Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 9 grudnia 2025 13:21
  • Data zakończenia: 9 grudnia 2025 13:35

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jaką minimalną wartość powinno mieć napięcie probiercze miernika używanego do pomiaru rezystancji izolacji w instalacji elektrycznej pracującej pod napięciem 230/400 V?

A. 2 500 V
B. 1 000 V
C. 250 V
D. 500 V
Wybór napięcia probierczego o wartości 250 V jest niewłaściwy, ponieważ jest zbyt niskie do przeprowadzenia skutecznego testu izolacji w instalacjach o napięciu znamionowym 230/400 V. Użycie tak niskiego napięcia może nie ujawniać rzeczywistych problemów ze stanem izolacji, a co za tym idzie, może prowadzić do błędnych wniosków na temat jej jakości. Ponadto, napięcie 250 V nie spełnia wymagań normatywnych określonych przez IEC, które zalecają zastosowanie wyższego napięcia, aby efektywnie ocenić odporność izolacji na przebicia. Wybór 1000 V jako napięcia probierczego również może być nieadekwatny dla standardowych instalacji 230/400 V, ponieważ takie napięcie może powodować nadmierne obciążenie izolacji, co nie zawsze jest bezpieczne. Może to prowadzić do uszkodzenia izolacji, co w konsekwencji wiąże się z ryzykiem powstania awarii w instalacji. Warto również zauważyć, że napięcie 2500 V, mimo że jest stosowane w specyficznych przypadkach, takich jak testy na wytrzymałość izolacji w wysokonapięciowych instalacjach, jest zbytnio zawyżone w kontekście pomiarów w standardowych instalacjach elektrycznych. Przy wyborze odpowiedniego napięcia do testów, należy kierować się zaleceniami producentów oraz obowiązującymi normami bezpieczeństwa, aby zapewnić rzetelne i bezpieczne wyniki pomiarów.

Pytanie 2

Których aparatów montowanych na szynie TH 35 dotyczą przedstawione w tabeli parametry techniczne?

Parametry techniczne
Prąd znamionowy
In w A
Szerokość
w modułach
o wymiarach
17,5 mm
Charakterystyka
61B
101B
161B
201B
251B
321B
401B
501B
631B
A. Styczników.
B. Wyłączników różnicowoprądowych.
C. Wyłączników nadprądowych.
D. Transformatorów.
Odpowiedzi o transformatorach i wyłącznikach różnicowoprądowych są nietrafione, bo to zupełnie inne urządzenia z innymi zastosowaniami. Transformatory zmieniają napięcie w obwodach elektrycznych, a nie są montowane na szynie TH 35, więc porównywanie ich do wyłączników nadprądowych nie ma sensu. Co do wyłączników różnicowoprądowych, to one też chronią, ale działają na innej zasadzie - wykrywają różnicę prądów między fazą a przewodem neutralnym, co jest kluczowe, żeby uniknąć porażenia prądem, jak coś się uszkodzi. W praktyce często mylimy różne typy urządzeń, co prowadzi do błędnych wniosków. A styczniki, które też były wspomniane, są do załączania i wyłączania obwodów, ale nie mają funkcji zabezpieczającej jak wyłączniki nadprądowe. Dobrze jest znać różnice między tymi urządzeniami i wiedzieć, kiedy ich używać, bo to ma spore znaczenie dla bezpieczeństwa i efektywności instalacji elektrycznych.

Pytanie 3

Jaka jest znamionowa efektywność silnika trójfazowego, jeśli P = 2,2 kW (mocy mechanicznej), UN = 400 V, IN = 4,6 A oraz cos φ = 0,82?

A. 0,69
B. 0,49
C. 0,84
D. 0,39
Odpowiedzi, które nie zgadzają się z poprawnym wynikiem, zazwyczaj wynikają z błędów w obliczeniach lub złego zrozumienia podstawowych pojęć związanych z mocą silników elektrycznych. Na przykład, wartość 0,69 może sugerować, że obliczenia nie uwzględniają współczynnika mocy lub są oparte na błędnie podanych danych. Często można się spotkać z błędnym założeniem, że moc czynna jest równa mocy mechanicznej, co jest nieprawdziwe, ponieważ moc dostarczona do silnika zawsze jest większa niż moc wyjściowa ze względu na straty energetyczne. Inne odpowiedzi, takie jak 0,49 czy 0,39, mogą wynikać z niepoprawnego przeliczenia wartości mocy czynnej, co w praktyce prowadzi do znacznego niedoszacowania efektywności silnika. Niezrozumienie roli współczynnika mocy w obliczeniach sprawności także często prowadzi do błędnych wyników. Warto zaznaczyć, że efektywność silników ma ogromne znaczenie w kontekście zrównoważonego rozwoju, a wybór silników o wyższej sprawności wpływa na oszczędności energii oraz redukcję emisji CO2. Prawidłowe obliczenia związane z mocą czynnościową oraz jasne zrozumienie relacji między mocą a sprawnością są kluczowe w projektowaniu i eksploatacji systemów napędowych.

Pytanie 4

Jaką liczbę klawiszy oraz zacisków ma typowy pojedynczy łącznik schodowy?

A. Jeden klawisz i trzy zaciski
B. Dwa klawisze i trzy zaciski
C. Jeden klawisz i cztery zaciski
D. Dwa klawisze i cztery zaciski
Wybór odpowiedzi z dwiema klawiszami jest błędny, ponieważ klasyczny pojedynczy łącznik schodowy z definicji nie może posiadać więcej niż jednego klawisza. Dwa klawisze są charakterystyczne dla łączników podwójnych, które umożliwiają kontrolę dwóch niezależnych obwodów oświetleniowych z jednego miejsca. Takie zamieszanie często wynika z niezrozumienia różnic między różnymi typami łączników. W przypadku łączników schodowych, ich podstawowa rola polega na umożliwieniu włączania i wyłączania światła z dwóch różnych miejsc, co jest realizowane przez połączenie dwóch łączników schodowych w układzie krzyżowym. Jeśli chodzi o zaciski, odpowiedzi sugerujące cztery zaciski lub niepoprawną liczbę trzech zacisków są mylące. Często błędne zrozumienie liczby zacisków wynika z pomylenia łączników schodowych z innymi typami łączników, takimi jak łączniki krzyżowe, które rzeczywiście mogą mieć więcej zacisków. Kluczem do zrozumienia funkcji łączników jest znajomość ich budowy oraz zasad działania w kontekście całego obwodu elektrycznego, co pozwala na ich właściwe wykorzystanie w praktyce.

Pytanie 5

Które z przedstawionych narzędzi przeznaczone jest do zdejmowania izolacji z żył przewodów elektrycznych?

Ilustracja do pytania
A. Narzędzie 3.
B. Narzędzie 4.
C. Narzędzie 2.
D. Narzędzie 1.
Wybór jednego z pozostałych narzędzi wskazuje na pewne nieporozumienia dotyczące ich przeznaczenia oraz zastosowania w pracy z przewodami elektrycznymi. Zaciskarka do końcówek kablowych, mimo że jest narzędziem niezwykle użytecznym w elektryce, służy wyłącznie do mocowania końcówek do przewodów, a nie do zdejmowania izolacji. Użycie tego narzędzia do tej czynności może prowadzić do uszkodzenia przewodu i stwarzać ryzyko nieprawidłowego połączenia. Kombinerki, które również zostały wskazane, to narzędzie uniwersalne, które znajduje zastosowanie w wielu pracach, ale ich konstrukcja nie umożliwia precyzyjnego ściągania izolacji; mogą one prowadzić do przypadkowego przetarcia lub przecięcia żyły. Obcinak do przewodów, choć przydatny do cięcia, nie jest zaprojektowany do zdejmowania izolacji, co czyni go nieodpowiednim wyborem w tej sytuacji. Powszechnym błędem w rozumieniu funkcji narzędzi elektrycznych jest mylenie ich zastosowań oraz brak wiedzy na temat specyfikacji technicznych. Zrozumienie, które narzędzie odpowiada konkretnym wymaganiom, jest kluczowe dla zapewnienia jakości i bezpieczeństwa prac elektrycznych.

Pytanie 6

Warunkiem automatycznego odłączenia zasilania w systemach typu TN jest relacja (UO - napięcie nominalne w V; Ia - wartość prądu w A, zapewniająca natychmiastowe, automatyczne zadziałanie urządzenia ochronnego; Zs - impedancja pętli zwarciowej w Ω)

A. UO > Zs ∙ 2Ia
B. UO > Zs ∙ Ia
C. UO < Zs ∙ 2Ia
D. UO < Zs ∙ Ia
Niewłaściwe odpowiedzi mogą wynikać z niepełnego zrozumienia zasad działania układów zabezpieczeń elektrycznych. W przypadku odpowiedzi, gdzie UO jest mniejsze od Zs ∙ Ia, zakłada się, że napięcie nie jest wystarczające do wyzwolenia ochrony, co jest błędne. W rzeczywistości, aby zapewnić skuteczną reakcję urządzenia ochronnego, napięcie musi przekraczać wartość wynikającą z iloczynu impedancji pętli zwarciowej i prądu zadziałania. Odpowiedzi sugerujące, że UO powinno być mniejsze od tego iloczynu, wskazują na błędne założenia dotyczące warunków pracy zabezpieczeń. Również odpowiedzi, w których UO jest większe od Zs ∙ 2Ia, nie uwzględniają, że wartość prądu zadziałania powinna być odpowiednio dobrana do rzeczywistych warunków obciążeniowych. Należy pamiętać, że w projektowaniu instalacji elektrycznych kluczowe jest zachowanie właściwych relacji między napięciem, prądem i impedancją, co jest regulowane przez normy i standardy branżowe, takie jak PN-IEC 60364 dotyczące instalacji elektrycznych. Brak takiej wiedzy może prowadzić do poważnych konsekwencji, takich jak uszkodzenia urządzeń, a nawet zagrożenie dla życia ludzi. Dlatego ważne jest, aby dobrze rozumieć te relacje i ich praktyczne zastosowanie w projektowaniu i eksploatacji instalacji elektrycznych.

Pytanie 7

Układ przedstawiony na rysunku służy do pomiaru

Ilustracja do pytania
A. napięcia zadziałania wyłącznika różnicowoprądowego.
B. rezystancji przewodów.
C. prądu zadziałania wyłącznika różnicowoprądowego.
D. obciążenia układu.
W przypadku odpowiedzi dotyczących obciążenia układu, rezystancji przewodów oraz napięcia zadziałania wyłącznika różnicowoprądowego, pojawia się szereg nieporozumień związanych z funkcją i działaniem urządzeń elektrycznych. Układ nie jest skonstruowany do pomiaru obciążenia, ponieważ obciążenie zostało odłączone, co uniemożliwia ocenę jego wartości. Obliczanie rezystancji przewodów wymagałoby zastosowania innego typu pomiaru, np. metodą mostka Wheatstone'a, który nie jest tu użyty. Co więcej, pomiar napięcia zadziałania wyłącznika różnicowoprądowego również nie odpowiada przedstawionemu układowi, ponieważ RCD działa na zasadzie wykrywania różnicy prądów, a nie napięcia. Kluczowym błędem w myśleniu jest mylenie wielkości elektrycznych, takich jak prąd i napięcie, co prowadzi do niesłusznych wniosków. Dobrą praktyką w elektryce jest zrozumienie, że każdy z tych pomiarów wymaga odpowiedniego sprzętu oraz metodologii, a także że każdy komponent w instalacji elektrycznej ma swoją specyficzną rolę i zastosowanie. W związku z tym, zrozumienie funkcji wyłączników różnicowoprądowych i ich parametrów zadziałania jest kluczowe dla zapewnienia bezpieczeństwa oraz niezawodności instalacji elektrycznych.

Pytanie 8

Aby zmierzyć wartości elektryczne o stałym przebiegu, należy zastosować miernik o budowie

A. elektromagnetycznym
B. elektrodynamicznym
C. ferrodynamicznym
D. magnetoelektrycznym
Miernik o ustroju magnetoelektrycznym jest szczególnie odpowiedni do pomiaru wielkości elektrycznych o przebiegu stałym, ponieważ jego działanie opiera się na interakcji pola magnetycznego z prądem elektrycznym, co pozwala na dokładne i stabilne odczyty. W urządzeniach tych zastosowane są magnesy trwałe oraz ruchome cewki, co zapewnia wysoką czułość i precyzję pomiaru. Przykładem zastosowania mierników magnetoelektrycznych są laboratoria badawcze oraz instalacje przemysłowe, gdzie wymagane są dokładne pomiary prądu stałego, na przykład podczas testowania elementów elektronicznych. Standardy branżowe, takie jak IEC 61010, podkreślają istotność stosowania odpowiednich technik pomiarowych, co sprawia, że wybór miernika magnetoelektrycznego jest zgodny z dobrymi praktykami w zakresie bezpieczeństwa i dokładności pomiarów. Dodatkowo, mierniki te są często wykorzystywane w sprzęcie pomiarowym, takim jak multimetry, które są niezbędne w codziennej pracy inżynierów i techników w różnych branżach.

Pytanie 9

Które z poniższych wskazówek nie dotyczy przeprowadzania nowych instalacji elektrycznych w lokalach mieszkalnych?

A. Oddzielić obwody oświetleniowe od obwodów gniazd wtyczkowych
B. Gniazda wtyczkowe w każdym pomieszczeniu powinny być zasilane z osobnego obwodu
C. Gniazda wtyczkowe w kuchni zasilane muszą być z oddzielnego obwodu
D. Odbiorniki o dużej mocy należy zasilać z wyodrębnionych obwodów
Odpowiedź dotycząca zasilania gniazd wtyczkowych każdego pomieszczenia z osobnego obwodu jest prawidłowa, ponieważ takie podejście nie jest zgodne z zaleceniami w zakresie projektowania instalacji elektrycznych w budynkach mieszkalnych. W praktyce, stosowanie osobnych obwodów dla każdego pomieszczenia może prowadzić do nadmiernych kosztów i skomplikowania instalacji. Zgodnie z Polską Normą PN-IEC 60364-1, obwody powinny być projektowane w taki sposób, aby zapewnić bezpieczeństwo i funkcjonalność, a nie każdy obwód powinien być dedykowany dla jednego pomieszczenia. W standardowych rozwiązaniach gniazda wtyczkowe w poszczególnych pomieszczeniach, jak kuchnia czy salon, mogą być podłączane do wspólnych obwodów, co jest bardziej efektywne, a także ułatwia ewentualne naprawy czy modernizacje. Przykładowo, w kuchni, gdzie występuje wiele odbiorników, stosuje się osobny obwód, ale gniazda w innych pomieszczeniach mogą być zasilane z jednego wspólnego obwodu, co zmniejsza ilość potrzebnych przewodów oraz urządzeń zabezpieczających.

Pytanie 10

Korzystając z zamieszczonego fragmentu instrukcji obsługi multimetru, wyznacz względny błąd pomiaru napięcia, jeżeli woltomierz wskazał 120 V.

Instrukcja obsługi multimetru (fragment)

Uchyb pomiaru:

0,1% w.m. ±0,05% w.z. (podzakresy 100 mV, 1 V)

0,2% w.m. ±0,05% w.z. (podzakresy 10 V, 100 V, 1000 V)

gdzie w.m. oznacza wartość zmierzoną, a w.z. wartość zakresu.
A. 0,62%
B. 6,10%
C. 0,07%
D. 0,74%
Względny błąd pomiaru napięcia wynosi 0,62%, co oznacza, że pomiar wykonany za pomocą woltomierza jest dokładny w granicach tego błędu. W celu obliczenia względnego błędu, należy dodać błąd stały urządzenia do błędu procentowego, a następnie podzielić tę sumę przez wartość zmierzoną (w tym przypadku 120 V). Takie podejście jest zgodne z profesjonalnymi standardami pomiarowymi, które wskazują, jak prawidłowo oceniać błędy pomiarowe. W praktyce, stosując woltomierz, bardzo ważne jest, aby zrozumieć i obliczyć te błędy, aby zapewnić dokładność i wiarygodność pomiarów. Na przykład, w zastosowaniach inżynieryjnych, gdzie precyzyjne parametry elektryczne są krytyczne, skuteczne zarządzanie błędami pomiarowymi pozwala na optymalizację procesów produkcyjnych, a także na zapewnienie bezpieczeństwa. W związku z tym, umiejętność obliczania względnych błędów pomiarowych jest kluczowa dla każdego specjalisty w dziedzinie elektrotechniki.

Pytanie 11

Którą klasę ochronności posiada oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Klasę I
B. Klasę II
C. Klasę 0
D. Klasę III
Odpowiedź "Klasę I" jest prawidłowa, ponieważ symbol przedstawiony na zdjęciu jednoznacznie wskazuje na tę klasę ochronności. Klasa I opraw oświetleniowych charakteryzuje się tym, że są one wyposażone w uziemienie, co jest kluczowe dla bezpieczeństwa użytkowników. Uziemienie zapewnia, że w przypadku wystąpienia awarii, prąd będzie odprowadzany do ziemi, minimalizując ryzyko porażenia elektrycznego. W praktyce, oprawy tej klasy stosowane są w miejscach, gdzie istnieje ryzyko kontaktu z wodą lub w obiektach przemysłowych, gdzie warunki eksploatacji są trudniejsze. Warto zauważyć, że zgodnie z normą IEC 60598-1, wszystkie oprawy oświetleniowe klasy I muszą posiadać odpowiednie połączenie z przewodem ochronnym. W konsekwencji, stosowanie opraw klasy I w odpowiednich warunkach zwiększa bezpieczeństwo, co jest zgodne z najlepszymi praktykami w branży elektrycznej.

Pytanie 12

Co oznacza przeciążenie instalacji elektrycznej?

A. Przekroczeniu wartości prądu znamionowego danej instalacji
B. Nagłym wzroście napięcia elektrycznego w sieci, który przekracza wartość znamionową
C. Pojawieniu się w instalacji fali przepięciowej spowodowanej wyładowaniem atmosferycznym
D. Bezpośrednim połączeniu ze sobą dwóch faz w instalacji
Przeciążenie instalacji elektrycznej to nic innego jak przekroczenie prądu, który jest dla niej bezpieczny. Kiedy podłącza się za dużo urządzeń do jednego obwodu, przewody mogą się strasznie nagrzewać, co nie jest dobre. Standardy jak PN-HD 60364-5-52 mówią, że trzeba to wszystko dobrze zaplanować i wymierzyć, żeby zapewnić bezpieczeństwo użytkownikom i żeby instalacja długo działała. Jak się projektuje instalacje elektryczne, to warto pomyśleć o przewidywanych obciążeniach i zastosować odpowiednie zabezpieczenia, na przykład wyłączniki nadprądowe. Znajomość tych rzeczy jest istotna, nie tylko przy projektowaniu, ale też kiedy trzeba naprawiać coś, co już działa, bo może to pomóc w diagnozowaniu różnych problemów.

Pytanie 13

Które źródło światła przedstawiono na rysunku?

Ilustracja do pytania
A. Żarówkę halogenową.
B. Żarówkę wolframową.
C. Świetlówkę kompaktową.
D. Lampę neonową.
Świetlówka kompaktowa, znana również jako energooszczędna, to źródło światła, które wyróżnia się charakterystycznym spiralnym lub zwiniętym kształtem. W przeciwieństwie do tradycyjnych żarówek, które emitują światło dzięki podgrzewaniu włókna, świetlówki kompaktowe wykorzystują zjawisko fluorescencji, co przekłada się na ich wysoką efektywność energetyczną. Ponadto, świetlówki kompaktowe charakteryzują się długą żywotnością, sięgającą nawet 10 000 godzin. Są one powszechnie stosowane w domach i biurach, gdzie pozwalają na znaczne oszczędności energii, co jest zgodne z aktualnymi standardami efektywności energetycznej. Warto również zauważyć, że emitują one mniej ciepła niż tradycyjne źródła światła, co czyni je bardziej ekologicznymi. Zastosowanie świetlówek kompaktowych jest zgodne z zasadami zrównoważonego rozwoju, które promują ograniczenie zużycia energii i redukcję emisji dwutlenku węgla.

Pytanie 14

Jakiego pomiaru należy dokonać, aby ocenić efektywność ochrony przed porażeniem w przypadku uszkodzenia odbiornika klasy I w sieci TT?

A. Rezystancji izolacji przewodu uziemiającego
B. Rezystancji uziomu, do którego dołączona jest obudowa odbiornika
C. Ciągłości przewodów fazowych
D. Ciągłości przewodu neutralnego
Rezystancja uziomu, do którego dołączona jest obudowa odbiornika, jest kluczowym pomiarem w celu sprawdzenia skuteczności ochrony przeciwporażeniowej w systemach elektrycznych, w tym w sieciach TT. Odbiorniki I klasy ochronności wymagają, aby obudowa była trwale uziemiona, co zapewnia, że w przypadku wystąpienia awarii, prąd upływowy ma możliwość przepływu do ziemi, co minimalizuje ryzyko porażenia prądem elektrycznym. Pomiar rezystancji uziomu powinien być wykonany zgodnie z normami, takimi jak PN-IEC 60364, które zalecają, aby wartość ta nie przekraczała 10 Ω dla zapewnienia efektywnej ochrony. Przykładowo, w instalacjach przemysłowych, gdzie używane są urządzenia o dużej mocy, niska rezystancja uziomu jest niezbędna, aby zapewnić szybkie działanie zabezpieczeń, takich jak wyłączniki różnicowoprądowe. Ponadto, w praktyce, warto przeprowadzać regularne pomiary rezystancji uziomu, aby upewnić się, że warunki uziemienia nie uległy zmianie wraz z upływem czasu czy też w wyniku warunków atmosferycznych, co może wpłynąć na bezpieczeństwo użytkowników. Jest to podstawowy krok w procesie zarządzania ryzykiem w instalacjach elektrycznych.

Pytanie 15

Parametry której maszyny elektrycznej zapisano na przedstawionej tabliczce znamionowej?

Ilustracja do pytania
A. Silnika jednofazowego.
B. Dławika.
C. Prądnicy synchronicznej.
D. Transformatora jednofazowego.
Odpowiedzi, które wskazują na inne maszyny elektryczne, zawierają szereg nieprawidłowych założeń, które mogą prowadzić do mylnych wniosków. Na przykład, silnik jednofazowy jest często mylony z dławikiem, jednak te dwa urządzenia mają diametralnie różne funkcje. Dławik jest elementem pasywnym, który ma na celu ograniczenie prądu w obwodach elektrycznych, co nie ma związku z zapisanymi parametrami na tabliczce, które dotyczą aktywnego urządzenia, jakim jest silnik. Transformator jednofazowy to kolejne niewłaściwe skojarzenie, ponieważ jego główną funkcją jest zmiana napięcia, a nie generowanie ruchu mechanicznego, jak w przypadku silnika. Parametry takie jak moc, prąd czy napięcie, które są kluczowe dla silnika, nie są odpowiednie dla transformatora. Prądnica synchroniczna, z kolei, jest maszyną, która generuje energię elektryczną, a nie wykorzystuje jej do wytwarzania ruchu, co również wyklucza ją jako właściwą odpowiedź. Mylnym wnioskom często towarzyszy brak zrozumienia różnic w działaniu różnych urządzeń elektrycznych oraz ich zastosowania. Aby poprawnie zidentyfikować typ maszyny, ważne jest, aby zrozumieć, jakie funkcje pełnią poszczególne elementy i jakie są ich charakterystyczne parametry. W praktyce, znajomość tych różnic jest niezbędna do skutecznego projektowania oraz doboru odpowiednich urządzeń w inżynierii elektrycznej.

Pytanie 16

Czy na obudowie urządzenia elektrycznego oznaczenie IP00 wskazuje na

A. najwyższy poziom ochronności
B. brak zabezpieczenia przed kurzem i wilgocią
C. stosowanie separacji ochronnej
D. zerową klasę ochrony przed porażeniem
Oznaczenie IP00 zgodnie z normą IEC 60529 wskazuje na brak ochrony przed pyłem oraz wilgocią. Pierwsza cyfra '0' oznacza, że urządzenie nie oferuje żadnej ochrony przed wnikaniem ciał stałych, co może prowadzić do uszkodzeń mechanicznych lub zanieczyszczenia wewnętrznych komponentów. Druga cyfra również '0' informuje użytkownika, że urządzenie nie jest odporne na działanie cieczy. W praktyce oznacza to, że takie urządzenia powinny być używane wyłącznie w suchych i czystych środowiskach, gdzie nie ma ryzyka kontaktu z wodą lub pyłem. Przykładem mogą być niektóre urządzenia biurowe, które są projektowane do pracy w kontrolowanych warunkach. Zastosowanie tych informacji w praktyce jest kluczowe dla zapewnienia długowieczności i bezpieczeństwa użytkowania urządzeń elektrycznych, dlatego zaleca się, aby przed zakupem sprawdzić stopień ochrony IP urządzenia, aby dobrać je odpowiednio do warunków pracy.

Pytanie 17

W wyniku uszkodzenia mechanicznego obudowa gniazda wtyczkowego w łazience uległa zniszczeniu. Co w takiej sytuacji powinno się zrobić?

A. wymienić gniazdo na nowe
B. uszczelnić pęknięcia za pomocą kleju do tworzywa
C. zdemontować gniazdo i zaślepić puszkę
D. zakleić gniazdo taśmą izolacyjną
Wymiana gniazda wtyczkowego jest kluczowym krokiem w przypadku uszkodzenia obudowy, ponieważ gwarantuje bezpieczeństwo użytkowników i zapewnia prawidłowe funkcjonowanie instalacji elektrycznej. Uszkodzona obudowa może prowadzić do odsłonięcia przewodów elektrycznych, co zwiększa ryzyko porażenia prądem oraz zwarcia. Zgodnie z normami bezpieczeństwa elektrycznego, takimi jak PN-IEC 60364, każda uszkodzona komponenta powinna być wymieniana, aby zapobiec potencjalnym zagrożeniom. Przykładowo, w przypadku gniazd wtyczkowych umieszczonych w łazienkach, gdzie panuje wysoka wilgotność, niezbędne jest korzystanie z gniazd o podwyższonej odporności na wodę i pył, co podkreśla znaczenie stosowania komponentów spełniających odpowiednie normy. Regularne kontrole oraz wymiana uszkodzonych elementów to najlepsza praktyka, która zwiększa bezpieczeństwo i niezawodność domowej instalacji elektrycznej. Przykładem może być sytuacja, w której gniazdo w łazience zostało uszkodzone – jego wymiana powinna być dokonywana przez wykwalifikowanego elektryka, aby zminimalizować ryzyko błędów w montażu.

Pytanie 18

Którego z symboli należy użyć na schemacie wielokreskowym w celu oznaczenia łącznika schodowego?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Wybór symboli A, B lub D do oznaczenia łącznika schodowego jest nieprawidłowy i wynika z nieporozumienia dotyczącego funkcji oraz konstrukcji tych elementów. Symbol A przedstawia zwykły łącznik, który jest używany do włączania i wyłączania obwodu z jednego miejsca. Nie ma on możliwości zarządzania oświetleniem z dwóch różnych lokalizacji, co jest kluczowe dla łącznika schodowego. Użycie tego symbolu w tym kontekście prowadzi do błędnej interpretacji możliwości instalacji. Symbol B, z kolei, może odnosić się do innego typu przełącznika, który nie jest przystosowany do działania w systemach schodowych. Oznaczenia te mogą mylić, ponieważ nie oddają rzeczywistych funkcji, które powinny być jasno sprecyzowane w dokumentacji technicznej. Natomiast symbol D może reprezentować elementy, które nie są powiązane z funkcjonalnością zarządzania oświetleniem w kontekście schodów. Te błędne wybory wynikają z typowych nieporozumień w interpretacji rysunków technicznych oraz braku znajomości norm dotyczących oznaczania symboli elektrycznych. Ważne jest, aby przy projektowaniu instalacji elektrycznych zwracać uwagę na specyfikację i zastosowanie poszczególnych symboli, aby zapewnić ich poprawne użytkowanie i efektywność działania systemu. Dobrą praktyką jest konsultacja z dokumentacją normatywną oraz specjalistami w dziedzinie elektrotechniki przed podjęciem decyzji o wyborze odpowiednich elementów instalacji.

Pytanie 19

Której klasy ogranicznik przepięciowy przedstawiono na rysunku?

Ilustracja do pytania
A. Klasy D
B. Klasy C
C. Klasy B
D. Klasy A
Wybór odpowiedzi z klas A, B, C niestety nie odpowiada rzeczywistym potrzebom ochrony przed przepięciami, jeśli mówimy o ogranicznikach klasy D. Klasa A jest do ochrony sprzętu przed przepięciami z atmosfery, ale to działa przy średnio niskich energiach, więc przy silnych przepięciach to może być za mało. Klasa B, która jest stworzona do ochrony przed przepięciami z zewnątrz, też nie bardzo sobie poradzi w aplikacjach, które mogą dostać nagłe, wysokie przepięcia. Klasa C, mimo że daje jakąś formę ochrony, nie nadaje się do intensywnej ochrony przed przepięciami, jak w przypadku systemów komputerowych czy telekomunikacyjnych. Ważne jest, żeby znać różnice między tymi klasami i ich zastosowania, bo źle dobrane rozwiązanie może skutkować poważnymi uszkodzeniami sprzętu i kosztownymi naprawami. Często ludzie błędnie myślą, że te klasy są równoważne, co prowadzi do zaniżania ryzyka, a to jest naprawdę powszechna pułapka przy projektowaniu systemów ochrony przeciwprzepięciowej.

Pytanie 20

Jaką klasę mają oprawy stosowane do oświetlenia miejscowego?

A. II
B. III
C. IV
D. I
Odpowiedź I jest poprawna, ponieważ oświetlenie miejscowe, które ma na celu dostarczenie światła do określonego obszaru, często stosuje oprawy klasy I. Oprawy te są zaprojektowane w taki sposób, aby zapewniały odpowiednią izolację i ochronę przed porażeniem prądem, co jest kluczowe w kontekście ich użycia w miejscach pracy i w przestrzeni publicznej. Klasa I oznacza, że urządzenia te muszą być uziemione, co znacząco zwiększa bezpieczeństwo ich użytkowania. Przykładowo, w biurach czy warsztatach, gdzie oświetlenie miejscowe jest niezbędne do precyzyjnego wykonania zadań, oprawy klasy I zapewniają, że pracownicy są chronieni przed ryzykiem porażenia prądem. W praktyce, oświetlenie miejscowe może być realizowane poprzez lampy biurkowe, które często mają dodatkowe funkcje regulacji intensywności światła. Stosowanie opraw klasy I w takich sytuacjach jest zgodne z normami bezpieczeństwa, co podkreśla znaczenie tego typu oświetlenia w przestrzeniach użytkowych.

Pytanie 21

Które czynności powinien wykonać elektryk, posiadający uprawnienia do eksploatacji urządzeń i instalacji do 1 kV, przed wymianą uszkodzonego wyłącznika nadprądowego B16 w obwodzie gniazd wtyczkowych, aby nie pozbawić zasilania płyty grzewczej i piekarnika?

Ilustracja do pytania
A. Wyłączyć wszystkie wyłączniki różnicowoprądowe.
B. Wyłączyć rozłącznik izolacyjny FR 304 32 A i wyłącznik nadprądowy S304 B16.
C. Wyłączyć wyłącznik różnicowoprądowy P312 B25A.
D. Wyłączyć wszystkie wyłączniki nadprądowe.
Wyłączenie wszystkich wyłączników różnicowoprądowych lub nadprądowych przed wymianą uszkodzonego wyłącznika nadprądowego B16 może prowadzić do niezamierzonych konsekwencji. Wybierając tę opcję, wprowadza się ryzyko, że zasilanie w całym obwodzie zostanie przerwane, co może być nieodpowiednie w sytuacji, gdy inne urządzenia, takie jak płyta grzewcza czy piekarnik, również są zasilane z tej samej instalacji. Wyłączając wszystkie wyłączniki, nie tylko ryzykuje się utratę zasilania w lokalach, ale także narusza się zasady efektywności energetycznej i dobrych praktyk przy pracy z instalacjami elektrycznymi. Ponadto, wyłączanie wszystkich wyłączników jest nieefektywne i czasochłonne, co w praktyce staje się uciążliwe, zwłaszcza w obiektach komercyjnych, gdzie ciągłość zasilania jest kluczowa. W kontekście ochrony przeciwporażeniowej, wyłącznik różnicowoprądowy powinien być regularnie testowany, a jego wyłączenie powinno być uzasadnione potrzebą konserwacji lub naprawy tylko w określonych obwodach. Z tego powodu, nieprzemyślane wyłączenie wszystkich zabezpieczeń narusza zasady bezpieczeństwa i efektywności w zarządzaniu instalacjami elektrycznymi.

Pytanie 22

Na którym schemacie połączeń przedstawiono zgodne z zamieszczonym planem instalacji podłączenie przewodów w puszce numer 3?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Niepoprawne odpowiedzi mogą wynikać z kilku typowych błędów myślowych i nieporozumień związanych z instalacjami elektrycznymi. Przede wszystkim, w schematach A, B i C często błędnie umieszczany jest przewód fazowy L, co może prowadzić do niewłaściwego działania obwodu oświetleniowego. W przypadku schematu A, przewód fazowy został połączony z przewodem neutralnym, co stwarza ryzyko zwarcia. W praktyce, takie połączenie nie tylko uniemożliwi załączenie światła, ale także może doprowadzić do uszkodzenia urządzeń elektrycznych oraz stanowić poważne zagrożenie dla bezpieczeństwa osób korzystających z instalacji. Schemat B z kolei mógłby sugerować, że przewód NE jest poprowadzony przez łącznik, co jest niezgodne z zasadami, gdyż neutralny przewód powinien być zawsze bezpośrednio połączony do źródła zasilania. Wreszcie, schemat C nie uwzględnia prawidłowego uziemienia, co jest niezbędne dla zapewnienia bezpieczeństwa użytkowników. Każde z tych podejść pokazuje, jak ważne jest przestrzeganie standardów, takich jak PN-IEC 60364, które nakładają obowiązek stosowania odpowiednich metod podłączeń oraz zabezpieczeń w instalacjach elektrycznych. Właściwe zrozumienie i przestrzeganie tych zasad jest kluczowe dla bezpieczeństwa oraz funkcjonalności instalacji elektrycznych.

Pytanie 23

Przygotowując się do wymiany uszkodzonego gniazda siłowego w instalacji elektrycznej, po odłączeniu zasilania w obwodzie tego gniazda, należy przede wszystkim

A. zabezpieczyć obwód przed przypadkowym włączeniem zasilania
B. oznaczyć obszar roboczy
C. rozłożyć dywanik izolacyjny w rejonie pracy
D. poinformować dostawcę energii
Zabezpieczenie obwodu przed przypadkowym załączeniem napięcia jest kluczowym krokiem w procesie wymiany gniazda siłowego. Po wyłączeniu napięcia, aby zapewnić bezpieczeństwo, należy zastosować odpowiednie środki, takie jak umieszczenie blokady na wyłączniku, co uniemożliwi jego przypadkowe włączenie. W przeciwnym razie, nieodpowiednie działanie lub nieuwaga mogą prowadzić do poważnych wypadków, takich jak porażenie prądem. Przykładem dobrych praktyk w branży elektrycznej jest stosowanie tabliczek informacyjnych ostrzegających, że obwód jest wyłączony i nie należy go włączać. Dodatkowo, w przypadku pracy w większych instalacjach, warto stosować procedury lockout/tagout (LOTO), które są standardem w zapobieganiu nieautoryzowanemu włączeniu urządzeń. Te praktyki są zgodne z normami bezpieczeństwa, co minimalizuje ryzyko wypadków w miejscu pracy.

Pytanie 24

Który typ przewodu przedstawiono na ilustracji?

Ilustracja do pytania
A. YAKY
B. YKY
C. YLY
D. YALY
Odpowiedzi YLY, YAKY oraz YALY są niepoprawne, ponieważ każdy z tych typów przewodów ma inne właściwości i zastosowania. Przewód YLY, na przykład, charakteryzuje się izolacją z poliwęglanu, co czyni go mniej odpornym na wysoką temperaturę i nieodpowiednim do zastosowań w trudnych warunkach. Z kolei YAKY, będący przewodem aluminiowym, jest stosowany tam, gdzie niezbędne jest zredukowanie kosztów związanych z materiałem, ale nie jest zalecany w sytuacjach, gdzie wymagane są wysokie parametry przewodzenia energii elektrycznej. Przewód YALY ma podobne ograniczenia i nie nadaje się do instalacji, które muszą spełniać normy dotyczące odporności na czynniki zewnętrzne. Wybór niewłaściwego przewodu może prowadzić do awarii systemu, zagrożeń związanych z bezpieczeństwem a także nieefektywności energetycznej. Osoby zajmujące się projektowaniem systemów elektrycznych muszą być świadome różnic pomiędzy różnymi typami przewodów, aby uniknąć typowych błędów myślowych, takich jak założenie, że wszystkie przewody są uniwersalne. Wiedza ta jest kluczowa dla zapewnienia bezpieczeństwa i efektywności energetycznej w instalacjach elektrycznych.

Pytanie 25

W rozdzielnicy zasilającej instalację niskiego napięcia w budynku doszło do wyzwolenia wyłącznika różnicowoprądowego, podczas gdy inne zabezpieczenia nie zareagowały. Jaką można wskazać przyczynę?

A. Uszkodzenie lub przepalenie przewodu neutralnego
B. Przeciążenie obwodu
C. Awaria wyłącznika nadprądowego w rozdzielnicy
D. Zwarcie rezystancyjne do obudowy odbiornika
Przeciążenie obwodu, które sugeruje pierwsza odpowiedź, nie jest bezpośrednią przyczyną zadziałania wyłącznika różnicowoprądowego, ponieważ jego działanie opiera się na detekcji różnic prądów, a nie na ich natężeniu. Przeciążenie może skutkować zadziałaniem wyłącznika nadprądowego, który ma na celu ochronę przewodów przed przegrzewaniem, ale nie wpływa na wyłącznik różnicowoprądowy w tym kontekście. Uszkodzenie przewodu neutralnego, wspomniane w drugiej opcji, również nie musi prowadzić do zadziałania wyłącznika różnicowoprądowego, jeśli obwód nadal może funkcjonować z poprawnym przepływem prądu. Uszkodzenie wyłącznika nadprądowego w rozdzielnicy, opisane w trzeciej odpowiedzi, w rzeczywistości nie ma związku z działaniem wyłącznika różnicowoprądowego, który funkcjonuje niezależnie. Na koniec, zwarcie rezystancyjne do obudowy odbiornika, które nie zostało wybrane, stanowi rzeczywistą przyczynę zadziałania, ale wszystkie pozostałe odpowiedzi nie uwzględniają tej kluczowej kwestii. W praktyce, zrozumienie zasad działania wyłączników różnicowoprądowych oraz odpowiednich zabezpieczeń jest kluczowe dla zapewnienia bezpieczeństwa i uniknięcia nieprawidłowych wniosków w diagnostyce usterek w instalacjach elektrycznych.

Pytanie 26

Którego z wymienionych narzędzi należy użyć do połączenia przewodów przy użyciu złączki przedstawionej na rysunku?

Ilustracja do pytania
A. Szczypiec uniwersalnych.
B. Lutownicy.
C. Wkrętaka.
D. Praski hydraulicznej.
Wybór narzędzi, które nie są przeznaczone do zaciskania złączek tulejowych, prowadzi do nietrwałych połączeń oraz potencjalnych awarii. Wkrętaka nie stosuje się do tego celu, ponieważ jego funkcja ogranicza się do wkręcania i wykręcania śrub, a nie do zaciskania elementów. Użycie lutownicy wydaje się być zrozumiałe, jednak lutowanie nie jest zalecaną metodą w przypadku złączek tulejowych, które zostały zaprojektowane do mechanicznych połączeń, a lutowanie może osłabić przewód i wprowadzać dodatkowe problemy z przewodnictwem elektrycznym. Szczypce uniwersalne również nie są odpowiednie, ponieważ nie oferują wymaganej siły i precyzji, które są niezbędne do prawidłowego zaciskania. Warto również zwrócić uwagę na standardy ochrony elektrycznej, które wymagają, aby wszelkie połączenia były wykonane zgodnie z wytycznymi zapewniającymi ich trwałość i bezpieczeństwo. Użycie niewłaściwego narzędzia może prowadzić do zwarć, uszkodzeń, a nawet pożarów, co jest poważnym zagrożeniem w instalacjach elektrycznych. Dlatego istotne jest, aby dobierać stosowne narzędzia zgodnie z przeznaczeniem oraz przestrzegać dobrych praktyk, które pozwolą osiągnąć bezpieczne i niezawodne połączenia elektryczne.

Pytanie 27

Poślizg silnika indukcyjnego osiągnie wartość 1, gdy

A. wirnik silnika zostanie dogoniony.
B. silnik zostanie zasilony prądem przeciwnym.
C. wirnik silnika będzie w bezruchu.
D. silnik znajdzie się w stanie jałowym.
Poślizg silnika indukcyjnego wyraża się jako różnica między prędkością wirnika a prędkością obrotową pola magnetycznego, wyrażona jako procent. Gdy wirnik jest zatrzymany, jego prędkość (ω_wirnika) wynosi 0, a pole magnetyczne wiruje z prędkością synchronizacyjną (ω_s). W takim przypadku poślizg jest równy 1 (100%), co oznacza maksymalne opóźnienie wirnika. W praktyce, taka sytuacja występuje w przypadku rozruchu silnika, gdy nie ma jeszcze momentu obrotowego, a silnik pracuje na pełnym poślizgu. Zrozumienie poślizgu w silniku indukcyjnym ma kluczowe znaczenie dla projektowania i eksploatacji systemów napędowych, zwłaszcza w aplikacjach wymagających precyzyjnego sterowania momentem obrotowym, takich jak w przypadku silników napędzających prasy czy taśmy transportowe. Wiedza ta pozwala na lepsze dostosowanie parametrów eksploatacyjnych silników oraz na zminimalizowanie strat energetycznych i optymalizację ich pracy w różnych warunkach obciążenia.

Pytanie 28

Rysunek przedstawia pętlę zwarciową w układzie

Ilustracja do pytania
A. IT
B. TN-C
C. TT
D. TN-S
Odpowiedzi IT, TN-S, i TN-C nie są właściwe w kontekście przedstawionego rysunku pętli zwarciowej. W systemie IT, punkt neutralny nie jest uziemiony, co może prowadzić do niebezpiecznych sytuacji w przypadku uszkodzenia izolacji. W takim układzie występuje ryzyko wystąpienia wysokich napięć na częściach przewodzących, co zagraża bezpieczeństwu użytkowników. Z kolei w systemie TN-S, przewody neutralne i robocze są oddzielone, ale wymagają wspólnego uziemienia, co w sytuacji zwarcia nie zapewnia dostatecznego poziomu bezpieczeństwa. Natomiast TN-C, w którym przewód neutralny i ochronny są połączone, nie może być stosowany w instalacjach wymagających wysokiego poziomu ochrony, szczególnie w miejscach, gdzie występuje ryzyko porażenia prądem, jak w obiektach przemysłowych. Łączenie funkcji ochronnych i roboczych w TN-C zwiększa ryzyko potencjalnych zagrożeń. Typowym błędem myślowym jest mylenie różnych typów systemów uziemienia i ich wpływu na bezpieczeństwo, co może prowadzić do niewłaściwych decyzji projektowych oraz poważnych konsekwencji w eksploatacji instalacji elektrycznych.

Pytanie 29

Wiatrołap jest oświetlany dwoma żarówkami. Żarówki w oprawach są włączane przez wyłącznik zmierzchowy. Gdy jedna z żarówek przestała świecić, jakie kroki należy podjąć, aby zidentyfikować i usunąć potencjalne przyczyny tej usterki?

A. Wymienić żarówkę, która się nie świeci, sprawdzić przewody i oprawę oświetleniową
B. Zamienić żarówkę, która nie świeci, sprawdzić funkcjonowanie wyłącznika oraz oprawy oświetleniowej
C. Sprawdzić działanie wyłącznika, zweryfikować oprawę i przewody
D. Zweryfikować przewody, sprawdzić działanie wyłącznika, wymienić żarówkę
Analizując inne odpowiedzi, można zauważyć, że skupiają się one na fragmentarycznych rozwiązaniach, co może prowadzić do niepełnej diagnozy problemu. Na przykład, wymiana tylko żarówki, bez sprawdzenia innych elementów instalacji, może spowodować, że użytkownik nie zauważyłby dalszych problemów, na przykład uszkodzenia przewodów lub wyłącznika. Zignorowanie konieczności weryfikacji przewodów może prowadzić do sytuacji, w której nowa żarówka również przestanie działać z powodu braku zasilania, co byłoby nieefektywnym i kosztownym rozwiązaniem. Podobnie, choć sprawdzenie działania wyłącznika jest istotne, nie powinno być to jedyne działanie, ponieważ uszkodzenie oprawy oświetleniowej też może być przyczyną problemu. Takie podejście jest typowe dla błędów myślowych, gdzie użytkownicy koncentrują się na jednym elemencie systemu, zaniedbując jego całościową analizę. Praktyczne podejście do diagnozowania usterek elektrycznych wymaga holistycznego spojrzenia na całą instalację, co zapewnia skuteczną identyfikację i eliminację problemów. Właściwe postępowanie zgodne z zasadami bezpieczeństwa i dobrymi praktykami branżowymi powinno obejmować kompleksowe sprawdzenie wszystkich komponentów systemu oświetleniowego, co jest kluczowe dla utrzymania efektywności energetycznej i niezawodności instalacji.

Pytanie 30

Które z przedstawionych parametrów dotyczą wyłącznika silnikowego?

  • Napięcie zasilania 230 V AC
  • Styk separowany 2P
  • Zakres nastawy czasu 0,1 s ÷ 576 h
  • Rodzaje funkcji A, B, C, D
  • Ilość modułów 1
  • Stopień ochrony IP 20
  • Napięcie znamionowe łączeniowe 230/400 V AC
  • Prąd znamionowy 25 A
  • Prąd znamionowy różnicowy 100 mA
  • Stopień ochrony IP 40
  • Max. moc silnika 1,5 kW
  • Zakres nastawy wyzwalacza przeciążeniowego It = 2,5 ÷ 4 A
  • Zakres nastawy wyzwalacza zwarciowego Im = 56 A
  • Prąd znamionowy 20 A
  • Napięcie znamionowe 24 V AC
  • Konfiguracja zestyków 1 NO + 1 NC
  • Ilość modułów 1
  • Znamionowa moc przy napięciu 230 V: 4 kW
A.B.C.D.
A. D.
B. B.
C. C.
D. A.
Odpowiedź C jest prawidłowa, ponieważ odnosi się do kluczowego parametru wyłącznika silnikowego, jakim jest maksymalna moc silnika, która wynosi 1,5 kW. Wyłączniki silnikowe są stosowane w celu ochrony silników przed przeciążeniem oraz zwarciem, a dokładna znajomość ich parametrów jest niezbędna do zapewnienia bezpieczeństwa i efektywności pracy urządzeń elektrycznych. Wyłączniki te są projektowane zgodnie z normami, takimi jak IEC 60947-4-1, które definiują wymagania dotyczące budowy oraz testowania tych urządzeń. W praktyce, wybór odpowiedniego wyłącznika silnikowego jest kluczowy dla zapewnienia optymalnej ochrony silnika, co pozwala uniknąć kosztownych awarii oraz przestojów w produkcji. W przypadku silników o mocy przekraczającej 1,5 kW, konieczne jest zastosowanie innego wyłącznika, który dostosowany jest do wyższych wartości, co podkreśla znaczenie znajomości specyfikacji technicznych w pracy z instalacjami elektrycznymi.

Pytanie 31

Uszkodzenie poprawnie działającej instalacji elektrycznej budynku przedstawione na rysunku jest skutkiem

Ilustracja do pytania
A. zwarcia międzyfazowego w instalacji.
B. zwarcia doziemnego.
C. wpływu prądu piorunowego do instalacji.
D. przeciążenia instalacji.
Odpowiedź wskazująca na wpływ prądu piorunowego do instalacji jako przyczynę uszkodzeń jest słuszna. Prąd piorunowy, ze względu na swoje ekstremalne natężenie i napięcie, jest w stanie spowodować znaczne uszkodzenia instalacji elektrycznych, co widać na przedstawionym rysunku. Zjawisko to jest szczególnie niebezpieczne, ponieważ może prowadzić do uszkodzeń zarówno sprzętu elektrycznego, jak i struktury budynku. Przykładowo, w praktyce budowlanej i elektrycznej, rekomenduje się instalowanie systemów odgromowych, które mają na celu ochronę przed skutkami uderzenia pioruna. Systemy te powinny być zgodne z normami IEC 62305, co wymaga odpowiedniego zaprojektowania oraz instalacji, aby skutecznie kierować prąd piorunowy do ziemi. Dobre praktyki w tej dziedzinie podkreślają znaczenie regularnych przeglądów instalacji oraz świadomości zagrożeń związanych z wyładowaniami atmosferycznymi. Dodatkowo, ważne jest, aby osoby odpowiedzialne za instalacje elektryczne były odpowiednio przeszkolone i znały zasady projektowania w kontekście ochrony przeciwprzepięciowej.

Pytanie 32

Który z przedstawionych wyłączników należy zastosować do wykrywania prądów różnicowych przemiennych o zwiększonej częstotliwości, zawierających wyższe harmoniczne w układach energoelektronicznych?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Wyłącznik różnicowoprądowy oznaczony literą C. jest właściwym wyborem do detekcji prądów różnicowych o zwiększonej częstotliwości, które zawierają wyższe harmoniczne. W kontekście układów energoelektronicznych, które często operują przy dużych częstotliwościach, standardowe wyłączniki mogą nie być wystarczające. Wyłącznik C. został zaprojektowany zgodnie z normami EN 61008 i EN 61009, które określają wymagania dla wyłączników różnicowoprądowych. Jego budowa umożliwia wykrywanie różnic prądowych przy częstotliwościach, które są typowe dla aplikacji przemysłowych czy systemów zasilania opartego na falownikach. Takie wyłączniki są często stosowane w instalacjach zasilających silniki elektryczne, gdzie prądy harmoniczne generowane przez przetwornice częstotliwości są powszechne. Dzięki odpowiedniej konstrukcji i oznaczeniom, wyłącznik C. skutecznie chroni przed ryzykiem pożaru i porażenia prądem, co czyni go kluczowym elementem bezpieczeństwa w nowoczesnych systemach energoelektronicznych.

Pytanie 33

W strefie 0 przedstawionego na rysunku pomieszczenia z wanną można instalować

Ilustracja do pytania
A. przenośne odbiorniki o II klasie ochronności.
B. urządzenia zasilanie prądem zmiennym do 12 V.
C. elektryczne podgrzewacze wody.
D. oprawy oświetleniowe o II klasie ochronności.
W strefach 0 pomieszczeń z wanną istnieją surowe przepisy dotyczące dozwolonych instalacji elektrycznych, które mają na celu ochronę przed porażeniem prądem. Strefa ta jest szczególnie niebezpieczna ze względu na bezpośredni kontakt z wodą, co zwiększa ryzyko elektrycznego wstrząsu. Przenośne odbiorniki o II klasie ochronności, choć zaprojektowane z myślą o bezpieczeństwie, nie są odpowiednie do użycia w strefie 0, ponieważ nie zapewniają wystarczającej ochrony przed wodą. Podobnie elektryczne podgrzewacze wody, które mogą być zainstalowane w innych strefach, w strefie 0 mogą stwarzać poważne zagrożenia, ponieważ ich konstrukcja nie jest dostosowana do tak ekstremalnych warunków. Odnośnie opraw oświetleniowych o II klasie ochronności, chociaż mogą one być stosowane w strefie 1 i 2, to w strefie 0 ich użycie jest niewłaściwe. W strefie 0 należy stosować jedynie urządzenia zasilane niskim napięciem, co zapewnia najwyższy poziom bezpieczeństwa. Właściwe podejście do projektowania instalacji elektrycznych w strefach mokrych powinno opierać się na rygorystycznym przestrzeganiu norm, co ma kluczowe znaczenie w zapobieganiu wypadkom i zapewnieniu bezpieczeństwa użytkowników.

Pytanie 34

Na rysunkach przedstawiono kolejno typy końcówek źródeł światła

Ilustracja do pytania
A. E 14, GU 10, AR 111, MR 16
B. E 14, AR 111, MR 16, GU 10
C. E 14, MR 16, GU 10, AR 111
D. E 14, AR 111, GU 10, MR 16
Poprawna odpowiedź to "E 14, GU 10, AR 111, MR 16". Typy końcówek źródeł światła, które zostały przedstawione na zdjęciu, są kluczowe w zrozumieniu różnych zastosowań oświetleniowych. Końcówka E 14, znana jako mały gwint, jest powszechnie stosowana w lampach domowych, szczególnie w żarówkach LED i energooszczędnych, co czyni ją wszechstronnym rozwiązaniem do użytku przydomowego. Końcówka GU 10, z dwoma pinami i blokadą, jest używana w reflektorach sufitowych i halogenowych, co pozwala na łatwą wymianę żarówek, a jednocześnie zapewnia stabilne mocowanie. Końcówka AR 111, z reflektorem, jest często stosowana w oświetleniu profesjonalnym, na przykład w galeriach sztuki czy sklepach, gdzie istotna jest jakość i kierunek światła. Końcówka MR 16 to popularny wybór w systemach oświetleniowych niskonapięciowych, szczególnie w przypadku oświetlenia punktowego. Znajomość tych typów końcówek jest niezbędna dla każdego, kto zajmuje się projektowaniem i montażem systemów oświetleniowych, a także dla osób wybierających odpowiednie źródła światła do różnych aplikacji.

Pytanie 35

Która z wymienionych czynności zaliczana jest do prac konserwacyjnych w przypadku oprawy oświetleniowej przedstawionej na rysunku?

Ilustracja do pytania
A. Czyszczenie obudowy i styków.
B. Wymiana oprawki.
C. Wymiana złączki.
D. Wykonanie pomiarów natężenia oświetlenia.
Czyszczenie obudowy i styków jest kluczowym elementem konserwacji opraw oświetleniowych. Regularne usuwanie kurzu, brudu oraz osadów poprawia nie tylko estetykę, ale przede wszystkim funkcjonalność urządzenia. Zabrudzenia na obudowie mogą prowadzić do przegrzewania się oprawy, co skraca jej żywotność i zwiększa ryzyko awarii. Czyszczenie styków zapewnia dobry kontakt elektryczny, co jest niezbędne do prawidłowego działania źródeł światła. W kontekście standardów branżowych, takich jak normy dotyczące bezpieczeństwa elektrycznego oraz efektywności energetycznej, regularna konserwacja opraw oświetleniowych jest wymagana do utrzymania ich w dobrym stanie technicznym. Przykładowo, w obiektach przemysłowych czy biurowych, gdzie oświetlenie ma kluczowe znaczenie dla bezpieczeństwa i wydajności pracy, regularne czyszczenie oraz konserwacja opraw są niezbędne do spełnienia norm BHP i ergonomii. Właściwe praktyki konserwacyjne przyczyniają się także do zmniejszenia kosztów eksploatacji poprzez ograniczenie konieczności przeprowadzania napraw oraz wymiany uszkodzonych elementów.

Pytanie 36

Aby chronić przewód przed przeciążeniem i zwarciem, wykorzystuje się wyłącznik

A. który działa z przekaźnikiem czasowym
B. który współdziała z przekaźnikiem sygnalizacyjnym
C. z wyzwalaczami przeciążeniowymi oraz zwarciowymi
D. posiadający aparat różnicowoprądowy
W kontekście zabezpieczania przewodów przed przeciążeniem i zwarciem, odpowiedzi sugerujące współpracę z przekaźnikiem czasowym, sygnalizacyjnym lub wyposażenie w aparat różnicowoprądowy są nieadekwatne do postawionego pytania. Przekaźnik czasowy, który może być używany do kontrolowania czasowego działania urządzeń elektrycznych, nie jest elementem bezpośrednio zabezpieczającym przed przeciążeniem. Jego funkcjonalność koncentruje się na precyzyjnym zarządzaniu czasem, co nie ma zastosowania w kontekście natychmiastowego reagowania na nadmierny prąd. Z kolei przekaźnik sygnalizacyjny jest używany do monitorowania i wskazywania stanu obwodu, a nie do jego ochrony. Co więcej, aparaty różnicowoprądowe są wyspecjalizowane w detekcji prądów upływowych, mających na celu zabezpieczenie osób i mienia przed porażeniem prądem, lecz nie eliminują ryzyka przeciążeń czy zwarć. Zastosowanie tych elementów w miejscu wyłącznika zabezpieczającego może prowadzić do fałszywego poczucia bezpieczeństwa, ponieważ nie zapewniają one właściwego odcięcia zasilania w przypadku zbyt wysokiego natężenia prądu. Kluczowym błędem w myśleniu jest zapominanie, że każdy z tych elementów ma swoją specyfikę i zastosowanie; ich niewłaściwe użycie może skutkować poważnymi konsekwencjami dla bezpieczeństwa instalacji elektrycznej.

Pytanie 37

Na przyrządzie ustawionym na zakres 300 V zmierzono napięcie w sieci, które wynosi 230 V. Do wykonania pomiaru zastosowano miernik analogowy o dokładności w klasie 1,5. Jaki jest błąd bezwzględny uzyskanego pomiaru?

A. ± 4,30 V
B. ± 4,40 V
C. ± 4,50 V
D. ± 4,60 V
Błędy w obliczeniach błędów bezwzględnych pomiaru mogą wynikać z niedokładnego zrozumienia klasy dokładności miernika oraz sposobu jej zastosowania. W przypadku analizowania błędów pomiarowych istotne jest, aby pamiętać, że klasa dokładności odnosi się do całego zakresu pomiarowego, a nie tylko do konkretnego odczytu. Na przykład, niektóre odpowiedzi mogłyby sugerować, że błąd bezwzględny pomiaru wynosi ± 4,30 V lub ± 4,40 V, co jest wynikiem mylenia wartości procentowych z rzeczywistymi pomiarami. Klasa 1,5% oznacza, że błąd ten powinien być obliczany z całkowitego zakresu, a nie bezpośrednio z odczytu. Ponadto, pomijanie kontekstu zastosowania miernika oraz jego ograniczeń prowadzi do nieprawidłowych wniosków, co może być krytyczne w praktycznych zastosowaniach, takich jak instalacje elektryczne. Przykładowo, nieprawidłowe oszacowanie błędu pomiarowego może prowadzić do niewłaściwego doboru komponentów systemu lub nieprawidłowej oceny stanu instalacji, co w konsekwencji może wpłynąć na bezpieczeństwo użytkowników oraz efektywność energetyczną całego systemu. Dlatego tak ważne jest, aby przy obliczaniu błędów pomiarowych zawsze stosować przyjęte normy i metodyki, zapewniając rzetelność wyników.

Pytanie 38

Jaki wyłącznik nadmiarowo-prądowy najlepiej zastosować do zabezpieczenia instalacji elektrycznej z przewidywanym prądem zwarciowym Iz = 150 A?

A. B25
B. C16
C. D10
D. C20
Odpowiedzi C16, C20 i D10 to nie są najlepsze wybory i to z kilku powodów. Przede wszystkim, wybierając wyłącznik nadmiarowo-prądowy, trzeba brać pod uwagę przewidywany prąd zwarciowy. Przy 150 A, C16 i C20 mogą być za małe, bo ich prąd znamionowy nie jest wystarczający. C16 by działał za szybko w normalnych warunkach, co oznacza, że mógłby wyłączać się bez potrzeby, a to nie jest dobre, zwłaszcza przy takich prądach zwarciowych. C20, choć lepszy od C16, nadal nie spełnia wymagań, które mogą być w awaryjnych sytuacjach. A D10? No, to już w ogóle nie ma sensu, bo 10 A to zdecydowanie za mało na prąd zwarciowy wynoszący 150 A. Używanie takich słabych wyłączników może prowadzić do częstych wyłączeń i narażenia instalacji na różne niebezpieczeństwa. W praktyce to może skończyć się poważnymi kłopotami, nawet porażeniem elektrycznym. Dlatego tak ważne jest, żeby trzymać się norm i przepisów.

Pytanie 39

Z instrukcji obsługi przedstawionego na ilustracji miernika wynika, że przed pomiarem rezystancji należy wyzerować omomierz. W tym celu należy przełącznikiem funkcji wybrać pomiar rezystancji i ustawić wskazówkę na 0 Ω przy pomocy pokrętła oznaczonego

Ilustracja do pytania
A. cyfrą 2 przy odłączonych przewodach pomiarowych.
B. cyfrą 2 przy zwartych przewodach pomiarowych.
C. cyfrą 1 przy zwartych przewodach pomiarowych.
D. cyfrą 1 przy odłączonych przewodach pomiarowych.
Poprawna odpowiedź to cyfrą 2 przy zwartych przewodach pomiarowych. Wyzerowanie omomierza jest kluczowym krokiem przed pomiarem rezystancji, ponieważ pozwala na zredukowanie wpływu wszelkich błędów pomiarowych. Przy zwartych przewodach pomiarowych nie ma żadnej rezystancji, co umożliwia ustawienie wskazówki miernika na 0 Ω. Dzięki temu uzyskujemy dokładniejsze wyniki pomiarów. W praktyce, wiele urządzeń pomiarowych, w tym profesjonalne omomierze, mają wbudowane funkcje umożliwiające automatyczne wyzerowanie, co jest zgodne z najlepszymi praktykami pomiarowymi. Prawidłowe wyzerowanie miernika przed przystąpieniem do pomiarów jest również zgodne z normami branżowymi, co podkreśla znaczenie tego procesu w zapewnieniu dokładności i wiarygodności wyników. Pamiętaj, że pomiar bez wcześniejszego wyzerowania może prowadzić do nieprecyzyjnych odczytów, co w kontekście pracy inżynierskiej lub domowego majsterkowania ma istotne znaczenie.

Pytanie 40

Na którym rysunku przedstawiono przewód instalacyjny wtynkowy typu YDYt?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Wybór odpowiedzi C, A, D lub jakiejkolwiek innej opcji niż B może wynikać z nieporozumień dotyczących klasyfikacji przewodów instalacyjnych. Warto zauważyć, że błędne odpowiedzi mogą wynikać z pomylenia typu przewodu z innymi, które mają różne zastosowania i właściwości. Przewody YDYt, w przeciwieństwie do innych typów, takich jak YDY, charakteryzują się jednolitą budową oraz możliwością przybijania do ścian, co jest kluczowe dla ich funkcji. W przypadku opcji A, można by pomyśleć, że jest to przewód odporny na uszkodzenia, jednak jego konstrukcja nie odpowiada wymaganiom dla YDYt, ponieważ nie ma odpowiedniej izolacji ani układu żył. Argumenty za innymi odpowiedziami często wynikają z niepełnego rozumienia cech i zastosowania przewodów. Na przykład, przewody wielodrutowe mogą wprowadzać w błąd z punktu widzenia ich zastosowania w instalacjach wtynkowych. Warto zwrócić uwagę, że błędne odpowiedzi mogą sugerować, że przewody te są stosunkowo łatwe do zainstalowania wszędzie, co w rzeczywistości może prowadzić do problemów z bezpieczeństwem elektrycznym oraz estetyką wykończenia. Dlatego tak ważne jest dokładne zrozumienie właściwości przewodów i ich przeznaczenia w kontekście norm oraz najlepszych praktyk w branży elektrycznej.