Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 21 października 2025 00:15
  • Data zakończenia: 21 października 2025 00:37

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaka jest maksymalna moc kuchni elektrycznej zamontowanej w lokalu zasilanym napięciem 400/230V, jeśli obwód zasilający jest chroniony przez wyłącznik nadprądowy typu S-303 CLS6-C10/3?

A. 6,9 kW
B. 2,9 kW
C. 9,6 kW
D. 3,9 kW
W przypadku odpowiedzi, które wskazują na inne wartości mocy, istotne jest zrozumienie kilku kluczowych zasad dotyczących obliczeń mocy oraz właściwego doboru zabezpieczeń dla urządzeń elektrycznych. Na przykład, wiele osób może błędnie sądzić, że maksymalna moc kuchenki elektrycznej może być wyższa niż wskazywana przez wyłącznik, nie uwzględniając, że każdy obwód zasilający ma swoje ograniczenia wynikające z zastosowanych zabezpieczeń. Warto również zauważyć, że przy zasilaniu z napięcia 230 V, przy założeniu, że używamy wyłącznika o prądzie znamionowym 10 A, obliczona moc wynosi tylko 2,3 kW, co jest znacznie poniżej potrzebnej mocy dla typowej kuchenki, która zazwyczaj wymaga większej mocy do efektywnego gotowania. Z kolei założenie, że można użyć wartości mocy 9,6 kW, jest niezgodne z parametrami wyłącznika, co może prowadzić do niebezpieczeństwa przeciążenia i awarii instalacji. Warto pamiętać, że każda instalacja elektryczna powinna być projektowana zgodnie z obowiązującymi normami, a także z praktykami, które zapewniają nie tylko skuteczność, ale przede wszystkim bezpieczeństwo użytkowników. Ustalając maksymalną moc dla urządzeń elektrycznych, należy zawsze odnosić się do specyfikacji producenta oraz obowiązujących przepisów, co pozwoli uniknąć nieprzewidzianych problemów i zagrożeń.

Pytanie 2

Podłączenie odbiornika II klasy ochronności do gniazda z bolcem ochronnym skutkuje zadziałaniem wyłącznika różnicowoprądowego, natomiast podłączenie do innego gniazda w tym samym obwodzie nie wywołuje reakcji zabezpieczenia, a odbiornik działa normalnie. Jakiego rodzaju usterkę można stwierdzić w pierwszym gnieździe?

A. Zamieniony przewód fazowy z neutralnym
B. Zamieniony przewód ochronny z neutralnym
C. Odłączony przewód ochronny
D. Uszkodzona izolacja przewodu fazowego
Wybór odpowiedzi dotyczący "Odłączonego przewodu ochronnego" może wydawać się logiczny, jednak nie uwzględnia on całego kontekstu sytuacji. Gdyby przewód ochronny był odłączony, to odbiornik II klasy ochronności po podłączeniu do gniazda powinien zadziałać normalnie, ponieważ urządzenia tej klasy nie wymagają przewodu ochronnego do prawidłowego działania. W takim przypadku wyłącznik różnicowoprądowy nie zadziałałby, co wyklucza tę możliwość. Podobnie, odpowiedź sugerująca "Uszkodzoną izolację przewodu fazowego" jest również mylną interpretacją. Uszkodzona izolacja mogłaby prowadzić do upływu prądu i zadziałania wyłącznika różnicowoprądowego, a nie do jego zadziałania wyłącznie w przypadku konkretnego gniazda. Odpowiedź o "Zamienionych przewodach fazowym z neutralnym" również nie jest poprawna, ponieważ wymiana tych przewodów nie wywołałaby takiego efektu zadziałania zabezpieczenia tylko w jednym gniazdku, a nie w pozostałych. W przypadku zamiany przewodów fazowego i neutralnego, mogłoby dojść do poważnych problemów z bezpieczeństwem, ale nie zadziałałby wyłącznik różnicowoprądowy w opisany sposób. Te błędne koncepcje często wynikają z braku zrozumienia podstawowych zasady działania systemów elektrycznych oraz roli, jaką odgrywają różne przewody w zapewnieniu bezpieczeństwa instalacji.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Który z wymienionych zestawów materiałów i narzędzi, oprócz wiertarki i poziomnicy, umożliwia ułożenie podtynkowej instalacji elektrycznej prowadzonej w rurkach stalowych?

Bruzdownica
Gips
Młotek
Otwornica koronkowa
Punktak
Bruzdownica
Drut wiązałkowy
Młotek
Otwornica koronkowa
Stalowe gwoździe
Drut wiązałkowy
Młotek
Otwornica koronkowa
Przecinak
Punktak
Bruzdownica
Drut wiązałkowy
Pistolet do kleju
Stalowe gwoździe
Zestaw wierteł
A.B.C.D.
A. A.
B. D.
C. C.
D. B.
Wybór innej odpowiedzi sugeruje pewne nieporozumienia odnośnie do wymagań dotyczących instalacji elektrycznych, szczególnie w kontekście podtynkowego ułożenia w rurkach stalowych. Wiele osób może myśleć, że do wykonania takiej instalacji wystarczy jedynie wiertarka i poziomica, co jest dużym uproszczeniem. Chociaż te narzędzia są cenne, kluczowe są również inne elementy, takie jak bruzdownica, która pozwala na precyzyjne wykonanie bruzd w ścianie. Bez tego narzędzia, ułożenie rurek stalowych staje się wysoce problematyczne, ponieważ brak odpowiednich bruzd może prowadzić do nieestetycznego wykończenia oraz nieprawidłowego mocowania rurek. Ponadto, wybór niewłaściwych materiałów do mocowania rurek, jak np. brak drutu wiązałkowego lub gwoździ, może skutkować nieodpowiednią stabilnością instalacji, co z kolei zagraża bezpieczeństwu użytkowników. Błędem jest również pomijanie znaczenia otwornicy koronowej, która jest niezbędna do wykonania otworów pod puszki instalacyjne, co jest kluczowe dla prawidłowego umiejscowienia elementów instalacji. Zrozumienie tych aspektów jest niezbędne, aby uniknąć typowych błędów myślowych i zapewnić, że instalacja elektryczna będzie nie tylko funkcjonalna, ale także zgodna z obowiązującymi normami bezpieczeństwa.

Pytanie 5

Jeśli do pomiaru napięcia w sieci 230 V zastosowano miernik analogowy o dokładności 0,5 i zakresie 300 V, jakie będą wskazania tego miernika?

A. 230 V (±1,50 V)
B. 230 V (±1,30 V)
C. 230 V (±1,20 V)
D. 230 V (±1,40 V)
Pomiar napięcia sieciowego o wartości 230 V za pomocą miernika analogowego o klasie dokładności 0,5 w zakresie 300 V daje wskazania w formacie 230 V (±1,50 V). Klasa dokładności 0,5 oznacza, że maksymalny błąd pomiarowy wynosi 0,5% wartości wskazania. W przypadku napięcia 230 V, obliczamy błąd jako 0,5% z 230 V, co daje 1,15 V. Z uwagi na standardowe zaokrąglanie, zaokrąglamy do najbliższego wyższego błędu, co daje nam 1,50 V. W praktyce, taki parametr może stać się kluczowy w instalacjach elektrycznych, gdzie precyzyjne pomiary napięcia są niezbędne do zapewnienia bezpieczeństwa i efektywności działania urządzeń. Użycie mierników o odpowiednich klasach dokładności i zakresach pomiarowych jest zgodne z normami IEC 61010, które regulują wymogi dotyczące bezpieczeństwa i dokładności przyrządów pomiarowych.

Pytanie 6

Jaką najwyższą wartość powinien mieć wyłącznik silnikowy, chroniący trójfazowy silnik indukcyjny klatkowy o prądzie znamionowym równym 11,1 A, aby zabezpieczyć go przed przeciążeniem przy jednoczesnym zachowaniu możliwości znamionowego obciążenia momentem hamującym?

A. 11,1 A
B. 12,2 A
C. 10,5 A
D. 11,7 A
Ustawienie wyłącznika silnikowego na wartość niższą od znamionowego prądu silnika, jak 10,5 A czy 11,1 A, prowadzi do nieprawidłowego działania całego układu. Tego rodzaju decyzje są często wynikiem błędnego rozumienia zasad działania wyłączników silnikowych i ich roli w systemach zabezpieczeń. Ustawienie na 10,5 A spowoduje, że silnik będzie narażony na częste wyłączenia w momentach przeciążenia, co może prowadzić do nadmiernego zużycia podzespołów, a ostatecznie do awarii. Ponadto, prąd znamionowy 11,1 A nie powinien być wykorzystywany jako maksymalna wartość dla wyłącznika. Zastosowanie tej wartości może zaszkodzić silnikowi, ponieważ nie da mu możliwości pracy w pełnym zakresie obciążenia. Wyłącznik nastawiony na 11,7 A wciąż nie zapewni wystarczającej ochrony, ponieważ jego wartość bliska prądowi znamionowemu nie uwzględnia bezpiecznego marginesu dla chwilowych obciążeń. W praktyce powinno się zawsze przewidywać krótkotrwałe wzrosty prądu, co wiąże się z potrzebą ustawienia wyłącznika na poziomie o 10% wyższym niż prąd znamionowy. Dlatego kluczowe jest zrozumienie, że zabezpieczeń nie można ustawiać na wartościach zbyt niskich, ponieważ prowadzi to do nieefektywnej pracy silnika oraz zwiększa ryzyko jego uszkodzenia.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Który z urządzeń umożliwia bezpośredni pomiar cos 9?

A. Omomierz
B. Watomierz
C. Waromierz
D. Fazomierz
Watomierz, omomierz i waromierz to przyrządy, które pełnią różne funkcje, ale nie są odpowiednie do bezpośredniego pomiaru cos φ. Watomierz mierzy moc elektryczną, co jest istotne w kontekście zużycia energii, ale nie informuje nas o kącie fazowym. Zrozumienie tego narzędzia jest kluczowe, jednak nie można go używać do oceny współczynnika mocy, ponieważ wymaga to pomiaru zarówno prądu, jak i napięcia, a także ich faz. Omomierz, z kolei, służy do pomiaru oporu, co w przypadku prądów zmiennych jest niewłaściwe, ponieważ nie uwzględnia on aspektu fazowego. Użycie omomierza w kontekście pomiaru cos φ może prowadzić do mylnych wniosków i błędów w ocenie stanu obwodu. Waromierz, który jest narzędziem do pomiaru energii w obwodach prądu zmiennego, także nie dostarcza informacji o fazie, co czyni go nieprzydatnym w tym kontekście. Wielu użytkowników może myśleć, że wystarcza pomiar mocy lub oporu, jednak te podejścia pomijają kluczowy aspekt, jakim jest kąt fazowy, co jest fundamentalne dla zrozumienia efektywności energetycznej. W praktyce, nieznajomość różnicy między tymi przyrządami a fazomierzem może prowadzić do poważnych problemów w diagnostyce i zarządzaniu systemami elektrycznymi.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

W celu naprawy kabla przyłączeniowego, który został uszkodzony podczas prac ziemnych i został ułożony bez zapasu, potrzebne są

A. mufa rozgałęźna oraz odcinek kabla
B. odcinek kabla zakończony głowicami
C. dwie mufy kablowe i odcinek kabla
D. odcinek kabla oraz zgrzewarka
Odpowiedź, która wskazuje na użycie dwóch muf kablowych i odcinka kabla, jest prawidłowa, ponieważ podczas naprawy uszkodzonego kabla przyłączeniowego, kluczowe jest zapewnienie odpowiedniego połączenia i izolacji. Mufy kablowe pozwalają na skuteczne połączenie dwóch odcinków kabla, co jest szczególnie istotne w przypadku, gdy uszkodzenie występuje w obrębie zasięgu istniejącego kabla. Dwie mufy są potrzebne, aby połączyć nowy odcinek kabla z istniejącymi końcami kabla, co zapewnia, że cała instalacja będzie pracować prawidłowo. Praktycznym przykładem zastosowania tego rozwiązania może być sytuacja, w której kabel został uszkodzony przez maszynę budowlaną. W takim przypadku profesjonalne podejście obejmuje nie tylko wymianę uszkodzonego odcinka, ale również użycie muf w celu zapewnienia wodoodporności i ochrony przed uszkodzeniami mechanicznymi. Zgodnie z normami IEC 60502 oraz PN-EN 50393, stosowanie muf kablowych w połączeniach kablowych jest standardową praktyką, co dodatkowo potwierdza słuszność tego rozwiązania.

Pytanie 13

Jakie uszkodzenie mogło wystąpić w instalacji elektrycznej, dla której wyniki pomiarów rezystancji izolacji przedstawiono w tabeli?

Rezystancja izolacji, MΩ
Zmierzona międzyWymagana
L1–L2L2–L3L1–L3L1–PENL2–PENL3–PEN
2,101,051,101,401,300,991,00
A. Zwarcie międzyfazowe.
B. Przeciążenie jednej z faz.
C. Zawilgocenie izolacji jednej z faz.
D. Jednofazowe zwarcie doziemne.
Zawilgocenie izolacji jednej z faz jest kluczowym problemem, który może prowadzić do poważnych awarii w instalacji elektrycznej. Wartości rezystancji izolacji w podanej tabeli wskazują, że rezystancja między L3 a przewodem ochronno-neutralnym (PEN) wynosi 0,99 MΩ, co jest zaledwie poniżej wymaganej wartości 1 MΩ. Taki wynik sugeruje, że izolacja L3 może być narażona na działanie wilgoci, co zmniejsza jej zdolność do skutecznego izolowania przewodów elektrycznych. W praktyce, jeżeli wilgoć dostaje się do izolacji, może to prowadzić do korozji, uszkodzeń mechanicznych oraz zwiększonego ryzyka porażenia prądem. Dlatego niezwykle istotne jest regularne monitorowanie stanu izolacji przy użyciu odpowiednich narzędzi pomiarowych, takich jak megger, oraz przestrzeganie standardów, takich jak normy IEC 60364 i PN-EN 60204-1, które zalecają minimalne rezystancje dla bezpieczeństwa instalacji. W przypadku wykrycia zawilgocenia, należy przeprowadzić dokładną inspekcję i, jeżeli to konieczne, wymienić uszkodzone fragmenty układu. Zrozumienie tych zjawisk jest kluczowe dla zachowania bezpieczeństwa i niezawodności instalacji elektrycznej.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Na którym rysunku przedstawiono zgodne ze schematem połączenie układu sterowania oświetleniem?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
W analizowanych schematach A, B oraz D występują poważne błędy konstrukcyjne, które mogą prowadzić do nieprawidłowego działania systemu oświetleniowego. W schemacie A oraz B przewód neutralny (N) jest połączony w łącznikach, co jest sprzeczne z zasadami dobrego montażu. Połączenie przewodu neutralnego z łącznikami zwiększa potencjalne ryzyko porażenia prądem, ponieważ w przypadku awarii może dojść do sytuacji, gdzie łącznik, który ma za zadanie włączać i wyłączać oświetlenie, będzie pod napięciem. Schemat D, z kolei, ilustruje sytuację, w której przewód fazowy rozgałęzia się na dwa włączniki, co jest niedopuszczalne w kontekście systemów oświetleniowych. Tego typu rozwiązanie nie tylko narusza zasady bezpieczeństwa, ale także może powodować problemy z równomiernym rozdzieleniem energii, co prowadzi do niestabilności w działaniu oświetlenia. Kluczowe jest, aby przy projektowaniu instalacji elektrycznych opierać się na uznawanych standardach, takich jak PN-IEC 60364, które nakładają obowiązek prawidłowego podłączenia przewodów, aby zapewnić zarówno efektywność, jak i bezpieczeństwo użytkowania systemów oświetleniowych.

Pytanie 17

Który z wymienionych czynników nie wpływa na dopuszczalne obciążenie długotrwałe przewodów stosowanych w instalacji elektrycznej?

A. Rodzaj materiału izolacyjnego
B. Metoda ułożenia przewodów
C. Długość zamontowanych przewodów
D. Przekrój poprzeczny przewodów
Przekrój poprzeczny żył, rodzaj materiału izolacji oraz sposób ułożenia przewodów są elementami, które mają istotny wpływ na dopuszczalną obciążalność długotrwałą instalacji elektrycznej. Przekrój poprzeczny żył wpływa na opór przewodów; im większy przekrój, tym mniejszy opór, co przekłada się na możliwość przewodzenia większych prądów bez przegrzewania się. Z kolei materiał izolacji ma kluczowe znaczenie dla wydolności cieplnej przewodów; różne materiały mają różne właściwości termiczne i dielektryczne, co w praktyce wpływa na bezpieczeństwo użytkowania. Sposób ułożenia przewodów również jest istotny – na przykład, przewody ułożone w szczelnych kanałach mogą wymagać zmniejszenia dopuszczalnej obciążalności ze względu na ograniczony przepływ powietrza i trudności w odprowadzaniu ciepła. Typowe błędy myślowe obejmują mylenie długości przewodów z ich zdolnością do przewodzenia prądu. Choć długa trasa kablowa może zwiększać spadek napięcia, nie wpływa na maksymalną wartość prądu, jaki przewody mogą bezpiecznie przewodzić. Dlatego istotne jest, aby projektując instalacje, kierować się zaleceniami zawartymi w normach oraz wytycznymi branżowymi, aby uniknąć nieprawidłowych wniosków dotyczących obciążalności przewodów.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Jakim symbolem oznacza się przewód jednożyłowy z żyłą wykonaną z drutu aluminiowego, w izolacji PCV, o przekroju żyły 2,5 mm2?

A. YDY 2,5 mm2
B. ADY 2,5 mm2
C. YLY 2,5 mm2
D. ALY 2,5 mm2
Odpowiedź ADY 2,5 mm² jest poprawna, ponieważ oznaczenie to odnosi się do przewodów jednożyłowych wykonanych z drutu aluminiowego, które są izolowane polwinitą (PVC). Przewody te charakteryzują się odpowiednimi właściwościami elektrycznymi i mechanicznymi, co czyni je odpowiednimi do stosowania w różnorodnych instalacjach elektrycznych, w tym w budownictwie, przemyśle czy instalacjach domowych. Przekrój żyły wynoszący 2,5 mm² jest standardowym rozwiązaniem dla obwodów o niewielkim poborze prądu, takich jak oświetlenie czy gniazdka. Zastosowanie przewodów aluminiowych staje się coraz bardziej popularne ze względu na ich niską masę i korzystne właściwości przewodzące, pod warunkiem, że są odpowiednio dobrane do obciążenia. W przemyśle elektrycznym ważne jest również, aby wszelkie elementy instalacji spełniały normy bezpieczeństwa, co potwierdza odpowiednia certyfikacja. W kontekście zastosowania, przewody ADY często wykorzystuje się w instalacjach, gdzie nie ma dużych przeciążeń, a warunki pracy są umiarkowane.

Pytanie 22

Który z podanych odbiorników energii elektrycznej charakteryzuje się najkorzystniejszym współczynnikiem mocy w aspekcie ekonomicznym?

A. Wzbudnik indukcyjny
B. Silnik uniwersalny
C. Silnik asynchroniczny
D. Piec oporowy
Wybór silnika uniwersalnego, wzbudnika indukcyjnego czy silnika asynchronicznego jako bardziej korzystnego z punktu widzenia współczynnika mocy jest mylny, ponieważ te urządzenia charakteryzują się istotnymi stratami energii i niższym współczynnikiem mocy, zazwyczaj wynoszącym od 0,6 do 0,9. Silnik uniwersalny, używany głównie w zastosowaniach domowych, takich jak odkurzacze, ma zdolność do pracy zarówno na prądzie stałym, jak i zmiennym, lecz jego zmienna charakterystyka obciążenia oraz niskie wartości współczynnika mocy w niektórych stanach roboczych obniżają jego efektywność energetyczną. Wzbudnik indukcyjny, stosowany głównie w aplikacjach wymagających regulacji, takich jak prądnice, może generować znaczące straty energii ze względu na zjawiska indukcyjne, co również wpływa na jego korzystność ekonomiczną. Silnik asynchroniczny, popularny w przemyśle, ma relatywnie dobry współczynnik mocy, ale wciąż nie osiąga efektywności pieca oporowego, a jego zastosowania często wymagają dodatkowych układów kompensacyjnych, które zwiększają koszty. Wybierając odpowiednie urządzenie, warto zwrócić uwagę na jego zastosowanie, a także na możliwe straty energii, które mogą znacząco wpłynąć na całkowity koszt eksploatacji.

Pytanie 23

Aby zweryfikować ciągłość przewodów w kablu YDY 4x2,5 mm2, jaki sprzęt należy zastosować?

A. miernika izolacji
B. wskaźnika kolejności faz
C. mostka LC
D. omomierza
Wybór wskaźnika kolejności faz do sprawdzania ciągłości żył w przewodzie YDY 4x2,5 mm2 wskazuje na pewne nieporozumienie dotyczące przeznaczenia tego urządzenia. Wskaźniki kolejności faz służą do identyfikacji i potwierdzania poprawnego ustawienia faz w układzie trójfazowym. Ich główną funkcją jest ocena kolejności przychodzących faz w instalacji, a nie mierzenie oporu elektrycznego czy ciągłości przewodów. Dlatego stosowanie ich w kontekście sprawdzania ciągłości żył może prowadzić do błędnych wniosków. Mostek LC, który jest używany do pomiarów impedancji w obwodach, również nie jest odpowiednim narzędziem w tej sytuacji, ponieważ tak samo jak wskaźnik kolejności faz, nie jest przystosowany do pomiaru oporu w przewodach. Miernik izolacji, z kolei, ma swoje zastosowanie w testach odporności izolacji przewodów, ale nie służy do bezpośredniego pomiaru ciągłości żył. Zastosowanie niewłaściwych narzędzi do specyficznych zadań technicznych może prowadzić do zaniedbań w ocenie stanu instalacji, co z kolei stwarza ryzyko bezpieczeństwa. Zrozumienie funkcji i ograniczeń różnych narzędzi pomiarowych jest kluczowe w pracy elektryka, aby unikać błędów, które mogą mieć poważne konsekwencje.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Jakie rury instalacyjne powinny być używane do kładzenia przewodów na łatwopalnym podłożu?

A. Metalowe lub gumowe
B. Tylko metalowe
C. Tylko z PVC
D. Z PVC lub gumowe
Kiedy stosujemy metalowe rury do układania przewodów na podłożu palnym, to tak naprawdę działamy zgodnie z normami bezpieczeństwa, które mówią, że musimy chronić instalacje elektryczne przed ryzykiem pożaru. Metalowe rury, na przykład stalowe, są odporne na wysokie temperatury i są niepalne, co czyni je super opcją w miejscach, gdzie mogą mieć kontakt z materiałami palnymi. Dodatkowo te rury lepiej chronią przewody przed mechanicznymi uszkodzeniami, co jest bardzo ważne, gdy instalacje eksploatowane są w trudnych warunkach. Wiele budynków przemysłowych i publicznych korzysta z metalowych rur, bo to nie tylko podnosi bezpieczeństwo, ale także spełnia różne przepisy budowlane i normy, jak PN-IEC 60364 dla instalacji elektrycznych. Co więcej, w razie awarii metalowe rury mogą być łatwiejsze do naprawy niż te z plastiku.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

W instrukcji technicznej dotyczącej instalacji elektrycznej przewód uziemiający jest oznaczony symbolem literowym

A. E
B. TE
C. FPE
D. CC
Nieprawidłowe odpowiedzi mogą wynikać z nieporozumień dotyczących symboliki używanej w dokumentacji elektrycznej. Odpowiedzi takie jak TE, E oraz FPE nie odnoszą się do przewodu wyrównawczego w kontekście ochrony przed porażeniem prądem. Symbol TE odpowiada zazwyczaj przewodom stosowanym w instalacjach telekomunikacyjnych, natomiast E najczęściej odnosi się do uziemienia, co nie jest tym samym co przewód wyrównawczy. Przewód uziemiający ma na celu zapewnienie bezpiecznego odprowadzenia prądu do ziemi, ale nie służy bezpośrednio do wyrównywania potencjałów. FPE z kolei może być mylone z przewodami stosowanymi w systemach ochrony przeciwprzepięciowej, które mają inną funkcję. Zrozumienie różnic między tymi symbolami jest kluczowe dla prawidłowego projektowania i implementacji systemów elektrycznych. Błędy myślowe związane z myleniem funkcji przewodów mogą prowadzić do niebezpiecznych sytuacji, w których instalacja nie spełnia wymogów bezpieczeństwa, co jest niezgodne z normami i dobrymi praktykami branżowymi. Właściwe stosowanie symboli oraz ich zrozumienie jest podstawą skutecznego i bezpiecznego projektowania instalacji elektrycznych.

Pytanie 28

Jakie akcesoria są wymagane do podłączenia gniazda wtyczkowego do instalacji zrealizowanej przewodami LY?

A. Tester, wkrętak, lutownica
B. Ściągacz izolacji, wkrętak, próbnik
C. Szczypce, wkrętak, lutownica
D. Ściągacz izolacji, lutownica, tester
Aby prawidłowo podłączyć gniazdo wtyczkowe do sieci wykonanej przewodami LY, niezbędne są trzy podstawowe narzędzia: ściągacz izolacji, wkrętak oraz próbnik. Ściągacz izolacji pozwala na bezpieczne usunięcie izolacji z końców przewodów, co jest kluczowe dla uzyskania dobrego kontaktu elektrycznego. Użycie ściągacza jest zalecane, aby uniknąć uszkodzenia miedzi wewnątrz przewodu. Wkrętak jest niezbędny do mocowania gniazda oraz łączenia przewodów w zaciskach. Próbnik z kolei umożliwia sprawdzenie, czy w obwodzie znajduje się napięcie, co jest niezwykle istotne dla zapewnienia bezpieczeństwa podczas pracy. Stosując te narzędzia, wykonawcy mogą zapewnić, że instalacja będzie zgodna z obowiązującymi normami, takimi jak PN-IEC 60364, które określają zasady dotyczące instalacji elektrycznych. Prawidłowe użycie tych narzędzi poprawia niezawodność całego systemu elektrycznego oraz minimalizuje ryzyko awarii.

Pytanie 29

Jakie narzędzia, poza przymiaru kreskowego i młotka, należy wybrać do instalacji sztywnych rur elektroinstalacyjnych z PVC?

A. Wiertarka, piła do cięcia, poziomica, wkrętarka
B. Cęgi do izolacji, pion, piła do cięcia, obcinaczki
C. Cęgi do izolacji, obcinaczki, wkrętarka, płaskoszczypce
D. Wiertarka, płaskoszczypce, pion, poziomica
Wybór zestawu zawierającego wiertarkę, piłę do cięcia, poziomicę i wkrętarkę jest kluczowy dla prawidłowego montażu elektroinstalacyjnych rur sztywnych z PVC. Wiertarka jest niezbędna do wykonywania otworów w różnorodnych materiałach, co jest istotne podczas tworzenia połączeń i montażu w uchwytach. Piła do cięcia zapewnia dokładne i równe cięcia rur, co jest kluczowe dla szczelności i estetyki instalacji. Poziomica pozwala na precyzyjne ustawienie rur w osi poziomej, co jest podstawą dla uniknięcia problemów z odpływem i estetyką instalacji. Wkrętarka, z kolei, jest używana do mocowania różnych elementów, takich jak uchwyty i złącza, co pozwala na stabilne i bezpieczne wykonanie całej instalacji. Te narzędzia są zgodne z najlepszymi praktykami branżowymi, które podkreślają znaczenie precyzji i jakości wykonania w instalacjach elektrycznych.

Pytanie 30

Jakie są minimalne wartości napięć znamionowych, jakie powinien posiadać przewód użyty do instalacji jednofazowej w sieci 230/400 V, prowadzonej w otworach prefabrykowanych budynków?

A. 450/750 V
B. 600/1000 V
C. 300/500 V
D. 300/300 V
Wybór napięcia dla przewodów elektrycznych to bardzo ważna sprawa, bo wpływa na ich bezpieczeństwo i niezawodność. Przewody o napięciach 600/1000 V, 300/500 V i 300/300 V nie nadają się do instalacji jednofazowych przy 230/400 V, bo nie spełniają minimalnych wymogów. Takie 600/1000 V są robione do cięższych warunków, więc są drogie i niepotrzebne tam, gdzie wystarczą przewody 450/750 V. Natomiast 300/500 V i 300/300 V mają za małe wartości, co zwiększa ryzyko uszkodzeń i awarii. Użycie takich przewodów w instalacjach jednofazowych może prowadzić do problemów z bezpieczeństwem, jak przepięcia czy porażenia. Wiem, że często to wynika z braku wiedzy o standardach w branży. Ważne jest, żeby projektanci i instalatorzy rozumieli te specyfikacje, by uniknąć niebezpiecznych sytuacji i zapewnić, że instalacje elektryczne będą działać długo i sprawnie.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Jaką minimalną wartość prądu powinno mieć wykonanie pomiaru ciągłości elektrycznej przewodów ochronnych w głównych i dodatkowych połączeniach wyrównawczych oraz przewodów czynnych w przypadku obwodów odbiorczych typu pierścieniowego?

A. 500 mA
B. 200 mA
C. 100 mA
D. 150 mA
Udzielenie odpowiedzi innej niż 200 mA może prowadzić do nieprawidłowej oceny stanu ciągłości przewodów ochronnych. Wartości takie jak 100 mA, 150 mA czy 500 mA nie są wystarczające lub nieadekwatne do przeprowadzenia rzetelnych pomiarów w kontekście ochrony przeciwporażeniowej. Wybór niższej wartości prądu, jak 100 mA, może skutkować sytuacją, w której nie zostaną wykryte niewielkie przerwy w ciągłości przewodu, co z kolei stwarza poważne zagrożenie dla bezpieczeństwa użytkowników. Z kolei wartość 150 mA, mimo że może wydawać się bardziej sensowna, wciąż nie spełnia wymagań dotyczących dokładności pomiarów, co może prowadzić do fałszywych odczytów. Zwiększenie prądu do 500 mA, choć teoretycznie może wydawać się korzystne, może w rzeczywistości prowadzić do uszkodzenia delikatnych elementów instalacji, a także może doprowadzić do niebezpiecznych sytuacji, takich jak przegrzanie przewodów. Kluczowe jest zrozumienie, że odpowiednie wartości prądu pomiarowego mają na celu nie tylko wykrycie ewentualnych usterek, ale także zapewnienie, że instalacja działa w sposób bezpieczny i niezawodny. Właściwe rozumienie norm oraz ich stosowanie jest niezbędne w praktyce inżynierskiej.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Jakie narzędzia będą konieczne do zamocowania listew elektroizolacyjnych na ścianie z płyt gipsowych?

A. Zestaw kluczy, wkrętarka, wiertło, przecinak.
B. Nóż monterski, wiertarka, zestaw kluczy.
C. Wiertarka, wiertło, piła do cięcia, wkrętak.
D. Piła do cięcia, przecinak, młotek.
Wybór odpowiedzi 'Wiertarka, wiertło, piła do cięcia, wkrętak' jest prawidłowy, ponieważ montaż listew elektroizolacyjnych na ścianie gipsowej wymaga precyzyjnych narzędzi do wykonania otworów oraz odpowiedniego przymocowania listew. Wiertarka z wiertłem pozwala na wykonanie otworów w ścianie, co jest kluczowe dla stabilnego montażu. Piła do cięcia jest niezbędna, gdyż listew często trzeba dostosować do długości, co wymaga precyzyjnego cięcia. Ostatnim kluczowym narzędziem jest wkrętak, który umożliwia przymocowanie listew do ściany za pomocą odpowiednich śrub. Zastosowanie wiertarki i wiertła zgodnie z zasadami bhp jest niezbędne, aby uniknąć uszkodzeń ściany i zapewnić, że otwory są odpowiedniej głębokości. Dobrą praktyką jest także stosowanie wkrętów samowiercących, co ułatwia montaż oraz zwiększa trwałość mocowania.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Przewód, który jest oznaczony symbolem SMYp, ma żyły

A. jednodrutowe
B. płaskie
C. sektorowe
D. wielodrutowe
Jeśli wybrałeś niewłaściwą odpowiedź na temat przewodów SMYp, to pewnie wynika to z niezrozumienia ich specyfikacji oraz zastosowań. Odpowiedzi dotyczące żył sektorowych, płaskich czy jednodrutowych nie pasują do przewodów SMYp. Żyły sektorowe są używane w kablach zasilających o większych przekrojach, często w instalacjach energetycznych, gdzie są wymagane specjalne parametry dotyczące rozkładu pola elektrycznego. Żyły płaskie też mają swoje miejsce w różnych aplikacjach, głównie w konstrukcji kabli instalacyjnych, ale nie spełniają wymagań przewodów SMYp. Co do żył jednodrutowych, to chociaż mogą być używane w prostych instalacjach, to niestety nie zapewniają elastyczności, która jest ważna w sytuacjach, gdzie przewody muszą się poruszać. Wiesz, błędne odpowiedzi mogą wynikać z pomylenia różnych typów przewodów elektrycznych i ich właściwości. Ważne jest, żeby dobrać odpowiednie przewody w instalacjach elektrycznych, bo to kluczowe dla bezpieczeństwa i efektywności energetycznej. Zrozumienie różnic między typami żył i ich stosowaniem powinno być podstawą przy planowaniu i realizacji instalacji elektrycznych.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.