Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 15 grudnia 2025 11:09
  • Data zakończenia: 15 grudnia 2025 11:13

Egzamin niezdany

Wynik: 15/40 punktów (37,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Który przekrój przewodu jest najczęściej używany do tworzenia obwodów gniazd wtyczkowych w podtynkowych instalacjach mieszkaniowych?

A. 2,5 mm2
B. 1 mm2
C. 4 mm2
D. 1,5 mm2
Przewód o przekroju 2,5 mm2 jest standardowo stosowany w obwodach gniazd wtyczkowych w instalacjach elektroenergetycznych w budownictwie mieszkaniowym. Taki przekrój zapewnia odpowiednią przewodność elektryczną oraz bezpieczeństwo użytkowania, co jest niezwykle istotne, biorąc pod uwagę maksymalne obciążenia, które mogą wystąpić w codziennym użytkowaniu. Przykładowo, w przypadku podłączenia urządzeń elektrycznych, takich jak odkurzacze czy piekarniki, które mogą wymagać wyższego poboru prądu, przewód 2,5 mm2 spełnia normy bezpieczeństwa i nie doprowadza do przegrzewania się instalacji. Zgodnie z normami PN-IEC 60364, stosowanie przewodów o mniejszym przekroju może prowadzić do nieefektywności energetycznej i zwiększonego ryzyka pożaru. Ważne jest również, aby pamiętać o odpowiednim doborze zabezpieczeń, takich jak bezpieczniki, które powinny być dostosowane do przekroju przewodu oraz przewidywanego obciążenia.

Pytanie 3

Jaki jest maksymalny dopuszczalny czas wyłączenia zasilania w celu zapewnienia ochrony przed porażeniem elektrycznym w przypadku uszkodzenia w systemie sieciowym TN-S, kiedy napięcie fazowe przekracza 400 V, a obwody odbiorcze mają prąd znamionowy do 32 A?

A. 0,1 s
B. 0,2 s
C. 0,5 s
D. 0,8 s
Czas wyłączenia zasilania w instalacjach elektrycznych jest kluczowym elementem ochrony przed porażeniem prądem. W przypadku odpowiedzi, które wskazują na czasy wyłączenia dłuższe niż 0,1 s, istnieje fundamentalne nieporozumienie dotyczące norm ochrony przeciwporażeniowej. Czas 0,5 s czy 0,2 s, choć mogą wydawać się wystarczające, nie spełniają wymogów stawianych przez normy, takie jak PN-EN 60364-4-41, które jasno określają, że najkrótszy czas wyłączenia zasilania powinien wynosić 0,1 s dla obwodów o prądzie znamionowym do 32 A w układzie TN-S. W wydłużonych czasach wyłączenia zwiększa się ryzyko dla zdrowia użytkowników, ponieważ dłuższa ekspozycja na prąd może prowadzić do poważnych obrażeń. Typowe błędy myślowe prowadzące do takich wniosków obejmują ignorowanie specyfiki norm oraz nieprawidłowe rozumienie zasad działania zabezpieczeń elektrycznych. Często myli się również czasy wyłączenia dla różnych rodzajów instalacji, co prowadzi do stosowania niewłaściwych wartości czasowych, które mogą być nieadekwatne do zapewnienia bezpieczeństwa. Wiedza o ochronie przed porażeniem prądem oraz znajomość aktualnych norm są kluczowe dla projektowania i eksploatacji instalacji elektrycznych, aby zminimalizować ryzyko wypadków i zapewnić bezpieczeństwo użytkowników.

Pytanie 4

Możliwość przebicia izolacji uzwojeń silnika indukcyjnego trójfazowego w stosunku do korpusu można ustalić przez pomiar

A. rezystancji przewodu ochronnego
B. prądu upływu
C. symetrii uzwojeń
D. rezystancji uzwojeń stojana
Pomiar rezystancji uzwojeń stojana oraz rezystancji przewodu ochronnego nie dostarcza bezpośrednich informacji na temat stanu izolacji względem korpusu silnika. Rezystancja uzwojeń wskazuje na ich ogólny stan, ale nie uwzględnia ewentualnych uszkodzeń izolacji, które mogą występować w postaci przebicia. Tego rodzaju defekty mogą być niewidoczne podczas pomiarów rezystancji, co prowadzi do fałszywego poczucia bezpieczeństwa. Z kolei pomiar rezystancji przewodu ochronnego odnosi się do skuteczności uziemienia, które ma na celu ochronę przed porażeniem prądem elektrycznym, ale nie jest wskaźnikiem stanu izolacji wewnętrznej uzwojeń. Symetria uzwojeń, mimo że jest istotna dla prawidłowego działania silnika, nie ma bezpośredniego związku z izolacją. Problemy z symetrią mogą prowadzić do nierównomiernego rozkładu prądów w uzwojeniach, co z kolei może powodować przegrzewanie silnika, ale nie wykryje uszkodzeń izolacji. W branży elektrotechnicznej kluczowe jest zrozumienie, że różne metody pomiarowe mają swoje unikalne zastosowania i ograniczenia, a ich niewłaściwe stosowanie może prowadzić do niebezpieczeństwa oraz kosztownych napraw. Warto zwracać uwagę na odpowiednie procedury diagnostyczne, aby zapewnić bezpieczeństwo i efektywność działania maszyn elektrycznych.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Który z podanych przewodów elektrycznych powinno się zastosować do wykonania przyłącza elektrycznego ziemnego budynku jednorodzinnego z napowietrzną linią 230/400 V?

A. AAFLwsXSn 50
B. AFL 6 120
C. AsXS 4×70
D. YAKY 4×10
Przewody AsXS 4×70, AAFLwsXSn 50 oraz AFL 6 120, mimo że są to przewody o dużych przekrojach i różnych zastosowaniach, nie spełniają wymagań dla wykonania przyłącza elektrycznego ziemnego dla budynku jednorodzinnego z linią napowietrzną 230/400 V. Przewód AsXS 4×70, mimo że ma wyższy przekrój, jest typowym przewodem stosowanym w instalacjach przemysłowych, co czyni go zbyt dużym i niepraktycznym w kontekście przyłącza do jednorodzinnego budynku. Wybór przewodu o tak dużym przekroju może prowadzić do nieefektywnie wysokich kosztów oraz problemów z montażem. Przewód AAFLwsXSn 50, z kolei, jest przewodem aluminiowym, ale jego przekrój i specyfika zastosowania nie są zgodne z wymaganiami dla bezpiecznego przyłącza ziemnego. Użycie przewodu o takiej budowie mogłoby prowadzić do problemów z uziemieniem oraz zwiększoną podatnością na uszkodzenia mechaniczne. Natomiast AFL 6 120, choć jest przewodem dostosowanym do dużych obciążeń, to jego konstrukcja i przeznaczenie w szczególności w instalacjach energetycznych sprawiają, że nie jest on zalecany do przyłącza dla budynku jednorodzinnego. Wybór niewłaściwego przewodu może prowadzić nie tylko do problemów technicznych, ale również do naruszenia przepisów prawa budowlanego oraz norm bezpieczeństwa, co jest szczególnie istotne w kontekście zapewnienia bezpieczeństwa użytkowników budynku.

Pytanie 7

Jaką wartość ma maksymalna dozwolona rezystancja uziomu RA przewodu ochronnego, który łączy uziom z częścią przewodzącą przy nominalnym prądzie różnicowym IΔN = 30 mA oraz napięciu dotykowym 50 V AC wyłącznika różnicowoprądowego?

A. 4 000 Ω
B. Około 1660 Ω
C. Około 830 Ω
D. 2 000 Ω
Największa dopuszczalna rezystancja uziomu R_A dla przewodu ochronnego łączącego uziom z częścią przewodzącą dostępną w przypadku prądu różnicowego I_ΔN = 30 mA i napięcia dotykowego 50 V AC wynosząca około 1660 Ω wynika z obliczeń opartych na zasadach bezpieczeństwa elektrycznego. W przypadku, gdy wystąpi prąd różnicowy, uziemienie ma za zadanie zapewnić skuteczne odprowadzenie prądu do ziemi, aby zminimalizować ryzyko porażenia prądem. Przy napięciu dotykowym 50 V AC maksymalna dopuszczalna rezystancja uziomu może być obliczona z równania: R = U/I, gdzie U to napięcie dotykowe, a I to prąd różnicowy. Zatem R = 50 V / 0,030 A = 1666,67 Ω. Praktyczne zastosowanie tej wiedzy ma kluczowe znaczenie w projektowaniu instalacji elektrycznych, gdzie zapewnienie skutecznego uziemienia jest niezbędne dla ochrony ludzi oraz sprzętu. Utrzymywanie odpowiednich wartości rezystancji uziomu jest zgodne z normami europejskimi, takimi jak PN-EN 61140, które wskazują na konieczność regularnych pomiarów oraz konserwacji systemów uziemiających, aby zapewnić ich skuteczność i bezpieczeństwo.

Pytanie 8

Który z wymienionych parametrów przewodów nie wpływa na wartość spadku napięcia w instalacji elektrycznej?

A. Typ materiału izolacji
B. Długość przewodu
C. Typ materiału żyły
D. Przekrój żył
Długość przewodu ma kluczowe znaczenie dla wartości spadku napięcia, ponieważ im dłuższy przewód, tym większy opór, co prowadzi do większych strat napięcia. Zgubną jest więc myśl, że długość przewodu nie wpływa na spadek napięcia, ponieważ w rzeczywistości jest to jeden z głównych czynników, które należy uwzględnić przy projektowaniu instalacji elektrycznych. Z kolei przekrój żył również odgrywa istotną rolę; większy przekrój zmniejsza opór i w konsekwencji spadek napięcia. Materiał żyły jest również kluczowy, ponieważ miedź ma lepsze właściwości przewodzące niż aluminium, co wpływa na efektywność przesyłania energii. Odpowiedni dobór materiałów i parametrów przewodów jest istotny z punktu widzenia norm branżowych i dobrych praktyk inżynieryjnych, które mają na celu zapewnienie bezpieczeństwa oraz efektywności energetycznej instalacji. Niekiedy pomija się te czynniki, co prowadzi do nieefektywnego projektowania systemów elektrycznych i może skutkować niepożądanym spadkiem napięcia, a w konsekwencji obniżeniem jakości zasilania urządzeń elektrycznych. W efekcie, wynikiem tych błędnych założeń może być nie tylko obniżona wydajność systemu, ale także uszkodzenia urządzeń, co wiąże się z kosztami napraw i przestojów w pracy urządzeń. Warto więc zwracać uwagę na wszystkie aspekty, które wpływają na efektywność i bezpieczeństwo instalacji elektrycznych.

Pytanie 9

Jakie powinno być maksymalne wskazanie amperomierza do pomiaru natężenia prądu w instalacji zasilanej napięciem 230/400 V o częstotliwości 50 Hz, zasilanej jednofazowym silnikiem elektrycznym o parametrach: P = 0,55 kW, n = 70%, cosφ = 0,96?

A. 4A
B. 1A
C. 2A
D. 3A
Aby poprawnie określić zakres pomiarowy amperomierza do pomiaru natężenia prądu w instalacji zasilanej napięciem 230/400 V, należy najpierw obliczyć prąd, jaki płynie przez jednofazowy silnik elektryczny o mocy 0,55 kW. Używając wzoru: I = P / (U * cosφ), gdzie I to natężenie prądu, P to moc (0,55 kW), U to napięcie (230 V), a cosφ to współczynnik mocy (0,96), obliczamy: I = 550 W / (230 V * 0,96) ≈ 2,5 A. Wartością, którą należy wziąć pod uwagę, jest również dodatkowy margines bezpieczeństwa dla amperomierza, co oznacza, że dobrze jest wybrać amperomierz o nieco większym zakresie pomiarowym. Dlatego odpowiedni zakres pomiarowy wynosi 4A, co pozwoli na komfortowe pomiary bez ryzyka uszkodzenia przy większych obciążeniach lub chwilowych przeciążeniach. Użycie amperomierza o odpowiednim zakresie to praktyka zgodna z zasadami bezpieczeństwa oraz normami branżowymi, co zapewnia rzetelność pomiarów i długowieczność urządzenia.

Pytanie 10

Jak wymiana uzwojenia pierwotnego na inne, wykonane z drutów nawojowych o podwójnym przekroju i tej samej liczbie zwojów, wpłynie na działanie transformatora, przy zachowanym uzwojeniu wtórnym?

A. Zredukuje się moc pobierana z transformatora
B. Zwiększy się efektywność transformatora
C. Wzrasta napięcie na końcówkach uzwojenia wtórnego
D. Zmaleje napięcie na końcówkach uzwojenia wtórnego
Zrozumienie wpływu zmiany uzwojenia transformatora na jego parametry pracy wymaga przemyślenia kilku kluczowych aspektów. Zmiana uzwojenia pierwotnego na druty o większym przekroju nie prowadzi do zmniejszenia mocy pobieranej z transformatora, ponieważ moc pobierana przez transformator zależy głównie od obciążenia podłączonego do uzwojenia wtórnego oraz od napięcia i prądu w uzwojeniu pierwotnym. Zmiana przekroju drutu nie wpływa na zjawisko obciążenia, a zatem moc pozostaje na poziomie wymaganym przez odbiornik. Odpowiedź dotycząca zmniejszenia napięcia na zaciskach uzwojenia wtórnego jest także błędna, ponieważ napięcie wtórne w transformatorze zależy od stosunku liczby zwojów uzwojenia pierwotnego do wtórnego, a nie od przekroju drutów. Zwiększenie przekroju drutu może prowadzić do mniejszych strat w uzwojeniu, ale nie zmienia samego napięcia. W przypadku zwiększenia przekroju drutów, nie jest możliwe zwiększenie napięcia na zaciskach uzwojenia wtórnego, ponieważ napięcie jest determinowane przez stosunek zwojów, a nie przez ich przekrój. Zrozumienie tych zasad jest kluczowe w kontekście projektowania i eksploatacji transformatorów, aby nie wprowadzać zamieszania w doborze parametrów technicznych i ich wpływu na efektywność energetyczną.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Jakie oznaczenie stopnia ochrony powinna mieć obudowa urządzenia elektrycznego, które jest zainstalowane w pomieszczeniach o dużej wilgotności?

A. IP22
B. IP44
C. IP32
D. IP11
Oznaczenie stopnia ochrony IP44 wskazuje, że urządzenie elektryczne jest chronione przed ciałami stałymi o średnicy 1 mm oraz przed wodą, która może padać w dowolnym kierunku. To czyni je odpowiednim rozwiązaniem do stosowania w pomieszczeniach wilgotnych, takich jak łazienki czy kuchnie, gdzie występuje ryzyko kontaktu z wodą i wilgocią. Zgodnie z normą IEC 60529, IP44 zapewnia odpowiedni poziom ochrony, który minimalizuje ryzyko uszkodzeń związanych z wilgocią, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W praktyce, urządzenia takie jak oświetlenie zewnętrzne, gniazda elektryczne czy wyłączniki umieszczone w wilgotnych pomieszczeniach powinny posiadać tę klasę ochrony, aby zminimalizować ryzyko zwarcia elektrycznego oraz wypadków. Dobrą praktyką jest również regularne sprawdzanie stanu obudów i uszczelek, aby zapewnić ich ciągłą skuteczność ochrony przed wodą i zanieczyszczeniami.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Kontrolę instalacji elektrycznej, znajdującej się w pomieszczeniach o wysokiej wilgotności (75÷100%), w zakresie efektywności ochrony przed porażeniem elektrycznym należy przeprowadzać co najmniej raz na

A. 4 lata
B. 1 rok
C. 2 lata
D. 3 lata
Wybór odpowiedzi związanej z dłuższym okresem między kontrolami, takimi jak 4, 3 czy 2 lata, jest na pierwszy rzut oka kuszący, jednak nie uwzględnia kluczowych aspektów bezpieczeństwa. W pomieszczeniach o wysokiej wilgotności, gdzie ryzyko porażenia prądem jest znacznie wyższe, dłuższe okresy między przeglądami mogą prowadzić do poważnych konsekwencji. Zgodnie z normami bezpieczeństwa, takie jak PN-IEC 60364, regularne kontrole są niezbędne do zapewnienia właściwego stanu instalacji. Pomijanie konieczności corocznych przeglądów może skutkować niezauważonymi uszkodzeniami, które mogą zagrażać życiu. Często błędne rozumienie bezpieczeństwa elektrycznego wynika z mylnego przekonania, że przestarzałe lub nieużywane instalacje nie wymagają regularnych kontroli. Należy jednak pamiętać, że nawet w przypadku rzadkiego użytkowania, instalacje elektryczne mogą ulegać degradacji na skutek wpływu warunków atmosferycznych, korozji czy działania chemikaliów. W praktyce zaniedbanie regularnych przeglądów może prowadzić do poważnych awarii, a nawet pożarów, co jest szczególnie niebezpieczne w pomieszczeniach wilgotnych. Dlatego tak istotne jest, aby przestrzegać zasady corocznych przeglądów, co pozwala na zachowanie wysokiego poziomu ochrony przeciwporażeniowej.

Pytanie 17

W jakim zakresie powinien znajdować się mierzony rzeczywisty prąd różnicowy IN wyłącznika różnicowoprądowego typu AC w odniesieniu do jego wartości znamionowej, aby był dopuszczony do użytkowania?

A. Od 0,3 IN do 0,8 IN
B. Od 0,5 IN do 1,0 IN
C. Od 0,3 IN do 1,0 IN
D. Od 0,5 IN do 1,2 IN
Pomierzony rzeczywisty prąd różnicowy I_N wyłącznika różnicowoprądowego typu AC powinien mieścić się w granicach od 0,5 I_N do 1,0 I_N, co zapewnia jego prawidłowe działanie i bezpieczeństwo użytkowania. Zgodnie z normami, takimi jak PN-EN 61008-1, wyłączniki różnicowoprądowe powinny wykazywać zdolność do prawidłowego działania w tym zakresie, aby skutecznie chronić przed porażeniem prądem elektrycznym. W praktyce, jeśli zmierzony prąd różnicowy mieści się w tych granicach, to oznacza, że urządzenie działa w optymalnym zakresie i jest w stanie skutecznie wykrywać niewielkie prądy upływowe, które mogą wskazywać na uszkodzenia izolacji lub inne problemy w instalacji elektrycznej. Przykładowo, w przypadku instalacji w budynkach mieszkalnych, regularne testowanie wyłączników różnicowoprądowych na poziomie 0,5 I_N do 1,0 I_N pozwala na zapewnienie bezpieczeństwa mieszkańców oraz utrzymanie instalacji w dobrym stanie technicznym.

Pytanie 18

Jakie czynności oraz w jakiej kolejności powinny zostać dokonane podczas wymiany uszkodzonego łącznika elektrycznego?

A. Wymontować uszkodzony łącznik, odłączyć zasilanie, sprawdzić ciągłość połączeń
B. Odłączyć zasilanie, sprawdzić brak napięcia, wymontować uszkodzony łącznik
C. Załączyć zasilanie, sprawdzić ciągłość połączeń, wymontować uszkodzony łącznik
D. Odłączyć zasilanie, wymontować uszkodzony łącznik, sprawdzić ciągłość połączeń
Odpowiedzi, które sugerują rozpoczęcie od włączenia napięcia, są nieodpowiednie i stawiają w niebezpieczeństwie osoby wykonujące wymianę łącznika. Włączenie napięcia przed sprawdzeniem, czy instalacja jest bezpieczna, to poważny błąd, który może prowadzić do porażenia prądem, co jest absolutnie nieakceptowalne w praktykach związanych z pracą z elektrycznością. Dodatkowo, pominięcie kroku sprawdzenia ciągłości połączeń przed odłączeniem napięcia może skutkować uszkodzeniem nowego łącznika, jeśli pojawią się problemy z instalacją. Kolejnym błędnym założeniem jest wymontowanie uszkodzonego łącznika przed potwierdzeniem, że nie ma napięcia. Taki sposób działania naraża osobę pracującą na niebezpieczeństwo, gdyż usunięcie elementu instalacji przy włączonym napięciu może prowadzić do zwarcia lub zwarcia elektrycznego. W kontekście norm bezpieczeństwa, takie działania są w pełni sprzeczne z wytycznymi zawartymi w PN-IEC 60364, które kładą nacisk na bezpieczeństwo podczas pracy z urządzeniami elektrycznymi. Dlatego kluczowe jest przestrzeganie ustalonych procedur i kolejności działań, aby zminimalizować ryzyko wypadków oraz zapewnić prawidłowe funkcjonowanie instalacji. Każdy technik powinien być świadomy tych zasad i stosować je w praktyce, aby chronić siebie i innych przed niebezpieczeństwem związanym z energią elektryczną.

Pytanie 19

Jaką czynność powinno się wykonać podczas pomiaru rezystancji uzwojeń stojana oraz rezystancji izolacji silnika trójfazowego w celu zlokalizowania uszkodzeń?

A. Otworzyć łącznik załączający silnik
B. Obciążyć silnik momentem znamionowym
C. Zewrzeć zaciski silnika z zaciskiem ochronnym
D. Podłączyć napięcie zasilające
Wiesz, załączenie napięcia zasilającego podczas pomiaru rezystancji uzwojeń silnika trójfazowego to naprawdę zły pomysł. Moim zdaniem, taka sytuacja grozi uszkodzeniem sprzętu pomiarowego i może być niebezpieczna dla osoby, która to robi. Mierząc w czasie zasilania, łatwo o błędne odczyty, bo różne zjawiska, jak koronowe czy łukowe przeskoki mogą pokrzyżować nasze plany, szczególnie przy uszkodzonej izolacji. No i pomiar rezystancji uzwojeń powinno się robić tylko przy odłączonym zasilaniu, to naprawdę dobra praktyka według norm bezpieczeństwa, na przykład ISO 50001. W dodatku, obciążanie silnika momentem znamionowym podczas takich pomiarów to głupota, bo nie da się wtedy ocenić stanu izolacji. Dobrze by było rozumieć, że właściwe procedury pomiarowe to nie tylko techniczna konieczność, ale przede wszystkim coś, co ma ogromne znaczenie dla bezpieczeństwa przy pracy z urządzeniami elektrycznymi.

Pytanie 20

W systemach z stycznikami kategorii użytkowania DC-6 mogą być wykorzystywane

A. lampy sodowe
B. żarówki
C. świetlówki
D. lampy rtęciowe
Wybór żarówek jako odpowiedzi na to pytanie jest uzasadniony ze względu na ich zastosowanie w układach ze stycznikami o kategorii użytkowania DC-6. Kategoria ta jest przeznaczona do pracy z obwodami prądu stałego, które są w stanie obsłużyć normalne obciążenia, w tym żarówki. Żarówki charakteryzują się dość prostą charakterystyką obciążeniową, co sprawia, że są odpowiednie do zastosowań w instalacjach elektrycznych, gdzie mogą być włączane i wyłączane za pomocą styczników. Przykładem praktycznego zastosowania mogą być oświetlenie w halach produkcyjnych, gdzie styczniki sterują włączaniem i wyłączaniem grup żarówek w zależności od potrzeb. Warto również zauważyć, że żarówki, w przeciwieństwie do innych typów lamp, takich jak świetlówki, wymagają prostszych układów sterujących, co czyni je bardziej elastycznymi w zastosowaniach przemysłowych. Dla zachowania zgodności z normami bezpieczeństwa i efektywności energetycznej, ważne jest, aby dobierać odpowiednie styczniki oraz obwody zabezpieczające, co również wpływa na niezawodność całego układu oświetleniowego.

Pytanie 21

W obwodzie gniazd w przedpokoju zainstalowano przewód YDYt 3×2,5 mm2. Podczas wiercenia w ścianie pracownik przypadkowo uszkodził przewód, przecinając dwie jego żyły. Jak należy prawidłowo naprawić powstałą usterkę?

A. Przeciągnąć wyłącznie uszkodzone żyły, zastępując każdą przewodem jednodrutowym.
B. Przeciągnąć nowy przewód pomiędzy najbliższymi puszkami, używając pilota.
C. Zdemontować tynk w miejscu uszkodzenia, zainstalować dodatkową puszkę i w niej połączyć żyły.
D. Zdemontować tynk w miejscu uszkodzenia, połączyć przewody, zaizolować taśmą i zatynkować ścianę.
Usunięcie usterki w instalacji elektrycznej przez przeciągnięcie uszkodzonych żył za pomocą przewodów jednodrutowych jest niewłaściwym podejściem, które może prowadzić do poważnych problemów. Przewody jednodrutowe mają inne właściwości mechaniczne i elektryczne niż przewody wielodrutowe, co może skutkować niższą elastycznością oraz zwiększoną podatnością na uszkodzenia. Ponadto, takie połączenia są często niezgodne z obowiązującymi normami i przepisami dotyczącymi instalacji elektrycznych, co może narażać użytkownika na niebezpieczeństwo. Przeprowadzenie naprawy bez montażu puszki zwiększa ryzyko wystąpienia zwarć i utrudnia ewentualne przyszłe konserwacje. Połączenie przewodów jedynie za pomocą taśmy izolacyjnej jest również niewłaściwe, ponieważ nie zapewnia stabilności oraz bezpieczeństwa elektrycznego. W kontekście przepisów, jak norma PN-IEC 60364, zaleca się unikanie takich praktyk, które mogą prowadzić do nieodwracalnych uszkodzeń instalacji. Ważne jest, aby pamiętać, że każdy interwencja w instalacji elektrycznej powinna być przeprowadzana zgodnie z zasadami sztuki, co zapewnia bezpieczeństwo oraz trwałość wykonania. Zastosowanie pilotów do przeciągania nowych przewodów bez odpowiedniej inspekcji i naprawy uszkodzeń jest także niebezpieczne, ponieważ może wpłynąć na integralność całego obwodu.

Pytanie 22

Korzystając z tabeli, w której zamieszczono dopuszczalne wartości obciążalności prądowej długotrwałej, dobierz przekrój przewodów jednożyłowych typu DY do wykonania trójfazowego obwodu instalacji mieszkaniowej ułożonej w rurach. Obwód ma zasilać odbiorniki energii elektrycznej o łącznej mocy znamionowej 16 kVA przy napięciu znamionowym 400 V.

Przekrój przewodu mm²Jeden lub kilka przewodów 1-żyłowych ułożonych w rurzePrzewody płaszczowe, rurowe, wtynkowePrzewody gołe
Żyła Cu, AŻyła Al., AŻyła Cu, AŻyła Al, AŻyła Cu, AŻyła Al, A
A.1,011-15-19-
B.1,515-18-24-
C.2,5201526203226
D.4,0252034274233
A. A.
B. C.
C. D.
D. B.
Wybierając niewłaściwy przekrój przewodów, można napotkać wiele problemów związanych z bezpieczeństwem i efektywnością instalacji elektrycznej. Często zdarza się, że osoby projektujące obwody trójfazowe nie wykonują dokładnych obliczeń obciążenia, co prowadzi do użycia przewodów o zbyt małym przekroju. Na przykład, wybór przekroju 2.5 mm², który ma obciążalność zaledwie 20 A, nie wystarcza w tym przypadku, ponieważ obliczony prąd wynosi 23.09 A. Taki błąd może prowadzić do przegrzewania przewodów, co z kolei stwarza ryzyko uszkodzenia izolacji i może prowadzić do pożaru. Warto zwrócić uwagę, że zgodnie z normami PN-IEC 60364, dobór przekroju przewodów powinien uwzględniać zarówno obciążalność długotrwałą, jak i warunki ułożenia przewodów, takie jak temperatura otoczenia oraz ich umiejscowienie. W praktyce, zbyt mały przekrój przewodów to nie tylko kwestia mocy, ale również długoterminowej niezawodności instalacji. Ponadto, ignorowanie standardów obciążalności i niewłaściwie dobrane przewody mogą prowadzić do kosztownych napraw oraz zwiększonego ryzyka awarii systemu elektrycznego.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Który z wymienionych bezpieczników powinien być użyty, aby chronić przed skutkami zwarć trójfazowego silnika klatkowego o prądzie znamionowym In = 12 A, jeśli jego prąd rozruchowy Ir = 5×In, a współczynnik rozruchu α = 3?

A. aM 20A
B. aM 16A
C. gR 20A
D. gF 35A
Wybór odpowiedzi gR 20A, aM 16A oraz gF 35A jest nieodpowiedni z kilku kluczowych powodów, które dotyczą zarówno charakterystyki tych bezpieczników, jak i obliczeń prądów związanych z zabezpieczeniem silnika klatkowego. Bezpiecznik gR, który jest stosowany głównie w aplikacjach o charakterze ogólnym, nie jest przystosowany do obsługi dużych prądów rozruchowych, które mogą wystąpić w przypadku silników. W przypadku prądu rozruchowego wynoszącego 60 A, a tym bardziej maksymalnego prądu 180 A, zastosowanie bezpiecznika gR może prowadzić do jego częstego przepalania, co skutkuje przestojami w pracy maszyny. Z kolei bezpiecznik aM 16A, mimo że jest lepszy od gR, wciąż nie wytrzyma prądów rozruchowych, które przewyższają jego zdolności, co prowadzi do niewłaściwego działania zabezpieczenia. Natomiast, wybór gF 35A, mimo że teoretycznie mógłby wydawać się odpowiedni, jest nieodpowiedni ze względu na fakt, że gF to bezpieczniki o charakterystyce szybkiej, które nie tolerują dużych prądów rozruchowych, co może skutkować ich uszkodzeniem w krytycznych momentach rozruchu maszyny. Zrozumienie charakterystyki prądów rozruchowych i wyboru odpowiednich zabezpieczeń jest kluczowe w kontekście bezpieczeństwa i efektywności pracy instalacji elektrycznych, a także w zgodności z normami i najlepszymi praktykami w branży.

Pytanie 25

Aby ocenić efektywność ochrony przed porażeniem elektrycznym realizowanej przez automatyczne odłączenie zasilania zabezpieczeniem o określonym prądzie wyłączenia w systemie elektrycznym o danej wartości napięcia znamionowego, potrzebna jest informacja o wartości

A. mocy zainstalowanych urządzeń elektrycznych w instalacji
B. maksymalnego spadku częstotliwości w sieci zasilającej
C. maksymalnej współczynnika przepięć
D. impedancji pętli zwarcia instalacji
Odpowiedzi dotyczące maksymalnego współczynnika przepięć, mocy zainstalowanych urządzeń elektrycznych w instalacji oraz maksymalnego spadku częstotliwości w sieci zasilającej nie są związane z kluczowym zagadnieniem, jakim jest ocena skuteczności ochrony przeciwporażeniowej z wykorzystaniem samoczynnego wyłączenia zasilania. Współczynnik przepięć dotyczy ochrony przed przepięciami, które są zjawiskami związanymi z nagłymi wzrostami napięcia, a nie z bezpieczeństwem ludzi w przypadku uszkodzeń instalacji. Moc zainstalowanych urządzeń jest istotna dla obliczeń obciążenia, ale nie ma bezpośredniego wpływu na skuteczność wyłączania zasilania w przypadku zwarcia. Z kolei spadek częstotliwości w sieci zasilającej odnosi się do parametrów jakości energii elektrycznej, które są bardziej związane z charakterystyką zasilania niż z mechanizmami ochrony przeciwporażeniowej. Te odpowiedzi mogą sugerować, że ochronę przeciwporażeniową należy oceniać jedynie na podstawie wyspecyfikowanych parametrów związanych z instalacją, co jest błędne. Kluczowym aspektem oceny tej ochrony jest bowiem poprawne dobieranie zabezpieczeń na podstawie analizy impedancji pętli zwarcia, co zapewnia szybkie wyłączenie zasilania i minimalizuje ryzyko porażenia prądem. Ignorowanie tego elementu prowadzi do niebezpiecznych sytuacji, w których oszacowane parametry instalacji mogą nie spełniać wymogów bezpieczeństwa.

Pytanie 26

Aby uzyskać widoczną przerwę w obwodzie elektrycznym, należy użyć

A. przekaźnika
B. odłącznika
C. stycznika
D. wyłącznika
Wyłącznik, stycznik i przekaźnik to urządzenia, które pełnią różne funkcje w obwodach elektrycznych, ale nie są odpowiednie do zapewnienia widocznej przerwy. Wyłącznik to urządzenie, które może być używane do włączania i wyłączania obwodu, lecz nie gwarantuje fizycznej, wizualnej separacji od źródła zasilania. Z kolei stycznik, często stosowany w automatyce, służy do zdalnego włączania i wyłączania obwodów, ale również nie zapewnia widoczności przerwy, co jest kluczowe w kontekście bezpieczeństwa podczas prac serwisowych. Przekaźnik działa na zasadzie przekazywania sygnałów i kontrolowania innych obwodów, jednak nie jest to urządzenie, które można zastosować jako widoczne odłączenie zasilania. Powszechny błąd w myśleniu polega na tym, że niektóre osoby mylą te urządzenia, zakładając, że każde z nich może pełnić rolę odłącznika. W rzeczywistości odpowiednie urządzenie musi nie tylko wyłączyć obwód, ale także wizualnie potwierdzić tę operację, co ma kluczowe znaczenie w kontekście norm bezpieczeństwa, takich jak PN-EN 60204-1. Dlatego, aby zapewnić bezpieczeństwo, konieczne jest stosowanie odłączników w odpowiednich zastosowaniach.

Pytanie 27

Dokumentacja użytkowania instalacji elektrycznych chronionych wyłącznikami nadprądowymi nie musi obejmować

A. spisu terminów oraz zakresów prób i badań kontrolnych
B. zasad bezpieczeństwa przy realizacji prac eksploatacyjnych
C. opisu doboru urządzeń zabezpieczających
D. specyfikacji technicznej instalacji
W kontekście eksploatacji instalacji elektrycznych zabezpieczonych wyłącznikami nadprądowymi, kluczowe jest zrozumienie zakresu informacji, które powinny być zawarte w instrukcji eksploatacyjnej. Odpowiedzi, które sugerują, że opis doboru urządzeń zabezpieczających jest konieczny, mija się z celem funkcji dokumentacji. W rzeczywistości, opis doboru urządzeń zabezpieczających dotyczy etapu projektowania, a nie eksploatacji. Instrukcja powinna zawierać informacje praktyczne, takie jak wykaz prób i pomiarów kontrolnych, które umożliwiają monitorowanie funkcjonowania instalacji, oraz zasady bezpieczeństwa przy wykonywaniu prac, które są niezbędne dla ochrony ludzi i mienia. Ponadto, charakterystyka techniczna instalacji jest również istotna, ponieważ dostarcza informacji o właściwościach systemu, co może być pomocne w przypadku awarii lub przeglądów. Użytkownicy, którzy koncentrują się na doborze urządzeń, mogą zignorować kluczowe aspekty związane z codziennym użytkowaniem instalacji, co prowadzi do niewłaściwego zarządzania i potencjalnych zagrożeń. Zrozumienie różnicy pomiędzy projektowaniem a eksploatacją instalacji elektrycznych jest fundamentem skutecznego zarządzania systemami elektrycznymi w obiektach.

Pytanie 28

Silnik szeregowy prądu stałego pracuje w trybie dorywczym. Co może być najczęstszą przyczyną braku reakcji silnika po włączeniu napięcia zasilającego?

A. Nieodpowiednio dobrane szczotki
B. Wystająca izolacja między działkami komutatora
C. Zabrudzony komutator
D. Przerwa w obwodzie twornika
Zabrudzony komutator, choć może wpływać na działanie silnika, nie jest główną przyczyną braku reakcji silnika na załączenie napięcia. Zabrudzenie komutatora prowadzi do problemów z przewodnictwem prądu i może powodować niestabilne działanie lub przerywanie pracy silnika, jednak nie powoduje całkowitego braku reakcji na napięcie. Nieprawidłowo dobrane szczotki również mogą przyczyniać się do słabego kontaktu z komutatorem, co wpływa na wydajność, ale nie wyklucza możliwości działania silnika w przypadku przyłożenia napięcia. Wystająca izolacja między działkami komutatora może prowadzić do lokalnych zwarć, ale z reguły nie blokuje całkowicie funkcji silnika. W praktyce, aby uniknąć mylnych wniosków, należy dokładnie analizować objawy i zrozumieć, jak każdy element układu wpływa na jego funkcjonowanie. Kluczowe jest, by podczas diagnostyki silników prądu stałego podejść do problemu z perspektywy systemowej, rozpatrując wszystkie potencjalne przyczyny, a nie tylko te, które wydają się oczywiste. Właściwe techniki diagnostyczne oraz regularne przeglądy mogą pomóc w identyfikacji problemów zanim staną się poważnymi usterkami, co jest zgodne z najlepszymi praktykami w dziedzinie inżynierii elektrycznej.

Pytanie 29

Która z wymienionych operacji jest związana z obsługą przepływu energii elektrycznej w urządzeniu napędowym klasy IV?

A. Zamiana uszkodzonego elementu w urządzeniu
B. Mierzenie napięcia zasilającego to urządzenie
C. Weryfikacja ustawienia zabezpieczenia przed przeciążeniem
D. Zatrzymanie urządzenia w przypadku awarii
Zrozumienie różnych działań przy obsłudze urządzeń napędowych to ważny element, ale nie zawsze są one związane z pilną reakcją w sytuacjach awaryjnych. Na przykład, sprawdzenie zabezpieczeń przeciążeniowych czy pomiar napięcia zasilającego to ważne rzeczy, ale nie są one bezpośrednio związane z natychmiastowym zatrzymywaniem urządzenia w kryzysowych momentach. Zabezpieczenie przeciążeniowe chroni silnik przed nadmiernym obciążeniem, ale jego sprawdzenie to nie to samo co szybka reakcja w awarii. Pomiar napięcia zasilającego to bardziej sprawdzanie, czy wszystko działa jak trzeba, a nie coś, co załatwia sprawę w przypadku zagrożenia. Wymiana uszkodzonego elementu też jest istotna, ale na pewno nie pomoże, jeśli już jest awaria. Często myśli się, że działania prewencyjne wystarczą, żeby uniknąć problemów, a to może prowadzić do chaosu i większego ryzyka. Dlatego w takich sytuacjach najlepiej skupić się na zatrzymaniu urządzenia – to jest podstawowe i naprawdę nie można tego bagatelizować.

Pytanie 30

Jaką wartość skuteczną ma przemienne napięcie dotykowe, które może być stosowane przez dłuższy czas w normalnych warunkach środowiskowych, dla oporu ciała ludzkiego wynoszącego około 1 kΩ?

A. 50 V
B. 12 V
C. 60 V
D. 25 V
Wartości napięcia dotykowego, które są podane w odpowiedziach, mogą wprowadzać w błąd, jeśli nie zostaną właściwie zrozumiane w kontekście bezpieczeństwa elektrycznego. Odpowiedzi 12 V, 25 V oraz 60 V nie spełniają kryteriów bezpieczeństwa, które zostały określone przez normy dotyczące ochrony przed porażeniem prądem. Przykładowo, napięcie 12 V jest często uznawane za stosunkowo bezpieczne, lecz w praktyce może być nieadekwatne w kontekście długotrwałego kontaktu z ciałem ludzkim, zwłaszcza w obecności wilgoci, co zwiększa ryzyko przepływu prądu. Z kolei napięcie 25 V, chociaż niższe od 50 V, nie jest wystarczające do oceny realnych zagrożeń, które mogą wystąpić w standardowych ustaleniach. Natomiast napięcie 60 V przekracza bezpieczny poziom, wprowadzając znaczne ryzyko dla zdrowia użytkowników. Pamiętajmy, że ochrona przed porażeniem prądem opiera się na systematycznym podejściu do projektowania instalacji elektrycznych, które uwzględniają nie tylko wartości napięcia, ale także warunki ich użytkowania. Kluczowe jest zrozumienie, że przekraczanie ustalonych wartości granicznych napięcia może prowadzić do poważnych konsekwencji zdrowotnych, a także odpowiedzialności prawnej w przypadku awarii. Normy bezpieczeństwa elektrycznego, takie jak IEC 60479, podkreślają znaczenie przestrzegania tych zasad, aby zminimalizować ryzyko dla użytkowników.

Pytanie 31

Istotnym czynnikiem wpływającym na skuteczność chłodzenia indukcyjnego silnika elektrycznego jest

A. czujnik temperatury
B. klatka wirnika
C. wlot powietrza
D. koło pasowe
Wlot powietrza odgrywa kluczową rolę w efektywności chłodzenia indukcyjnego silnika elektrycznego. Odpowiednia wentylacja jest niezbędna do odprowadzania ciepła generowanego podczas pracy silnika, co wpływa na jego wydajność i żywotność. Wlot powietrza umożliwia cyrkulację chłodnego powietrza do wnętrza silnika, co przyczynia się do obniżenia temperatury komponentów, takich jak stator i wirnik. Zastosowanie odpowiednio zaprojektowanych kanałów wentylacyjnych, zgodnych z normami IEC 60034, pozwala na optymalne chłodzenie silnika, minimalizując ryzyko przegrzania. W praktyce, wloty powietrza powinny być regularnie kontrolowane oraz wentylowane, aby zapewnić właściwe odprowadzanie ciepła. Przykładem skutecznego zastosowania jest użycie wentylatorów chłodzących, które wspomagają naturalną cyrkulację powietrza w silnikach o dużej mocy, co znacząco poprawia ich efektywność energetyczną i wydajność operacyjną.

Pytanie 32

Jakie urządzenie, przy wykorzystaniu przekaźnika termicznego i stycznika, oferuje kompleksową ochronę przed zwarciem oraz przeciążeniem dla silnika trójfazowego o parametrach:
Pn = 5,5 kW, Un = 400/690 V?

A. Bezpiecznik typu aM
B. Wyłącznik nadprądowy typu B
C. Wyłącznik nadprądowy typu Z
D. Bezpiecznik typu aR
Bezpiecznik typu aM jest optymalnym rozwiązaniem do zabezpieczenia silników trójfazowych, takich jak ten o mocy Pn = 5,5 kW i napięciu Un = 400/690 V. Bezpieczniki typu aM są zaprojektowane do ochrony przed przeciążeniami i zwarciami, a ich charakterystyka prądowa pozwala na tolerowanie krótkotrwałych prądów rozruchowych, które są typowe dla silników. Dzięki temu, w momencie uruchomienia silnika, gdy prąd może wzrosnąć kilkakrotnie w krótkim czasie, bezpiecznik aM nie zadziała, co zapobiega niepotrzebnemu wyłączeniu urządzenia. W praktyce, zastosowanie bezpiecznika typu aM przy odpowiednim doborze prądowym w stosunku do znamionowego prądu silnika, zapewnia nie tylko bezpieczeństwo operacyjne, ale również minimalizuje przerwy w pracy maszyny. Ponadto, zgodnie z normą IEC 60947-4-1, zastosowanie takiego zabezpieczenia jest rekomendowane w instalacjach przemysłowych, gdzie wymagana jest wysoka niezawodność systemu. Dobrze dobrane zabezpieczenia, takie jak bezpieczniki aM, są kluczowe dla utrzymania ciągłości produkcji oraz ochrony przed szkodami materialnymi i osobowymi.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Jakie środki ochrony przeciwporażeniowej stosuje się w przypadku uszkodzenia obwodu pojedynczego odbiornika?

A. wyłącznie specjalne ogrodzenia
B. separację elektryczną
C. umiejscowienie poza zasięgiem ręki
D. jedynie obudowy
Separacja elektryczna to metoda ochrony przed porażeniem elektrycznym, która polega na oddzieleniu obwodów elektrycznych od żywych części, co znacząco minimalizuje ryzyko bezpośredniego kontaktu z prądem. W praktyce, separacja elektryczna może być realizowana poprzez zastosowanie transformatorów separacyjnych, które izolują odbiorniki od źródła zasilania, co pozwala na uniknięcie niebezpiecznych sytuacji w przypadku uszkodzenia izolacji. Dobre praktyki w zakresie ochrony elektrycznej zalecają używanie transformatorów o odpowiednich parametrach, które nie tylko spełniają normy bezpieczeństwa, ale także są zgodne z obowiązującymi standardami, takimi jak norma IEC 61140 dotycząca ochrony przeciwporażeniowej. W kontekście instalacji elektrycznych, separacja elektryczna jest szczególnie ważna w obszarach o wysokim ryzyku, jak np. w łazienkach czy na zewnątrz budynków, gdzie ryzyko kontaktu z wodą jest zwiększone. Ponadto, stosowanie separacji elektrycznej w obiektach przemysłowych, gdzie występuje duża liczba maszyn i urządzeń, również przyczynia się do poprawy bezpieczeństwa pracowników i minimalizacji ryzyka wypadków. W związku z tym, separacja elektryczna jest nie tylko skuteczną, ale i rekomendowaną metodą ochrony przed porażeniem elektrycznym.

Pytanie 35

Który z wymienionych środków ochrony w przypadku uszkodzenia można stosować jedynie w sytuacji, gdy instalacja jest nadzorowana przez wykwalifikowane osoby?

A. Bardzo niskie napięcie SELV
B. Izolacja wzmocniona
C. Bardzo niskie napięcie PELV
D. Izolowanie stanowiska
Bardzo niskie napięcie PELV, izolacja wzmocniona oraz bardzo niskie napięcie SELV to metody ochrony, które, choć mają swoje zastosowanie, nie są właściwe w kontekście pracy pod nadzorem osób wykwalifikowanych przy uszkodzeniu instalacji elektrycznej. PELV (Protective Extra Low Voltage) to system, który zapewnia bezpieczeństwo dzięki zastosowaniu niskiego napięcia, jednak jego stosowanie nie wyklucza konieczności nadzoru. Izolacja wzmocniona odnosi się do zastosowania materiałów o podwyższonej odporności dielektrycznej, ale nie eliminuje możliwości wystąpienia niebezpiecznych napięć, zwłaszcza w przypadku uszkodzeń. Z kolei SELV (Separated Extra Low Voltage) to system, który zapewnia separację od wysokich napięć, ale jego efektywność polega na odpowiedniej konstrukcji instalacji i nie zastępuje bezpiecznych praktyk, takich jak stały nadzór wykwalifikowanych osób. W kontekście uszkodzenia instalacji, te metody ochrony mogą być niedostateczne, gdyż mogą nie zapewnić wystarczającego bezpieczeństwa w sytuacjach awaryjnych. Typowym błędem myślowym jest założenie, że niskie napięcia eliminują ryzyko, co jest niezgodne z rzeczywistością, szczególnie gdy instalacja wykazuje oznaki uszkodzenia. W takim przypadku kluczowe jest zapewnienie dodatkowych środków ochrony, takich jak izolowanie stanowiska, które pozwala na bezpieczne i profesjonalne podejście do naprawy oraz konserwacji instalacji elektrycznych.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Dokumentacja użytkowania instalacji elektrycznych, które są chronione wyłącznikami nadmiarowo-prądowymi, nie musi zawierać

A. opisu doboru urządzeń zabezpieczających
B. zasad bezpieczeństwa przy realizacji prac eksploatacyjnych
C. specyfikacji technicznej instalacji
D. spisu terminów oraz zakresów prób i pomiarów kontrolnych
Wszystkie pozostałe odpowiedzi odnoszą się do kluczowych aspektów, które powinny być uwzględnione w instrukcji eksploatacji instalacji elektrycznych. Wykaz terminów oraz zakresów prób i pomiarów kontrolnych jest niezbędny, ponieważ regularne kontrole są podstawą utrzymania bezpieczeństwa i niezawodności instalacji. Dzięki nim można monitorować stan techniczny systemów i wykrywać potencjalne usterki. Charakterystyka techniczna instalacji również ma kluczowe znaczenie; zawiera informacje o parametrach pracy oraz specyfikacji zastosowanych elementów, co jest istotne dla personelu wykonującego prace eksploatacyjne. Zasady bezpieczeństwa przy wykonywaniu prac eksploatacyjnych są fundamentalne dla ochrony osób pracujących z instalacjami elektrycznymi. Zawierają one informacje o środkach ochrony osobistej oraz procedurach, które mają na celu zminimalizowanie ryzyka wystąpienia wypadków. Ignorowanie tych elementów w instrukcji eksploatacji może prowadzić do poważnych konsekwencji, w tym wypadków przy pracy. Warto podkreślić, że każdy z tych elementów jest zgodny z normami branżowymi, które nakładają obowiązek zapewnienia odpowiednich zabezpieczeń i procedur operacyjnych. Niezrozumienie ich znaczenia może prowadzić do błędnych wniosków oraz niedopatrzeń w procesie eksploatacji instalacji elektrycznych.

Pytanie 39

Obroty silnika indukcyjnego klatkowego obciążonego nominalnym momentem znacząco spadły. Jakie mogą być tego przyczyny?

A. Zwarcie w obwodzie wirnika
B. Zbyt wysoka temperatura uzwojeń
C. Zadziałanie przekaźnika termicznego
D. Przepalony bezpiecznik topikowy w jednej z faz
Zadziałanie przekaźnika termicznego zazwyczaj wskazuje na nadmierne nagrzewanie się silnika, co w konsekwencji prowadzi do wyłączenia go w celu ochrony przed uszkodzeniem. Chociaż taki stan rzeczy może również skutkować zmniejszeniem obrotów, to nie jest on pierwotną przyczyną opisanego scenariusza, gdyż w przypadku zadziałania przekaźnika termicznego silnik zwykle zatrzymuje się całkowicie, a nie zmienia jedynie obroty. Z kolei zwarcie w obwodzie wirnika powoduje poważne uszkodzenia, a nie tylko spadek obrotów. Tego rodzaju usterka prowadzi do natychmiastowego wyłączenia silnika z powodu nadmiernego prądu, a nie delikatnego spadku wydajności. Ponadto, zbyt wysoka temperatura uzwojeń jest zwykle wynikiem niewłaściwego chłodzenia lub nadmiernego obciążenia, a nie bezpośrednią przyczyną nagłego spadku obrotów, co jest istotnym zagadnieniem w kontekście eksploatacji silników. Typowe błędy myślowe w tym przypadku polegają na myleniu symptomów z przyczynami; zrozumienie mechanizmu działania silnika indukcyjnego oraz jego zabezpieczeń jest kluczowe dla prawidłowej diagnostyki i utrzymania urządzeń w ruchu. Dlatego istotne jest stosowanie się do standardów eksploatacyjnych oraz okresowe przeglądy instalacji.

Pytanie 40

Która z poniższych czynności nie jest częścią badań eksploatacyjnych silnika elektrycznego?

A. Pomiar rezystancji uzwojeń stojana
B. Przeprowadzenie próbnego rozruchu urządzenia
C. Weryfikacja stanu ochrony przeciwporażeniowej
D. Pomiar napięcia zasilającego
Analizując pozostałe czynności, które zostały wymienione, można zauważyć, że zarówno pomiar rezystancji uzwojeń stojana, jak i sprawdzenie stanu ochrony przeciwporażeniowej są niezwykle istotnymi elementami w kontekście diagnostyki silników elektrycznych. Pomiar rezystancji uzwojeń dostarcza informacji o stanie izolacji oraz zużyciu uzwojeń, co jest kluczowe dla przewidywania żywotności silnika. Na przykład, niska rezystancja może sugerować uszkodzenie izolacji, co prowadzi do ryzyka zwarcia. Kolejnym ważnym aspektem jest ochrona przeciwporażeniowa, która ma na celu zapewnienie bezpieczeństwa operatorów. Sprawdzenie stanu ochrony jest wymagane przez normy, takie jak IEC 60204-1, które określają wymagania dotyczące bezpieczeństwa sprzętu elektrycznego w maszynach. Rozruch próbny to ostatni krok w procesie, który pozwala na testowanie silnika w rzeczywistych warunkach operacyjnych, co pozwala zidentyfikować ewentualne problemy w jego działaniu. Ignorowanie tych czynności może prowadzić do poważnych konsekwencji, w tym awarii silnika oraz zagrożeń dla bezpieczeństwa pracy. Dlatego kluczowe jest zrozumienie, że każda z wymienionych czynności ma swoje miejsce i znaczenie w kontekście eksploatacji silnika elektrycznego.