Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 23:01
  • Data zakończenia: 7 grudnia 2025 23:11

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W jakim zakresie powinien znajdować się zmierzony rzeczywisty prąd różnicowy IΔN wyłącznika różnicowoprądowego typu AC w odniesieniu do jego wartości znamionowej, aby mógł być dopuszczony do użytkowania?

A. Od 0,3 IΔN do 1,0 IΔN
B. Od 0,5 IΔN do 1,0 IΔN
C. Od 0,5 IΔN do 1,2 IΔN
D. Od 0,3 IΔN do 0,8 IΔN
Odpowiedź "Od 0,5 IΔN do 1,0 IΔN" jest jak najbardziej ok, bo mówi o zakresie prądu różnicowego, który wyłączniki różnicowoprądowe typu AC powinny mieć. Z normami, takimi jak PN-EN 61008-1, mamy pewność, że wyłącznik nie zareaguje zbyt szybko w normalnych warunkach, a jednocześnie ochrona przed porażeniem prądem jest na dobrym poziomie. Wiesz, gdyby ten prąd był za mały, to mogą pojawić się problemy z izolacją. Z kolei zbyt wysoka wartość mogłaby wyłączyć urządzenie przez zakłócenia, co jest niebezpieczne. Dlatego ważne, żeby przed włączeniem wyłącznika upewnić się, że prąd mieści się w tym zakresie. Dobrym przykładem jest wyłącznik w domu, który daje dodatkową ochronę dla domowników.

Pytanie 2

Który z poniższych przewodów powinien zastąpić uszkodzony przewód OW 4×2,5 mm2, który zasila silnik indukcyjny trójfazowy do napędu maszyny w warsztacie ślusarskim?

A. H03V2V2H2-F 2X2,5
B. H07VV-U 5G2,5
C. H03V2V2-F 3G2,5
D. H07RR-F 5G2,5
Odpowiedzi H07VV-U 5G2,5, H03V2V2-F 3G2,5 oraz H03V2V2H2-F 2X2,5 nie są odpowiednie do zastąpienia uszkodzonego przewodu OW 4×2,5 mm² w przypadku silnika indukcyjnego trójfazowego. Przewód H07VV-U 5G2,5 jest przewodem typu płaskiego, przeznaczonym głównie do instalacji stałych, co nie jest idealnym rozwiązaniem w warunkach warsztatowych, gdzie elastyczność przewodu jest kluczowa. Zastosowanie przewodu, który nie jest odporny na uszkodzenia mechaniczne, może prowadzić do jego uszkodzenia, a w konsekwencji do awarii silnika. Z kolei przewody H03V2V2-F 3G2,5 oraz H03V2V2H2-F 2X2,5 charakteryzują się mniejszą liczbą żył oraz niższymi parametrami elektrycznymi, co czyni je niewystarczającymi do zasilania silników o większej mocy, które wymagają solidnych połączeń trójfazowych. Wybierając przewody, istotne jest, aby zwracać uwagę na ich klasyfikację zgodnie z europejskimi normami, a także na zastosowanie w konkretnych warunkach. Ignorowanie tych aspektów prowadzi do niewłaściwego doboru materiałów oraz potencjalnych zagrożeń dla zdrowia i bezpieczeństwa w miejscu pracy.

Pytanie 3

Jakie jest prawidłowe postępowanie w przypadku podejrzenia obecności napięcia na obudowie urządzenia elektrycznego?

A. Odłączenie uziemienia, co jest niebezpieczne i niewłaściwe
B. Natychmiastowe wyłączenie zasilania
C. Podłączenie dodatkowego obciążenia, co może pogorszyć sytuację
D. Zmiana przewodów, chociaż to nie rozwiązuje problemu napięcia na obudowie
W przypadku podejrzenia obecności napięcia na obudowie urządzenia elektrycznego, najlepszym i najbezpieczniejszym działaniem jest natychmiastowe odłączenie zasilania. Jest to zgodne z podstawowymi zasadami bezpieczeństwa elektrycznego i normami BHP. Gdy urządzenie elektryczne ma napięcie na obudowie, może to oznaczać uszkodzenie izolacji lub inny problem techniczny, który stwarza ryzyko porażenia prądem. Szybkie odłączenie zasilania eliminuje to ryzyko i pozwala na dalsze, bezpieczne działania. Po odłączeniu zasilania należy również upewnić się, że urządzenie jest odpowiednio uziemione, aby uniknąć podobnych problemów w przyszłości. Następnie można przystąpić do diagnostyki i naprawy urządzenia przez wykwalifikowanego specjalistę, co jest zgodne z dobrą praktyką w branży elektrycznej. Ważne jest również, by regularnie sprawdzać stan techniczny urządzeń elektrycznych i ich uziemienia, aby uniknąć takich sytuacji w przyszłości. Moim zdaniem, wiedza o bezpiecznym postępowaniu w takich sytuacjach powinna być podstawą w każdej edukacji technicznej.

Pytanie 4

Korzystając z tabeli, w której zamieszczono dopuszczalne wartości obciążalności prądowej długotrwałej, dobierz przekrój przewodów jednożyłowych typu DY do wykonania trójfazowego obwodu instalacji mieszkaniowej ułożonej w rurach. Obwód ma zasilać odbiorniki energii elektrycznej o łącznej mocy znamionowej 16 kVA przy napięciu znamionowym 400 V.

Przekrój przewodu mm²Jeden lub kilka przewodów 1-żyłowych ułożonych w rurzePrzewody płaszczowe, rurowe, wtynkowePrzewody gołe
Żyła Cu, AŻyła Al., AŻyła Cu, AŻyła Al, AŻyła Cu, AŻyła Al, A
A.1,011-15-19-
B.1,515-18-24-
C.2,5201526203226
D.4,0252034274233
A. A.
B. C.
C. B.
D. D.
Wybierając niewłaściwy przekrój przewodów, można napotkać wiele problemów związanych z bezpieczeństwem i efektywnością instalacji elektrycznej. Często zdarza się, że osoby projektujące obwody trójfazowe nie wykonują dokładnych obliczeń obciążenia, co prowadzi do użycia przewodów o zbyt małym przekroju. Na przykład, wybór przekroju 2.5 mm², który ma obciążalność zaledwie 20 A, nie wystarcza w tym przypadku, ponieważ obliczony prąd wynosi 23.09 A. Taki błąd może prowadzić do przegrzewania przewodów, co z kolei stwarza ryzyko uszkodzenia izolacji i może prowadzić do pożaru. Warto zwrócić uwagę, że zgodnie z normami PN-IEC 60364, dobór przekroju przewodów powinien uwzględniać zarówno obciążalność długotrwałą, jak i warunki ułożenia przewodów, takie jak temperatura otoczenia oraz ich umiejscowienie. W praktyce, zbyt mały przekrój przewodów to nie tylko kwestia mocy, ale również długoterminowej niezawodności instalacji. Ponadto, ignorowanie standardów obciążalności i niewłaściwie dobrane przewody mogą prowadzić do kosztownych napraw oraz zwiększonego ryzyka awarii systemu elektrycznego.

Pytanie 5

Jakie czynności oraz w jakiej kolejności powinny zostać dokonane podczas wymiany uszkodzonego łącznika elektrycznego?

A. Wymontować uszkodzony łącznik, odłączyć zasilanie, sprawdzić ciągłość połączeń
B. Załączyć zasilanie, sprawdzić ciągłość połączeń, wymontować uszkodzony łącznik
C. Odłączyć zasilanie, wymontować uszkodzony łącznik, sprawdzić ciągłość połączeń
D. Odłączyć zasilanie, sprawdzić brak napięcia, wymontować uszkodzony łącznik
Odpowiedź "Odłączyć napięcie, sprawdzić brak napięcia, wymontować uszkodzony łącznik" jest prawidłowa, ponieważ obejmuje kluczowe kroki niezbędne do bezpiecznej wymiany łącznika elektrycznego. Pierwszym krokiem jest odłączenie napięcia, co jest absolutnie konieczne, aby zapobiec porażeniu prądem. Takie działanie jest zgodne z zasadą bezpieczeństwa elektrycznego, zgodnej z normą PN-IEC 60364. Następnie, sprawdzenie braku napięcia za pomocą odpowiednich narzędzi, takich jak wskaźnik napięcia, pozwala upewnić się, że instalacja jest całkowicie bezpieczna do pracy. To kluczowy krok, który chroni technika przed niebezpieczeństwem. Po potwierdzeniu braku napięcia można przystąpić do demontażu uszkodzonego łącznika. Dobrą praktyką jest również sprawdzenie stanu przewodów, co zapewnia, że nowy łącznik będzie poprawnie funkcjonować. Przykład zastosowania tej procedury można zaobserwować podczas serwisów i konserwacji instalacji elektrycznych w domach i biurach, gdzie przestrzeganie zasad bezpieczeństwa może zapobiec poważnym wypadkom.

Pytanie 6

Dokumentacja użytkowania instalacji elektrycznych chronionych wyłącznikami nadmiarowoprądowymi nie jest zobowiązana do zawierania

A. charakterystyki technicznej instalacji
B. opisu doboru urządzeń zabezpieczających
C. zasad bezpieczeństwa dotyczących wykonywania prac eksploatacyjnych
D. spisu terminów oraz zakresów testów i pomiarów kontrolnych
Twoja odpowiedź jest całkiem trafna. Wiesz, że instrukcje dotyczące eksploatacji instalacji elektrycznych zabezpieczonych wyłącznikami nadmiarowoprądowymi nie muszą zawierać szczegółowych informacji o doborze urządzeń. Z mojego doświadczenia, dobór tych urządzeń najczęściej robi się na etapie projektowania, według norm, jak chociażby PN-IEC 60364-1. W instrukcji powinno być raczej opisane, jak działają już wybrane urządzenia, ich typy i zasady użytkowania. Na przykład, lista terminów i zakresów prób oraz pomiarów kontrolnych jest kluczowa, żeby wszystko działało bezpiecznie i sprawnie. No i oczywiście, zasady bezpieczeństwa przy pracach eksploatacyjnych to podstawa, bo przecież chcemy zminimalizować ryzyko wypadków. Dobrze, żeby dokumentacja była jasna i zgodna z aktualnymi przepisami – to przecież wpływa na bezpieczeństwo i efektywność pracy. Instrukcja to powinna być pomoc, która zapewnia, że instalacja będzie działać prawidłowo, a nie miejsce na podstawowe zasady doboru zabezpieczeń.

Pytanie 7

Gdy prace pomiarowe i kontrolne w instalacjach elektrycznych są wymagane do wykonania przez dwie osoby, to osoba przeprowadzająca pomiary powinna mieć odpowiednie kwalifikacje, a druga osoba wspierająca

A. musi dysponować świadectwem kwalifikacyjnym na stanowisku dozoru, lecz bez zakresu pomiarów
B. nie musi mieć świadectwa kwalifikacji, jeśli przeszła odpowiednie szkolenie
C. powinna posiadać świadectwo kwalifikacyjne na stanowisku eksploatacji w zakresie pomiarów
D. nie jest zobowiązana do posiadania świadectwa kwalifikacji, jeśli ukończyła szkołę zawodową
Zrozumienie wymagań dotyczących kwalifikacji osób wykonujących prace pomiarowo-kontrolne instalacji elektrycznych jest kluczowe dla zapewnienia bezpieczeństwa i jakości wykonywanych zadań. Odpowiedzi sugerujące, że osoba wspomagająca musi posiadać świadectwo kwalifikacji, ignorują fakt, że nie każde stanowisko wymaga formalnych certyfikatów, zwłaszcza jeśli mowa o pracach, które można przeprowadzać w oparciu o odpowiednie przygotowanie i szkolenie. Posiadanie wykształcenia zawodowego nie jest równoznaczne ze zdolnością do przeprowadzania skomplikowanych pomiarów elektrycznych, gdzie kluczowe są umiejętności praktyczne i znajomość procedur bezpieczeństwa. W praktyce, wiele osób podejmujących się wsparcia podczas pomiarów, posiada doświadczenie nabyte w trakcie praktyk czy kursów, które nie zawsze kończą się formalnym świadectwem, ale są wystarczające do bezpiecznego i efektywnego działania. Zatem, stawianie wymogu posiadania świadectwa kwalifikacyjnego na stanowisku dozoru, jeśli osoba nie wykonuje czynności wymagających takiej kwalifikacji, wprowadza zbędne ograniczenia i może prowadzić do niepoprawnych wniosków o kompetencjach pracowników. Warto podkreślić, że na rynku pracy, elastyczność w podejściu do kwalifikacji i umiejętności pracowników w kontekście ich faktycznych obowiązków jest nie tylko korzystna, ale także zgodna z nowoczesnymi trendami w zarządzaniu zasobami ludzkimi.

Pytanie 8

Które z poniższych wymagań nie jest konieczne do spełnienia przy wprowadzaniu do użytku po remoncie urządzenia napędowego z silnikiem trójfazowym Pn = 15 kW, Un = 400 V (Δ), fn = 50 Hz?

A. Moc silnika jest odpowiednia do wymagań napędzanego sprzętu
B. Silnik jest wyposażony w przełącznik gwiazda-trójkąt
C. Urządzenie spełnia kryteria efektywnego zużycia energii
D. Wyniki testów technicznych urządzenia są zadowalające
Odpowiedź wskazująca na to, że silnik jest wyposażony w przełącznik gwiazda-trójkąt jest poprawna, ponieważ to wymaganie nie jest konieczne do spełnienia przy przyjmowaniu urządzenia napędowego do eksploatacji po remoncie. Przełącznik gwiazda-trójkąt jest stosowany w silnikach elektrycznych, aby umożliwić ich rozruch przy niższej mocy znamionowej, co zmniejsza szczytowy prąd rozruchowy i zmniejsza obciążenie mechaniczne. Jednak nie jest to wymóg w kontekście przyjmowania do eksploatacji, ponieważ urządzenia mogą funkcjonować prawidłowo bez takiego przełącznika, zwłaszcza gdy nie ma potrzeby minimalizacji prądu rozruchowego. W praktyce, w zależności od zastosowania, niektóre silniki mogą być uruchamiane bezpośrednio, co jest całkowicie akceptowalne, zwłaszcza w zastosowaniach, gdzie napęd jest normalnie obciążony. Przykładem mogą być silniki napędzające wentylatory lub pompy, gdzie obciążenie jest od samego początku znaczące, co eliminuje potrzebę stosowania przełączników gwiazda-trójkąt.

Pytanie 9

Badania instalacji odgromowej w obiekcie budowlanym ujawniły rezystancję uziomu równą 35 Ω. Aby uzyskać zalecaną rezystancję uziomu na poziomie 10 Ω, należy

A. wydłużyć uziom szpilkowy
B. usunąć zaciski probiercze
C. powiększyć średnicę przewodu odgromowego
D. zwiększyć średnicę zwodów w instalacji odgromowej
Wydłużenie uziomu szpilkowego jest kluczowym działaniem zmierzającym do obniżenia rezystancji uziomu do zalecanych 10 Ω. Uziom szpilkowy, umieszczony w gruncie, działa jako przewodnik, który odprowadza prąd do ziemi. Jego efektywność zależy od długości, średnicy oraz rodzaju gruntu. Zwiększenie długości uziomu pozwala na większy kontakt z różnymi warstwami gleby, co zmniejsza opór elektryczny. Zgodnie z normą PN-EN 62305, zaleca się, aby długość uziomów wynosiła co najmniej 2 m, a w przypadku odporności na wyładowania atmosferyczne długość uziomu powinna być jeszcze większa. W praktyce, jeśli standardowa szpilka ma długość 1,5 m, przedłużenie jej o kolejne 1,5 m lub zastosowanie kilku szpilek połączonych ze sobą w odpowiednich miejscach przyczynia się do znaczącego obniżenia rezystancji. Warto również pamiętać, że jakość uziomu wpływa na bezpieczeństwo instalacji odgromowej, a jego odpowiednia rezystancja jest kluczowa dla skutecznego działania całego systemu ochrony przed wyładowaniami atmosferycznymi.

Pytanie 10

Przedstawione w tabeli wyniki pomiarów rezystancji uzwojeń i izolacji silnika trójfazowego wskazują na

Pomiar między zaciskami silnikaRezystancja
U1 – U232 Ω
V1 – V232 Ω
W1 – W232 Ω
U1 – V10
V1 – W15 MΩ
U1 – W15 MΩ
U1 – PE0
V1 – PE0
W1 – PE5 MΩ
A. zwarcie międzyzwojowe w uzwojeniu W1 - W2.
B. zwarcie między uzwojeniami U1 - U2 oraz W1 - W2.
C. przerwę w uzwojeniu U1 - U2.
D. uszkodzoną izolację w uzwojeniach U1 - U2 oraz V1 - V2.
Wyniki pomiarów rezystancji izolacji uzwojeń U1 - U2 oraz V1 - V2, które wynoszą 0 Ω, jednoznacznie wskazują na uszkodzenie izolacji tych uzwojeń. Zgodnie z normami branżowymi, rezystancja izolacji powinna być na poziomie minimum 1 MΩ, a wartość zerowa oznacza bezpośrednie zwarcie z obwodem ochronnym (PE). Uszkodzona izolacja może prowadzić do niebezpiecznych sytuacji, w tym do porażenia prądem oraz uszkodzenia urządzeń. W praktyce, przed uruchomieniem silników trójfazowych, zawsze należy przeprowadzać pomiary rezystancji izolacji, aby zapewnić ich prawidłowe funkcjonowanie oraz bezpieczeństwo. W przypadku stwierdzenia niskiej rezystancji, należy przeprowadzić dokładne oględziny oraz ewentualną wymianę uszkodzonego uzwojenia. Regularne monitorowanie tych parametrów jest kluczowe dla minimalizacji ryzyka awarii i zapewnienia długoterminowej niezawodności sprzętu.

Pytanie 11

Jaki typ przewodów jest zalecany do stosowania w instalacjach na zewnątrz budynków?

A. Przewody z miedzi beztlenowej
B. Przewody o podwyższonej odporności na UV
C. Przewody do instalacji wewnętrznych
D. Przewody aluminiowe
Przewody o podwyższonej odporności na UV są zalecane do stosowania w instalacjach na zewnątrz budynków ze względu na ich zdolność do wytrzymywania promieniowania ultrafioletowego. UV może powodować degradację materiałów, co w przypadku przewodów może prowadzić do ich mechanicznego uszkodzenia i utraty izolacyjności. Tego typu przewody są zaprojektowane tak, aby wytrzymać trudne warunki atmosferyczne, w tym intensywne nasłonecznienie, deszcz czy zmienne temperatury. Wybór przewodów odpornych na UV zwiększa niezawodność instalacji i zmniejsza ryzyko awarii. Z mojego doświadczenia wynika, że odpowiednie zaplanowanie instalacji z użyciem takich przewodów jest kluczowe dla jej długowieczności. W praktyce, przewody odporne na UV są często stosowane w instalacjach fotowoltaicznych, oświetleniowych na zewnątrz budynków oraz wszędzie tam, gdzie przewody są narażone na bezpośrednie działanie promieni słonecznych. Warto zawsze zwracać uwagę na oznaczenia producenta, które potwierdzają odporność na UV, co jest zgodne z normami branżowymi i dobrymi praktykami eksploatacyjnymi.

Pytanie 12

Jaką maksymalną wartość prądu zadziałania można ustawić na przekaźniku termobimetalowym w obwodzie zasilającym silnik asynchroniczny o parametrach UN = 400 V, PN = 0,37 kW, I = 1,05 A, n = 2710 l/min, aby zapewnić skuteczną ochronę przed przeciążeniem?

A. It=1,15 A
B. It=1,05 A
C. It=1,33 A
D. It=0,88 A
Prąd zadziałania 1,15 A na przekaźniku termobimetalowym to naprawdę dobry wybór do ochrony silnika asynchronicznego o takich danych jak U<sub>N</sub> = 400 V, P<sub>N</sub> = 0,37 kW oraz I = 1,05 A. W praktyce przekaźniki termobimetalowe ustawiamy na wartość trochę wyższą od prądu znamionowego silnika. W tym przypadku 1,15 A to dobra decyzja, bo zapewnia odpowiednią ochronę przed przeciążeniem, a jednocześnie daje trochę luzu na krótkie wzrosty prądu, które mogą wystąpić na przykład podczas rozruchu. Ta zasada jest zgodna z normą PN-EN 60204-1, która mówi o bezpieczeństwie w instalacjach elektrycznych maszyn. Dzięki temu silnik nie będzie miał problemów z uszkodzeniami spowodowanymi długotrwałym przeciążeniem, co w efekcie wydłuża jego żywotność i zwiększa niezawodność całego systemu. Na przykład, w przemyśle silnik napędzający wentylator potrzebuje odpowiednio ustawionych przekaźników, żeby wszystko działało bez zarzutu i żeby zminimalizować ryzyko awarii.

Pytanie 13

Jaki jest maksymalny czas automatycznego wyłączenia zasilania w celu zapewnienia ochrony przed porażeniem elektrycznym w przypadku awarii w obwodach odbiorczych o prądzie nominalnym I < 32 A w jednofazowym układzie sieciowym TN przy napięciu 230 V?

A. 5,0 s
B. 0,1 s
C. 0,2 s
D. 0,4 s
Maksymalny czas samoczynnego wyłączenia zasilania w przypadku uszkodzenia w obwodach odbiorczych o prądzie znamionowym I < 32 A w układzie sieciowym TN jednofazowym przy napięciu 230 V wynosi 0,4 s. Zgodnie z normą PN-EN 61140, czas wyłączenia zasilania w przypadku wystąpienia uszkodzenia izolacji jest kluczowy dla zapewnienia ochrony przeciwporażeniowej. W obwodach jednofazowych z prądem znamionowym niższym niż 32 A wymóg ten został określony jako 0,4 s, co ma na celu minimalizację ryzyka porażenia prądem w przypadku awarii. Przykładem zastosowania tej zasady może być instalacja elektryczna w domach mieszkalnych, gdzie zabezpieczenia, takie jak wyłączniki różnicowoprądowe (RCD), muszą działać w określonym czasie, by zapewnić bezpieczeństwo użytkowników. Długotrwałe wystawienie na działanie prądu może prowadzić do poważnych obrażeń, dlatego tak ważne jest przestrzeganie tych norm. W praktyce oznacza to, że w przypadku uszkodzenia urządzenia lub przewodów, odcięcie zasilania musi nastąpić w krótkim czasie, aby zminimalizować ryzyko dla użytkowników.

Pytanie 14

Jakie metody zapewniają ochronę przed porażeniem w instalacji fotowoltaicznej na stronie prądu stałego w przypadku uszkodzenia?

A. wykonanie wszystkich elementów w II klasie ochronności
B. umieszczenie wszystkich komponentów na izolowanym podłożu
C. użycie automatycznego wyłączenia zasilania poprzez wyłączniki nadprądowe
D. użycie automatycznego wyłączenia zasilania przez zastosowanie bezpieczników topikowych
Wykonanie urządzeń w II klasie ochronności oznacza, że są one zaprojektowane w taki sposób, aby zapewnić odpowiedni poziom bezpieczeństwa użytkownikom. Urządzenia te mają dodatkowe izolacje oraz nie wymagają podłączenia do uziemienia, co jest kluczowe w instalacjach fotowoltaicznych, gdzie prąd stały może stanowić zagrożenie w przypadku awarii. Przykładem zastosowania tego rozwiązania może być montaż paneli słonecznych, w których zastosowane komponenty są certyfikowane jako spełniające normy II klasy ochronności. W przypadku uszkodzenia instalacji, takie urządzenia zminimalizują ryzyko porażenia prądem, ponieważ są one zaprojektowane tak, by nie dopuścić do wystąpienia niebezpiecznych napięć na obudowie. Dodatkowo, stosowanie urządzeń w II klasie ochronności jest zgodne z normami IEC 61140, które definiują wymagania dotyczące ochrony osób przed porażeniem elektrycznym, co potwierdza ich praktyczną wartość na etapie projektowania i wdrażania instalacji fotowoltaicznych.

Pytanie 15

Jaki przyrząd jest wykorzystywany do pomiaru rezystancji izolacji kabli?

A. Sonometr
B. Waromierz
C. Megaomomierz
D. Pirometr
Megaomomierz jest urządzeniem służącym do pomiaru rezystancji izolacji, które jest niezwykle istotne w kontekście bezpieczeństwa elektrycznego. Jego zastosowanie polega na sprawdzaniu jakości izolacji przewodów oraz urządzeń elektrycznych, co pozwala na wykrycie ewentualnych uszkodzeń izolacji, które mogą prowadzić do awarii lub zagrożeń, takich jak porażenie prądem. Dzięki pomiarom wykonywanym przy użyciu megaomomierza, można ocenić stan izolacji w instalacjach elektrycznych, co jest zgodne z normami takimi jak PN-EN 61557-2, które określają procedury testowania urządzeń elektrycznych. W praktyce, megaomomierz jest używany podczas regularnych przeglądów instalacji elektrycznych w budynkach, co ma na celu zapewnienie odpowiedniego poziomu bezpieczeństwa i zgodności z obowiązującymi przepisami. Użycie tego narzędzia pozwala na wczesne wykrywanie problemów, co przyczynia się do minimalizacji ryzyka wystąpienia awarii oraz zwiększa trwałość systemów elektrycznych.

Pytanie 16

Jaki przyrząd jest przeznaczony do bezpośredniego pomiaru współczynnika mocy w silniku indukcyjnym?

A. Watomierz
B. Fazomierz
C. Waromierz
D. Częstościomierz
Fazomierz jest narzędziem pomiarowym, które umożliwia bezpośredni pomiar współczynnika mocy silników indukcyjnych, co jest kluczowe w analizie efektywności energetycznej. Współczynnik mocy jest miarą, która informuje o proporcji mocy czynnej, która wykonuje pracę, do mocy pozornej, która jest dostarczana do obwodu. Użycie fazomierza pozwala na dokładne określenie, jak energia jest wykorzystywana przez silnik, co jest szczególnie istotne w kontekście optymalizacji pracy urządzeń oraz redukcji kosztów energii. W praktyce, podczas rutynowych kontroli silników w zakładach przemysłowych, fazomierz może być używany do oceny pracy silników, co pozwala na identyfikację problemów z ich wydajnością. Utrzymywanie współczynnika mocy na odpowiednim poziomie jest również zgodne z wymaganiami wielu dostawców energii, którzy mogą stosować kary finansowe dla użytkowników z niskim współczynnikiem mocy. Poznanie i zrozumienie zasad pomiaru współczynnika mocy jest zatem istotne dla inżynierów i techników zajmujących się zarządzaniem energią.

Pytanie 17

Jakie mogą być powody częstego wypalania się żarówki w żyrandolu?

A. Zainstalowanie żarówki o niewystarczającej mocy
B. Luźne połączenie oprawy z instalacją
C. Uszkodzenie przewodu ochronnego
D. Niewłaściwie dobrane zabezpieczenie przeciążeniowe
Obluzowane podłączenie oprawy do instalacji jest jedną z najczęstszych przyczyn przepalania się żarówek w żyrandolach. Taki stan rzeczy prowadzi do niestabilnego kontaktu elektrycznego, co z kolei generuje dodatkowe ciepło w miejscu połączenia. W przypadku oprawy, która nie jest dobrze zamocowana, może dochodzić do przerywania obwodu, co skutkuje nieprzewidywalnymi skokami napięcia. Te skoki mogą prowadzić do szybkiego zużycia żarówki, a w skrajnych przypadkach mogą też stwarzać zagrożenie pożarowe. Dlatego ważne jest, aby regularnie sprawdzać stan połączeń elektrycznych oraz dbać o ich odpowiednie dokręcenie. Dobrą praktyką jest też korzystanie z usług wykwalifikowanego elektryka przy instalacji i konserwacji oświetlenia, co zapewni bezpieczeństwo i długowieczność komponentów. Kiedy mamy do czynienia z luźnym połączeniem, warto również rozważyć zastosowanie odpowiednich złączy elektrycznych, które zapewnią lepszą stabilność. Przy projektowaniu oświetlenia należy również brać pod uwagę obciążenie elektryczne oraz maksymalne wartości prądów dla używanych komponentów, zgodnie z aktualnymi normami i standardami branżowymi.

Pytanie 18

Jakie będą konsekwencje zmiany w instalacji elektrycznej w budynku mieszkalnym przewodów ADG 1,5 mm2 na przewody DY 1,5 mm2?

A. Obniżenie napięcia roboczego
B. Osłabienie wytrzymałości mechanicznej przewodów
C. Zwiększenie obciążalności prądowej instalacji
D. Zwiększenie rezystancji pętli zwarcia
Wymiana przewodów ADG 1,5 mm² na przewody DY 1,5 mm² w elektrycznej instalacji mieszkaniowej prowadzi do zwiększenia obciążalności prądowej instalacji. Przewody DY, w przeciwieństwie do przewodów ADG, charakteryzują się lepszymi właściwościami przewodzenia prądu oraz wyższą odpornością na wpływy mechaniczne i chemiczne. Dzięki zastosowaniu materiałów wysokiej jakości oraz odpowiedniej konstrukcji, przewody DY mogą przenieść większe obciążenia prądowe, co jest szczególnie istotne w kontekście rosnącego zapotrzebowania na energię elektryczną w nowoczesnych gospodarstwach domowych. Przykładem zastosowania przewodów DY może być zainstalowanie w domach systemów inteligentnego zarządzania energią, gdzie stabilność i wydajność przewodów mają kluczowe znaczenie. Warto zauważyć, że zgodnie z obowiązującymi normami, takich jak PN-IEC 60364, zaleca się użycie przewodów o wyższej obciążalności w instalacjach, w których przewiduje się duże obciążenia prądowe.

Pytanie 19

Jakim przyrządem należy przeprowadzić bezpośredni pomiar mocy biernej?

A. Watomierza
B. Fazomierza
C. Częstościomierza
D. Waromierza
Wybór fazomierza, częstościomierza lub watomierza nie jest właściwy przy pomiarze mocy biernej, co wynika z ich specyfiki funkcjonalnej. Fazomierz służy do pomiaru kąta przesunięcia fazowego między napięciem a prądem, co tylko pośrednio może pomóc w określeniu mocy biernej, ale nie umożliwia jej bezpośredniego pomiaru. Z kolei częstościomierz jest urządzeniem do pomiaru częstotliwości sygnału, co jest istotne w kontekście analizy harmonijnej, lecz nie dostarcza informacji na temat mocy w obwodach prądu zmiennego. Watomierz natomiast mierzy moc czynną, a nie bierną, co oznacza, że koncentruje się na energii rzeczywistej konsumowanej przez odbiorniki. Jest to kluczowe dla oceny efektywności energetycznej, ale nie odnosi się bezpośrednio do mocy biernej, co może prowadzić do mylnego wniosku, iż pomiar mocy czynnej wystarczy do określenia całości wydajności układu. Zrozumienie tej różnicy jest kluczowe w kontekście projektowania i analizy systemów energetycznych, gdzie zarówno moc czynna, jak i bierna mają swoje znaczenie w ocenie jakości zasilania i stabilności sieci. Nieodpowiednie interpretowanie tych pojęć może prowadzić do nieefektywnego zarządzania zasobami energetycznymi, co w dłuższej perspektywie generuje dodatkowe koszty operacyjne.

Pytanie 20

Dokumentacja użytkowania instalacji elektrycznych, które są chronione wyłącznikami nadmiarowo-prądowymi, nie musi zawierać

A. zasad bezpieczeństwa przy realizacji prac eksploatacyjnych
B. specyfikacji technicznej instalacji
C. spisu terminów oraz zakresów prób i pomiarów kontrolnych
D. opisu doboru urządzeń zabezpieczających
Opis doboru urządzeń zabezpieczających nie jest konieczny w instrukcji eksploatacji instalacji elektrycznych zabezpieczonych wyłącznikami nadmiarowo-prądowymi, ponieważ taki dobór powinien być już wykonany na etapie projektowania instalacji. Instrukcja eksploatacji koncentruje się na użytkowaniu oraz utrzymaniu instalacji, nie zaś na jej projektowaniu. W praktyce oznacza to, że wszystkie istotne decyzje dotyczące doboru wyłączników, takich jak typ, charakterystyka oraz zasady działania, powinny być przedstawione w dokumentacji projektowej, zgodnie z normami takimi jak PN-IEC 60947-2, które regulują zasady stosowania urządzeń zabezpieczających. Przykładem może być sytuacja, w której instalacja elektryczna już funkcjonuje i wymaga okresowych przeglądów – w takim przypadku istotne jest, aby instrukcja eksploatacji zawierała informacje o terminach przeglądów oraz zasadach ich przeprowadzania, a nie szczegóły dotyczące wcześniejszego doboru sprzętu. To pozwala na efektywne zarządzanie instalacją oraz zapewnia zgodność z przepisami BHP i normami technicznymi.

Pytanie 21

Jakim skrótem literowym określamy system automatyki energetycznej, który umożliwia przywrócenie normalnej pracy linii energetycznej po jej wyłączeniu przez urządzenia zabezpieczające?

A. SZR
B. SCO
C. SPZ
D. SRN
Skrót SPZ (samoczynne przywracanie zasilania) odnosi się do systemu automatyki energetycznej, który ma na celu przywrócenie normalnego funkcjonowania linii energetycznej po jej wyłączeniu przez urządzenia zabezpieczające. System ten jest kluczowy dla zapewnienia ciągłości dostaw energii elektrycznej oraz minimalizacji przerw w zasilaniu. W praktyce, SPZ działa na zasadzie wykrywania awarii lub przeciążeń, co inicjuje proces odłączenia danego obwodu. Po ustabilizowaniu warunków pracy i wykryciu, że awaria została usunięta, system automatycznie przywraca zasilanie. Przykładowo, w przypadku chwilowego wzrostu zapotrzebowania, SPZ może zresetować wyłącznik, co pozwala uniknąć niepotrzebnych przerw w zasilaniu. Praktyczna implementacja SPZ znajduje zastosowanie w różnych sektorach, od przemysłu, przez sieci dystrybucji, aż po systemy energetyczne w budynkach. Wiele krajowych standardów, takich jak PN-EN 50160, podkreśla znaczenie takich rozwiązań dla jakości dostaw energii elektrycznej oraz bezpieczeństwa systemu energetycznego.

Pytanie 22

W trakcie naprawy części instalacji elektrycznej zasilającej silnik indukcyjny, uszkodzone przewody aluminiowe zamieniono na przewody H07V-R o przekroju żyły 50 mm2. Jaki powinien być minimalny przekrój przewodu PE, aby warunek samoczynnego wyłączenia zasilania został spełniony?

A. 25 mm2
B. 50 mm2
C. 35 mm2
D. 20 mm2
Wybór innego przekroju przewodu PE niż 25 mm2 może wynikać z nieporozumienia dotyczącego zasad ochrony przeciwporażeniowej. Przekroje 35 mm2, 20 mm2 oraz 50 mm2 są nieadekwatne dla tego przypadku. Przekrój 35 mm2 jest zbyt duży i niezgodny z wymaganiami normatywnymi, które określają minimalne wartości. W przypadku przewodu 20 mm2, jest on poniżej wymaganego minimum, co stwarza ryzyko niedostatecznego zabezpieczenia w razie awarii. Odpowiedź 50 mm2 natomiast, mimo że technicznie spełnia normy, jest zbyt wysoka, co prowadzi do zbędnych kosztów oraz nieoptymalnego doboru materiałów. W praktyce, zbyt duży przekrój może skutkować trudnościami w montażu i nieefektywnym wykorzystaniu przestrzeni instalacyjnej. Ponadto, w przypadku przewodów ochronnych, ich główną funkcją jest przewodzenie prądu zwarciowego do ziemi, co minimalizuje ryzyko porażenia prądem. Dlatego normy jasno definiują, że odpowiedni przekrój powinien być proporcjonalny do przekroju przewodów zasilających, a w przypadku aluminium wynosić 25 mm2. Niezrozumienie zasadności tych wartości może prowadzić do zastosowania niewłaściwych przekrojów, co skutkuje obniżeniem poziomu bezpieczeństwa w instalacji elektrycznej.

Pytanie 23

Korzystając z przedstawionej tabeli obciążalności długotrwałej dobierz minimalny przekrój przewodów dla instalacji trójfazowej ułożonej przewodami YDY w rurze instalacyjnej na ścianie drewnianej (sposób B2).
Wartość przewidywanego prądu obciążenia instalacji wynosi 36 A.

Obciążalność prądowa długotrwała przewodów miedzianych, w amperach
Izolacja PVC, trzy żyły obciążone
Temperatura żyły: 70°C. Temperatura otoczenia: 30°C w powietrzu, 20°C w ziemi
ułożenieA1A2B1B2CD
Przekrój
żyły
4 mm2242328273231
6 mm2312936344139
10 mm2423950465752
16 mm2565268627667
A. 4 mm2
B. 6 mm2
C. 16 mm2
D. 10 mm2
Wybór niewłaściwego przekroju przewodów dla instalacji trójfazowej może prowadzić do poważnych konsekwencji, zarówno w aspekcie bezpieczeństwa, jak i efektywności energetycznej. W przypadku odpowiedzi 6 mm2, chociaż teoretycznie zbliżone do wartości 36 A, przekrój ten jest na granicy obciążalności, co w praktyce może powodować ryzyko przegrzewania się przewodów, a w konsekwencji ich uszkodzenia. Przekrój 4 mm2 jest zdecydowanie niewystarczający, ponieważ jego obciążalność wynosi tylko 25 A, co stanowi poważne zagrożenie dla instalacji, a w skrajnych przypadkach może prowadzić do pożaru. Wybór przekroju 16 mm2, mimo iż wydaje się bezpieczny, jest nieekonomiczny i niepraktyczny dla danego obciążenia, co skutkuje niepotrzebnymi kosztami materiałowymi. Wszystkie te błędy są wynikiem braku zrozumienia podstawowych zasad dotyczących doboru przekrojów przewodów, które powinny bazować na przewidywanych obciążeniach oraz specyfice instalacji. Zgodnie z wytycznymi norm, takich jak PN-IEC 60364, powinno się stosować przekroje adekwatne do warunków pracy, aby zapewnić bezpieczeństwo i efektywność energetyczną systemu. Odpowiednie podejście do doboru przekrojów jest kluczem do minimalizacji ryzyka awarii oraz zwiększenia trwałości systemu elektrycznego.

Pytanie 24

W tabeli zamieszczono wyniki okresowych pomiarów impedancji pętli zwarcia instalacji elektrycznej budynku mieszkalnego wykonanej w układzie TN-S. Która z przyczyn może odpowiadać za zwiększoną wartość ZS w sypialni?

Pomiar impedancji pętli zwarcia obwodów gniazd jednofazowych
zabezpieczonych wyłącznikami nadprądowymi B16
Pomieszczenie:SalonSypialniaKuchniaPrzedpokójŁazienka
Wartość Zs:2,32 Ω6,84 Ω1,72 Ω1,39 Ω2,55 Ω
A. Brak ciągłości przewodu ochronnego w mierzonym obwodzie.
B. Poluzowany przewód liniowy zasilający gniazda w mierzonym obwodzie.
C. Brak ciągłości przewodu neutralnego w mierzonym obwodzie.
D. Niewłaściwie dobrany wyłącznik nadprądowy dla mierzonego obwodu.
Odpowiedź wskazująca na poluzowany przewód liniowy zasilający gniazda w mierzonym obwodzie jest prawidłowa, ponieważ poluzowanie to prowadzi do wzrostu rezystancji w obwodzie, co z kolei prowadzi do zwiększenia wartości impedancji pętli zwarcia (ZS). W systemach elektrycznych, takich jak TN-S, ciągłość przewodów zasilających jest kluczowa dla zapewnienia bezpieczeństwa i efektywności instalacji. Poluzowany przewód może powodować niestabilne połączenia, co skutkuje nieprawidłowym działaniem urządzeń oraz może stwarzać zagrożenie pożarowe. W praktyce, aby zminimalizować ryzyko, należy regularnie kontrolować i testować wszystkie połączenia elektryczne, zgodnie z normami PN-IEC 60364, które podkreślają znaczenie właściwego montażu oraz konserwacji instalacji elektrycznych. Dobre praktyki obejmują także stosowanie narzędzi do pomiaru impedancji oraz odpowiednich technik diagnostycznych, aby wcześnie wykrywać problemy z połączeniami.

Pytanie 25

Aby zapewnić ochronę przed porażeniem elektrycznym przy awarii użytkowników silnika elektrycznego klasy ochronności I, jego obudowa w układzie sieci TT powinna być

A. elektrycznie odizolowana od gruntu oraz przewodzącego podłoża
B. połączona z uziomem
C. podłączona do przewodu neutralnego
D. elektrycznie odizolowana od uziomu za pomocą iskiernika
Odpowiedź 'przyłączyć do uziomu' jest prawidłowa, ponieważ w systemie TT, który jest jedną z metod ochrony przeciwporażeniowej, uziemienie urządzenia elektrycznego ma kluczowe znaczenie dla bezpieczeństwa. W przypadku uszkodzenia izolacji silnika elektrycznego I klasy ochronności, potencjalne napięcie na obudowie może wzrosnąć, co stanowi zagrożenie dla użytkowników. Przyłączenie korpusu silnika do uziomu zapewnia, że wszelkie niebezpieczne napięcia zostaną odprowadzone do ziemi, minimalizując ryzyko porażenia. W praktyce, takie rozwiązanie jest zgodne z normami międzynarodowymi, jak np. IEC 60364, które określają zasady instalacji elektrycznych oraz środki ochrony przeciwporażeniowej. Uziemienie także pozwala na szybkie zadziałanie zabezpieczeń, takich jak wyłączniki różnicowoprądowe, co jest istotne w przypadku awarii. Dodatkowo, instalacje z poprawnie wykonanym uziemieniem mogą przyczynić się do zmniejszenia zakłóceń elektromagnetycznych, co jest istotne w kontekście wydajności urządzeń elektrycznych.

Pytanie 26

Jakie jest maksymalne dopuszczalne wartości impedancji pętli zwarcia w instalacji elektrycznej o napięciu nominalnym 230 V działającej w układzie TN-S, zabezpieczonej wyłącznikiem nadprądowym C16, aby zapewnić samoczynne wyłączenie zasilania jako środek ochrony przeciwporażeniowej w przypadku awarii?

A. 4,79 Ω
B. 1,43 Ω
C. 0,71 Ω
D. 2,87 Ω
Wybór innych wartości impedancji pętli zwarcia, takich jak 2,87 Ω, 0,71 Ω lub 4,79 Ω, może wynikać z nieporozumień dotyczących zasad ochrony przeciwporażeniowej i obliczeń związanych z maksymalnym prądem zwarciowym. Przykładowo, odpowiadając 2,87 Ω, użytkownik mógł przyjąć, że taka wartość jest wystarczająca do zadziałania wyłącznika, jednak przy wyłączniku C16 i napięciu 230 V, wartość ta nie zapewnia optymalnej ochrony. Rzeczywisty prąd zwarciowy przy tej impedancji byłby niższy aniżeli minimalna wartość potrzebna do uruchomienia wyłącznika. W przypadku odpowiedzi 0,71 Ω, użytkownik mógł nie uwzględnić, że zbyt niska impedancja pętli zwarcia nie jest praktyczna, a wartości te są często zarezerwowane dla sytuacji, gdzie wymagana jest wysoka wydajność instalacji, co niekoniecznie odnosi się do standardowych warunków domowych. Z kolei wybór wartości 4,79 Ω wyraźnie przekracza wszystkie praktyczne limity, co skutkuje zbyt niskim prądem zwarciowym, aby zapewnić odpowiednie warunki do samoczynnego wyłączenia zasilania. Obliczenia te powinny być zgodne z normami, takimi jak PN-IEC 60364, które jasno określają, iż dla ochrony przeciwporażeniowej istotna jest analiza wartości impedancji pętli zwarcia w odniesieniu do wyłączników nadprądowych, aby zapewnić skuteczność systemu zabezpieczeń w instalacjach elektrycznych.

Pytanie 27

Czas pomiędzy kolejnymi kontroli oraz próbami instalacji elektrycznych w budynkach użyteczności zbiorowej nie powinien przekraczać

A. 1 rok
B. 2 lata
C. 3 lata
D. 5 lat
Odpowiedź 5 lat jest poprawna, ponieważ zgodnie z przepisami prawa budowlanego oraz normami dotyczącymi instalacji elektrycznych, szczególnie w kontekście budynków zamieszkania zbiorowego, okres między kolejnymi sprawdzeniami nie powinien przekraczać 5 lat. Regularne kontrole są kluczowe dla zapewnienia bezpieczeństwa mieszkańców oraz prawidłowego funkcjonowania instalacji. Przykładowo, w Polskim prawie budowlanym oraz normach PN-IEC 60364-6, podkreśla się konieczność przeprowadzania okresowych przeglądów przez wykwalifikowanych specjalistów, co pozwala na wczesne wykrywanie ewentualnych usterek czy niezgodności z obowiązującymi standardami. W dłuższej perspektywie zaniedbania w tym zakresie mogą prowadzić do poważnych awarii, a także zagrożeń dla życia i zdrowia ludzi oraz mienia. Dobrym przykładem praktycznych zastosowań jest wprowadzenie systemu zarządzania, który przypomina o nadchodzących kontrolach, co zwiększa efektywność i bezpieczeństwo eksploatacji budynków.

Pytanie 28

Podczas pomiaru rezystancji izolacji przewodów, jakie napięcie testowe jest zazwyczaj stosowane dla obwodów o napięciu znamionowym 230 V?

A. 500 V
B. 230 V
C. 100 V
D. 750 V
Pomiar rezystancji izolacji jest kluczowym krokiem w ocenie stanu technicznego instalacji elektrycznych. Dla obwodów o napięciu znamionowym 230 V zaleca się stosowanie napięcia testowego 500 V. Wybór tego napięcia wynika z norm i standardów, które nakładają wymogi dotyczące minimalnej wartości napięcia testowego, aby zapewnić wiarygodne wyniki pomiarów. Rozporządzenia takie jak PN-HD 60364-6:2016-07 wskazują, że dla obwodów o napięciu znamionowym do 500 V, napięcie testowe powinno wynosić 500 V. Zastosowanie wyższego napięcia testowego niż napięcie znamionowe jest konieczne, aby wykryć ewentualne uszkodzenia izolacji, które mogą pojawić się w warunkach rzeczywistej eksploatacji. Dzięki temu można zidentyfikować miejsca, gdzie izolacja może być osłabiona, co pozwala na podjęcie kroków naprawczych przed wystąpieniem awarii. To podejście jest powszechnie stosowane w branży, zapewniając bezpieczeństwo i niezawodność instalacji elektrycznej.

Pytanie 29

Który z jednofazowych wyłączników zabezpieczających spełnia wymagania ochrony przed porażeniem przy impedancji pętli zwarcia Z = 4,2 Ω?

A. B10
B. C10
C. B16
D. C16
Wybór innego wyłącznika nadprądowego nie spełnia wymagań dotyczących ochrony przeciwporażeniowej przy podanej impedancji pętli zwarcia, co może prowadzić do poważnych konsekwencji w aspekcie bezpieczeństwa. Wyłączniki C10 oraz C16, które mają charakterystykę C, są przeznaczone do zabezpieczania obwodów, w których występują duże prądy rozruchowe, typowe dla silników i urządzeń indukcyjnych. Chociaż mogą być skuteczne w pewnych zastosowaniach, to w kontekście ochrony przed porażeniem elektrycznym są niewłaściwe, zwłaszcza przy niskich impedancjach pętli zwarcia. Czas reakcji tych wyłączników jest dłuższy niż w przypadku charakterystyki B, co może skutkować dłuższym czasem, w którym osoba narażona na porażenie prądem elektrycznym jest narażona na niebezpieczeństwo. W praktyce, niewłaściwy dobór wyłącznika może prowadzić do obniżonego poziomu bezpieczeństwa użytkowników oraz zwiększonego ryzyka uszkodzenia instalacji. Percepcja, że wyłączniki o wyższej charakterystyce są bardziej skuteczne, jest błędna w kontekście ochrony ludzkiego życia, co jest kluczowe w normach i zaleceniach dotyczących instalacji elektrycznych. Ważne jest, aby dobrze rozumieć zasady działania wyłączników oraz ich odpowiednie zastosowanie w zależności od specyfikacji instalacji elektrycznych.

Pytanie 30

W instalacji trójfazowej działającej w układzie TN-C, gdy na odbiornikach wystąpi napięcie fazowe przekraczające 300 V, co może być tego przyczyną?

A. przerwaniem ciągłości przewodu PEN
B. zwarciem pomiędzy fazami
C. zwarciem między fazą a przewodem PEN
D. przerwą w jednej z faz
Zwarcie fazy z przewodem PEN prowadziłoby do nieprawidłowego rozkładu napięć, jednak nie jest to główny powód wzrostu napięcia powyżej 300 V na odbiornikach. W sytuacji zwarcia fazowego, napięcia na pozostałych fazach mogą spadać, ponieważ dochodzi do podziału prądów i obciążenia. Zwarcie międzyfazowe także wprowadza nieprawidłowości w dostawie energii, lecz skutkiem jest zazwyczaj wyzwolenie zabezpieczeń, co chroni urządzenia przed nadmiernym napięciem. Natomiast przerwa w jednej z faz skutkuje z kolei nierównomiernym rozkładem obciążenia w systemie trójfazowym, co może prowadzić do problemów z równowagą obciążenia, ale rzadko skutkuje wzrostem napięcia na odbiornikach do wartości niebezpiecznych. W przypadku układu TN-C kluczowe znaczenie ma ciągłość przewodu PEN, który jest odpowiedzialny za ochronę przed porażeniem. Brak tego przewodu może spowodować, że napięcie na odbiornikach będzie w sposób niekontrolowany rosło, co zagraża bezpieczeństwu użytkowników oraz urządzeń. Dlatego uznanie przerwania ciągłości przewodu PEN za główną przyczynę wzrostów napięcia w tym układzie jest kluczowe dla prawidłowego zrozumienia funkcjonowania instalacji elektrycznych oraz ich bezpieczeństwa.

Pytanie 31

Jakiego składnika nie może zawierać przewód zasilający rozdzielnię główną w pomieszczeniu przemysłowym, które jest niebezpieczne pod kątem pożarowym?

A. Pancerza stalowego
B. Zewnętrznego oplotu włóknistego
C. Powłoki polietylenowej
D. Żył aluminiowych
Zewnętrzny oplot włóknisty nie jest odpowiednim elementem dla kabel zasilający rozdzielnicę główną w pomieszczeniu przemysłowym uznawanym za niebezpieczne pod względem pożarowym. Takie pomieszczenia wymagają zastosowania materiałów, które są odporne na działanie wysokich temperatur oraz ognioodporne. Oplot włóknisty, choć może być stosowany w mniej ryzykownych warunkach, nie spełnia wymagań dotyczących odporności na ogień. W praktyce oznacza to, że w przypadku pożaru, oplot włóknisty mógłby się szybko zapalić i przyczynić się do rozprzestrzenienia ognia. Aby zapewnić bezpieczeństwo, kabel w pomieszczeniach niebezpiecznych powinien być wykonany z materiałów, które są zgodne z normami, takimi jak PN-EN 60529 czy PN-EN 60332, które definiują wymagania dotyczące ochrony przed ogniem i wysoką temperaturą. Przykładem odpowiedniego rozwiązania są kable zasilające z pancerzem stalowym, które nie tylko chronią przed uszkodzeniami mechanicznymi, ale również mają właściwości ognioodporne, co czyni je idealnym wyborem dla rozdzielnic w krytycznych środowiskach przemysłowych.

Pytanie 32

Dodatkowy przewód ochronny w instalacji wykonanej przewodem LYd 750 4x2,5 zamocowanej na uchwytach na ścianie piwnicy powinien być oznaczony symbolem

A. YDY 450/750 1x2,5
B. LYc 300/500 1x6
C. Dyd 750 1x4
D. ADY 750 1x2,5
Odpowiedź Dyd 750 1x4 jest poprawna, ponieważ oznaczenie to odnosi się do przewodu ochronnego, który jest zgodny z wymaganiami instalacji elektrycznych w budynkach. Zastosowanie przewodu Dyd 750 1x4 w instalacji LYd 750 4x2,5 na uchwytach na powierzchni ściany piwnicy zapewnia odpowiednią ochronę przed zagrożeniami elektrycznymi, takimi jak zwarcia czy przepięcia. Przewody ochronne muszą być odpowiednio dobrane do warunków pracy oraz obciążenia, a Dyd 750 1x4 spełnia te normy, zapewniając odporność na wysokie napięcia do 750V. W praktyce, stosowanie przewodów z oznaczeniem Dyd w instalacjach podnosi poziom bezpieczeństwa, ponieważ są one często używane do uziemienia oraz ochrony przed porażeniem elektrycznym. Dodatkowo, zgodnie z normami PN-IEC 60364, właściwy dobór przewodów w instalacjach elektrycznych jest kluczowy dla ich prawidłowego funkcjonowania i bezpieczeństwa użytkowników.

Pytanie 33

Istotnym czynnikiem wpływającym na skuteczność chłodzenia indukcyjnego silnika elektrycznego jest

A. koło pasowe
B. czujnik temperatury
C. wlot powietrza
D. klatka wirnika
Wlot powietrza odgrywa kluczową rolę w efektywności chłodzenia indukcyjnego silnika elektrycznego. Odpowiednia wentylacja jest niezbędna do odprowadzania ciepła generowanego podczas pracy silnika, co wpływa na jego wydajność i żywotność. Wlot powietrza umożliwia cyrkulację chłodnego powietrza do wnętrza silnika, co przyczynia się do obniżenia temperatury komponentów, takich jak stator i wirnik. Zastosowanie odpowiednio zaprojektowanych kanałów wentylacyjnych, zgodnych z normami IEC 60034, pozwala na optymalne chłodzenie silnika, minimalizując ryzyko przegrzania. W praktyce, wloty powietrza powinny być regularnie kontrolowane oraz wentylowane, aby zapewnić właściwe odprowadzanie ciepła. Przykładem skutecznego zastosowania jest użycie wentylatorów chłodzących, które wspomagają naturalną cyrkulację powietrza w silnikach o dużej mocy, co znacząco poprawia ich efektywność energetyczną i wydajność operacyjną.

Pytanie 34

Jaka jest wartość skuteczna napięcia przemiennego dotykowego, która może być utrzymywana w standardowych warunkach otoczenia, przy rezystancji ciała ludzkiego wynoszącej około 1 kΩ?

A. 50 V
B. 12 V
C. 25 V
D. 60 V
Istniejące nieprawidłowe odpowiedzi związane z wartością skuteczną napięcia dotykowego dotykają kluczowych aspektów bezpieczeństwa elektrycznego, które są niezwykle istotne w kontekście ochrony życia i zdrowia ludzi. Odpowiedzi sugerujące ilości mniejsze niż 50 V, jak 12 V, 25 V czy 60 V, mogą wprowadzać w błąd co do rzeczywistego ryzyka związanego z narażeniem na działanie prądu przemiennego. Po pierwsze, 12 V to napięcie, które w większości przypadków uznawane jest za bezpieczne, ale w praktyce, zwłaszcza w warunkach wilgotnych, nawet niskie napięcia mogą stanowić zagrożenie, jeśli nie są odpowiednio zabezpieczone. 25 V również nie jest wystarczająco zabezpieczone, biorąc pod uwagę, że normy bezpieczeństwa w różnych aplikacjach zazwyczaj uwzględniają wyższe wartości. Co więcej, 60 V, choć bliskie rzeczywistego niebezpieczeństwa, przekracza zalecaną wartość 50 V, co wyraźnie narusza zasady ochrony przeciwporażeniowej. Warto również podkreślić, że w przypadku napięć przekraczających 50 V, znaczenie ma nie tylko ich wartość, ale również czas ekspozycji oraz warunki otoczenia. Błędem jest zakładanie, że napięcie poniżej 50 V jest zawsze bezpieczne, co ignoruje złożoność interakcji między prądem a organizmem ludzkim. Z tego powodu kluczowe jest przestrzeganie standardów, takich jak IEC 60479, które stanowią fundament dla bezpiecznego projektowania instalacji elektrycznych.

Pytanie 35

Aby zapobiec przegrzewaniu uzwojeń silnika indukcyjnego, nie powinno się długotrwale

A. zmniejszać współczynnika mocy
B. zwiększać oporu wirnika
C. obniżać poślizgu
D. przekraczać prądu znamionowego
Przekraczanie prądu znamionowego silnika indukcyjnego prowadzi do jego przegrzewania, co może skutkować uszkodzeniem izolacji uzwojeń oraz skróceniem żywotności urządzenia. Prąd znamionowy to maksymalny prąd, który silnik może pobierać w normalnych warunkach pracy, zgodnie z jego specyfikacją. Przekroczenie tej wartości, na przykład podczas przeciążenia lub przy zbyt małym napięciu zasilającym, powoduje wzrost temperatury uzwojeń, co z kolei prowadzi do zwiększenia strat cieplnych i ryzyka awarii. W praktyce, zastosowanie odpowiednich zabezpieczeń, takich jak wyłączniki silnikowe lub przekaźniki termiczne, jest kluczowe dla ochrony silników przed skutkami przeciążeń. Dodatkowo, regularne monitorowanie stanu technicznego silnika oraz jego parametrów pracy, zgodnie z normą PN-EN 60034, pozwala na wczesne wykrywanie problemów i podejmowanie działań zapobiegawczych. Z tego względu, przy projektowaniu systemów zasilania należy uwzględnić odpowiednie marginesy dla prądu znamionowego, aby zapewnić długotrwałą i bezawaryjną pracę silników indukcyjnych.

Pytanie 36

Jakie są zalecane minimalne okresy pomiędzy kolejnymi kontrolami instalacji elektrycznych w pomieszczeniach narażonych na pożar?

A. 1 rok dla oceny skuteczności ochrony przeciwporażeniowej i 1 rok dla badania rezystancji izolacji
B. 5 lat dla oceny skuteczności ochrony przeciwporażeniowej i 1 rok dla badania rezystancji izolacji
C. 1 rok dla oceny skuteczności ochrony przeciwporażeniowej oraz 5 lat dla badania rezystancji izolacji
D. 5 lat dla oceny skuteczności ochrony przeciwporażeniowej i 5 lat dla badania rezystancji izolacji
Nieprawidłowe podejścia do okresów między sprawdzeniami instalacji elektrycznych mogą prowadzić do poważnych zagrożeń dla bezpieczeństwa. Na przykład, sprawdzanie skuteczności ochrony przeciwporażeniowej co 1 rok, jak sugeruje jedna z opcji, jest zbyt częste i może być nieefektywne, biorąc pod uwagę, że te systemy powinny wykazywać stabilność przez dłuższy czas, co potwierdzają wytyczne europejskie przyjęte w normach bezpieczeństwa. Z drugiej strony, zalecenie, aby sprawdzać rezystancję izolacji co 5 lat, ignoruje szybkość, z jaką mogą pojawiać się uszkodzenia izolacji w wyniku eksploatacji, co może prowadzić do ryzykownych sytuacji. Typowe błędy myślowe polegają na myleniu częstotliwości kontroli z ich rzeczywistą skutecznością. Dłuższe okresy mogą prowadzić do zaniedbań i niewykrytych usterek, które z czasem narastają. Dlatego niezbędne jest przestrzeganie określonych norm, które są oparte na rzeczywistych warunkach eksploatacyjnych, a nie jedynie na intuicyjnych osądach dotyczących bezpieczeństwa. Rozsądnie jest stosować się do najlepszych praktyk branżowych, które zalecają częstsze przeglądy instalacji w pomieszczeniach o podwyższonym ryzyku pożaru, aby minimalizować ryzyko incydentów związanych z elektrycznością.

Pytanie 37

Wyznacz rezystancję przewodu LgY o powierzchni przekroju 10 mm2 i długości 1 km, mając informację, że rezystywność miedzi wynosi 1,72∙10-8 Ω∙m?

A. 172 Ω
B. 1,72 Ω
C. 1 720 Ω
D. 17,2 Ω
Obliczenie rezystancji przewodu może prowadzić do różnych nieporozumień, zwłaszcza gdy błędnie interpretuje się wartości lub stosuje się niewłaściwe wzory. W przypadku odpowiedzi 17,2 Ω, można zauważyć, że jest to wynik, który można uzyskać, myląc jednostki lub nieprawidłowo stosując wzór. Użycie niewłaściwych jednostek lub przeliczeń może prowadzić do znacznych błędów w obliczeniach. Rezystancja przewodu o długości 1 km i przekroju 10 mm² nie może być tak wysoka, ponieważ przy danych wartościach materialnych i geometrycznych wynikiem powinno być zaledwie 1,72 Ω. Z kolei odpowiedzi takie jak 1 720 Ω oraz 172 Ω wskazują na poważne błędy w obliczeniach, które mogą wynikać z całkowitego zignorowania proporcji długości do przekroju poprzecznego lub błędnego przeliczenia jednostek. Tego rodzaju błędy myślowe są częste przy obliczeniach rezystancji, zwłaszcza w przypadkach, gdy nie uwzględnia się odpowiednich parametrów materiałowych. W praktykach inżynieryjnych kluczowe jest prawidłowe zrozumienie i zastosowanie wzorów, a także dbałość o poprawne przeliczenie jednostek, aby uniknąć sytuacji, które mogą prowadzić do nieefektywności w systemach elektrycznych oraz nieplanowanych awarii w instalacjach. Dobre praktyki inżynieryjne zalecają systematyczne sprawdzanie obliczeń oraz korzystanie z wartości tabelarycznych materiałów, aby zapewnić ich poprawność.

Pytanie 38

Kontrola instalacji elektrycznych w obiektach użyteczności publicznej powinna być przeprowadzana nie rzadziej niż co

A. 5 lat
B. 4 lata
C. 2 lata
D. 3 lata
Zwróć uwagę, że często myślimy, że przeglądy co 3, 2 czy 4 lata są wystarczające, ale to nie do końca tak działa. Przeglądy co 3 lata mogą nam się wydawać ok, ale w praktyce mogą nie dostosowywać się do stanu instalacji, która może potrzebować więcej sprawdzeń. Jak zbyt długo nie robisz kontroli, to mogą się nazbierać problemy, które byłyby wykryte wcześniej. W budynkach, gdzie jest duże natężenie ludzi, pomijanie tego pięcioletniego terminu może prowadzić do uszkodzeń i poważnych zagrożeń dla życia. Przepisy, jak PN-IEC, jasno mówią, że te inspekcje co 5 lat są konieczne, bo pomagają uniknąć awarii i trzymają instalację w dobrym stanie. Warto zrozumieć te zasady i stosować je dla bezpieczeństwa użytkowników oraz sprawności instalacji elektrycznych.

Pytanie 39

Jakie nastąpi zmiana w przekładni napięciowej transformatora jednofazowego, jeśli podczas jego modernizacji nawinięto o 10% więcej zwojów po stronie niskiego napięcia, nie zmieniając ilości zwojów po stronie wysokiego napięcia?

A. Wzrośnie o 21%
B. Wzrośnie o 10%
C. Spadnie o 19%
D. Spadnie o 10%
Zrozumienie wpływu zmiany liczby zwojów na przekładnię napięciową transformatora jest kluczowe dla prawidłowego działania układów elektrycznych. Niepoprawne odpowiedzi często wynikają z mylnych założeń dotyczących zasad działania transformatorów. Na przykład, odpowiedzi sugerujące, że przekładnia napięciowa zwiększy się o 10% lub więcej, ignorują fundamentalną zasadę działania transformatora, która mówi o proporcjonalności między liczbą zwojów a napięciem. Przy dodaniu zwojów po stronie niskiego napięcia, wzrasta liczba zwojów uzwojenia, co z kolei zmienia stosunek zwojów z uzwojenia wysokiego napięcia. To prowadzi do zmniejszenia przekładni napięciowej, co jest kluczowym aspektem, który wiele osób pomija. Odpowiedź o zmniejszeniu przekładni o 19% także jest błędna, ponieważ nie bazuje na prostych zasadach matematycznych związanych z obliczeniami przekładni. Przekładnia transformatora nie jest liniową funkcją liczby zwojów; zmiana liczby zwojów w jednym uzwojeniu wpływa na całą relację z innym uzwojeniem. Typowe błędy myślowe, które prowadzą do takich nieprawidłowych wniosków, obejmują nadmierne uproszczenie problemu lub błędne zakładanie, że zmiana w jednym z uzwojeń nie wpływa na całokształt działania transformatora. W praktyce, odpowiednia analiza wpływu zmian w transformatorach jest niezbędna dla zapewnienia ich efektywności i bezpieczeństwa w zastosowaniach przemysłowych.

Pytanie 40

Jakie oznaczenie powinna nosić wkładka bezpiecznikowa, którą trzeba zainstalować w celu zabezpieczenia silników oraz urządzeń rozdzielczych?

A. gR
B. gB
C. aL
D. aM
Wkładka bezpiecznikowa oznaczona symbolem aM jest przeznaczona do ochrony silników oraz urządzeń rozdzielczych przed przeciążeniem i zwarciem. Oznaczenie to wskazuje, że bezpiecznik ten ma charakterystykę czasowo-prądową, która jest dostosowana do pracy urządzeń z silnikami, co oznacza, że pozwala na chwilowe przekroczenie dopuszczalnego prądu w momencie rozruchu silnika, co jest niezbędne dla prawidłowego funkcjonowania urządzeń elektrycznych. W praktyce oznacza to, że wkładka aM jest w stanie znieść większy prąd przez krótki czas, co zapobiega niepotrzebnym wyłączeniom w przypadku chwilowych przeciążeń. Takie wkładki są szczególnie zalecane w instalacjach, gdzie silniki startują z dużym momentem, co generuje znaczne obciążenia prądowe. Wdrożenie wkładek aM zgodnie z normami IEC 60269, które określają wymagania dla wkładek bezpiecznikowych, jest dobrą praktyką, zapewniającą bezpieczeństwo oraz niezawodność systemów elektrycznych.