Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 5 stycznia 2026 14:37
  • Data zakończenia: 5 stycznia 2026 14:54

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Wskaż element funkcyjny, którego zastosowanie w programie sterującym umożliwi bezpośrednie zliczanie impulsów na wejściu PLC?

A. Licznik
B. Timer TON
C. Multiplekser
D. Regulator PID
Licznik jako blok funkcyjny jest kluczowym elementem w programowaniu systemów PLC, wykorzystywanym do zliczania impulsów. Jego fundamentalna funkcja polega na inkrementacji wartości licznika w odpowiedzi na otrzymane sygnały impulsowe, co pozwala na dokładne monitorowanie zdarzeń w czasie rzeczywistym. Przykładowo, w aplikacjach takich jak zliczanie produktów na linii produkcyjnej, licznik może być użyty do rejestrowania liczby sztuk, które przeszły przez określony punkt. Dobre praktyki w programowaniu PLC sugerują, aby zawsze wybierać odpowiednie bloki funkcyjne do konkretnego zadania, a licznik jest najbardziej efektywnym wyborem do zliczania impulsów. W kontekście standardów branżowych, ważne jest także, aby projektując systemy automatyki, uwzględniać aspekty takie jak szybkość reakcji i dokładność pomiarów, co licznik w pełni spełnia. Dodatkowo, korzystając z liczników, można implementować funkcje takie jak zliczanie do określonej wartości lub resetowanie, co zwiększa elastyczność w zastosowaniach automatyki.

Pytanie 3

Która z podanych zasad musi być przestrzegana przed przystąpieniem do konserwacji lub naprawy urządzenia mechatronicznego posiadającego oznaczenie przedstawione na rysunku?

Ilustracja do pytania
A. Załącz przed rozpoczęciem czynności.
B. Odłącz przed rozpoczęciem czynności.
C. Otwórz okno w pomieszczeniu.
D. Zamknij drzwi do pomieszczenia.
Odpowiedź "Odłącz przed rozpoczęciem czynności" to strzał w dziesiątkę. Zasadniczo, zanim zaczniemy majsterkować przy jakimkolwiek urządzeniu mechatronicznym, trzeba je odłączyć od prądu. Spójrz na ten symbol ostrzegawczy, który widzisz na rysunku – przypomina, że urządzenie może być pod napięciem. A to już duże zagrożenie dla osób, które zajmują się serwisowaniem. Jeśli nie odłączysz zasilania, może się zdarzyć, że w trakcie pracy urządzenie się włączy i to może skończyć się niebezpiecznie. W przemyśle, gdzie używamy robotów i maszyn automatycznych, takie standardy jak ANSI Z535.3 są bardzo ważne. Mówią, jak powinno się oznakować urządzenia, żeby zachować bezpieczeństwo. Pamiętaj, że zawsze warto upewnić się, że urządzenie jest oznaczone jako "nie włączać" podczas robienia konserwacji. Nie tylko, że to zgodne z przepisami BHP, ale to także klucz do odpowiedzialnego działania w kwestii bezpieczeństwa w pracy.

Pytanie 4

Na którym schemacie prawidłowo narysowano przekaźnik czasowy z opóźnionym załączeniem?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Schemat B prawidłowo ilustruje działanie przekaźnika czasowego z opóźnionym załączeniem. Po podaniu napięcia na cewkę przekaźnika, styki k1 nie załączają się natychmiast, lecz z opóźnieniem, co jest kluczowym elementem jego funkcjonalności. Przekaźniki te są szeroko stosowane w automatyce i systemach sterowania, na przykład w oświetleniu, gdzie wymagane jest, aby światło włączało się po pewnym czasie od naciśnięcia przycisku. Dzięki temu użytkownicy mogą mieć pewność, że nie dojdzie do natychmiastowego załączenia urządzenia, co może być niebezpieczne w niektórych aplikacjach. Podczas projektowania układów automatyki ważne jest, aby zwracać uwagę na parametry czasowe, co jest zgodne z normami IEC 60947 dotyczącymi urządzeń elektrycznych. Warto również pamiętać, że przekaźniki czasowe mogą być używane do synchronizacji różnych procesów, a ich odpowiednia konfiguracja zwiększa efektywność działania systemów automatyki przemysłowej.

Pytanie 5

Jakie są różnice między blokiem funkcyjnym przerzutnika RS a blokiem przerzutnika SR w PLC?

A. Czasem reakcji
B. Odwróceniem sygnałów Set i Reset
C. Ilością stanów pośrednich
D. Przewagą sygnałów Set i Reset
Wybór odpowiedzi związanej z liczbą stanów pośrednich pokazuje, że możesz mieć niepełne zrozumienie tego, jak działają przerzutniki. Wydaje się, że myślisz, że RS i SR różnią się tylko ilością stanów, a to nie do końca tak jest. Oba działają na podstawie dwóch stanów: 0 i 1. Warto też zauważyć, że szybkość działania nie jest główną różnicą między nimi, chociaż faktycznie różne realizacje mogą reagować w różnym czasie. Kluczowe jest to, że przerzutnik SR może zmieniać stan, gdy oba sygnały są aktywne, a w RS musi być aktywny Set, żeby Reset nie miał wpływu. Pamiętaj, że negacja sygnałów Set i Reset dotyczy bardziej logiki w niektórych schematach, a niekoniecznie samej różnicy w działaniu tych przerzutników. Często spotykane błędy to pomijanie podstawowych zasad działania tych bloków funkcyjnych oraz brak zrozumienia ich w praktycznych zastosowaniach. Żeby skutecznie projektować systemy automatyki, warto naprawdę dobrze poznać te funkcjonalne różnice.

Pytanie 6

Jakiej z wymienionych funkcji nie realizuje system SCADA?

A. Prezentacja danych
B. Archiwizacja danych
C. Zwalczanie i usuwanie wirusów komputerowych
D. Zbieranie danych
Oprogramowanie SCADA (Supervisory Control and Data Acquisition) jest kluczowym elementem w zarządzaniu systemami przemysłowymi. Jego podstawowe funkcje obejmują zbieranie danych z różnych czujników i urządzeń, wizualizację tych danych w postaci graficznej, a także archiwizację informacji, co pozwala na późniejszą analizę wydajności i diagnostykę. SCADA umożliwia operatorom monitorowanie procesów w czasie rzeczywistym, co jest istotne dla utrzymania wydajności produkcji oraz bezpieczeństwa operacji. Na przykład, w zakładach chemicznych oprogramowanie SCADA zbiera dane dotyczące temperatury, ciśnienia czy poziomu substancji, które są następnie wizualizowane na panelach operatorskich. Dzięki archiwizacji danych, inżynierowie mogą analizować trendów i podejmować decyzje na podstawie historycznych danych. Standardy takie jak ISA-95 i IEC 61512 definiują ramy dla implementacji systemów SCADA, podkreślając ich rolę w automatyzacji procesów przemysłowych. W związku z tym, zrozumienie, że SCADA nie zajmuje się zwalczaniem wirusów komputerowych, jest kluczowe dla prawidłowego zastosowania tej technologii w praktyce.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Układ przekaźnikowy z samopodtrzymaniem załączający silnik elektryczny małej mocy zastąpiono układem ze sterownikiem PLC. Który z programów wprowadzony do sterownika zapewni identyczne sterowanie silnikiem do sterowania realizowanego przez układ przekaźnikowy?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Odpowiedź A jest prawidłowa, ponieważ idealnie odwzorowuje działanie układu przekaźnikowego z samopodtrzymaniem, który jest kluczowy w automatyce przemysłowej. W schemacie A, po naciśnięciu przycisku 'Start', przekaźnik Q1 jest aktywowany, co uruchamia silnik elektryczny. Styk pomocniczy Q1 zapewnia samopodtrzymanie, co oznacza, że przekaźnik pozostaje w stanie załączonym nawet po zwolnieniu przycisku 'Start'. Przyciski 'Start' i 'Stop' tworzą klasyczny układ sterowania, który jest zgodny z zasadami projektowania obwodów elektrycznych w przemyśle. W praktyce, takie rozwiązanie jest powszechnie stosowane w systemach automatyki, gdzie niezawodność i prostota działania są kluczowe. Warto również zauważyć, że stosując standardy takie jak IEC 61131, możemy zapewnić, że programy PLC są zgodne z najlepszymi praktykami w branży. Uwzględniając te aspekty, odpowiedź A nie tylko spełnia wymagania techniczne, ale również odpowiada na potrzeby użytkowników w kontekście zastosowania w realnych systemach automatyki.

Pytanie 9

Na rysunku przedstawiono program realizowany przez sterownik. Do wejścia I01 dołączono przycisk monostabilny NO, a do wyjścia Q01 – lampkę. W odpowiedzi na wciśnięcie, przytrzymanie i zwolnienie przycisku lampka

Ilustracja do pytania
A. świeci, gdy przycisk jest trzymany.
B. świeci, gdy przycisk jest zwolniony.
C. mignie, gdy przycisk jest wciskany.
D. mignie, gdy przycisk jest zwalniany.
Wybór odpowiedzi, w której lampka miałaby świecić, gdy przycisk jest zwolniony, jest błędny z kilku powodów. Przycisk monostabilny NO działa na zasadzie otwierania i zamykania obwodu tylko w momencie wciśnięcia. Gdy przycisk jest zwolniony, obwód jest otwarty, co oznacza, że nie ma przepływu prądu. Stąd lampka nie może świecić w tej chwili, co prowadzi do nieporozumienia w zakresie zasad działania przycisków i przekaźników. W sytuacji, gdy lampka byłaby ustawiona na świecenie w momencie zwolnienia przycisku, obwód musiałby być skonstruowany w sposób, który nie odpowiada standardowym rozwiązaniom. Dlatego także odpowiedzi sugerujące świecenie lampki podczas trzymania przycisku lub jej miganie podczas wciskania są mylące. Przycisk NO, będąc przyciskiem monostabilnym, nie może być używany do ciągłego zasilania lampki, co często jest źródłem błędnych przekonań o jego działaniu. Zrozumienie tych zasad jest kluczowe dla prawidłowego projektowania systemów automatyki oraz sterowania, aby uniknąć potencjalnych usterek w instalacjach elektrycznych.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Kontrola instalacji hydraulicznej obejmuje

A. pomiar natężenia prądu zasilającego pompę
B. wymianę filtra oleju w systemie
C. zmianę rozdzielacza
D. ocenę stanu przewodów
Wybór odpowiedzi dotyczących wymiany rozdzielacza, wymiany filtra oleju w układzie lub pomiaru natężenia prądu obciążenia pompy stanowi typowy błąd w interpretacji rodzajów działań związanych z instalacjami hydraulicznymi. Wymiana rozdzielacza i filtra oleju to działania serwisowe, które są istotne dla utrzymania sprawności systemu, ale nie wchodzą w skład standardowych oględzin. Oględziny mają na celu przede wszystkim ocenę aktualnego stanu instalacji, a nie wykonywanie wymiany elementów, co wiąże się z diagnostyką i konserwacją. Zrozumienie znaczenia oględzin jako procesu oceny stanu technicznego jest kluczowe, ponieważ pozwala na wczesne wykrywanie problemów i zapobiega poważnym awariom. Natomiast pomiar natężenia prądu obciążenia pompy jest związany z instalacją elektryczną, co ukazuje brak zrozumienia różnic między systemami hydraulicznymi a elektrycznymi. Typowe błędy myślowe, które prowadzą do takich nieprawidłowych wniosków, to mylenie działań serwisowych z procedurami inspekcyjnymi oraz niewłaściwe przyporządkowanie zadań do odpowiednich obszarów technicznych.

Pytanie 12

W podręczniku obsługi silnika zasilanego napięciem 400 V i kontrolowanego przez PLC powinna być zawarta informacja: Przed rozpoczęciem prac konserwacyjnych należy odłączyć wszystkie obwody zasilające.

A. zabezpieczyć je przed uruchomieniem oraz zewrzeć obudowę silnika z uziemieniem
B. uziemić silnik oraz uziemić sterownik przy użyciu urządzenia do uziemiania
C. zabezpieczyć je przed uruchomieniem i sprawdzić, czy nie ma napięcia
D. sprawdzić, czy nie ma napięcia i zewrzeć złącza silnika
Wybór odpowiedzi, które sugerują zabezpieczenie obwodów w sposób niezgodny z normami, może prowadzić do poważnych konsekwencji. Odpowiedzi takie jak "uziemić silnik" czy "zewrzeć zaciski silnika" wprowadzają niepoprawne i potencjalnie niebezpieczne praktyki. Uziemienie silnika jest techniką, która powinna być stosowana tylko w określonych sytuacjach, gdyż niewłaściwe jej zastosowanie może prowadzić do porażenia prądem lub uszkodzenia urządzenia. Procedura zewrzenia zacisków silnika również nie jest standardowym wymaganiem i może prowadzić do uszkodzeń, jeśli nie jest przeprowadzana przez wykwalifikowany personel. Ponadto, wiele osób może błędnie interpretować potrzebę uziemienia jako wystarczające zabezpieczenie, co jest nieprawidłowe. Z kolei sprawdzanie braku napięcia powinno być zawsze obligatoryjne, jednak nie może być jedynym środkiem ostrożności. Ignorowanie tych zasad prowadzi do typowych błędów myślowych, takich jak niedocenianie ryzyka przy pracy z urządzeniami elektrycznymi, co może mieć tragiczne skutki. Właściwe zrozumienie i stosowanie zasad bezpieczeństwa jest kluczowe, aby uniknąć wypadków i zapewnić bezpieczeństwo własne oraz innych pracowników w środowisku przemysłowym.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Aby zmienić skok gwintu należy zmienić wartość liczbową przy literze adresowej

N100 G00 X55 Z5
N110 T3 S80 M03
N120 G31 X50 Z-30 D-2 F3 Q3
A. F (prędkość posuwu)
B. D (korektor narzędzia)
C. T (wybór narzędzia)
D. Q (promień wodzący)
Odpowiedź "F" dotycząca prędkości posuwu jest poprawna, ponieważ w programowaniu obrabiarek CNC litera adresowa "F" definiuje właśnie tę prędkość. Prędkość posuwu to kluczowy parametr, który wpływa na jakość obróbki oraz efektywność procesu skrawania. Ustalając odpowiednią prędkość posuwu, operator może kontrolować tempo, w jakim narzędzie porusza się wzdłuż materiału, co przekłada się na dokładność i wydajność obróbki. W praktyce, zmiana wartości przy literze "F" pozwala na dostosowanie parametrów do rodzaju obrabianego materiału oraz zastosowanego narzędzia skrawającego, co jest niezbędne do osiągnięcia optymalnych efektów. Warto również zaznaczyć, że w przypadku gwintowania za pomocą obrabiarek CNC, odpowiednia prędkość posuwu jest kluczowa dla uzyskania pożądanej jakości gwintu, dlatego operatorzy muszą być świadomi znaczenia tego parametru oraz umieć go odpowiednio dostosować w zależności od specyfiki zadania. Zmiana skoku gwintu odbywa się poprzez inne parametry, takie jak G32 lub G33, co podkreśla znaczenie właściwego przypisania liter adresowych w programowaniu CNC.

Pytanie 15

Jaka będzie reakcja wyjścia Q1 sterownika, realizującego program przedstawiony na schemacie, przy sygnałach wejściowych I1 = 12 = 1?

Ilustracja do pytania
A. Stan zmieni się na przeciwny.
B. Pojawi się 0 logiczne bez względu na stan poprzedni.
C. Pojawi się 1 logiczna bez względu na stan poprzedni.
D. Utrzyma się stan poprzedni.
Wybór odpowiedzi sugerującej, że wyjście Q1 zmieni się na przeciwny stan, jest oparty na błędnym zrozumieniu zasad funkcjonowania przerzutników RS. Takie podejście zakłada, że zmiana stanu wyjścia Q1 następuje tylko w wyniku zmiany stanu wejść, co nie jest prawdą. W rzeczywistości, przerzutnik RS zachowuje swój stan wyjściowy, dopóki nie zostanie wyzwolony przez odpowiedni sygnał na wejściu RESET. Inną nietrafioną koncepcją jest założenie, że sygnał wejściowy I1 może w sposób jednoznaczny wpływać na stan wyjścia w sposób niezależny od innych wejść. Systemy cyfrowe, a zwłaszcza przerzutniki, są z definicji układami, w których logika złożona z wielu bramek musi być brana pod uwagę, a nie tylko pojedyncze wejścia. Istotne jest zrozumienie, że odpowiedzi, które mówią o wprowadzeniu 1 logicznego lub o braku wpływu na stan poprzedni, wynikają z typowych błędów myślowych, jakimi są uproszczenie działania przerzutników do poziomu pojedynczej bramki logicznej. Warto pamiętać, że dobra praktyka w projektowaniu układów logicznych wymaga dokładnej analizy wszystkich sygnałów wejściowych oraz ich wpływu na wyjścia, a także zrozumienia, jak zachowują się różne stany przerzutników w różnych warunkach. Ignorowanie tych zasad prowadzi do nieefektywnych i niepoprawnych rozwiązań w obszarze inżynierii cyfrowej.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Podczas przeglądu silnika trójfazowego frezarki numerycznej wykonano pomiary rezystancji uzwojeń i rezystancji izolacji, zamieszczone w tabeli. Wyniki te wskazują na

Pomiar między zaciskamiU1-U2V1-V2W1-W2U1-V1V1-W1U1-W1U1-PEV1-PEW1-PE
Wynik22 Ω21,5 Ω22,2 Ω52 MΩ49 MΩ30 Ω
A. zwarcie między uzwojeniem W1-W2, a obudową silnika.
B. przerwę w uzwojeniu V1-V2.
C. zwarcie między uzwojeniami U1-U2 oraz W1-W2.
D. przerwę w uzwojeniu U1-U2.
W przypadku analizowania niepoprawnych odpowiedzi, warto zwrócić uwagę na szereg kluczowych aspektów, które mogą prowadzić do nieporozumień. Po pierwsze, twierdzenie o przerwie w uzwojeniu U1-U2 jest w tym kontekście błędne, ponieważ właściwe pomiary rezystancji nie wskazują na takie uszkodzenie. Przerwa w uzwojeniu zazwyczaj charakteryzuje się znacznie wyższymi wartościami rezystancji, co nie miało miejsca w analizowanych wynikach. Kolejną mylną koncepcją jest zwarcie między uzwojeniami U1-U2 oraz W1-W2; wyniki testów jasno pokazują, że rezystancje tych uzwojeń mieszczą się w normalnych zakresach, co eliminuje tę możliwość. Można również zauważyć, iż nazywanie niskiej rezystancji izolacji między uzwojeniem W1-W2 a obudową silnika jako zwarcia to typowy błąd myślowy wynikający z niepełnego zrozumienia zasad działania silników elektrycznych i ich izolacji. Często mylnie interpretowane są wyniki pomiarów, co prowadzi do nieprawidłowego diagnozowania usterki. Aby uniknąć takich błędów, zaleca się stosowanie sprawdzonych metod diagnostycznych oraz weryfikacji wyników pomiarów zgodnie z przyjętymi standardami, np. IEC 60034, które dokładnie określają, jakie wartości izolacji są akceptowalne dla różnych typów silników. Wiedza na temat norm i praktycznych aspektów diagnostyki silników elektrycznych jest kluczowa dla utrzymania bezpieczeństwa i efektywności pracy urządzeń.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Podczas inspekcji zauważono zbyt głośną pracę silnika indukcyjnego pierścieniowego. Aby zredukować hałas, konieczna jest wymiana

A. łożysk tocznych
B. uszczelek pierścieniowych
C. sprężyn dociskających
D. pierścieni ślizgowych
Wybór pierścieni ślizgowych, uszczelek pierścieniowych czy sprężyn dociskających w kontekście nadmiernego hałasu silnika indukcyjnego pierścieniowego jest niewłaściwy, ponieważ te elementy nie mają bezpośredniego wpływu na generowanie hałasu w wyniku działania silnika. Pierścienie ślizgowe są stosowane w konstrukcjach, gdzie następuje kontakt z wirującymi częściami, ale ich funkcja polega na zapewnieniu odpowiedniej szczelności i nie wpływa na poziom hałasu wynikający z tarcia w łożyskach. Uszczelki pierścieniowe mają za zadanie zminimalizować wycieki oleju, lecz ich wymiana nie wpłynie na hałas generowany podczas pracy silnika. Natomiast sprężyny dociskające, które są stosowane w różnorodnych mechanizmach, nie mają związku z redukcją hałasu silnika indukcyjnego. Typowe błędy myślowe, jakie mogą pojawić się w tym kontekście, to mylenie roli poszczególnych elementów konstrukcyjnych silnika oraz bagatelizowanie znaczenia stanu technicznego łożysk. W praktyce, silnik z uszkodzonymi łożyskami będzie generował hałas nie tylko z powodu ich zużycia, ale także z powodu dodatkowego obciążenia innych elementów konstrukcji, co może prowadzić do ich szybszego uszkodzenia oraz podwyższonego zużycia energii.

Pytanie 20

Które nastawy muszą zostać wybrane w oknie konfiguracyjnym timera, aby załączał swoje wyjście na 5 sekund od momentu podania na jego wejście logicznej jedynki?

Ilustracja do pytania
A. Typ timera – TOF, czas bazowy – 10 ms, wartość Preset - 500
B. Typ timera – TP, czas bazowy – 10 ms, wartość Preset - 500
C. Typ timera – TON, czas bazowy – 1 ms, wartość Preset - 500
D. Typ timera – TP, czas bazowy – 10 ms, wartość Preset - 50
Wybranie timera typu TP (Timer Pulse) jest poprawnym rozwiązaniem, ponieważ ten typ timera służy do generowania impulsów na wyjściu przez zdefiniowany czas, który jest ustalany na podstawie wartości Preset pomnożonej przez czas bazowy. W tym przypadku, przy ustawieniu czas bazowy na 10 ms oraz wartość Preset równą 500, otrzymujemy łączny czas działania wyjścia wynoszący 5000 ms, co odpowiada 5 sekundom. Takie nastawy są szczególnie przydatne w aplikacjach, w których wymagane jest precyzyjne sterowanie czasem, na przykład w automatyce przemysłowej przy sygnalizacji stanów maszyn czy w systemach sterowania, gdzie precyzyjne opóźnienia są kluczowe. Przy projektowaniu systemów automatyki warto również stosować się do standardów IEC 61131, które regulują stosowanie timerów i zapewniają ich poprawną implementację w różnych systemach sterowania.

Pytanie 21

Na podstawie danych znamionowych prądnicy tachometrycznej określ, jaką wartość napięcia będzie wskazywał woltomierz na wyjściu prądnicy, jeżeli wirnik obraca się z prędkością 4800 obr/min.

Dane znamionowe prądnicy tachometrycznej
PZTK 51-18
ku = 12,5 V/1000 obr/min
Robc min = 5 kΩ
nmax = 8000 obr/min
A. 18 V
B. 60 V
C. 12,5 V
D. 5 V
Wybór innej wartości napięcia, takiej jak 18 V, 12,5 V czy 5 V, świadczy o braku zrozumienia fundamentalnych zasad działania prądnic tachometrycznych. Każda z tych odpowiedzi wynika z błędnego założenia dotyczącego proporcjonalności między prędkością obrotową a generowanym napięciem. Prądnice tachometryczne działają na zasadzie indukcji elektromagnetycznej, gdzie napięcie wyjściowe jest proporcjonalne do prędkości obrotowej wirnika. W przypadku prądnicy, której znamionowa wartość napięcia wynosi 60 V przy 4800 obr/min, każda inna wartość jest wynikiem zrozumienia niewłaściwej charakterystyki prądnicy. Możliwe jest, że wybór niższych napięć wynika z mylnego wrażenia, że wyższe prędkości obrotowe generują mniejsze napięcia, co jest odwrotnością rzeczywistości. W praktyce, błędne odpowiedzi mogą również wynikać z braku znajomości danych znamionowych urządzenia oraz jego zastosowań w układach automatyki, gdzie precyzyjne pomiary są kluczowe. Zrozumienie zasad działania i charakterystyki prądnic tachometrycznych jest niezbędne, a ich zastosowanie w regulacji prędkości silników elektrycznych wymaga znajomości odpowiednich parametrów pracy oraz ich wpływu na cały system.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Na podstawie wymiarów łożysk podanych w tabeli dobierz łożysko kulkowe do silnika indukcyjnego o średnicy wału 10 mm i średnicy otworu w tarczy łożyskowej 30 mm.

Symbol łożyskaWymiary łożysk
śr. wewn. D
[mm]
śr. zewn. D
[mm]
wys. B, T, H
[mm]
600010268
620010309
6190112246
600112288
A. 61901
B. 6000
C. 6200
D. 6001
Odpowiedź 6200 jest na pewno dobra, bo to łożysko kulkowe ma wewnętrzną średnicę 10 mm i zewnętrzną średnicę 30 mm. To idealnie odpowiada wymaganiom, które były w pytaniu. W praktyce dobór odpowiedniego łożyska do silnika indukcyjnego to kluczowa sprawa. Dobrze dobrane łożysko pozwala na lepszą pracę silnika i wydłuża jego żywotność. Jak wiadomo, łożyska są mega ważne w maszynach, bo umożliwiają swobodne obracanie się części ruchomych, co zmniejsza tarcie. Łożysko 6200 ma naprawdę fajną konstrukcję, co zapewnia mu dużą nośność i odporność na zmęczenie, a to jest ważne, kiedy mamy do czynienia z dużymi prędkościami obrotowymi. Często znajdziesz je w różnych zakładach przemysłowych i urządzeniach elektrycznych, więc to pokazuje, jak wszechstronne to łożysko. Jak wybierasz łożysko, nie zapomnij zwrócić uwagi na oznaczenia i normy, które powinny pasować do standardów ISO. W przypadku 6200, to łożysko jest zgodne z tymi normami, co czyni je fajnym wyborem w różnych zastosowaniach.

Pytanie 30

Które nastawy muszą zostać wybrane w oknie konfiguracyjnym timera, aby załączał swoje wyjście na 5 sekund od momentu podania na jego wejście logicznej jedynki?

Ilustracja do pytania
A. Timer Type: TP, Time Base: 1 ms, Preset: 500
B. Timer Type: TON, Time Base: 100 ms, Preset: 50
C. Timer Type: TP, Time Base: 1 s, Preset: 5
D. Timer Type: TOF, Time Base: 10 ms, Preset: 50
Wybór nieprawidłowych nastaw w konfigurowaniu timera często wynika z błędnej interpretacji jego funkcji oraz nieprawidłowego zrozumienia, jak różne typy timerów wpływają na działanie systemu. Typ timera TON, który jest używany do opóźnienia, nie jest odpowiedni dla sytuacji, w której wyjście ma być aktywne przez określony czas po sygnale na wejściu. Z tego powodu nadanie mu Presetu równemu 50, przy bazie czasowej 100 ms, prowadzi do aktywności timera przez 5 sekund, ale w kontekście jego działania jest on nieadekwatny. Timer TOF jest skonstruowany do działania w przeciwnym kierunku i jego użycie w tym przypadku jest błędne, ponieważ wyjście pozostaje aktywne tylko do momentu, gdy sygnał na wejściu przestaje być aktywny. Ustawienie bazy czasowej na 10 ms i Preset na 50 również nie odpowiada na wymagania zadania, co prowadzi do mylnej koncepcji, że czas aktywności wyjścia może być kontrolowany w ten sposób. Timer TP, użyty w ostatniej błędnej odpowiedzi, również ma niewłaściwe ustawienia, ponieważ baza czasowa 1 ms i Preset 500 dają aktywność przez 0,5 sekundy, co jest niezgodne z wymogiem 5 sekund. W tym kontekście należy unikać błędnych założeń dotyczących działania timerów oraz zrozumienia ich specyfiki, aby prawidłowo wykorzystać je w projektach automatyki.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jaką rolę odgrywa zawór przelewowy w hydraulicznej prasie?

A. Zrzuca olej z siłownika do zbiornika.
B. Filtruje zanieczyszczenia z oleju.
C. Chroni przed powrotem oleju z rozdzielacza do pompy.
D. Umożliwia regulację wartości siły wytwarzanej przez prasę.
Zawór przelewowy odgrywa kluczową rolę w systemach hydraulicznych, w tym prasie hydraulicznej, umożliwiając regulację maksymalnej wartości siły generowanej przez urządzenie. Jego głównym zadaniem jest odprowadzanie nadmiaru ciśnienia, co pozwala uniknąć uszkodzeń komponentów hydraulicznych, a także optymalizować efektywność pracy prasy. Przykładowo, w sytuacji, gdy ciśnienie wzrasta powyżej ustalonego poziomu, zawór przelewowy otwiera się, kierując nadmiar oleju z powrotem do zbiornika, co chroni system przed nadmiernym obciążeniem. Taka regulacja jest niezwykle istotna w kontekście bezpieczeństwa i długowieczności urządzeń hydraulicznych. W praktyce, regulacje zaworu przelewowego powinny być dostosowywane zgodnie z wymaganiami konkretnego procesu, aby zapewnić optymalne parametry pracy. Zastosowanie wysokiej jakości zaworów przelewowych, zgodnych z normami branżowymi, jest kluczowe dla zapewnienia niezawodności i efektywności systemu hydraulicznego.

Pytanie 34

Przedstawiony na rysunku zawór wymaga zasilania

Ilustracja do pytania
A. cieczą hydrauliczną pod ciśnieniem i napięciem 230 V DC
B. sprężonym powietrzem i napięciem 230 V AC
C. sprężonym powietrzem i napięciem 230 V DC
D. cieczą hydrauliczną pod ciśnieniem i napięciem 230 V AC
Odpowiedź sprężonym powietrzem i napięciem 230 V AC jest poprawna, ponieważ zawór pneumatyczny marki Rexroth, przedstawiony na rysunku, rzeczywiście wymaga takiego zasilania. Zawory pneumatyczne są powszechnie stosowane w automatyce przemysłowej do sterowania różnymi procesami, ponieważ umożliwiają szybkie i precyzyjne działanie. Zasilanie sprężonym powietrzem pozwala na osiągnięcie dużych sił przy relatywnie niewielkich rozmiarach zaworów. W praktyce, zastosowanie takiego zaworu pozwala na kontrolowanie przepływu medium w systemach produkcyjnych, montażowych oraz w robotyce. Przy zasilaniu napięciem 230 V AC, zawór może być zintegrowany z typowymi układami zasilania stosowanymi w zakładach przemysłowych, co ułatwia jego implementację i eksploatację. Dobrą praktyką jest regularne serwisowanie i kontrola stanu technicznego urządzeń pneumatycznych, aby zapewnić ich niezawodność i bezpieczeństwo operacyjne.

Pytanie 35

W układzie sterowania realizowanym za pomocą sterownika PLC sygnał z wyjścia Q0.1 sterownika podawany jest na cewkę stycznika. Za pomocą której linii programu zapisanego w języku LD realizowane jest załączanie stycznika na 10 sekund po podaniu 1 logicznej na 10.0?

Ilustracja do pytania
A. 2
B. 3
C. 1
D. 4
Wybór innej odpowiedzi może wynikać z nieporozumienia w zakresie działania timerów oraz ich zastosowania w programach sterujących. Odpowiedzi, które wskazują na inne linie programu, nie uwzględniają faktu, że jedynie timer typu TP jest w stanie realizować zadanie zaplanowane w pytaniu. W szczególności, niektóre z tych błędnych odpowiedzi mogą próbować zastosować inne elementy logiki programowej, takie jak styczniki czy inne rodzaje timerów, które nie są odpowiednie do realizacji tego konkretnego zadania. Należy pamiętać, że użycie niewłaściwego typu timera lub logiki może prowadzić do nieprawidłowego działania całego systemu sterowania, co w praktyce ma poważne konsekwencje operacyjne. Kluczowym elementem jest zrozumienie, że timer typu TP uruchamia się jedynie na czas określony przez użytkownika, co w tym przypadku wynosi 10 sekund. Ignorowanie tego aspektu oraz wybieranie niewłaściwych linii programowych może prowadzić do sytuacji, w której stycznik nie zostanie włączony w odpowiednim czasie lub w ogóle nie zadziała. To pokazuje, jak istotna jest wiedza na temat działania timerów i ich zastosowania w praktycznych zastosowaniach automatyki przemysłowej. Prawidłowe rozumienie i implementacja logiki czasowej w programach PLC są kluczowe dla zapewnienia prawidłowego działania systemów automatyki. Kluczowe jest, aby przy projektowaniu systemów sterowania zawsze odnosić się do odpowiednich standardów i praktyk branżowych.

Pytanie 36

W jakiej kondycji powinny być przedstawiane styki przekaźników oraz styczników w schematach ideowych układów sterowania stycznikowo-przekaźnikowego?

A. Przełączania
B. Wyłączania
C. Niewzbudzonym
D. Wzbudzonym
Styki przekaźników i styczników na schematach ideowych układów sterowania stycznikowo-przekaźnikowego powinny być przedstawione w stanie niewzbudzonym, ponieważ jest to stan domyślny, który odzwierciedla, że dany element nie jest w chwili obecnej aktywowany. Prezentowanie styków w tym stanie pozwala na jasne zrozumienie schematu przez techników oraz inżynierów, którzy mogą na pierwszy rzut oka ocenić, jakie elementy są włączone lub wyłączone w danym układzie. W praktyce, identyfikacja stanu niewzbudzonego jest kluczowa w projektowaniu oraz diagnostyce systemów automatyki, ponieważ umożliwia szybkie zlokalizowanie potencjalnych problemów. Na przykład, podczas analizy schematu, technik może natrafić na elementy, które powinny być w stanie nieaktywnym, co wskazuje na konieczność ich uruchomienia w kontekście rozwiązywania usterek. Przestrzeganie tej zasady jest zgodne z międzynarodowymi standardami, takimi jak IEC 60617, które definiują sposób przedstawiania symboli w dokumentacji elektronicznej. Warto także wspomnieć, że niewłaściwe oznaczenie stanu styków może prowadzić do błędów w montażu i programowaniu, co w konsekwencji wpłynie na bezpieczeństwo i efektywność działania instalacji.

Pytanie 37

Nieprzerwane monitorowanie wibracji silnika elektrycznego w systemie napędowym oraz analiza spektrum drgań umożliwiają wczesne zidentyfikowanie

A. pogorszenia stanu izolacji uzwojeń stojana lub wirnika
B. przerw w obwodzie zasilania silnika
C. uszkodzenia łożysk
D. zwarcia w uzwojeniach stojana lub wirnika
Ciągły pomiar wibracji silnika elektrycznego oraz analiza widma drgań są kluczowymi technikami w diagnozowaniu stanu technicznego maszyn. Uszkodzenia łożysk to jeden z najczęściej występujących problemów w układach napędowych, które mogą prowadzić do poważnych awarii, a ich wczesne wykrycie pozwala na zapobieganie kosztownym przestojom produkcyjnym. Zastosowanie analizy drgań umożliwia identyfikację charakterystycznych częstotliwości, które są związane z uszkodzonymi łożyskami. Na przykład, jeśli łożysko ulega degradacji, generuje drgania o specyficznych częstotliwościach, które można zidentyfikować i monitorować. W praktyce, standardy takie jak ISO 10816 dotyczące pomiaru drgań maszyn, dostarczają wytycznych dotyczących interpretacji wyników. Dzięki tej metodzie inżynierowie mogą podejmować decyzje dotyczące konserwacji w oparciu o rzeczywisty stan maszyny, co znacząco zwiększa efektywność zarządzania utrzymaniem ruchu w zakładach przemysłowych.

Pytanie 38

Jakie symptomy pracy jednofazowego silnika klatkowego mogą wskazywać na uszkodzenie kondensatora?

A. Skłonności do samoczynnego rozbiegnięcia się wirnika
B. Trudności z uruchomieniem silnika
C. Zmiana kierunku obrotu wirnika
D. Brak jakiejkolwiek reakcji po włączeniu zasilania
Kierunek wirowania wirnika w silniku klatkowym jednofazowym jest zdeterminowany przez sposób podłączenia uzwojeń oraz kierunek prądu wytwarzanego przez kondensator. Zmiana kierunku wirowania nie jest typowym objawem uszkodzenia kondensatora, a zatem nie można jej łączyć z tym rodzajem awarii. Tendencje do rozbiegania się wirnika mogą być związane z innymi problemami, takimi jak nierównomierne obciążenie lub uszkodzenie mechaniczne, a niekoniecznie z kondensatorem. Z kolei brak jakiejkolwiek reakcji na załączenie zasilania wskazuje na poważniejsze problemy, takie jak zasilanie, uszkodzenia w uzwojeniach, czy całkowite uszkodzenie silnika. Te objawy często prowadzą do błędnych wniosków, które mogą skutkować niewłaściwą diagnozą i naprawą. W praktyce, aby prawidłowo zidentyfikować problem w silniku klatkowym jednofazowym, konieczne jest przeprowadzenie szczegółowej analizy, w tym sprawdzeniu kondensatora, ale także innych elementów układu elektrycznego. Zrozumienie złożoności działania silników elektrycznych i umiejętność oceny objawów awarii to kluczowe kompetencje dla techników i inżynierów zajmujących się elektroniką i elektrotechniką.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Na podstawie analizy fragmentu programu określ reakcję programu na podanie na wejście S1 jedynki logicznej, a na wejście S2 zera logicznego?

Ilustracja do pytania
A. Ustawiona zostanie jedynka logiczna na wyjściu H1 i H2.
B. Wyzerowane zostaną wyjścia H1 i H2.
C. Wyzerowane zostanie wyjście H1 i ustawiona jedynka logiczna na wyjściu H2.
D. Ustawiona zostanie jedynka logiczna na wyjściu H1 i wyzerowane zostanie wyjście H2.
Odpowiedzi, które wskazują, że na wyjściu H1 zostanie ustawiona jedynka, a H2 będzie wyzerowane, błędnie interpretują zasady działania bramek logicznych. W systemach cyfrowych, gdzie stosowane są bramki AND, wyjście może być w stanie wysokim tylko wtedy, gdy wszystkie wejścia są w stanie wysokim. W analizowanym przypadku na S2 podano zero, co w konsekwencji powoduje, że H1 nie może przyjąć wartości jedynki. Ważne jest zrozumienie, że bramka AND wymaga spełnienia wszystkich warunków, aby mogła działać poprawnie. Z kolei w odpowiedziach, które sugerują, że H2 będzie wyzerowane, pojawia się mylne założenie, że negacja na wejściu S2 nie ma wpływu na działanie drugiej sieci. W rzeczywistości, w przypadku bramek OR z negacją, wystarczy, że jedno z wejść jest w stanie wysokim, aby uzyskać jedynkę na wyjściu. Zrozumienie koncepcji działania bramek logicznych i ich zastosowania w rzeczywistych układach elektronicznych jest kluczowe dla uniknięcia takich błędów. Podejście do tego zagadnienia wymaga głębszej analizy i przemyślenia, jak różne typy połączeń wpływają na wynik końcowy.