Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 17 grudnia 2025 19:09
  • Data zakończenia: 17 grudnia 2025 19:09

Egzamin niezdany

Wynik: 0/40 punktów (0,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Dokumentacja serwisowa odbiornika radiowego nie zawiera

A. informacji o cenie odbiornika
B. opisu panelu przedniego
C. schematu blokowego
D. schematu ideowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź wskazuje, że instrukcja serwisowa odbiornika radiowego nie zawiera informacji o cenie odbiornika. W kontekście serwisowania urządzeń elektronicznych, instrukcje serwisowe mają na celu dostarczenie technicznych i praktycznych wskazówek dotyczących napraw, konserwacji i diagnostyki. Zawierają one szczegółowe opisy konstrukcji, takie jak opis płyty czołowej, schematy blokowe i ideowe, które są kluczowe dla technika w procesie serwisowania. Informacja o cenie, chociaż istotna z perspektywy marketingowej, nie jest częścią dokumentacji technicznej. Przykładowo, podczas naprawy odbiornika radiowego technik może odnosić się do schematu ideowego, aby zrozumieć, jak poszczególne obwody są połączone i jak działają, co jest wyjątkowo istotne w diagnozowaniu problemów.

Pytanie 2

Jakie rodzaje pamięci tracą zawartość po ustaniu zasilania?

A. EPROM
B. PROM
C. RAM
D. EEPROM

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pamięci RAM (Random Access Memory) to typ pamięci, który jest ulotny, co oznacza, że wszelkie dane przechowywane w tej pamięci znikają po zaniku napięcia zasilającego. RAM jest używany w komputerach i urządzeniach mobilnych jako pamięć robocza, gdzie przechowywane są aktywne procesy i dane, które są potrzebne w danym momencie. Przykładem zastosowania RAM jest jego rola w uruchamianiu aplikacji – szybki dostęp do danych pozwala na płynne działanie systemu operacyjnego oraz aplikacji. W standardach komputerowych, takich jak DDR (Double Data Rate), pamięci RAM są klasyfikowane według prędkości i wydajności, co wpływa na ogólną wydajność systemu. W praktyce, większa ilość pamięci RAM pozwala na uruchamianie większej liczby aplikacji jednocześnie i wydajniejsze przetwarzanie danych.

Pytanie 3

Który z regulatorów, spośród wymienionych, wyróżnia się zerowym uchybem ustalonym?

A. PI
B. Regulator trójstawny
C. Regulator dwustawny
D. PD

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Regulator PI, czyli ten proporcjonalno-całkujący, to naprawdę świetne rozwiązanie w automatyce. Działa tak, że po osiągnięciu stanu ustalonego różnica między wartością zadaną a rzeczywistą wynosi zero. Fajną cechą regulatora PI jest to, że potrafi wyeliminować uchyb w czasie, a to dzięki członowi całkującemu. W praktyce wykorzystuje się go w różnych systemach, na przykład w regulacji temperatury w piecach przemysłowych, co jest kluczowe, żeby wszystko działało jak należy. Dobrze jest stosować te regulatory tam, gdzie stabilność i małe oscylacje są na wagę złota. Z tego co wiem, zgodnie z normami ISA (International Society for Automation), używanie regulatorów PI w przemyśle pomaga poprawić jakość procesów i efektywność energetyczną. Co do jego skuteczności, można ją jeszcze podkręcić przez dobór odpowiednich parametrów, takich jak wzmocnienie proporcjonalne i czas całkowania. Dzięki temu dostosowujemy regulator do konkretnych potrzeb systemu.

Pytanie 4

W przedstawionym układzie D1 = D2, RC1 = RC2, RB1 = RB2, C1 = C2, T1 = T2. Po podłączeniu napięcia świeci światłem przerywanym wyłącznie dioda D . Może to oznaczać, że

Ilustracja do pytania
A. napięcie zasilania jest za małe.
B. dioda D1 jest zwarta.
C. dioda D2 jest zwarta.
D. napięcie zasilania jest za duże.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
To, że jedna dioda świeci, a druga nie, mówi nam sporo o tym, co się dzieje w układzie. Kiedy mamy zwartą diodę D2, prąd idzie przez nią i nie dociera do D1, przez co ta druga nie świeci. To trochę jak w pracy zespołowej – jak jeden członek nie działa, cała grupa może mieć problem. Przy projektowaniu takich układów z LED-ami musimy pamiętać o rezystorach, żeby nie przeładować diod. Pamiętaj też, żeby zawsze sprawdzić swoje komponenty przed użyciem – to może uratować wiele problemów! W instalacjach oświetleniowych połączenie diod musi być zrobione z głową, inaczej może się zdarzyć, że będą świecić przerywanie albo w ogóle nie będą świecić. Monitorowanie zasilania też jest istotne, żeby nie przekroczyć wartości, które diody mogą wytrzymać. To ważna sprawa, aby wszystko działało tak, jak powinno.

Pytanie 5

Na rysunku pokazano zmierzoną statyczną charakterystykę przejściową bramki logicznej NAND w układzie inwertera. Z rysunku można odczytać, że zakres napięć wejściowych bramki traktowanych jako wysoki poziom logiczny na wejściu wynosi w przybliżeniu

Ilustracja do pytania
A. od 0 V do 0,5 V
B. od 0 V do 2 V
C. od 2 V do 5 V
D. od 0,5 V do 4 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to zakres od 2 V do 5 V, co jest zgodne z charakterystyką przejściową bramki NAND w układzie inwertera. W tym przedziale napięć wejściowych, bramka logiczna interpretuje sygnał jako wysoki poziom logiczny, co skutkuje obniżeniem napięcia wyjściowego bliskiego 0 V. To zjawisko ma kluczowe znaczenie w projektowaniu układów cyfrowych, gdzie precyzyjne określenie poziomów logicznych jest konieczne dla stabilnych i przewidywalnych wyników. W praktyce, stosując ten zakres napięć, inżynierowie mogą zapewnić, że bramka będzie działać w swoim optymalnym zakresie, co jest istotne w systemach takich jak mikroprocesory czy układy FPGA. Dobrą praktyką inżynierską jest także uwzględnianie marginesu tolerancji dla napięć, aby zminimalizować ryzyko błędów w działaniu układu. Warto również zauważyć, że ze względu na różnice w technologiach produkcji, zakresy te mogą się różnić w zależności od dostawcy, dlatego zawsze warto odnosić się do specyfikacji producenta dla konkretnego komponentu.

Pytanie 6

Podczas pomiaru poziomu sygnału telewizji DVB-T w gnieździe abonenckim zbiorczej instalacji antenowej uzyskano wartość 26 dB µV. Zmierzony sygnał

A. przekracza dopuszczalną wartość maksymalną
B. wymaga zastosowania wzmacniacza w instalacji
C. wymaga zastosowania filtra zakłóceń w instalacji
D. umożliwia prawidłowy odbiór

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca na konieczność zastosowania wzmacniacza w instalacji antenowej jest prawidłowa, ponieważ wartość 26 dB µV sygnału DVB-T jest zbyt niska dla zapewnienia stabilnego i jakościowego odbioru sygnału telewizyjnego. Zgodnie z przyjętymi standardami, minimalny poziom sygnału dla dobrego odbioru telewizji cyfrowej powinien wynosić co najmniej 40 dB µV, a optymalne wartości to nawet 60 dB µV lub więcej, aby uniknąć zakłóceń i zapewnić wysoką jakość obrazu oraz dźwięku. Dlatego w przypadku, gdy poziom sygnału jest niewystarczający, zastosowanie wzmacniacza jest kluczowe, aby podnieść go do odpowiedniego poziomu. W praktyce wzmacniacze instalowane są w różnych punktach sieci, w zależności od jej struktury i rozkładu sygnału, co pozwala na zredukowanie strat sygnału na długich odcinkach kablowych. Stosowanie wzmacniaczy zgodnie z normami i zaleceniami producentów oraz zapewnienie odpowiedniej jakości urządzeń są podstawą skutecznej instalacji antenowej, co przekłada się na satysfakcję użytkowników.

Pytanie 7

Indywidualny zestaw satelitarny odbiera programy telewizyjne nadawane wyłącznie w polaryzacji "V". Napięcia zasilające i sterujące konwerterem oraz głowicą tunera satelitarnego są zgodne z dokumentacją techniczną. Uszkodzeniu uległ

Ilustracja do pytania
A. modulator w.cz. tunera SAT.
B. moduł głowicy w.cz. tunera SAT.
C. konwertor zamontowany w antenie satelitarnej.
D. przewód koncentryczny łączący konwerter z tunerem.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca na uszkodzenie konwertera zamontowanego w antenie satelitarnej jest prawidłowa, ponieważ konwerter odgrywa kluczową rolę w procesie odbioru sygnałów satelitarnych. Jego zadaniem jest konwersja sygnału satelitarnego na niższą częstotliwość, co umożliwia dalsze przetwarzanie przez tuner satelitarny. W sytuacji, gdy system odbiera sygnały tylko w polaryzacji 'V', a napięcia zasilające i sterujące są zgodne z dokumentacją, można wnioskować, że inne elementy systemu, takie jak tuner czy przewód koncentryczny, funkcjonują prawidłowo. Uszkodzenie konwertera może objawiać się brakiem odbioru sygnału lub jego zniekształceniem. W praktyce, jeśli konwerter jest uszkodzony, użytkownicy mogą doświadczać problemów z jakością obrazu lub brakiem sygnału, co jest typowym objawem awarii tego komponentu. W związku z tym, regularna konserwacja i kontrola stanu konwertera są zalecane, aby zapewnić nieprzerwaną funkcjonalność systemu odbioru satelitarnego, zgodnie z najlepszymi praktykami branżowymi.

Pytanie 8

Jakie są komponenty sprzętowe sieci komputerowych?

A. urządzenia dostępu
B. oprogramowanie komunikacyjne
C. protokoły
D. sterowniki urządzeń

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Urządzenia dostępu stanowią kluczowy element infrastruktury sieci komputerowych, ponieważ umożliwiają użytkownikom oraz urządzeniom podłączenie się do sieci. Do najpopularniejszych urządzeń dostępu należą modemy, routery oraz punkty dostępu (access points). Modem łączy sieć domową z Internetem, router rozdziela połączenie internetowe na wiele urządzeń, a punkty dostępu rozszerzają zasięg sieci bezprzewodowej. W kontekście standardów, przykładami mogą być urządzenia zgodne z protokołami IEEE 802.11, które definiują normy dla sieci WLAN, oraz urządzenia obsługujące IPv4 i IPv6, które są niezbędne do komunikacji w Internecie. W praktyce, wybór odpowiednich urządzeń dostępu wpływa na efektywność i bezpieczeństwo sieci, co czyni je fundamentem każdej infrastruktury komputerowej.

Pytanie 9

Kto głównie korzysta z instrukcji serwisowych?

A. osoby użytkujące sprzęt
B. osoby naprawiające uszkodzony sprzęt
C. osoby sprzedające sprzęt
D. osoby dostarczające sprzęt do klienta

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Instrukcje serwisowe są kluczowym narzędziem dla osób zajmujących się naprawą uszkodzonego sprzętu. Zawierają one szczegółowe informacje dotyczące diagnozowania problemów, kroków do ich rozwiązania oraz specyfikacji technicznych, które są niezbędne do prawidłowej naprawy. Na przykład, w przypadku awarii sprzętu elektronicznego, technik korzysta z instrukcji serwisowych, aby zlokalizować usterkę, zrozumieć, jakie części należy wymienić oraz jakie narzędzia są potrzebne do przeprowadzenia naprawy. W branży zamiennej istnieje szereg standardów, jak ISO 9001, które promują dokumentację procedur serwisowych. Dobre praktyki w zakresie serwisowania sprzętu obejmują także regularne aktualizowanie instrukcji zgodnie z najnowszymi rozwiązaniami technicznymi oraz zapewnienie ich dostępności dla wszystkich techników. Posiadanie dobrze opracowanych instrukcji serwisowych wpływa na efektywność pracy, redukuje błędy oraz przyspiesza czas reakcji na awarie, co jest kluczowe w zachowaniu wysokiej jakości usług serwisowych.

Pytanie 10

Na rysunkach pokazano schemat ideowy układu stabilizatora napięcia zawierającego dwie identyczne diody Zenera D1 i D2 oraz charakterystykę statyczną diod. Jaka jest wartość napięcia UAB, jeżeli przez diody płynie prąd wsteczny o wartości 40 mA?

Ilustracja do pytania
A. 9,4 V
B. 1,4 V
C. 5 V
D. 4,4 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 9,4 V, co jest wynikiem analizy charakterystyki statycznej diod Zenera D1 i D2. Dla prądu wstecznego 40 mA, napięcie na każdej diodzie wynosi około 4,7 V. Ponieważ diody są połączone szeregowo, całkowite napięcie U<sub>AB</sub> jest sumą napięć na obu diodach, co daje 4,7 V + 4,7 V = 9,4 V. Dioda Zenera jest powszechnie stosowana w układach stabilizacji napięcia, gdzie utrzymuje stały poziom napięcia niezależnie od zmian obciążenia. Przykładem zastosowania diod Zenera może być zasilacz stabilizowany, w którym dioda Zenera chroni układ przed nadmiernym napięciem. Dlatego zrozumienie działania diod Zenera i umiejętność interpretacji ich charakterystyk jest kluczowe w projektowaniu i implementacji rozwiązań elektronicznych, które muszą zapewniać stabilność i bezpieczeństwo operacyjne.

Pytanie 11

Modyfikacja szerokości kąta widzenia w kamerze CCTV to proces polegający na

A. regulacji ustawień pokrętłem SCREEN
B. wymianie kopułki kamery
C. regulacji ustawień za pomocą pokrętła FOCUS
D. zmianie miejsca umiejscowienia kamery

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Regulacja szerokości kąta widzenia kamery CCTV poprzez pokrętło SCREEN jest kluczowym elementem w procesie dostosowywania parametrów obrazu do specyficznych potrzeb monitoringu. Pokrętło to pozwala na modyfikację ustawień obrazu, co może obejmować kontrast, jasność oraz nasycenie barw. Umożliwia to optymalne dostosowanie kamery do zmieniających się warunków oświetleniowych oraz różnych scenariuszy monitoringu. Przykładowo, w trudnych warunkach oświetleniowych, takich jak nocne nagrania lub silne oświetlenie słoneczne, odpowiednie dostosowanie tych parametrów może znacząco poprawić jakość obrazu, co jest niezbędne dla skutecznego monitoringu. Dobrą praktyką jest regularne kalibrowanie kamer i sprawdzanie ustawień, aby zapewnić, że obraz jest zawsze wyraźny i czytelny. W branży zabezpieczeń istnieją standardy, takie jak ONVIF, które podkreślają znaczenie odpowiednich ustawień w celu uzyskania najlepszych wyników z systemu CCTV.

Pytanie 12

Określ maksymalny czas realizacji prac związanych z montażem uchwytu ściennego anteny, jeśli wiercenie
4 otworów w ścianie trwa 20 min ±15%, a zamocowanie uchwytu przy użyciu 4 kołków rozporowych
12 min ±10%.

A. 36,2 min
B. 33,2 min
C. 35,0 min
D. 32,0 min

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 36,2 min to wynik poprawnego obliczenia maksymalnego czasu trwania robót posadowienia uchwytu ściennego antenowego. W pierwszym kroku obliczamy czas wiercenia czterech otworów. Czas ten wynosi 20 minut z tolerancją ±15%, co oznacza, że maksymalny czas wiercenia wynosi 20 minut + 3 minut (15% z 20 minut), co daje 23 minuty. W drugim kroku obliczamy czas zamocowania uchwytu z użyciem czterech kołków rozporowych. Czas ten wynosi 12 minut z tolerancją ±10%, co oznacza, że maksymalny czas zamocowania to 12 minut + 1,2 minut (10% z 12 minut), co daje 13,2 minuty. Suma maksymalnego czasu wiercenia i maksymalnego czasu zamocowania wynosi 23 minuty + 13,2 minuty = 36,2 minuty. Praktyczne zastosowanie tej wiedzy jest kluczowe w planowaniu czasu pracy oraz budżetów projektowych, a także pozwala na efektywne zarządzanie zasobami w projekcie budowlanym, co jest zgodne z dobrymi praktykami w zarządzaniu projektami budowlanymi oraz normami branżowymi.

Pytanie 13

Który komponent systemu alarmowego może być użyty do konfiguracji centrali?

A. Ekspander wejść
B. Manipulator LED
C. Czujnik ruchu
D. Sygnalizator optyczny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Manipulator LED, często nazywany również manipulatorem lub panelem sterującym, jest kluczowym elementem w instalacji alarmowej, który umożliwia użytkownikowi programowanie centrali oraz zarządzanie jej funkcjami. Dzięki manipulatorowi możliwe jest wprowadzanie kodów dostępu, zmian ustawień systemu, a także monitorowanie statusu alarmu. Przykładowo, w systemach alarmowych, takich jak te stosowane w zabezpieczeniach domów czy biur, manipulator LED pozwala na łatwe włączenie i wyłączenie alarmu, a także na konfigurację stref bezpieczeństwa. Dobrą praktyką jest korzystanie z manipulatorów z wyświetlaczem LED, które informują użytkownika o stanie systemu w sposób czytelny i zrozumiały. Warto również zaznaczyć, że w nowoczesnych systemach alarmowych manipulator może integrować dodatkowe funkcje, takie jak komunikacja z aplikacjami mobilnymi, co zwiększa wygodę użytkowania. W związku z tym, inwestowanie w wysokiej jakości manipulator LED jest kluczowym krokiem w budowie skutecznego systemu alarmowego.

Pytanie 14

Przestawione gniazdo służy do podłączenia przewodu zakończonego wtykiem w standardzie

Ilustracja do pytania
A. USB
B. HDMI
C. D-Sub
D. FireWire

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź FireWire jest poprawna, ponieważ gniazdo przedstawione na zdjęciu to złącze FireWire, znane również jako IEEE 1394. Jest to standard interfejsu komunikacyjnego, który umożliwia szybkie przesyłanie danych pomiędzy urządzeniami. FireWire był szczególnie popularny w zastosowaniach związanych z multimediami, takich jak podłączanie kamer cyfrowych do komputerów, gdzie wymagana była wysoka przepustowość danych. Standard ten obsługuje prędkości transferu do 400 Mb/s (FireWire 400) oraz do 800 Mb/s (FireWire 800). Dodatkowo, złącze FireWire pozwala na zasilanie urządzeń podłączonych do portu, co czyni go wygodnym rozwiązaniem w przypadku niektórych urządzeń peryferyjnych. Warto również zauważyć, że w porównaniu do USB, FireWire umożliwia łatwiejsze podłączanie wielu urządzeń w konfiguracji „łańcuchowej”, co było istotne w środowiskach produkcji wideo. To złącze, mimo że jest coraz rzadziej stosowane w nowoczesnych urządzeniach, nadal ma swoje miejsce w historii technologii przesyłania danych.

Pytanie 15

Aby dokonać naprawy przetwornicy zasilającej w telewizorze, należy wykorzystać instrukcję

A. programowania
B. serwisową
C. użytkownika
D. instalacji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to instrukcja serwisowa, ponieważ zawiera szczegółowe informacje dotyczące diagnostyki, naprawy oraz konserwacji urządzeń elektronicznych, w tym przetwornic zasilających w telewizorach. Instrukcje serwisowe są dostosowane do konkretnych modeli urządzeń i zazwyczaj zawierają schematy blokowe, opisy komponentów oraz procedury testowe. Przykładem zastosowania takiej instrukcji jest identyfikacja uszkodzonych elementów, takich jak kondensatory czy tranzystory, które mogą wpływać na funkcjonalność przetwornicy. Warto również zwrócić uwagę na dobre praktyki branżowe, takie jak korzystanie z oryginalnych części zamiennych oraz stosowanie odpowiednich narzędzi podczas naprawy, co zapewnia długotrwałą i bezpieczną eksploatację urządzenia. Ponadto, instrukcje serwisowe często zawierają informacje o wymaganiach dotyczących bezpieczeństwa, co jest kluczowe podczas pracy z urządzeniami elektrycznymi. Dlatego zawsze warto mieć tę dokumentację pod ręką podczas przeprowadzania napraw.

Pytanie 16

Przestawione na rysunku elementy to

Ilustracja do pytania
A. potencjometry.
B. fotorezystory.
C. dławiki.
D. kondensatory.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dławiki, które rozpoznajesz na zdjęciu, to pasywne komponenty elektroniczne, których głównym zadaniem jest tłumienie zakłóceń w obwodach elektrycznych oraz stabilizacja prądów. Działają one na zasadzie indukcji elektromagnetycznej, co sprawia, że skutecznie ograniczają zmiany prądu w czasie, co jest niezwykle przydatne w aplikacjach, gdzie stabilność energii jest kluczowa, na przykład w zasilaczach czy filtrach. Dławiki są wykorzystywane w różnych układach elektronicznych, od prostych urządzeń domowych po skomplikowane systemy przemysłowe. Kluczowym elementem dławika jest uzwojenie na rdzeniu, który może być wykonany z różnych materiałów ferromagnetycznych, co wpływa na jego charakterystyki. Dlatego w inżynierii elektrycznej stosuje się standardy dotyczące projektowania dławików, aby zapewnić ich efektywność w redukcji zakłóceń i optymalizacji działania układów elektronicznych.

Pytanie 17

Jaką funkcję pełni soczewka Fresnela w czujkach ruchu typu PIR?

A. jest komponentem wyłącznie dekoracyjnym
B. emituje promieniowanie podczerwone w stronę intruza
C. ma za zadanie skupiać wiązki detekcji na pyroelemencie
D. gwarantuje efektywne działanie systemu przeciwsabotażowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Soczewka Fresnela w czujkach ruchu typu PIR (Passive Infrared) pełni kluczową rolę jako element skupiający wiązki detekcji na pyroelemencie. Jej konstrukcja, składająca się z wielu segmentów, pozwala na efektywne zbieranie promieniowania podczerwonego emitowanego przez obiekty w ruchu. Dzięki zastosowaniu soczewek Fresnela, czujniki PIR mogą wykrywać ruch w szerszym zakresie i z większą precyzją, co jest szczególnie istotne w systemach zabezpieczeń. Przykładowo, w zastosowaniach domowych lub komercyjnych, soczewki te mogą być używane w alarmach antywłamaniowych, a także w automatycznych systemach oświetleniowych, które włączają się tylko wtedy, gdy wykryją obecność osoby. W praktyce oznacza to, że czujniki z soczewkami Fresnela są bardziej niezawodne i efektywne w wykrywaniu intruzów, co zwiększa bezpieczeństwo obiektów. Standardy branżowe, takie jak EN 50131, podkreślają znaczenie efektywności detekcji w systemach alarmowych, co czyni soczewki Fresnela niezbędnym elementem nowoczesnych rozwiązań zabezpieczających.

Pytanie 18

Adresy fizyczne MAC w sieciach komputerowych są początkowo przydzielane przez

A. indywidualnego użytkownika sieci
B. zarządcę sieci lokalnej
C. dostawcę usług internetowych
D. producenta karty sieciowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Adresy fizyczne MAC (Media Access Control) są unikalnymi identyfikatorami przypisywanymi do interfejsów sieciowych urządzeń. Te adresy są nadawane przez producenta karty sieciowej i są zapisywane w trwałej pamięci sprzętowej urządzenia, co zapewnia ich unikalność i stałość. Adres MAC składa się z 48-bitowego numeru, który jest zazwyczaj przedstawiany w postaci 12-cyfrowego heksadecymalnego ciągu, podzielonego na sześć par. Standard IEEE 802.3 definiuje sposób komunikacji w sieciach lokalnych oraz znaczenie adresów MAC. Przykładem zastosowania adresów MAC jest ich użycie w protokołach takich jak Ethernet, gdzie umożliwiają one identyfikację urządzeń w sieci i kierowanie danych w odpowiednie miejsca. W praktyce, jeśli dwa urządzenia chcą wymienić informacje w sieci lokalnej, adres MAC jednego z nich będzie wskazywał, do którego urządzenia mają być przekazywane dane, co jest kluczowe dla poprawnego działania komunikacji w sieci.

Pytanie 19

Serwisant otrzymał zgłoszenie od użytkownika tunera satelitarnego, który nie odbiera sygnału tylko na programach z polaryzacją V. Sygnał z anteny jest dostarczany do gniazda poprzez multiswitch. Jaką usterkę można podejrzewać?

A. Brak zasilania multiswitcha
B. Usterka w głowicy tunera
C. Uszkodzony multiswitch
D. Zniszczone gniazdo antenowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Uszkodzony multiswitch to prawdopodobna przyczyna braku sygnału wyłącznie na programach z polaryzacją V. Multiswitch jest urządzeniem, które rozdziela sygnały z anteny satelitarnej na wiele wyjść, umożliwiając odbiór na różnych dekoderach. Każda polaryzacja (H i V) wymaga poprawnego działania multiswitcha, a jego uszkodzenie może prowadzić do sytuacji, w której jedna z polaryzacji nie jest właściwie przesyłana. W praktyce, przy uszkodzeniu multiswitcha, dekoder może odbierać sygnał z polaryzacji H, ale całkowicie tracić sygnał z polaryzacji V. Warto również sprawdzić, czy zasilanie multiswitcha jest prawidłowe i czy nie występują fizyczne uszkodzenia. Zgodnie z dobrymi praktykami serwisowymi, zaleca się regularne testowanie i konserwację sprzętu, aby uniknąć takich problemów. Ponadto, na etapie diagnostyki dobrze jest używać odpowiednich narzędzi, takich jak mierniki sygnału, aby dokładnie określić, gdzie leży problem z sygnałem.

Pytanie 20

Schemat ideowy wzmacniacza w układzie OE ze stabilizacją spoczynkowego punktu pracy przedstawiono na rysunku

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź D jest poprawna, ponieważ schemat ideowy wzmacniacza w układzie OE (odwracający emiter) z rezystorem emiterowym RE jest fundamentalnym elementem w wielu aplikacjach elektronicznych. Rezystor ten pełni kluczową rolę w stabilizacji spoczynkowego punktu pracy wzmacniacza. Wprowadza ujemne sprzężenie zwrotne, co oznacza, że wszelkie zakłócenia prądu kolektora spowodowane zmianami temperatury czy parametrami tranzystora są kompensowane przez zmiany napięcia na RE. Przykładowo, gdy temperatura wzrasta, prąd kolektora rośnie, co powoduje wzrost napięcia na RE, a tym samym zmniejsza prąd w obwodzie, stabilizując go. Zastosowanie takiego układu jest powszechne w audio wzmacniaczach, gdzie stabilność i jakość sygnału są kluczowe dla osiągnięcia wysokiej wydajności. Ponadto, według standardów branżowych, praktyka ta jest zgodna z najlepszymi metodami projektowania, co zapewnia niezawodność działania wzmacniaczy w długim okresie użytkowania.

Pytanie 21

Na rysunku przedstawiono sterownik urządzenia wykorzystywanego w

Ilustracja do pytania
A. sieciach telewizji kablowej.
B. systemach alarmowych.
C. systemach automatyki przemysłowej.
D. sieciach komputerowych.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dobra robota! To, że wskazałeś na systemy automatyki przemysłowej jako poprawną odpowiedź, jest mega trafne. Sterowniki PLC, czyli te programowalne, są podstawą w automatyzacji różnych procesów, jak produkcja czy kontrola jakości. To urządzenie ze zdjęcia monitoruje takie rzeczy jak temperatura i wilgotność, co jest typowe dla wielu rozwiązań w automatyce. W zakładach przemysłowych te sterowniki mają naprawdę ważną rolę, bo dbają o to, żeby maszyny działały jak najlepiej. Wiesz, w automatyce są normy, jak IEC 61131, które mówią, jakie powinny być te sterowniki, żeby były niezawodne. A jak jeszcze połączymy je z systemami SCADA, to można zdalnie kontrolować różne procesy, co totalnie podnosi efektywność. Fajnie, że to zrozumiałeś!

Pytanie 22

Podczas fachowej wymiany uszkodzonego układu scalonego SMD – kontrolera przetwornicy impulsowej w odbiorniku TV – powinno się zastosować

A. stację lutowniczą grzałkową
B. lutownicę transformatorową
C. stację na gorące powietrze
D. lutownicę gazową

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Stacja na gorące powietrze jest narzędziem idealnym do wymiany uszkodzonych układów scalonych SMD, takich jak sterowniki przetwornic impulsowych w odbiornikach TV. Dzięki zastosowaniu gorącego powietrza można jednocześnie podgrzewać wiele pinów układu, co znacząco ułatwia proces lutowania oraz odlutowywania. Metoda ta minimalizuje ryzyko uszkodzenia elementów sąsiadujących, ponieważ nie wprowadza bezpośredniego kontaktu z gorącą powierzchnią, jak ma to miejsce w przypadku lutownic. W praktyce, użytkownicy stacji na gorące powietrze powinni ustawić odpowiednią temperaturę (zwykle w zakresie 250-350°C) oraz przepływ powietrza, co zależy od konkretnego rozmiaru i typu układu. Użycie tej technologii jest zgodne z najlepszymi praktykami w branży, co podkreślają normy IPC, które promują odpowiednie techniki lutowania dla komponentów SMD. Ponadto, stacje na gorące powietrze są również używane do reworku i napraw, co czyni je wszechstronnym narzędziem w elektronice.

Pytanie 23

Do podłączenia dysku twardego z interfejsem EIDE, w czterokanałowym rejestratorze monitoringu, należy zastosować taśmę zakończoną wtykiem

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Interfejs EIDE, czyli Enhanced Integrated Drive Electronics, jest standardem stosowanym do podłączania dysków twardych w komputerach i urządzeniach rejestrujących. Wtyk EIDE posiada 40 pinów, co jest kluczowe dla jego funkcjonalności. Taśma zakończona wtykiem oznaczonym literą C jest typowym złączem dla taśmy EIDE, co pozwala na prawidłowe połączenie z dyskiem twardym. Przykładem zastosowania interfejsu EIDE mogą być starsze modele komputerów PC, gdzie często wykorzystywano ten standard do podłączania dysków twardych oraz napędów optycznych. Warto pamiętać, że poprawne podłączenie dysku twardego jest istotne dla stabilności oraz wydajności systemu. Używanie odpowiednich wtyków i taśm zapewnia nie tylko prawidłowe działanie urządzeń, ale również minimalizuje ryzyko uszkodzenia sprzętu. W praktyce, znajomość standardów takich jak EIDE jest kluczowa dla specjalistów zajmujących się serwisowaniem sprzętu komputerowego oraz dla inżynierów zajmujących się projektowaniem systemów magazynowania danych.

Pytanie 24

Na rysunku pokazano zależność tłumienia od częstotliwości A=f(f) pewnego filtru. Jaki to rodzaj filtru?

Ilustracja do pytania
A. Górnoprzepustowy.
B. Pasmowo-przepustowy.
C. Dolnoprzepustowy.
D. Pasmowo-zaporowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Dolnoprzepustowy" jest poprawna, ponieważ na przedstawionym wykresie widać, że tłumienie sygnałów maleje przy niskich częstotliwościach, a wzrasta w miarę zwiększania częstotliwości. Filtry dolnoprzepustowe są powszechnie stosowane w różnych aplikacjach inżynieryjnych, szczególnie w audio i telekomunikacji, gdzie istotne jest eliminowanie wyższych częstotliwości, które mogą wprowadzać szumy lub zakłócenia do sygnału. Przykładem zastosowania filtru dolnoprzepustowego jest jego użycie w systemach audio, gdzie często stosuje się go do eliminacji szumów wysokoczęstotliwościowych, co pozwala na uzyskanie czystszej jakości dźwięku. W praktyce, dobór odpowiednich parametrów filtru dolnoprzepustowego, takich jak częstotliwość odcięcia, jest kluczowy dla zapewnienia optymalnej jakości sygnału. Dobrze zaprojektowany filtr dolnoprzepustowy może znacząco poprawić wydajność systemu, co jest zgodne z najlepszymi praktykami w inżynierii sygnałów.

Pytanie 25

Jeżeli wartość rezystancji potencjometru suwakowego pomiędzy zaciskiem krańcowym a zaciskiem ślizgacza zmienia się proporcjonalnie do położenia ślizgacza, to charakterystyka takiego potencjometru stanowi funkcję

A. hiperboliczną
B. logarytmiczną
C. wykładniczą
D. liniową

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Potencjometr suwakowy działa na zasadzie zmiany rezystancji w zależności od położenia ślizgacza. Kiedy mówimy, że wartość rezystancji zmienia się wprost proporcjonalnie do położenia ślizgacza, oznacza to, że zmiana wartości rezystancji jest liniowa w odniesieniu do ruchu ślizgacza. Przykładowo, w przypadku potencjometru suwakowego o całkowitej rezystancji 10 kΩ, jeśli ślizgacz znajduje się w połowie drogi, wartość rezystancji między skrajnym zaciskiem a ślizgaczem wyniesie 5 kΩ. Taki charakterystyka jest niezwykle przydatna w aplikacjach audio, gdzie potencjometry linowe są wykorzystywane do regulacji głośności. W standardach branżowych, takich jak IEC, zaleca się użycie potencjometrów liniowych w sytuacjach, gdzie oczekuje się precyzyjnej i proporcjonalnej regulacji. Zrozumienie tej zasady pozwala na lepsze projektowanie obwodów elektronicznych oraz zrozumienie dynamiki działania różnych komponentów. Praca z potencjometrami liniowymi daje inżynierom szeroki wachlarz możliwości dostosowywania i optymalizacji systemów elektronicznych.

Pytanie 26

Na rysunku pokazano zależność tłumienia od częstotliwości A=f(f) pewnego filtru. Jaka jest wartość częstotliwości granicznej filtru o tej charakterystyce?

Ilustracja do pytania
A. 10 Hz
B. 10 kHz
C. 1 kHz
D. 100 Hz

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Częstotliwość graniczna filtru to kluczowy parametr w analizie systemów filtracyjnych, definiowany jako wartość częstotliwości, przy której sygnał jest tłumiony o 3 dB w stosunku do poziomu maksymalnego przepuszczanego przez filtr. W kontekście zaprezentowanego wykresu, tłumienie zaczyna znacząco wzrastać po osiągnięciu częstotliwości 1 kHz. Taki punkt jest niezwykle istotny w projektowaniu filtrów, ponieważ pozwala na określenie zakresu częstotliwości, w którym filtr skutecznie działa. W praktyce, odpowiednia znajomość częstotliwości granicznych jest nieoceniona w takich dziedzinach jak telekomunikacja, audio, czy inżynieria sygnałowa, gdzie jakość sygnału jest kluczowa. Na przykład, w systemach audio, odpowiedni dobór częstotliwości granicznej pozwala na efektywne odfiltrowanie niepożądanych zakłóceń, co przekłada się na lepszą jakość dźwięku. Dobrą praktyką jest również wykonanie analizy impedancji w pobliżu częstotliwości granicznej, aby zapewnić optymalne dopasowanie i minimalizację strat sygnału. Zrozumienie tego konceptu jest fundamentalne dla inżynierów zajmujących się projektowaniem i optymalizacją systemów filtracyjnych.

Pytanie 27

W systemach zabezpieczeń obwodowych wykorzystuje się

A. czujniki zalania
B. bariery podczerwieni
C. czujniki gazów usypiających
D. czujniki dymu i ciepła

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Bariery podczerwieni stanowią jeden z kluczowych elementów nowoczesnych systemów ochrony obwodowej. Działają na zasadzie detekcji ruchu poprzez analizowanie zmian w promieniowaniu podczerwonym, które emitują obiekty w ich zasięgu. Dzięki tej technologii możliwe jest szybkie wykrycie nieautoryzowanego dostępu do chronionego obszaru. Bariery podczerwieni są często stosowane w użytku zewnętrznym, gdzie mogą monitorować duże obszary, takie jak ogrody, parkingi czy tereny przemysłowe. Zgodnie z normami EN 50131, detektory te powinny być odpowiednio umieszczone, aby minimalizować ryzyko fałszywych alarmów, co jest kluczowe dla efektywności systemu. W praktyce, bariery podczerwieni są wykorzystywane w połączeniu z innymi systemami zabezpieczeń, takimi jak kamery monitoringu czy alarmy, co zwiększa ich skuteczność. Odpowiednie ich zainstalowanie oraz konfiguracja są zgodne z najlepszymi praktykami w branży ochrony, co zapewnia wysoki poziom bezpieczeństwa.

Pytanie 28

W przedstawionym na rysunku stabilizatorze wystąpiło zwarcie jednego z elementów. Wskaż, który podzespół uległ uszkodzeniu. Woltomierz prądu stałego wskazuje około 5 V.

Ilustracja do pytania
A. Kondensator C1
B. Kondensator C2
C. Dioda Dz
D. Układ μA7805

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór diody Zenera (Dz) jako uszkodzonego elementu w stabilizatorze napięcia jest poprawny z kilku powodów. Diody Zenera są kluczowymi komponentami w regulacji napięcia, ponieważ stabilizują napięcie wyjściowe poprzez prowadzenie prądu, gdy napięcie przekracza ich wartość progową. W tym przypadku, gdy woltomierz wskazuje około 5 V, możemy przypuszczać, że stabilizator μA7805 działa prawidłowo, ponieważ jego standardowe napięcie wyjściowe wynosi właśnie 5 V. Jednakże, jeśli doszło do zwarcia, dioda Zenera mogła ulec uszkodzeniu, co mogło spowodować nieprawidłowe zachowanie w układzie. Przykładem zastosowania diody Zenera jest stabilizacja napięcia w obwodach zasilających, gdzie jej zastosowanie zabezpiecza wrażliwe komponenty przed skokami napięcia. W praktyce, zaleca się regularne testowanie i kontrolę diod Zenera w obwodach, aby zapobiegać ewentualnym uszkodzeniom oraz zapewnić ich prawidłowe funkcjonowanie. Dodatkowo, zrozumienie roli diod Zenera w układach elektronicznych jest niezbędne dla każdego inżyniera zajmującego się projektowaniem obwodów, co podkreśla znaczenie ich znajomości w branży.

Pytanie 29

Jaką kluczową rolę w tunerze satelitarnym pełni moduł CI (Common Interface)?

A. Służy do łączenia urządzeń audio-video.
B. Funkcjonuje jako czytnik kart dostępu.
C. Pozwala na podłączenie pamięci zewnętrznej.
D. Daje możliwość aktualizacji oprogramowania tunera.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Moduł CI (Common Interface) w tunerze satelitarnym pełni kluczową rolę jako czytnik kart kodowych, co umożliwia dostęp do zaszyfrowanych kanałów telewizyjnych. System ten pozwala na korzystanie z różnych usług dostarczanych przez operatorów telewizji, którzy wykorzystują karty dostępu, aby chronić swoje treści przed nieautoryzowanym dostępem. W praktyce oznacza to, że użytkownik może włożyć kartę z subskrypcją do modułu CI, co umożliwia dekodowanie sygnału i tym samym oglądanie programów telewizyjnych. Moduł CI jest zgodny z różnymi standardami, takimi jak DVB (Digital Video Broadcasting), co zapewnia jego szeroką kompatybilność z wieloma modelami tunerów i telewizorów. Dzięki temu rozwiązaniu, użytkownicy nie są zmuszeni do korzystania z zewnętrznych dekoderów, co upraszcza instalację i obsługę ich systemów telewizyjnych. Warto również zauważyć, że metoda ta jest stosowana nie tylko w telewizji satelitarnej, ale również w kablowej, co czyni ją uniwersalnym rozwiązaniem w branży telekomunikacyjnej.

Pytanie 30

Co oznacza %I0.3 w kontekście programowania sterowników?

A. zawartość rejestru sterownika
B. zmienną wewnętrzną sterownika
C. jedno z wyjść sterownika
D. jedno z wejść sterownika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Określenie %I0.3 odnosi się do jednego z wejść sterownika w systemach automatyki przemysłowej. W kontekście programowania sterowników PLC (Programmable Logic Controllers), symbol ten wskazuje na to, że mamy do czynienia z sygnałem wejściowym, który może być podłączony do różnych czujników lub przycisków. Na przykład, jeżeli mamy czujnik temperatury połączony z tym wejściem, jego sygnał może być używany do monitorowania i kontrolowania procesów technologicznych. W standardzie IEC 61131-3, który reguluje programowanie sterowników, wejścia i wyjścia są jasno definiowane, co ułatwia tworzenie i utrzymanie systemów automatyki. Praktycznym zastosowaniem tej wiedzy jest możliwość szybkiego identyfikowania i diagnostyki problemów w systemie, co zwiększa efektywność i niezawodność procesów przemysłowych.

Pytanie 31

Komputerowa jednostka centralna przestaje działać przy dużym obciążeniu procesora. Jakie może być tego przyczyną?

A. Brak wolnego miejsca na dysku twardym
B. Niedobór pamięci
C. Uszkodzona karta graficzna
D. Przegrzewanie procesora

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przegrzewanie się procesora jest jedną z najczęstszych przyczyn, dla których jednostka centralna komputera może zatrzymać się w trakcie dużego obciążenia. Procesory, podczas intensywnej pracy, generują znaczne ilości ciepła. Gdy temperatura procesora przekracza dopuszczalne wartości, system operacyjny podejmuje działania, aby zapobiec uszkodzeniu podzespołów. W takim przypadku procesor automatycznie obniża swoją wydajność lub całkowicie przestaje działać, co jest znane jako 'throttling' lub 'thermal shutdown'. Dlatego bardzo ważne jest, aby zapewnić odpowiednie chłodzenie procesora, na przykład poprzez stosowanie wysokiej jakości coolerów, wentylatorów oraz past termoprzewodzących. Dobrą praktyką jest także regularne czyszczenie wnętrza komputera z kurzu, który może blokować przepływ powietrza. Zastosowanie monitorowania temperatury za pomocą specjalistycznego oprogramowania, takiego jak HWMonitor czy Core Temp, pozwala na bieżąco śledzić temperatury i podejmować odpowiednie działania przed wystąpieniem problemów z przegrzewaniem.

Pytanie 32

W układzie prostownika pokazanym na rysunku przeprowadzono pomiary czasowych przebiegów napięcia u1(t) oraz u2(t). Na tej podstawie można stwierdzić uszkodzenie polegające na

Ilustracja do pytania
A. rozwarciu diody Di
B. rozwarciu diody D3
C. zwarciu diody D2
D. zwarciu diody D3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "rozwarciu diody D3" jest poprawna, ponieważ analizując przebiegi napięć u1(t) i u2(t) w układzie prostownika, zauważamy, że napięcie u2(t) jest dodatnie tylko w dodatnich półokresach napięcia u1(t). Taki stan wskazuje na to, że dioda D3, odpowiedzialna za przewodzenie w ujemnych półokresach, nie funkcjonuje prawidłowo i jest rozwarta. W praktyce, w prostownikach mostkowych, prawidłowe przewodzenie diod w obu półokresach napięcia zmiennego jest kluczowe dla uzyskania stabilnego i ciągłego wyjściowego napięcia. Zgodnie z dobrymi praktykami branżowymi, w przypadku wykrycia takich anomalii, należy przeprowadzić dokładną diagnostykę systemu oraz wymienić uszkodzoną diodę, aby zapewnić efektywność działania układu. Warto również zwrócić uwagę na zastosowanie odpowiednich narzędzi diagnostycznych, które pozwalają na monitorowanie kondycji komponentów w czasie rzeczywistym, co może zapobiec większym awariom oraz zwiększyć niezawodność systemu.

Pytanie 33

Jakie jest standardowe rozwiązanie transmisji DVB w systemach kablowych?

A. DVB-H
B. DVB-C
C. DVB-S
D. DVB-T

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
DVB-C, czyli Digital Video Broadcasting - Cable, jest standardem transmisji używanym w sieciach kablowych do przesyłania sygnałów telewizyjnych i multimedialnych. W przeciwieństwie do innych standardów, takich jak DVB-T, który jest przeznaczony do transmisji naziemnej, czy DVB-S, który służy do odbioru sygnału satelitarnego, DVB-C jest zoptymalizowane dla kablowych sieci telekomunikacyjnych. Standard ten pozwala na efektywne zarządzanie pasmem oraz zapewnia wysoką jakość sygnału, co jest szczególnie istotne w kontekście transmisji wideo wysokiej rozdzielczości. W praktyce, zastosowanie DVB-C jest widoczne w kablowych telewizjach, które oferują wiele kanałów w różnych rozdzielczościach, a także w usługach dostępu do internetu przez kable. Dzięki zastosowaniu modulacji QAM (Quadrature Amplitude Modulation), DVB-C umożliwia przesyłanie dużej ilości danych, co przekłada się na możliwość oferowania szerokiego wachlarza usług dla użytkowników. W branży telekomunikacyjnej DVB-C uważany jest za standard wysokiej jakości, który wspiera rozwój nowoczesnych rozwiązań transmisyjnych.

Pytanie 34

Zmniejszenie amplitudy światła przesyłanego w linii światłowodowej określa się mianem

A. dyspersji
B. propagacji
C. polaryzacji
D. tłumienia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Tłumienie to naprawdę ważna sprawa w technologii światłowodowej. To zjawisko, które polega na spadku siły sygnału optycznego, gdy przesuwa się przez włókno. W praktyce to oznacza, że część energii światła gdzieś znika, bo jest wchłaniana albo rozpraszana przez włókno lub jego otoczenie. Kiedy mamy do czynienia z tłumieniem, to wpływa to na to, na jaką odległość możemy przesyłać sygnał bez utraty jakości. W branży telekomunikacyjnej mamy różne standardy, na przykład ITU-T G.652, które mówią, jakie powinny być limity tłumienia dla różnych typów światłowodów, żeby wszystko działało sprawnie. W przemyśle ważne jest monitorowanie tego zjawiska, bo każda strata dB może naprawdę zrujnować jakość połączeń, szczególnie w sieciach telekomunikacyjnych. Dobrze dobrane komponenty, takie jak wzmacniacze optyczne, mogą pomóc zredukować efekty tłumienia, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 35

Temperatura złącza diody osiąga 80 °C przy mocy strat wynoszącej 100 mW, a temperatura otoczenia wynosi 20 °C. Jaką całkowitą rezystancję termiczną ma ta dioda od złącza przez obudowę do otoczenia?

A. 800 K/W
B. 600 K/W
C. 200 K/W
D. 1 000 K/W

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź wynika z zastosowania podstawowych zasad obliczania rezystancji termicznej, która jest kluczowym parametrem w kontekście zarządzania ciepłem w komponentach elektronicznych. Aby obliczyć rezystancję termiczną, używamy wzoru: Rth = (Tj - Ta) / P, gdzie Tj to temperatura złącza, Ta to temperatura otoczenia, a P to moc strat. W naszym przypadku mamy Tj = 80 °C, Ta = 20 °C oraz P = 100 mW. Wstawiając te wartości do wzoru, otrzymujemy: Rth = (80 °C - 20 °C) / 0,1 W = 600 K/W. W praktyce, ta wiedza jest niezwykle istotna w projektowaniu układów elektronicznych, gdzie odpowiednie odprowadzanie ciepła wpływa na stabilność i żywotność komponentów. W przypadku diod, zrozumienie rezystancji termicznej pozwala inżynierom na dobór odpowiednich materiałów i metod chłodzenia, co jest zgodne z najlepszymi praktykami w inżynierii elektrycznej.

Pytanie 36

W trakcie serwisowania instalacji antenowej zauważono błąd popełniony przez instalatora. Zamiast właściwego przewodu o impedancji falowej 75 Ω, podłączono przewód o impedancji falowej 300 Ω. W efekcie tego błędu sygnał, który docierał do odbiornika,

A. był stłumiony
B. był równy 0
C. nie uległ zmianie
D. był wzmocniony

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że sygnał był stłumiony, jest prawidłowa, ponieważ różnica w impedancji falowej pomiędzy przewodem o impedancji 75 Ω a przewodem o impedancji 300 Ω powoduje poważne straty sygnału. W przypadku, gdy impedancja źródła i obciążenia nie jest zgodna, część sygnału jest odbijana na złączu, co prowadzi do zmniejszenia jego amplitudy. Praktycznie oznacza to, że efektywność transmisji sygnału jest znacznie obniżona. W przypadku instalacji antenowych, stosowanie przewodów o właściwej impedancji jest kluczowe dla zapewnienia optymalnej jakości odbioru sygnału. Zgodnie z normami branżowymi, takie jak IEC 61169, zachowanie odpowiednich wartości impedancji jest kluczowe dla minimalizacji strat transmisyjnych. Zastosowanie przewodów o nieodpowiedniej impedancji, jak w tym przypadku, często skutkuje stłumieniem sygnału, co może prowadzić do problemów z jakością odbioru, takich jak zniekształcenia czy zrywanie sygnału. Dlatego w praktyce zawsze należy upewnić się, że używane komponenty w instalacjach są zgodne z wymaganiami technicznymi.

Pytanie 37

Topologia sieci, w której wszystkie komponenty są podłączone do jednego głównego węzła (serwera) przez hub, nazywa się

A. pierścienia
B. gwiazdy
C. drzewa
D. magistrali

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Topologia gwiazdy jest modelowym rozwiązaniem w projektowaniu sieci komputerowych, w której wszystkie urządzenia (węzły) są bezpośrednio połączone z centralnym punktem, najczęściej hubem lub przełącznikiem. To podejście zapewnia wysoką niezawodność, ponieważ awaria jednego urządzenia nie wpływa na działanie pozostałych. W przypadku topologii gwiazdy, łatwość dodawania lub usuwania węzłów sprawia, że jest to popularny wybór w wielu małych i średnich przedsiębiorstwach. Przykładem zastosowania topologii gwiazdy może być biuro, w którym wszystkie komputery pracowników są podłączone do centralnego switcha, co umożliwia efektywne zarządzanie siecią i monitorowanie ruchu. Warto również zaznaczyć, że ta topologia jest zgodna z normami IEEE 802.3 i 802.11, które reguluje standardy Ethernet i WLAN. Dobrą praktyką w implementacji topologii gwiazdy jest zapewnienie odpowiedniej jakości kabli oraz urządzeń sieciowych, aby zapewnić optymalne działanie całej infrastruktury.

Pytanie 38

Urządzenie, które pozwala na odbiór sygnałów o różnych częstotliwościach z dwóch lub więcej anten odbiorczych, tak aby te sygnały były przesyłane do odbiornika za pomocą jednego kabla, to

A. dzielnik sygnału
B. zwrotnica antenowa
C. mieszacz
D. głowica odbiorcza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwrotnica antenowa to kluczowe urządzenie w systemach odbioru sygnałów telekomunikacyjnych, które pozwala na efektywne zarządzanie sygnałami z różnych źródeł. Dzięki zwrotnicy możliwe jest jednoczesne odbieranie sygnałów o różnych częstotliwościach z dwóch lub więcej anten, co znacznie zwiększa elastyczność i wydajność systemów komunikacyjnych. Przykładem zastosowania zwrotnicy antenowej jest instalacja w systemach telewizyjnych, gdzie wiele anten odbierających sygnały z różnych nadajników jest podłączonych do jednego odbiornika. W praktyce, zwrotnica kieruje odpowiednie sygnały do odbiornika w sposób, który minimalizuje straty i zakłócenia. Dodatkowo, zwrotnice antenowe są zgodne z normami branżowymi, co zapewnia ich niezawodność i efektywność w trudnych warunkach odbioru. Zastosowanie zwrotnic w telekomunikacji jest istotne, ponieważ pozwala na optymalizację pasma częstotliwościowego oraz zapewnia lepszą jakość odbieranego sygnału, co jest kluczowe w kontekście nowoczesnych technologii, takich jak DVB-T czy DVB-S.

Pytanie 39

W urządzeniu elektronicznym doszło do uszkodzenia kondensatora ceramicznego o oznaczeniu 104 100 V. Jaki kondensator należy zastosować w jego miejsce?

A. 10 nF 1000 V
B. 100 nF 100 V
C. 1000 nF 1000 V
D. 10 nF 100 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "100 nF 100 V" jest poprawna, ponieważ kondensator oznaczony jako "104 100 V" wskazuje na pojemność 100 nF i maksymalne napięcie robocze 100 V. Oznaczenie "104" oznacza, że dwie pierwsze cyfry to znaczące liczby (10), a trzecia cyfra to mnożnik, który w tym przypadku wynosi 10^4 pF, co daje 100000 pF, co po przeliczeniu daje 100 nF. Napięcie znamionowe wynosi 100 V, co jest zgodne z wymaganiami dla aplikacji elektronicznych. W praktycznych zastosowaniach kondensatory ceramiczne o pojemności 100 nF są powszechnie stosowane w filtrach, układach czasowych oraz w obwodach zasilających, gdzie stabilność i niskie straty są kluczowe. Warto pamiętać, że dobór kondensatora powinien być zgodny z normami branżowymi, takimi jak IEC 60384, które określają parametry bezpieczeństwa i jakości dla komponentów elektronicznych.

Pytanie 40

Wtórnik emiterowy to wzmacniacz z tranzystorem w układzie

A. wspólnego emitera
B. wspólnego źródła
C. wspólnej bazy
D. wspólnego kolektora

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wtórnik emiterowy, który często nazywamy wzmacniaczem w konfiguracji wspólnego kolektora, to jeden z fundamentalnych typów wzmacniaczy tranzystorowych. Co jest w nim fajne? To, że sygnał wyjściowy bierzemy z kolektora, a nie z emitera. Dzięki temu ten wzmacniacz świetnie nadaje się do sytuacji, gdzie potrzebujemy zwiększyć prąd, ale nie chcemy za bardzo podnosić napięcia sygnału. W praktyce często spotyka się go w interfejsach sygnałowych, gdzie łączy się różne elementy obwodu. Przydatne jest to, że ma niski opór wyjściowy i dużą impedancję wejściową, więc zazwyczaj wykorzystuje się go jako bufor między różnymi etapami układów elektronicznych. W dziedzinie audio ten typ wzmacniacza pozwala świetnie wzmocnić sygnał bez wpływania na jego jakość. Z mojego doświadczenia, stosowanie wtórnika emiterowego pomaga też w eliminacji zakłóceń i zniekształceń, co jest mega istotne w aplikacjach, gdzie precyzja ma znaczenie.