie stałego napięcia w obwodzie sterownia silnika jest również błędnym założeniem, gdyż silniki asynchroniczne są zaprojektowane do pracy z napięciem przemiennym. Stosowanie napięcia stałego w takim kontekście prowadziłoby do uszkodzenia silnika, co jest sprzeczne z zasadami jego działania. Kluczowe jest zrozumienie, że prawidłowe zasilanie i odpowiednie parametry pracy silnika to fundamenty jego efektywności i bezpieczeństwa.

Pytanie 15

Negatywny wpływ intensywnych fal elektromagnetycznych emitowanych przez działające urządzenie mechatroniczne można zredukować, stosując osłonę w postaci obudowy

A. metalowej
B. polwinitowej
C. z żywicy epoksydowej
D. drewnianej
Ekranowanie urządzeń mechatronicznych ma kluczowe znaczenie w zarządzaniu wpływem silnych fal elektromagnetycznych. Obudowy metalowe są najskuteczniejszym rozwiązaniem, ponieważ metale wykazują właściwości pochłaniające oraz odbijające fale elektromagnetyczne, co skutecznie minimalizuje ich przenikanie do wnętrza obudowy. Przykładem zastosowania metalowych obudów są urządzenia telekomunikacyjne, które muszą spełniać normy EMC (electromagnetic compatibility), co zapewnia ich prawidłowe funkcjonowanie w środowiskach o wysokim poziomie zakłóceń elektromagnetycznych. Standardy takie jak EN 55032 określają wymagania dotyczące emisji elektromagnetycznej, a obudowy metalowe są kluczowym elementem w ich spełnianiu. Dodatkowo, metalowe ekranowanie jest stosowane w wielu aplikacjach przemysłowych, takich jak maszyny CNC, gdzie zakłócenia mogą prowadzić do błędów w obróbce. Warto również wspomnieć, że odpowiednia konstrukcja obudowy, uwzględniająca różne czynniki, takie jak grubość materiału czy typ metalu, ma znaczący wpływ na efektywność ekranowania. Dlatego wybór metalowej obudowy jest najlepszym rozwiązaniem w kontekście ochrony przed niekorzystnymi skutkami fal elektromagnetycznych.

Pytanie 16

Przed zainstalowaniem podtynkowej instalacji zasilającej dla urządzenia mechatronicznego nie weryfikuje się

A. wagi żył w przewodzie
B. ciągłości żył przewodu
C. stanu izolacji przewodu
D. średnicy żył przewodu
Analizując pozostałe odpowiedzi, warto zwrócić uwagę na istotność każdego z wymienionych czynników w kontekście montażu instalacji elektrycznych. Sprawdzanie średnicy żył przewodu jest kluczowe, ponieważ niewłaściwie dobrana średnica może prowadzić do nadmiernego przegrzewania się przewodu, co skutkuje utratą efektywności energetycznej, a w najgorszym przypadku – do pożaru. Z tego względu, dobór odpowiednich przewodów zgodnie z normami, takimi jak PN-IEC 60364, jest obowiązkowy. Podobnie, ciągłość żył jest niezbędna do zapewnienia, że instalacja będzie działać poprawnie. Możliwość przerwania obwodu, np. w wyniku uszkodzenia przewodu, może prowadzić do nieprzewidzianych przestojów w działaniu urządzeń, co w kontekście przemysłowym ma poważne konsekwencje finansowe oraz operacyjne. Stan izolacji również nie może być bagatelizowany. Uszkodzenie izolacji naraża użytkowników na ryzyko porażenia prądem, a także umożliwia powstawanie zwarć, co z kolei może prowadzić do katastrof elektrycznych. Oparcie się na wadze żył jako kryterium przed montażem jest błędną strategią, ponieważ nie daje ono żadnych praktycznych informacji o bezpieczeństwie czy wydajności instalacji. Dlatego istotne jest, aby koncentrować się na sprawdzeniu średnicy, ciągłości oraz izolacji, co zapewnia bezpieczeństwo i funkcjonalność instalacji elektrycznych.

Pytanie 17

Na podstawie ilustracji z instrukcji obsługi rotametru wskaż sposób jego montażu.

Ilustracja do pytania
A. Rotametr należy montować w pozycji poziomej z przepływem czynnika z lewej do prawej.
B. Rotametr należy montować w pozycji pionowej z przepływem czynnika z dołu do góry.
C. Rotametr należy montować w pozycji poziomej z przepływem czynnika z prawej do lewej.
D. Rotametr należy montować w pozycji pionowej z przepływem czynnika z góry do dołu.
Nieprawidłowy montaż rotametru w pozycji poziomej lub w odwrotnym kierunku przepływu może prowadzić do wielu poważnych konsekwencji. W przypadku montażu w pozycji poziomej, ciśnienie hydrostatyczne oraz siły grawitacji nie działają w sposób, który pozwala na precyzyjne pomiaru przepływu. Możliwe jest, że wirnik rotametru nie porusza się w odpowiedni sposób, co prowadzi do błędnych wskazań. W przypadku próby montażu z przepływem czynnika z góry do dołu, rotametr mógłby działać na zasadzie przeciwnej do zamierzonej, co skutkowałoby dodatkowo zafałszowaniem odczytów. Niezrozumienie zasady działania tych urządzeń często prowadzi do mylnych wniosków i niewłaściwego stosowania, co może generować nieefektywność procesów oraz ryzyko dla bezpieczeństwa. Aby uniknąć takich problemów, kluczowe jest, aby zawsze odnosić się do dokumentacji technicznej oraz standardów jakości, które jasno określają wymagania dotyczące instalacji rotametru. Zamiast podejmować decyzje na podstawie intuicji lub doświadczenia, warto korzystać z popartych dowodami praktyk, które zapewniają minimalizację błędów oraz maksymalizują efektywność pomiarów.

Pytanie 18

Największe ryzyko związane z urządzeniami elektrycznymi wynika z możliwości

A. wystąpienia zwarcia doziemnego
B. dotknięcia odizolowanych części będących pod napięciem
C. pojawu przerwy w obwodzie elektrycznym
D. dotknięcia elementów urządzenia elektrycznego mających uziemienie
Dotknięcie odizolowanych elementów znajdujących się pod napięciem stanowi poważne zagrożenie dla zdrowia i życia ludzi. Elementy te, jeśli są odizolowane, mogą wydawać się bezpieczne, jednak w momencie, gdy dojdzie do naruszenia izolacji, stają się źródłem niebezpiecznego napięcia elektrycznego. Przykładem może być uszkodzona wtyczka lub przewód, w którym izolacja została przerwana, a przewodnik stał się dostępny. W takich sytuacjach, dotykając odizolowanego elementu, osoba może stać się drogą, przez którą prąd elektryczny przepływa do ziemi, co może prowadzić do porażenia elektrycznego. Zgodnie z normami bezpieczeństwa, takimi jak PN-EN 61140, urządzenia elektryczne powinny być projektowane z myślą o minimalizowaniu ryzyka kontaktu z elementami pod napięciem. Regularne przeglądy oraz stosowanie odpowiednich zabezpieczeń, takich jak wyłączniki różnicowo-prądowe, mogą znacznie zredukować to ryzyko. Odpowiednia edukacja użytkowników i pracowników w zakresie bezpieczeństwa elektrycznego jest kluczowa dla zapobiegania wypadkom.

Pytanie 19

Wymiana tranzystora wyjściowego w CMOS sterowniku PLC powinna być przeprowadzana z użyciem

A. butów z izolowaną podeszwą
B. okularów ochronnych
C. opaski uziemiającej
D. bawełnianego fartucha ochronnego
Stosowanie okularów ochronnych, butów z izolowaną podeszwą lub bawełnianego fartucha ochronnego w kontekście wymiany tranzystora wyjściowego CMOS sterownika PLC może wydawać się na pierwszy rzut oka odpowiednie, jednak nie adresuje kluczowego zagadnienia ochrony przed elektrostatycznymi wyładowaniami. Okulary ochronne, choć istotne w kontekście ochrony wzroku przed przypadkowymi zanieczyszczeniami czy odpryskami, nie mają wpływu na zapobieganie uszkodzeniom komponentów elektronicznych spowodowanym przez ESD. Z kolei buty z izolowaną podeszwą, mimo że mogą chronić przed porażeniem prądem w niektórych sytuacjach, nie eliminują ryzyka gromadzenia się ładunków elektrostatycznych, co jest kluczowym zagadnieniem podczas pracy z układami CMOS. Bawełniany fartuch ochronny również nie ma zastosowania w kontekście ochrony przed ESD, a jego główną rolą jest ochrona przed zanieczyszczeniami i rozpryskami materiałów chemicznych. W praktyce, błędne podejście do ochrony przed ESD prowadzi do niepotrzebnych uszkodzeń sprzętu, zwiększając koszty napraw i przestojów. Kluczowe jest zrozumienie, że wrażliwość układów CMOS na ESD wymaga stosowania wyspecjalizowanych metod ochrony, a nie standardowych środków ochrony osobistej, które nie odpowiadają na specyfikę zagrożeń związanych z elektrostatycznymi wyładowaniami.

Pytanie 20

Który przyrząd pozwoli przed podłączeniem silnika trójfazowego do napięcia zasilającego na określenie kierunku obrotów wirnika?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Wybór odpowiedzi innej niż A może wynikać z niepełnego zrozumienia roli, jaką odgrywają falowniki w systemach zasilania silników trójfazowych. Przyrządy takie jak przełączniki, styczniki czy inne elementy elektryczne nie mają zdolności do bezpośredniej regulacji kierunku obrotów wirnika. Na przykład, przełącznik może jedynie zmieniać połączenia w obwodzie, co w teorii może wpłynąć na kierunek obrotów, jednak nie daje to możliwości precyzyjnego kontrolowania prędkości ani kierunku przed podłączeniem silnika do zasilania. Styczniki z kolei służą głównie do załączania i wyłączania obwodów, a nie do ich regulacji. Warto też zauważyć, że w praktycznych zastosowaniach, nieodpowiednie podejście do wyboru kierunku obrotów przed uruchomieniem silnika może prowadzić do uszkodzenia sprzętu, dlatego tak istotne jest korzystanie z falowników. W kontekście standardów branżowych, nieprzestrzeganie zasad dotyczących bezpiecznego uruchamiania silników może prowadzić do poważnych awarii i przestojów w pracy. Dlatego zrozumienie technologii falowników i ich znaczenia w systemach zasilania jest kluczowe dla profesjonalistów w dziedzinie automatyki.

Pytanie 21

W instalacjach niskonapięciowych (systemach TN) jako elementy zabezpieczające mogą być wykorzystywane

A. izolatory długiej osi
B. wyłączniki różnicowoprądowe
C. dławiki blokujące
D. wyłączniki montażowe
Wybór innych urządzeń ochronnych, takich jak wyłączniki natynkowe, dławiki zaporowe czy izolatory długopniowe, nie jest odpowiedni w kontekście ochrony przed porażeniem prądem w układach niskiego napięcia. Wyłączniki natynkowe to elementy, które głównie służą do włączania i wyłączania obwodów, ale nie oferują ochrony przed upływem prądu, co czyni je nieodpowiednimi do ochrony ludzi. Dławiki zaporowe z kolei są stosowane w celu ograniczania zakłóceń elektromagnetycznych, a ich funkcja nie ma nic wspólnego z bezpieczeństwem użytkowników w przypadku awarii instalacji elektrycznej. Izolatory długopniowe są istotnymi elementami w systemach przesyłowych, jednak ich rola polega na zapewnieniu izolacji elektrycznej w sieciach wysokiego napięcia, a nie na ochronie przed prądem różnicowym w instalacjach niskonapięciowych. W praktyce, wybór niewłaściwych urządzeń ochronnych może prowadzić do poważnych zagrożeń dla zdrowia i życia użytkowników. Zastosowanie wyłączników różnicowoprądowych jest kluczowe dla zapewnienia bezpieczeństwa, a ignorowanie tej zasady może skutkować nie tylko zagrożeniem dla osób korzystających z energii elektrycznej, ale również naruszeniem obowiązujących norm i przepisów. Właściwe podejście do ochrony przed porażeniem prądem w instalacjach elektrycznych powinno opierać się na znajomości zasad działania i zastosowań odpowiednich urządzeń ochronnych, zgodnych z aktualnymi standardami branżowymi.

Pytanie 22

Osoba pracująca przy monitorze komputerowym ma prawo do

A. zmniejszenia o 10 minut czasu pracy za każdą godzinę pracy
B. 10-minutowej przerwy po każdej godzinie pracy, wliczanej do czasu pracy
C. 5-minutowej przerwy po każdej godzinie pracy, wliczanej do czasu pracy
D. skrócenia o 5 minut czasu pracy za każdą godzinę pracy
Trochę się pogubiłeś w kwestiach dotyczących przerw. Propozycje innego rodzaju przerw mogą być mylne i wprowadzać w błąd. Na przykład, zmniejszanie czasu pracy o 10 minut za każdą godzinę może wydawać się dobrym pomysłem, ale w praktyce to jednak nie działa. Kluczowe jest, żeby przerwy były regularne, a nie jako sposób na skracanie czasu pracy. Myślę, że wiele osób widzi przerwy jako dodatkowy kłopot, zamiast dostrzegać, że to naprawdę przynosi korzyści. Co do sugerowania 10-minutowej przerwy, to może być mylące, bo to nie pasuje do norm. Przerywanie pracy co godzinę to nie zawsze najlepszy sposób, bo może wprowadzić zamieszanie w harmonogramie. Dlatego warto zrozumieć ustalone zasady, które mają na celu zapewnienie komfortu i bezpieczeństwa, a ich przestrzeganie może poprawić nasze samopoczucie oraz zadowolenie z pracy.

Pytanie 23

Wartość natężenia oświetlenia podczas wykonywania precyzyjnych zadań powinna wynosić

A. 600 lx
B. 300 lx
C. 100 lx
D. 800 lx
Wybór natężenia oświetlenia mniejszego niż 800 lx w kontekście precyzyjnych prac wiąże się z wieloma niebezpiecznymi konsekwencjami. Natężenie 600 lx, 300 lx czy 100 lx może wydawać się wystarczające w mniej wymagających warunkach, jednak w przypadku zadań wymagających dużej dokładności, takich jak montaż komponentów elektronicznych lub prace laboratoryjne, zbyt niskie oświetlenie może prowadzić do poważnych błędów. Przykładowo, oświetlenie na poziomie 600 lx może nie dostarczyć wystarczającej widoczności, co zwiększa ryzyko popełnienia błędów, które mogą skutkować uszkodzeniem delikatnych części lub złożeniem wadliwych produktów. Natężenie 300 lx to wartość, która w praktyce jest stosowana w biurach, ale nie jest to poziom odpowiedni dla precyzyjnych prac, gdzie każdy detal ma znaczenie. Natomiast 100 lx to wartość, która mogłaby być tolerowana w pomieszczeniach magazynowych, ale nie w sytuacjach wymagających szczególnej uwagi. Z tego względu, przy podejmowaniu decyzji o poziomie oświetlenia, ważne jest, aby kierować się standardami i zaleceniami branżowymi, które jasno określają wymagania w tej dziedzinie. Nieprawidłowe oszacowanie natężenia oświetlenia może prowadzić do nieefektywności pracy oraz zwiększenia ryzyka wypadków. Z tego względu, dla zapewnienia bezpieczeństwa i jakości, zawsze należy dążyć do osiągnięcia optymalnych warunków oświetleniowych.

Pytanie 24

Efektor umieszczony na końcu ramienia robota pełni przede wszystkim funkcję

A. ochrony ramienia robota przed zderzeniem z operatorem
B. umieszczania elementu w odpowiedniej lokalizacji
C. chwytania elementu z odpowiednią siłą
D. ochrony ramienia robota przed przeciążeniem
Efektor umieszczony na końcu ramienia robota odgrywa kluczową rolę w procesie manipulacji obiektami, a jego podstawową funkcją jest chwytanie elementu z odpowiednią siłą. Efektory, w zależności od ich konstrukcji i przeznaczenia, mogą być wyposażone w różnorodne mechanizmy, takie jak szczęki, przyssawki czy chwytaki pneumatyczne, które umożliwiają precyzyjne uchwyty. Na przykład, w branży produkcyjnej, roboty stosowane do montażu często wykorzystują efektory do chwytania i manipulacji drobnymi komponentami, co zwiększa efektywność i precyzję procesu. Dobrą praktyką jest dostosowywanie siły chwytu do specyfiki materiałów – w przypadku delikatnych obiektów stosuje się mniejsze siły, aby uniknąć uszkodzeń. Efektory są również zaprojektowane zgodnie z normami bezpieczeństwa, co zapewnia, że ich działanie nie będzie zagrażać operatorom ani innym pracownikom. Wybór odpowiedniego efektora i jego parametrów jest zatem kluczowym elementem w projektowaniu systemów automatyzacji procesów.

Pytanie 25

Ile wynosi wartość natężenia prądu znamionowego toru głównego wyłącznika różnicowoprądowego przedstawionego na ilustracji?

Ilustracja do pytania
A. 400 V
B. 63 A
C. 800 A
D. 30 mA
Odpowiedź '63 A' jest poprawna, ponieważ na przedstawionym wyłączniku różnicowoprądowym wyraźnie widnieje oznaczenie, które wskazuje na wartość natężenia prądu znamionowego toru głównego. Wyłączniki różnicowoprądowe są kluczowymi elementami w systemach elektrycznych, które zapewniają ochronę przed porażeniem prądem elektrycznym oraz przeciążeniami. Wartość 63 A oznacza maksymalne natężenie prądu, które urządzenie może bezpiecznie przewodzić bez ryzyka uszkodzenia. W praktyce, wybór odpowiedniego wyłącznika różnicowoprądowego jest kluczowy dla zapewnienia bezpieczeństwa instalacji elektrycznej. Standardy takie jak PN-EN 61008 określają wymagania dotyczące tych urządzeń, w tym klasyfikację według wartości znamionowych. Dlatego ważne jest, aby instalatorzy i inżynierowie dobrze rozumieli oznaczenia na tego typu sprzęcie oraz potrafili je interpretować, co ma bezpośrednie przełożenie na bezpieczeństwo użytkowników oraz trwałość instalacji elektrycznych.

Pytanie 26

Co należy uczynić w przypadku rany z krwotokiem tętniczym?

A. położyć poszkodowanego w pozycji bocznej ustalonej i czekać na pomoc medyczną
B. przemyć ranę wodą utlenioną i oczekiwać na pomoc medyczną
C. nałożyć opatrunek z jałowej gazy bezpośrednio na ranę
D. założyć opaskę uciskową powyżej miejsca urazu
Założenie opaski uciskowej powyżej rany jest kluczowym działaniem w przypadku krwotoku tętniczego. Krwotok tętniczy charakteryzuje się intensywnym krwawieniem, które może prowadzić do szybkiej utraty krwi i wstrząsu hipowolemicznego. Opaska uciskowa działa poprzez wywieranie stałego ucisku na naczynia krwionośne, co ogranicza przepływ krwi do miejsca rany, a tym samym zmniejsza utratę krwi. Ważne jest, aby opaskę założyć powyżej rany, aby skutecznie zablokować krwawienie. Należy również pamiętać, że opaska uciskowa powinna być stosowana tylko w sytuacjach, gdy inne metody, takie jak bezpośredni ucisk na ranę, nie przynoszą efektu. W praktyce, opaskę należy założyć jak najszybciej, a następnie jak najszybciej wezwać pomoc medyczną. W przypadku urazów kończyn, opaska powinna być umieszczona jak najwyżej, aby odpowiednio ograniczyć przepływ krwi. Zachowanie tej procedury jest zgodne z wytycznymi Europejskiej Rady Resuscytacji oraz innymi standardami w zakresie pierwszej pomocy.

Pytanie 27

W trakcie inspekcji efektywności systemu sterującego urządzeń transportujących elementy aluminiowe, w środowisku produkcyjnym o podwyższonym poziomie hałasu powinno się używać

A. okularów ochronnych
B. rękawic dielektrycznych
C. ochronników słuchu
D. kasku ochronnego
Ochronniki słuchu są kluczowym elementem ochrony osobistej w środowisku pracy, gdzie poziom hałasu przekracza dopuszczalne normy. W przypadku kontroli sprawności układu sterowania urządzenia transportującego kształtki aluminiowe, które mogą generować wysokie poziomy hałasu, zastosowanie ochronników słuchu jest niezbędne dla minimalizacji ryzyka uszkodzenia słuchu. Zgodnie z normami takimi jak PN-N-01307:2013, każdy pracownik narażony na hałas o poziomie przekraczającym 85 dB powinien stosować odpowiednie środki ochrony. Ochronniki słuchu mogą występować w różnych formach, takich jak nauszniki lub wkładki douszne, dostosowane do specyfiki pracy. W praktyce, ich stosowanie nie tylko chroni zdrowie pracownika, ale również zwiększa komfort pracy, umożliwiając lepszą koncentrację na wykonywanych zadaniach. Dbanie o zdrowie pracowników poprzez stosowanie wymaganych środków ochrony osobistej jest nie tylko kwestią zgodności z przepisami, ale także wpływa na ogólną wydajność i morale w zespole.

Pytanie 28

Przed przystąpieniem do wymiany zaworu elektropneumatycznego, który jest sterowany przez PLC, należy zająć się zasilaniem pneumatycznym.

A. wyłączyć dopływ sprężonego powietrza, odłączyć siłownik oraz wyłączyć PLC
B. wprowadzić sterownik PLC w tryb STOP, odłączyć zasilanie elektryczne oraz pneumatyczne układu
C. odłączyć przewody zasilające sterownik oraz przewody pneumatyczne od elektrozaworu
D. dezaktywować zasilanie pneumatyczne, odłączyć przewody od cewki elektrozaworu i przewody
Wszystkie zaproponowane odpowiedzi pomijają kluczowe aspekty bezpieczeństwa związane z wymianą zaworu elektropneumatycznego. Kluczowym elementem każdej procedury konserwacji jest zapewnienie, że system jest całkowicie wyłączony i nie może być przypadkowo uruchomiony. Odpowiedzi, które sugerują odłączenie przewodów zasilających lub pneumatycznych bez wcześniejszego wprowadzenia PLC w tryb STOP oraz wyłączenia zasilania, są niebezpieczne. Przykładowo, odłączenie przewodów zasilających bez wcześniejszego zablokowania programu sterującego może prowadzić do sytuacji, gdzie system się uruchomi, co stwarza ryzyko dla operatora. Ponadto, wiele z tych podejść nie uwzględnia konieczności całkowitego odcięcia zasilania pneumatycznego, co może prowadzić do niekontrolowanego wypływu sprężonego powietrza. Tego rodzaju pominięcia są typowe dla osób, które nie zaznajomiły się z obowiązującymi standardami bezpieczeństwa w automatyce przemysłowej, takimi jak normy ISO czy ANSI Z535, które mają na celu zapewnienie bezpiecznego środowiska pracy. Bezpośrednie podejście do serwisowania komponentów pneumatycznych powinno zatem zawsze zaczynać się od wyłączenia systemu i odpowiedniego zabezpieczenia przed jego przypadkowym włączeniem, co jest fundamentalne dla zachowania bezpieczeństwa w miejscu pracy.

Pytanie 29

Aby zdemontować stycznik zamocowany na szynie, należy wykonać czynności w odpowiedniej kolejności:

A. odkręcić przewody, zdjąć stycznik z szyny, odłączyć napięcie
B. odłączyć napięcie, zdjąć stycznik z szyny, odkręcić przewody
C. odłączyć napięcie, odkręcić przewody, zdjąć stycznik z szyny
D. zdjąć stycznik z szyny, odłączyć napięcie, odkręcić przewody
W przypadku demontażu stycznika na szynie, proces powinien być przeprowadzany w ściśle określonej kolejności, aby zapewnić bezpieczeństwo oraz minimalizować ryzyko uszkodzenia sprzętu. Pomylenie kolejności czynności może prowadzić do niebezpiecznych sytuacji, takich jak porażenie prądem lub uszkodzenie urządzenia. Na przykład, zaczynając od odpięcia stycznika z szyny lub odkręcenia przewodów bez wcześniejszego odłączenia napięcia, stawiamy się w sytuacji, w której możemy przypadkowo dotknąć żywych elementów, co jest ekstremalnie ryzykowne. Każdy elektryk powinien być świadomy, że praca przy urządzeniach pod napięciem jest zabroniona, a odłączenie zasilania to podstawowy krok w każdym projekcie związanym z pracami elektrycznymi. Utrzymywanie zasilania podczas demontażu komponentów stwarza także ryzyko zwarcia, które może doprowadzić do uszkodzenia stycznika oraz innych elementów systemu elektrycznego. Ponadto, nieodpowiednia kolejność może prowadzić do nieefektywności w procesie montażu i demontażu, co w dłuższej perspektywie czasu może zwiększyć koszty eksploatacji oraz napraw. Aby uniknąć takich błędów, zaleca się ścisłe przestrzeganie procedur oraz szkoleń z zakresu pracy z instalacjami elektrycznymi.

Pytanie 30

Technik, podczas naprawy urządzenia mechatronicznego, doznał porażenia prądem elektrycznym, upadł na ziemię i przestał oddychać. Osoba udzielająca pierwszej pomocy powinna zainicjować działania ratunkowe?

A. natychmiastowo i kontynuować do momentu przybycia ratownika medycznego
B. po poinformowaniu osoby przełożonej
C. po upływie kilkunastu sekund, sprawdzając w tym czasie tętno
D. po wezwaniu pomocy medycznej
Odpowiedzi, które sugerują podejmowanie działań po wezwaniu pomocy lekarskiej, odczekaniu kilkunastu sekund na sprawdzenie tętna lub po zawiadomieniu przełożonego, nie uwzględniają krytycznego znaczenia czasu w sytuacji zagrożenia życia. W przypadku porażenia prądem elektrycznym, każda sekunda opóźnienia w podjęciu akcji ratunkowej może prowadzić do nieodwracalnych skutków zdrowotnych. Czekanie na przybycie pomocy medycznej bez podjęcia jakichkolwiek działań wstępnych jest nieodpowiedzialne. W sytuacji, w której osoba nie oddycha, najważniejsze jest rozpoczęcie resuscytacji krążeniowo-oddechowej. Sprawdzanie tętna również nie jest uzasadnione, gdyż w przypadku braku oddechu, priorytetem powinno być jak najszybsze podjęcie działań w celu przywrócenia krążenia, a nie diagnostyka stanu pacjenta poprzez sprawdzenie tętna. Ponadto, czekanie na decyzję przełożonego w tak kryzysowej sytuacji może prowadzić do zaniechania niezbędnych działań, co może mieć tragiczne konsekwencje. Właściwe postępowanie zgodne z normami pierwszej pomocy i zaleceniami ERC wymaga natychmiastowej reakcji oraz umiejętności działania w sytuacjach stresowych, a nie odkładania decyzji na później.

Pytanie 31

Co należy zrobić w przypadku urazu kolana u pracownika po upadku z wysokości?

A. nałożyć bandaż na kolano po delikatnym wyprostowaniu nogi.
B. unieruchomić staw kolanowy na jakimkolwiek podparciu, nie zmieniając jego pozycji.
C. wyregulować nogę, lekko ciągnąc ją w dół.
D. umieścić poszkodowanego w ustalonej pozycji bocznej.
W przypadku urazu kolana, szczególnie po upadku z wysokości, kluczowe jest unieruchomienie stawu w jego naturalnym ustawieniu. Ta technika ma na celu ograniczenie dalszego uszkodzenia tkanek oraz zmniejszenie bólu. Gdy kości stawu kolanowego są unieruchomione w ich fizjologicznym położeniu, minimalizujemy ryzyko przemieszczenia uszkodzonych struktur oraz ewentualnych powikłań związanych z nieprawidłowym ułożeniem. Praktyczne zastosowanie tej metody obejmuje użycie szyn, bandaży czy innych dostępnych materiałów, które stabilizują staw. Warto podkreślić, że według wytycznych organizacji zajmujących się pierwszą pomocą, tak jak np. Czerwony Krzyż, unieruchomienie powinno być wykonane jak najszybciej i z zachowaniem ostrożności. Istotne jest także, aby nie próbować prostować lub manipulować urazem, co może prowadzić do dalszych urazów i komplikacji. Po unieruchomieniu należy jak najszybciej wezwać pomoc medyczną, aby zapewnić dalszą opiekę nad poszkodowanym.

Pytanie 32

Na obudowie urządzenia wystąpiło niebezpieczne napięcie dotykowe. Który wyłącznik zredukowałby zasilanie urządzenia, gdy ktoś dotknie jego obudowy?

A. Różnicowoprądowy
B. Nadprądowy
C. Termiczny
D. Silnikowy
Wyłącznik różnicowoprądowy (RCD) jest urządzeniem zabezpieczającym, które ma na celu ochronę ludzi przed porażeniem prądem elektrycznym. Działa na zasadzie monitorowania różnicy prądów wpływających i wypływających z obwodu. W momencie, gdy dochodzi do upływu prądu, na przykład w wyniku uszkodzenia izolacji lub dotknięcia obudowy przez osobę, RCD natychmiast odłącza zasilanie. Tego typu wyłączniki są standardem w instalacjach elektrycznych w miejscach, gdzie może wystąpić zagrożenie porażeniem, takich jak łazienki, kuchnie oraz miejsca pracy. Przykład zastosowania to montaż RCD w obwodach zasilających gniazda elektryczne w domach, które chronią użytkowników przed niebezpiecznym napięciem dotykowym. Zgodnie z normą PN-EN 61008, wyłączniki różnicowoprądowe powinny być stosowane tam, gdzie istnieje ryzyko kontaktu z wodą, aby minimalizować ryzyko wystąpienia poważnych wypadków. Działanie RCD jest szybkie, często w ciągu 25-30 ms, co czyni je niezwykle skutecznym w ochronie przed porażeniem.

Pytanie 33

Przy obróbce metalu z użyciem pilników, jakie środki ochrony osobistej są wymagane?

A. rękawicach skórzanych i fartuchu skórzanym
B. rękawicach i okularach ochronnych
C. obuwiu z gumową podeszwą oraz fartuchu ochronnym
D. kasku ochronnym i rękawicach elektroizolacyjnych
Obrabianie metalu wymaga stosowania odpowiednich środków ochrony osobistej, a rękawice i okulary ochronne są kluczowe dla zapewnienia bezpieczeństwa podczas tego procesu. Rękawice chronią dłonie przed ostrymi krawędziami oraz szkodliwymi substancjami, które mogą wystąpić w wyniku obróbki. Okulary ochronne są niezbędne, aby zabezpieczyć oczy przed odłamkami metalu oraz pyłem, który może być generowany podczas obróbki. W praktyce, np. podczas używania pilników, niewłaściwe zabezpieczenie może prowadzić do poważnych urazów, dlatego stosowanie rękawic i okularów jest zgodne z normami BHP oraz zasadami dobrych praktyk przemysłowych. Dodatkowo, warto zwrócić uwagę na jakość stosowanych środków ochrony; rękawice powinny być wykonane z materiałów odpornych na przekłucia i ścieranie, a okulary muszą spełniać normy EN 166, które określają ich właściwości ochronne. Przestrzeganie tych zasad nie tylko minimalizuje ryzyko urazów, ale także przyczynia się do poprawy komfortu pracy.

Pytanie 34

Jakie środki ochrony osobistej, oprócz kasku ochronnego, powinien założyć pracownik wykonujący konserwację wyłączonego z eksploatacji urządzenia mechatronicznego w hali produkcyjnej?

A. Odzież ochronna
B. Okulary ochronne
C. Rękawice ochronne
D. Buty ochronne
Rękawice ochronne są kluczowym środkiem ochrony indywidualnej, który powinien być noszony przez pracowników zajmujących się konserwacją urządzeń mechatronicznych. Działania konserwacyjne często wiążą się z ryzykiem wystąpienia urazów mechanicznych, takich jak przecięcia, otarcia czy uderzenia. Rękawice ochronne zapewniają barierę między skórą a potencjalnymi źródłami urazów, co znacząco zmniejsza ryzyko kontuzji. Przykładem mogą być rękawice wykonane z materiałów odpornych na przebicia, które są standardem w branżach zajmujących się pracami w trudnych warunkach. Ponadto, w sytuacjach, gdzie używane są chemikalia lub substancje szkodliwe, odpowiednie rękawice chemiczne będą niezbędne do ochrony przed ich działaniem. Zgodnie z normą PN-EN 420:2004, rękawice ochronne powinny być dostosowane do rodzaju pracy i zagrożeń występujących w danym środowisku, dlatego ich wybór powinien być uzależniony od specyfiki wykonywanych zadań. Właściwe użycie rękawic ochronnych w połączeniu z innymi środkami, takimi jak kask czy odzież ochronna, tworzy kompleksowy system bezpieczeństwa.

Pytanie 35

Demontaż połączenia kołkowego wykonuje się narzędziem przedstawionym na rysunku

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Wybór innego narzędzia niż przecinak wskazuje na brak zrozumienia procesu demontażu połączeń kołkowych. Narzędzia oznaczone jako A, B i C nie są przeznaczone do tego celu, co może prowadzić do nieefektywnego lub wręcz niebezpiecznego działania. Na przykład, zastosowanie narzędzia, które nie jest przystosowane do wybijania kołków, może skutkować uszkodzeniem zarówno kołka, jak i elementów, z którymi jest on połączony. Pracując z niewłaściwymi narzędziami, można również narazić się na kontuzje, zwłaszcza w sytuacjach, gdy wymagana jest precyzja. Warto zaznaczyć, że każdy typ połączenia kołkowego może wymagać innego podejścia i narzędzia, dlatego tak ważne jest, aby przed rozpoczęciem pracy dokładnie zapoznać się z wymaganiami technicznymi. Dobrze dobrana metoda demontażu, w tym użycie przecinaka, nie tylko ułatwia proces, ale również minimalizuje ryzyko uszkodzeń i zapewnia bezpieczeństwo pracy. Nieprawidłowe myślenie polegające na doborze narzędzia na zasadzie intuicji lub dostępności może prowadzić do nieefektywnych rezultatów, co w branżach technicznych jest szczególnie niepożądane.

Pytanie 36

Do czego służy klucz dynamometryczny?

A. do odkręcania zardzewiałych śrub
B. do ułatwienia odkręcania i dokręcania śrub
C. do dokręcania śrub w trudno dostępnych miejscach
D. do dokręcania śrub z określonym momentem obrotowym
Stosowanie klucza dynamometrycznego do dokręcania śrub w miejscach trudnodostępnych może wydawać się logiczne, ale w rzeczywistości nie jest to jego główne przeznaczenie. Klucz dynamometryczny jest zaprojektowany do precyzyjnego dokręcania z zastosowaniem określonego momentu siły, co oznacza, że jego zastosowanie ma na celu zapewnienie odpowiedniej siły dokręcania, a nie ułatwienie dostępu do trudno dostępnych miejsc. W sytuacjach, gdzie dostęp do śrub jest ograniczony, może być konieczne użycie innych narzędzi, takich jak klucze nasadowe lub różnego rodzaju przedłużki, które pozwolą na efektywne dokręcanie lub odkręcanie. Kolejnym błędnym podejściem jest myślenie, że klucz dynamometryczny jest skuteczny w odkręcaniu skorodowanych śrub. W rzeczywistości używanie klucza dynamometrycznego do odkręcania może prowadzić do jego uszkodzenia oraz do niewłaściwego zastosowania, gdyż nie jest on przystosowany do pracy w takiej roli. Ostatnia nieprawidłowa koncepcja, że klucz ten ma na celu ułatwienie ogólnego procesu dokręcania i odkręcania, ignoruje kluczową funkcję precyzyjności wymaganą przy zastosowaniu tego narzędzia. Klucz dynamometryczny nie jest narzędziem uniwersalnym, lecz specjalistycznym, którego celem jest osiągnięcie konkretnego momentu siły, co ma kluczowe znaczenie w kontekście bezpieczeństwa i trwałości połączeń. Dlatego ważne jest, aby używać go zgodnie z jego przeznaczeniem, aby uniknąć typowych błędów myślowych i praktycznych w zastosowaniach mechanicznych.

Pytanie 37

Środek gaśniczy, który może być zastosowany do likwidacji wszystkich kategorii pożarów i nie powoduje znacznych, nieodwracalnych uszkodzeń, na przykład w przypadku gaszenia sprzętu komputerowego, to

A. proszek gaśniczy
B. piana gaśnicza
C. woda
D. dwutlenek węgla
Proszek gaśniczy to uniwersalny środek gaśniczy, który jest skuteczny w gaszeniu pożarów różnych grup, w tym grup A (materiały stałe), B (cieczy palnych) i C (gazy palne). Jego działanie polega na obniżeniu temperatury oraz odcięciu dopływu tlenu do ognia. Proszki gaśnicze, takie jak proszek ABC, są szczególnie polecane w miejscach, gdzie występuje ryzyko pożaru sprzętu elektronicznego, jak komputery czy serwery, ponieważ ich użycie nie powoduje uszkodzenia sprzętu przez wodę. Dodatkowo, proszki są wybierane w obiektach przemysłowych i magazynach, gdzie występuje wiele materiałów łatwopalnych. Warto zaznaczyć, że stosowanie proszków gaśniczych powinno odbywać się zgodnie z odpowiednimi normami, takimi jak PN-EN 2 dotycząca gaśnic przenośnych. Przykładem praktycznego zastosowania proszku gaśniczego może być akcja gaśnicza w serwerowni, gdzie zastosowanie wody mogłoby prowadzić do poważnych uszkodzeń sprzętu. Dlatego proszek gaśniczy jest rekomendowany jako najbezpieczniejsza opcja w takich sytuacjach.

Pytanie 38

Która z wymienionych właściwości komponentów systemów automatyki, stosowanych w liniach produkcyjnych, ma kluczowe znaczenie przy projektowaniu linii do konfekcjonowania rozcieńczalników do farb i lakierów?

A. Niezawodność
B. Efektywność
C. Iskrobezpieczeństwo
D. Bezobsługowość
Iskrobezpieczeństwo jest kluczową cechą w projektowaniu linii produkcyjnych, zwłaszcza w kontekście konfekcjonowania substancji chemicznych, takich jak rozcieńczalniki do farb i lakierów, które są łatwopalne i mogą wydzielać niebezpieczne opary. Użycie podzespołów i urządzeń spełniających normy iskrobezpieczeństwa (np. ATEX w Europie) ma na celu minimalizację ryzyka wybuchów oraz pożarów. Przykładem mogą być pompy, które są zaprojektowane tak, aby nie generować iskier podczas pracy, a także systemy wentylacyjne, które skutecznie odprowadzają opary. W praktyce oznacza to stosowanie materiałów odpornych na korozję, jak również instalację odpowiednich czujników wykrywających obecność niebezpiecznych gazów. Właściwe zabezpieczenie strefy zagrożonej wybuchem powinno obejmować także odpowiednie klasyfikacje stref, które są zgodne z międzynarodowymi standardami, takimi jak IEC 60079. Zatem iskrobezpieczeństwo nie tylko zwiększa bezpieczeństwo pracowników, ale także zapewnia ciągłość produkcji, co jest niezbędne w efektywnych liniach produkcyjnych.

Pytanie 39

Jakiego koloru powinna być izolacja przewodu neutralnego w instalacji elektrycznej typu TN–S?

A. Niebieskim
B. Żółtym
C. Brązowym
D. Czarnym
Izolacja przewodu neutralnego w instalacji elektrycznej typu TN-S powinna być koloru niebieskiego. Zgodnie z międzynarodowymi standardami oraz normami, takimi jak PN-IEC 60446, kolor niebieski jest zarezerwowany dla przewodów neutralnych, co pozwala na ich jednoznaczną identyfikację w instalacjach elektrycznych. W praktyce, poprawne oznaczenie przewodów ma kluczowe znaczenie dla bezpieczeństwa pracy oraz minimalizowania ryzyka pomyłek podczas wykonywania napraw czy modyfikacji instalacji. Przykładowo, w sytuacji awaryjnej, gdy konieczna jest szybka interwencja, jednoznaczne oznaczenie przewodów neutralnych pozwala elektrykom na sprawniejsze podejmowanie decyzji oraz eliminowanie zagrożeń. Dodatkowo, stosowanie standardowych kolorów znacznie ułatwia pracę w zespole, gdyż każdy technik, niezależnie od doświadczenia, rozumie, jakie znaczenie mają poszczególne kolory przewodów, a tym samym może pracować bardziej efektywnie i bezpiecznie.

Pytanie 40

W wyniku incydentu u rannego wystąpił krwotok zewnętrzny, a w ranie pozostało ciało obce. Co należy zrobić w pierwszej kolejności?

A. założyć jałowy opatrunek na ranę i umieścić rannego z uniesionymi kończynami powyżej poziomu serca
B. usunąć ciało obce, położyć rannego i wezwać lekarza
C. wezwać pomoc i nałożyć opatrunek uciskowy powyżej rany siedzącego rannego
D. nałożyć jałowy opatrunek na ranę siedzącego rannego i wezwać lekarza
Zastosowanie jałowego opatrunku na ranę i uniesienie kończyn to bardzo dobry sposób na radzenie sobie z krwotokiem zewnętrznym. Najpierw trzeba zasłonić ranę, żeby nie doszło do jej zanieczyszczenia. Dzięki temu zmniejszamy ryzyko zakażeń. Potem, unosząc kończyny, ograniczamy przepływ krwi do rany, co może pomóc w zatrzymaniu krwawienia aż do przybycia fachowej pomocy. To wszystko jest zgodne z wytycznymi Europejskiej Rady Resuscytacji, która podkreśla, jak ważne jest trzymanie poszkodowanego w stabilnej pozycji. W takich sytuacjach, kiedy czas odpowiedzi służb medycznych jest dłuższy, te kroki mają naprawdę kluczowe znaczenie i mogą uratować życie.