Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 28 stycznia 2026 21:52
  • Data zakończenia: 28 stycznia 2026 21:53

Egzamin niezdany

Wynik: 2/40 punktów (5,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Który z podanych standardów przesyłania sygnałów cyfrowych pozwala na bezprzewodową transmisję danych?

A. RS 485
B. RS 232
C. IRDA
D. USB
IRDA, czyli Infrared Data Association, to standard komunikacji bezprzewodowej, który umożliwia przesyłanie danych za pomocą podczerwieni. Technologia ta jest stosunkowo popularna w urządzeniach takich jak telefony komórkowe, laptopy oraz różnego rodzaju urządzenia peryferyjne, które wymagają szybkiej i wygodnej wymiany danych. IRDA wspiera różne prędkości transmisji, co czyni ją elastycznym rozwiązaniem w zastosowaniach, gdzie istnieje potrzeba bezprzewodowego przesyłania informacji na niewielkie odległości, zazwyczaj do kilku metrów. To podejście jest szczególnie efektywne w środowiskach, gdzie inne formy komunikacji, jak Bluetooth, mogą być zbyt rozbudowane lub zbędne. Dobre praktyki dotyczące IRDA obejmują stosowanie odpowiednich protokołów dla zapewnienia bezpieczeństwa transmisji, co jest kluczowe w kontekście wymiany poufnych danych. Zrozumienie tej technologii oraz jej praktyczne zastosowanie w codziennym życiu użytkowników jest niezbędne dla efektywnego zarządzania urządzeniami oraz danymi.

Pytanie 2

Jakie zadanie w obwodach elektronicznych realizuje transoptor?

A. Izoluje galwanicznie sygnały
B. Dodaje napięcia
C. Wytwarza sygnały sinusoidalne
D. Zwiększa prąd
Funkcje, które podałeś w innych odpowiedziach, nie są zgodne z tym, co naprawdę robią transoptory. Na przykład generowanie przebiegów sinusoidalnych, które sugerujesz, nie dotyczy transoptorów, bo one nie wytwarzają sygnałów – tylko je przesyłają i izolują. A ta idea sumowania napięć? Również nie jest trafiona. Transoptory nie służą do sumowania sygnałów elektrycznych, lecz do separacji i ochrony między różnymi układami. Co do wzmacniania prądu, to jest to zadanie dla wzmacniaczy, a nie transoptorów, które nie zwiększają prądu, tylko zapewniają izolację. Wiele błędów myślowych może wynikać z tego, że nie do końca rozumiesz, jak działają elementy elektroniczne i jakie mają zastosowania. W elektronice ważne jest, by zrozumieć, że każdy element ma swoje właściwości i spełnia konkretne funkcje – to klucz do dobrego projektowania systemów elektronicznych.

Pytanie 3

Jaką funkcję realizuje bramka przedstawiona na rysunku?

Ilustracja do pytania
A. EX-NOR
B. NOR
C. NOT
D. NAND
Wybrane odpowiedzi, takie jak NAND, EX-NOR czy NOT, zawierają błędne koncepcje, które mogą prowadzić do nieporozumień w zakresie logiki cyfrowej. Bramka NAND, mimo że jest jedną z najbardziej popularnych bramek logicznych, działa na zasadzie negacji koniunkcji. Oznacza to, że wyjście jest wysokie, chyba że wszystkie wejścia są wysokie, co różni się od funkcji NOR, która wymaga, aby wszystkie wejścia były wysokie, aby wyjście było niskie. Odpowiedź EX-NOR opiera się na negacji operacji XOR, a jej logika również nie pasuje do funkcji NOR, która skupia się na negacji OR. Ostatnia odpowiedź, dotycząca bramki NOT, wskazuje na zupełnie inną funkcję, ponieważ bramka NOT ma tylko jedno wejście i realizuje prostą negację, co nie odpowiada złożoności bramki NOR z dwoma wejściami. Często niepoprawne odpowiedzi mogą wynikać z mylnego założenia, że wszystkie bramki negujące działają podobnie, co jest błędem w zrozumieniu podstaw logiki cyfrowej. Dobrą praktyką w analizie bramek logicznych jest rysowanie tabel prawdy dla każdej z bramek, co może pomóc w lepszym zrozumieniu ich funkcji oraz różnic pomiędzy nimi. W kontekście projektowania układów cyfrowych, kluczowe jest, aby rozumieć, jakie funkcje logiczne realizują poszczególne bramki, aby unikać pomyłek i budować niezawodne systemy.

Pytanie 4

Wartość napięcia wskazana przez woltomierz wynosi

Ilustracja do pytania
A. 8 V
B. 4 V
C. 17 V
D. 40 V
Wybierając inną wartość napięcia, można napotkać kilka typowych błędów myślowych, które prowadzą do nieprawidłowych wniosków. Przykład 4 V może wydawać się atrakcyjny w kontekście niskich napięć, jednak nie ma żadnego uzasadnienia w kontekście wizualnego odczytu woltomierza. Wartość 40 V jest znacznie wyższa niż wskazanie urządzenia, co może sugerować brak zrozumienia skali pomiarowej. Wartości napięcia często są mylone z innymi wielkościami elektrycznymi, co prowadzi do nieporozumień. Wybierając 17 V, można zauważyć podobny błąd w ocenie, bowiem wskazanie woltomierza znacznie odbiega od tej wartości. Takie pomyłki mogą wynikać z nieznajomości zasad odczytu oraz braku ostrożności w interpretacji wskazań. Kluczowe jest rozumienie, że woltomierze są narzędziami, które wymagają precyzyjnego stosowania oraz umiejętności interpretacji wyników w kontekście zastosowanego sprzętu. Wiedza na temat właściwego użytkowania instrumentów pomiarowych jest niezbędna do uzyskania wiarygodnych wyników. Dlatego warto kształcić się w zakresie podstawowych zasad pomiarowych oraz ich zastosowania w praktyce.

Pytanie 5

Na obudowie urządzenia wystąpiło niebezpieczne napięcie dotykowe. Który wyłącznik zredukowałby zasilanie urządzenia, gdy ktoś dotknie jego obudowy?

A. Nadprądowy
B. Różnicowoprądowy
C. Termiczny
D. Silnikowy
Wyłącznik różnicowoprądowy (RCD) jest urządzeniem zabezpieczającym, które ma na celu ochronę ludzi przed porażeniem prądem elektrycznym. Działa na zasadzie monitorowania różnicy prądów wpływających i wypływających z obwodu. W momencie, gdy dochodzi do upływu prądu, na przykład w wyniku uszkodzenia izolacji lub dotknięcia obudowy przez osobę, RCD natychmiast odłącza zasilanie. Tego typu wyłączniki są standardem w instalacjach elektrycznych w miejscach, gdzie może wystąpić zagrożenie porażeniem, takich jak łazienki, kuchnie oraz miejsca pracy. Przykład zastosowania to montaż RCD w obwodach zasilających gniazda elektryczne w domach, które chronią użytkowników przed niebezpiecznym napięciem dotykowym. Zgodnie z normą PN-EN 61008, wyłączniki różnicowoprądowe powinny być stosowane tam, gdzie istnieje ryzyko kontaktu z wodą, aby minimalizować ryzyko wystąpienia poważnych wypadków. Działanie RCD jest szybkie, często w ciągu 25-30 ms, co czyni je niezwykle skutecznym w ochronie przed porażeniem.

Pytanie 6

Podaj właściwą sekwencję montażu składników w układzie przygotowania sprężonego powietrza, zaczynając od strony złożonego systemu pneumatycznego.

A. Smarownica, manometr, reduktor, filtr powietrza
B. Manometr, reduktor, smarownica, filtr powietrza
C. Reduktor, manometr, filtr powietrza, smarownica
D. Filtr powietrza, manometr, reduktor, smarownica

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, która wskazuje na kolejność smarownica, manometr, reduktor, filtr powietrza, jest poprawna, ponieważ odzwierciedla właściwą konfigurację montażu elementów w układzie przygotowania sprężonego powietrza. Smarownica jest pierwszym elementem, który powinien być zainstalowany bezpośrednio po źródle sprężonego powietrza. Jej zadaniem jest dostarczanie odpowiedniej ilości oleju do narzędzi i urządzeń pneumatycznych, co znacząco wpływa na ich żywotność i efektywność pracy. Następnie manometr, który monitoruje ciśnienie w układzie, powinien być zamontowany, aby umożliwić użytkownikowi bieżącą kontrolę ciśnienia roboczego. Reduktor, który reguluje ciśnienie, powinien być umieszczony w dalszej kolejności, co pozwala na dostosowanie ciśnienia do wymagań urządzeń zasilanych sprężonym powietrzem. Na końcu, filtr powietrza powinien oczyszczać powietrze przed jego dostarczeniem do urządzeń, co jest kluczowe dla zapewnienia ich prawidłowego funkcjonowania. Taka kolejność montażu jest zgodna z najlepszymi praktykami w dziedzinie pneumatyki, co gwarantuje niezawodność oraz efektywność całego układu.

Pytanie 7

Spośród wymienionych zjawisk fizycznych, w urządzeniach przekształcających liniowe przemieszczenie na sygnał elektryczny, najczęściej stosowane jest zjawisko

A. magnotorezystancji (Gaussa)
B. piezoelektryczne
C. zwane efektem Dopplera
D. magnetooptyczne (Faradaya)

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zjawisko magnotorezystancji (Gaussa) jest szeroko stosowane w czujnikach przekształcających przemieszczenie liniowe na sygnał elektryczny ze względu na swoją wysoką czułość i precyzję. Magnotorezystancja polega na zmianie oporu elektrycznego materiału w wyniku działania pola magnetycznego. W praktyce, czujniki te mogą być wykorzystane w różnych aplikacjach, takich jak automatyka przemysłowa, robotyka oraz systemy pomiarowe. W standardach branżowych, takich jak IEC 61131, podkreśla się znaczenie precyzyjnych pomiarów w systemach automatyzacji, co czyni rozwiązania bazujące na magnotorezystancji preferowanym wyborem. Przykładem może być zastosowanie w czujnikach położenia w silnikach elektrycznych, gdzie dokładne informacje o przemieszczeniu są kluczowe dla efektywności i bezpieczeństwa operacji. Ponadto, magnotorezystancyjne czujniki są odporne na zakłócenia elektromagnetyczne, co zwiększa ich niezawodność w trudnych warunkach przemysłowych. Z tego względu, ich wykorzystanie w nowoczesnych systemach pomiarowych stanowi standard w wielu branżach.

Pytanie 8

Zgodnie z normami ochrony przeciwpożarowej, do gaszenia urządzeń elektrycznych pod napięciem przekraczającym 1000 V należy zastosować gaśnicę

A. proszkową oznaczoną ABC/E
B. śniegową oznaczoną BC
C. pianową oznaczoną AF
D. proszkową oznaczoną ABC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź z gaśnicą proszkową ABC/E jest jak najbardziej trafna. Ta klasa gaśnicza jest stworzona do gaszenia pożarów, które mogą się zdarzyć w urządzeniach elektrycznych, gdy napięcie przekracza 1000 V. Gaśnice proszkowe ABC/E zawierają specjalny proszek, który świetnie radzi sobie z pożarami różnych typów – od ciał stałych, przez płyny, aż po gazy. To oznaczenie 'E' mówi nam, że można ich używać przy urządzeniach elektrycznych. Gdy wybuchnie pożar w elektryce, to ważne, żeby nie używać wody ani gaśnic pianowych, bo to może prowadzić do porażenia prądem. Przykładem może być sytuacja, kiedy w biurze zaczyna się palić komputer – wtedy użycie gaśnicy ABC/E pozwala na szybkie i bezpieczne ugaszenie pożaru, bez ryzyka dla ludzi. Przepisy przeciwpożarowe oraz normy, jak PN-EN 2, pokazują, jak ważny jest dobór odpowiedniego sprzętu gaśniczego w miejscach z elektroniką.

Pytanie 9

Rezystancja którego z podanych czujników zmniejsza się w miarę wzrostu temperatury?

A. Termopary J
B. Termistora NTC
C. Termopary K
D. Termistora PTC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Termistory NTC (Negative Temperature Coefficient) to elementy, których rezystancja maleje w miarę wzrostu temperatury. Działa to na zasadzie, że wzrost temperatury powoduje zwiększenie energii kinetycznej nośników ładunku, co prowadzi do większej przewodności elektrycznej. Przykłady zastosowania termistorów NTC obejmują czujniki temperatury w termostatach oraz systemy monitorowania temperatury w elektronice. Są one szczególnie popularne w aplikacjach wymagających precyzyjnego pomiaru temperatury oraz w obwodach zabezpieczających, gdzie mogą ograniczać prąd w przypadku przegrzania. Dobre praktyki branżowe zalecają stosowanie termistorów NTC w systemach, gdzie wymagana jest szybka reakcja na zmiany temperatury, co czyni je idealnym rozwiązaniem dla automatyki przemysłowej i systemów HVAC. Termistory NTC są również zgodne z wieloma standardami dotyczącymi pomiaru temperatury, co podnosi ich wiarygodność jako czujników.

Pytanie 10

Materiał o których właściwościach należy wybrać do konstrukcji lekkiej i odpornej na odkształcenia mobilnej podstawy konstrukcyjnej urządzenia mechatronicznego?

Gęstość
ρ
[g/cm3]
Granica plastyczności
Re
[MPa]
A.2,7040
B.2,75320
C.7,70320
D.8,8535
A. D.
B. A.
C. B.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór odpowiedzi B jest właściwy, ponieważ materiał ten ma kluczowe właściwości, które spełniają wymagania dla konstrukcji lekkiej i odpornej na odkształcenia. Gęstość materiału wynosząca 2,75 g/cm³ sprawia, że jego masa jest zredukowana, co jest istotne w przypadku urządzeń mechatronicznych, gdzie waga ma bezpośredni wpływ na mobilność i wydajność. Ponadto, granica plastyczności 320 MPa oznacza, że materiał jest w stanie wytrzymać znaczne obciążenia bez trwałych deformacji. Przykładowe zastosowania obejmują elementy konstrukcyjne w robotyce oraz podzespoły w przenośnych urządzeniach, które muszą zachować swoją formę podczas użytkowania. Zgodnie z dobrymi praktykami inżynieryjnymi, wybór materiałów o niskiej gęstości i wysokiej wytrzymałości jest kluczowy dla zapewnienia efektywności energetycznej i niezawodności urządzeń. W branży mechatronicznej często wykorzystuje się materiały kompozytowe, które łączą te pożądane właściwości, co dodatkowo podkreśla znaczenie odpowiedniego doboru materiałów.

Pytanie 11

Który element został oznaczony na rysunku symbolem literowym X?

Ilustracja do pytania
A. Sensor ciśnienia.
B. Zawór bezpieczeństwa.
C. Tłumik hałasu.
D. Korek uszczelniający.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Element oznaczony na rysunku symbolem literowym X to tłumik hałasu, który pełni kluczową rolę w różnych systemach mechanicznych i hydraulicznych. Tłumiki hałasu są stosowane do redukcji niepożądanych dźwięków generowanych przez przepływające medium, takie jak powietrze lub ciecz. Ich projekt oparty jest na zasadach akustyki i inżynierii mechanicznej, co pozwala na skuteczne tłumienie fal dźwiękowych. W zastosowaniach przemysłowych, takich jak systemy pneumatyczne i hydrauliczne, tłumiki hałasu przyczyniają się nie tylko do poprawy komfortu pracy, ale także do ochrony elementów układu przed uszkodzeniami spowodowanymi wibracjami. Dobrze zaprojektowany tłumik hałasu może również wpłynąć na wydajność systemu, minimalizując straty energii związane z hałasem. W branży stosuje się różne normy dotyczące poziomów hałasu, co sprawia, że stosowanie tłumików hałasu staje się nie tylko zalecane, ale wręcz wymagane w wielu zastosowaniach, aby zapewnić zgodność z regulacjami ochrony środowiska i zdrowia pracowników.

Pytanie 12

Oceń na podstawie przedstawionej na rysunku dokumentacji stan łożysk silnika napędowego o mocy 35 kW bez specjalnych fundamentów, jeżeli prędkość drgań łożysk zmierzona podczas przeglądu wynosi 1,9 mm/s.

UrządzenieKlasa IKlasa IIKlasa IIIKlasa IV
Prędkość
drgań RMS
mm/s
0.28
0.45
0.71
1.12
1.8
2.8
4.5
7.1
11.2
18
28
45.9

Legenda tabeli:

Stan dobry
Stan zadawalający
Stan przejściowo dopuszczalny
Stan niedopuszczalny

Klasa I: poszczególne podzespoły silników i urządzeń stanowią integralną część urządzenia podczas normalnej pracy. Przykładem urządzeń w tej kategorii są silniki elektryczne o maksymalnej mocy 15 kW.

Klasa II: średniej wielkości urządzenia (zwykle silniki elektryczne o mocy od 15 kW do 75 kW) bez specjalnych fundamentów, sztywno zamontowane silniki lub urządzenia (do 300 kW) na specjalnych fundamentach.

Klasa III: duże silniki napędowe i inne duże urządzenia z wirującą masą zamontowane na sztywnych i ciężkich podstawach, stosunkowo sztywne w kierunku pomiaru drgań.

Klasa IV: duże silniki napędowe i inne duże urządzenia z wirującą masą zamontowane na podstawach, stosunkowo podatnych w kierunku mierzonych drgań (np. turbo generatory i turbiny gazowych o mocy wyjściowej powyżej 10 MW).

A. Niedopuszczalny.
B. Przejściowo dopuszczalny.
C. Zadawalający.
D. Dobry.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'Zadawalający' jest w porządku, bo patrząc na tabelę, prędkość drgań 1,9 mm/s to stan, który nie wymaga od razu interwencji. Dla silników 35 kW bez specjalnych fundamentów wygląda na to, że jeśli mamy wartości RMS drgań w okolicy 1,5-2,5 mm/s, to wszystko gra. To znaczy, że łożyska pracują w miarę dobrze i nie ma co się martwić o poważne awarie. Z mojego doświadczenia, umiejętność rozpoznawania tych drgań jest super ważna w utrzymaniu ruchu, bo dzięki temu można wychwycić problemy na wczesnym etapie. Regularne pilnowanie tych parametrów w naszej pracy obniża koszty napraw, a efektywność produkcji rośnie.

Pytanie 13

Jaką funkcję pełni element V2 w układzie przedstawionym na rysunku?

Ilustracja do pytania
A. Zwiększa prędkość wysuwania tłoczyska siłownika.
B. Zmniejsza prędkość wsuwania tłoczyska siłownika.
C. Zmniejsza prędkość wysuwania tłoczyska siłownika.
D. Zwiększa prędkość wsuwania tłoczyska siłownika.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Element V2 odgrywa kluczową rolę w układzie hydraulicznym, jako zawór jednokierunkowy umożliwiający swobodny przepływ cieczy tylko w jednym kierunku. W kontekście działania siłownika, V2 zostało zaprojektowane w sposób, który pozwala na zwiększenie prędkości wsuwania tłoczyska siłownika. Kiedy tłoczysko jest wsuwane, ciśnienie cieczy w układzie zmusza ją do przepływu przez zawór, co przyspiesza ten proces. Warto zauważyć, że zastosowanie zaworów jednokierunkowych jest powszechne w wielu aplikacjach hydraulicznych, gdzie kontrola kierunku przepływu cieczy jest kluczowa. Przykłady zastosowania obejmują maszyny budowlane, w których precyzyjne sterowanie ruchem siłowników jest niezbędne do efektywności pracy. Dobre praktyki branżowe zalecają regularne sprawdzanie i konserwację takich elementów, aby zapewnić ich odpowiednie działanie i uniknąć awarii, które mogą prowadzić do przestojów w pracy maszyn.

Pytanie 14

Przekładnia przedstawiona na rysunku składa się

Ilustracja do pytania
A. ze ślimaka i zębatki.
B. z wieńca zębatego i ślimaka.
C. z koła koronowego i ślimaka.
D. ze ślimaka i ślimacznicy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź wskazuje na skład przekładni, która składa się z ślimaka oraz ślimacznicy. Ślimak jest elementem o spiralnym kształcie, który zazwyczaj pełni rolę elementu napędowego. Jego konstrukcja pozwala na wytwarzanie ruchu obrotowego, który jest następnie przenoszony na ślimacznicę – koło z zębami wewnętrznymi, które współpracuje z ślimakiem. Ta specyficzna kombinacja elementów mechanicznych jest szeroko stosowana w różnych aplikacjach inżynieryjnych, np. w przekładniach stosowanych w maszynach przemysłowych, w mechanizmach w windach czy w układach napędowych. Dzięki spiralnej geometrii, przekładnie ślimakowe charakteryzują się dużą zdolnością do przenoszenia momentu obrotowego oraz możliwością redukcji prędkości obrotowej. Tego rodzaju przekładnie są cenione za swoją kompaktowość oraz efektywność, co sprawia, że są zgodne z nowoczesnymi standardami projektowania inżynieryjnego, które kładą nacisk na wydajność oraz niezawodność.

Pytanie 15

~230V Zadaniem kondensatora C1 w układzie, którego schemat przedstawiono na rysunku, jest

Ilustracja do pytania
A. stabilizacja sygnału na wyjściu układu.
B. zmiana przebiegu napięcia wyjściowego z dwupołówkowego na jednopołówkowy.
C. zmniejszenie tętnień.
D. zmiana przebiegu napięcia wyjściowego z jednopołówkowego na dwupołówkowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kondensator C1 w analizowanym układzie ma kluczową rolę w procesie wygładzania napięcia wyjściowego. Po prostowaniu sygnału, napięcie wyjściowe charakteryzuje się obecnością tętnień, które mogą wpływać na działanie innych komponentów układu elektronicznego. Kondensator działa jako element filtrujący, gromadząc ładunek elektryczny w momentach wzrostu napięcia i oddając go w trakcie jego spadku. To zjawisko pozwala na uzyskanie bardziej stabilnego i jednolitego napięcia, co jest kluczowe w wielu zastosowaniach, takich jak zasilacze impulsowe, układy audio czy systemy zasilania dla mikroprocesorów. W praktyce, dobór odpowiedniego kondensatora, uwzględniającego wartość pojemności oraz napięcie znamionowe, jest istotny dla zapewnienia efektywnego wygładzania. Standardy branżowe, takie jak IEC 60950, podkreślają znaczenie odpowiednich rozwiązań filtracyjnych dla zwiększenia niezawodności działania układów elektronicznych, co czyni tę wiedzę niezbędną dla inżynierów projektujących układy elektroniczne.

Pytanie 16

Na podstawie przedstawionego diagramu określ którym symbolem jest oznaczony element powodujący wysterowanie zaworu Y1 w pierwszym kroku działania.

Ilustracja do pytania
A. T
B. 1S1
C. 2A1
D. B1

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 1S1 jest poprawna, ponieważ na diagramie to właśnie ten symbol reprezentuje element, który aktywuje zawór Y1 w pierwszym kroku działania. Zrozumienie tego schematu jest kluczowe dla prawidłowego działania systemów automatyki, w których precyzyjne sterowanie zaworami może mieć bezpośredni wpływ na efektywność procesów. W kontekście automatyki przemysłowej, elementy jak 1S1 często pełnią rolę czujników lub sygnałów sterujących, które decydują o otwarciu lub zamknięciu zaworu w odpowiedzi na zmiany warunków operacyjnych. Dobrą praktyką jest regularne analizowanie i testowanie takich schematów, aby upewnić się, że każdy element działa zgodnie z przewidzianymi normami. Ponadto, znajomość oznaczeń i ich funkcji jest niezbędna w kontekście zgodności z normą ISO 1219, która określa standardy dla symboli i schematów używanych w pneumatyce oraz hydraulice.

Pytanie 17

Wskaż opis ruchu tłoczyska siłownika 1A zgodny z zamieszczonym rysunkiem.

Ilustracja do pytania
A. Wysuw po naciśnięciu przycisku 1S3, gdy tłok całkowicie wsunięty i powrót po określonym czasie od zwarcia łącznika krańcowego 1S2.
B. Wysuw po określonym czasie od naciśnięcia przycisku 1S3 i natychmiastowy powrót po zwarciu łącznika krańcowego 1S2.
C. Wysuw po określonym czasie od naciśnięcia przycisku 1S3 i powrót po określonym czasie od zwarcia łącznika krańcowego 1S2.
D. Wysuw po naciśnięciu przycisku 1S3, gdy tłok jest całkowicie wsunięty i natychmiastowy powrót po zwarciu łącznika krańcowego 1S2.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dobra robota, wybrałeś poprawną odpowiedź! Działa to tak, że siłownik 1A zaczyna pracować dopiero, gdy tłok jest całkowicie wsunięty. To ważne, bo jeśli tłok byłby wysunięty, siłownik nie mógłby się ruszyć, co ma znaczenie dla bezpieczeństwa. Po naciśnięciu przycisku 1S3 siłownik nie działa od razu. Zamiast tego, trzeba poczekać, aż minie chwila. To oznacza, że istnieje element czasowy w układzie, co często się stosuje, żeby uniknąć problemów, które mogą się zdarzyć przy natychmiastowej reakcji. Dzięki temu możesz kontrolować ruchy precyzyjnie. Przykłady tego typu zastosowań znajdziesz chociażby w robotyce, gdzie każdy ruch musi być zaplanowany, żeby wszystko działało sprawnie i bezpiecznie.

Pytanie 18

W systemie przygotowania sprężonego powietrza elementy są instalowane w następującej kolejności:

A. reduktor, smarownica, filtr powietrza
B. reduktor, filtr powietrza, smarownica
C. smarownica, filtr powietrza, reduktor
D. filtr powietrza, reduktor, smarownica

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "filtr powietrza, reduktor, smarownica" jest poprawna, ponieważ kolejność montażu tych elementów ma kluczowe znaczenie dla efektywności oraz żywotności układu sprężonego powietrza. Filtr powietrza jest pierwszym elementem, który powinien być zainstalowany, ponieważ jego zadaniem jest usunięcie zanieczyszczeń i wilgoci z powietrza atmosferycznego, co zapobiega uszkodzeniom pozostałych komponentów systemu. Następnie montowany jest reduktor ciśnienia, który reguluje ciśnienie powietrza dostarczanego do urządzeń roboczych, zapewniając optymalne warunki pracy. Na końcu montowana jest smarownica, która dostarcza odpowiednią ilość oleju do narzędzi pneumatycznych, co wpływa na ich skuteczność oraz wydajność. Zgodnie z normami branżowymi, takimi jak ISO 8573, zachowanie tej kolejności pozwala na utrzymanie wysokiej jakości powietrza oraz minimalizację kosztów eksploatacji, co jest kluczowe w wielu zastosowaniach przemysłowych.

Pytanie 19

Zespół elementów przedstawiony na rysunku pełni funkcję

Ilustracja do pytania
A. filtra.
B. prostownika.
C. powielacza napięcia.
D. stabilizatora napięcia.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prostowniki są kluczowymi elementami w układach elektronicznych, które przekształcają prąd przemienny (AC) na prąd stały (DC). W przedstawionym schemacie mamy do czynienia z mostkiem prostowniczym, który składa się z czterech diod, co pozwala na wyprostowanie obu połówek sygnału AC. Dzięki temu uzyskujemy stabilny prąd stały, który może być użyty do zasilania różnych urządzeń elektronicznych. Prostowniki są wykorzystywane w zasilaczach, ładowarkach oraz w systemach zasilania energią odnawialną, takich jak panele słoneczne. Dobrze zaprojektowane układy prostownicze uwzględniają także aspekty związane z filtracją, aby zminimalizować tętnienia w prądzie stałym, co jest zgodne z najlepszymi praktykami w dziedzinie inżynierii elektrycznej. Prostowniki są fundamentalnym elementem w konwersji energii elektrycznej i ich zrozumienie jest niezbędne dla każdego inżyniera elektryka.

Pytanie 20

Ilustracja przedstawia proces

Ilustracja do pytania
A. wiercenia.
B. gwintowania.
C. nitowania.
D. frezowania.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "nitowania" to strzał w dziesiątkę! Ilustracja dobrze pokazuje, jak ten proces działa. Nitowanie jest naprawdę popularne w takich branżach jak lotnictwo, motoryzacja czy budownictwo, gdzie odporne połączenia są super ważne. Cała robota z nitowaniem zaczyna się od włożenia nitu w otwory elementów, które chcemy połączyć. Potem używamy odpowiedniego narzędzia, żeby uformować końcówkę nitu, co sprawia, że połączenie jest mocne. Na końcu zgniecione zostaje drugie końcówka nitu, co zapewnia trwałe złączenie. W praktyce często wybiera się nitowanie, bo spawanie czasem może osłabić materiał. Warto znać te techniki, żeby inżynierowie i technicy mogli zadbać o bezpieczeństwo i trwałość konstrukcji.

Pytanie 21

Aby zobrazować funkcjonowanie systemu mechatronicznego na panelu HMI, należy zainstalować oprogramowanie typu

A. CAM
B. SCADA
C. CAD
D. CAE

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź SCADA (Supervisory Control and Data Acquisition) jest poprawna, ponieważ oprogramowanie to jest kluczowe dla wizualizacji i monitorowania systemów mechatronicznych w czasie rzeczywistym. SCADA umożliwia integrację różnych urządzeń i czujników, co pozwala na efektywne zbieranie danych oraz ich analizę. Dzięki graficznym interfejsom użytkownika (HMI), operatorzy mogą w prosty sposób przeglądać dane, reagować na alarmy oraz zarządzać procesami. Przykładem zastosowania SCADA może być kontrola procesów produkcyjnych w fabrykach, gdzie system zbiera informacje o stanie maszyn i automatycznie podejmuje działania w celu utrzymania wydajności produkcji. W branży przemysłowej SCADA jest standardem, który wspiera automatyzację oraz poprawia efektywność operacyjną, wpisując się w najlepsze praktyki zarządzania procesami. Dodatkowo, wiele systemów SCADA jest zgodnych z międzynarodowymi standardami, co zapewnia ich interoperacyjność i umożliwia integrację z innymi systemami zarządzania.

Pytanie 22

Pralka automatyczna nie reaguje po naciśnięciu przycisku zasilania. Co może być przyczyną takiej sytuacji?

A. niewłaściwym zerowaniem obudowy silnika pralki
B. usterką silnika pralki
C. brakiem dopływu wody do urządzenia
D. brakiem zasilania elektrycznego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Brak zasilania napięciem elektrycznym jest najczęstszą przyczyną, dla której pralka automatyczna nie reaguje po wciśnięciu przycisku zasilania. W praktyce, przed rozpoczęciem jakiejkolwiek diagnostyki, warto upewnić się, że urządzenie jest prawidłowo podłączone do gniazdka i że gniazdko jest sprawne. Testowanie gniazdka za pomocą innego urządzenia, np. lampki, może potwierdzić obecność napięcia. W sytuacji, gdy zasilanie jest prawidłowe, dalsza kontrola powinna obejmować przewody zasilające i wtyczki, które mogą ulec uszkodzeniu. W standardzie instalacji elektrycznych, aby zapewnić bezpieczeństwo urządzeń, należy stosować odpowiednie zabezpieczenia, takie jak bezpieczniki czy wyłączniki różnicowoprądowe. Ponadto, regularne przeglądy instalacji elektrycznej są zalecane, aby unikać problemów związanych z zasilaniem, co jest zgodne z dobrymi praktykami w dziedzinie bezpieczeństwa urządzeń AGD.

Pytanie 23

Wskaż rodzaj zaworu przedstawiony za pomocą symbolu graficznego.

Ilustracja do pytania
A. Szybkiego spustu.
B. Podwójnego sygnału.
C. Dławiąco-zwrotny.
D. Przełącznik obiegu.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to przełącznik obiegu, który jest wykorzystywany w systemach pneumatycznych i hydraulicznych do zarządzania przepływem medium w zależności od sygnałów ciśnieniowych. Symbol graficzny przedstawiający taki zawór informuje o jego funkcji, która jest analogiczna do operacji logicznej OR. W praktyce oznacza to, że zawór ten może kierować przepływ medium do jednego z dwóch obiegów w odpowiedzi na wprowadzone sygnały. Przełączniki obiegu są powszechnie stosowane w automatyce przemysłowej, szczególnie w aplikacjach wymagających zmiany kierunku przepływu, co wpływa na efektywność i wydajność systemów. Zgodnie z normami branżowymi, odpowiednie oznaczenie i zrozumienie symboliki zaworów jest kluczowe dla projektowania systemów, ich konserwacji oraz szybkiej identyfikacji w przypadku awarii. Wiedza na temat przełączników obiegu pozwala inżynierom lepiej planować i optymalizować procesy produkcyjne, co jest istotnym elementem nowoczesnego zarządzania automatyką.

Pytanie 24

Która pompa hydrauliczna zbudowana jest z elementów przedstawionych na rysunku?

Ilustracja do pytania
A. Śrubowa.
B. Tłokowa osiowa.
C. Zębata.
D. Tłokowa promieniowa.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pompa śrubowa, którą zidentyfikowałeś, wyróżnia się konstrukcją opartą na dwóch śrubach, które obracają się w przeciwnych kierunkach. Taka konstrukcja pozwala na efektywne przemieszczanie cieczy w zamkniętej przestrzeni, co czyni ją idealnym rozwiązaniem w aplikacjach wymagających wysokiej wydajności i stabilności. Pompy śrubowe są często wykorzystywane w przemyśle naftowym oraz chemicznym, gdzie transportuje się substancje o dużej lepkości. Dzięki swojej konstrukcji, pompy te charakteryzują się niskimi pulsacjami i możliwością pracy przy dużych obciążeniach. W praktyce, stosuje się je również w systemach nawadniania oraz w instalacjach HVAC, gdzie ich niezawodność i trwałość są kluczowe. Posiadając wiedzę na temat budowy i funkcji pomp śrubowych, można lepiej dobierać odpowiednie urządzenia do specyficznych potrzeb przemysłowych, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 25

W układzie przedstawionym na ilustracji wykonano pomiary rezystancji pomiędzy punktem zasilania +24 V a kolejnymi punktami wejściowymi sterownika PLC. Otrzymane wyniki zapisano w tabeli. Które elementy (łączniki sterownicze, kontaktrony) powinny zostać wymienione?

Mierzony
odcinek
Wartość zmierzonej
rezystancji
+24 V / WE11,02 Ω
+24 V / WE2
+24 V / WE3
+24 V / WE42,04 Ω
+24 V / WE5
+24 V / WE62,12 Ω
Ilustracja do pytania
A. S0 i S1
B. B3 i B5
C. S0 i B2
D. B2 i B4

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór odpowiedzi B3 i B5 jest poprawny ze względu na analizę wartości rezystancji zmierzonych pomiędzy punktem zasilania a wejściami sterownika PLC. Normą dla sprawnych połączeń jest niska rezystancja, co wskazuje na prawidłowe funkcjonowanie obwodu. Wartości rezystancji dla WE2 oraz WE5 wynoszą nieskończoność, co sugeruje, że występuje przerwa w obwodzie. W tym przypadku należy skupić się na łącznikach B3 i B5, które są odpowiedzialne za te połączenia. Wymiana tych elementów jest kluczowa dla zapewnienia ciągłości pracy systemu i unikania błędów w sterowaniu. W kontekście stosowania urządzeń automatyki, ważne jest, aby regularnie przeprowadzać pomiary rezystancji oraz analizować wyniki, co pozwala na wczesne wykrywanie usterek i planowanie konserwacji. Praktyczne przykład to regularne inspekcje instalacji, które mogą zapobiec awariom i wpłynąć na wydajność całego układu.

Pytanie 26

Którego z wymienionych narzędzi należy użyć do odkręcenia śruby przedstawionej na ilustracji?

Ilustracja do pytania
A. Wkrętaka z końcówką krzyżową.
B. Klucza płaskiego.
C. Wkrętaka z końcówką torx.
D. Klucza imbusowego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wkrętak z końcówką torx jest narzędziem idealnie przystosowanym do pracy z śrubami torx, które mają sześcioramienną główkę. Jego konstrukcja pozwala na doskonałe dopasowanie do kształtu śruby, co z kolei minimalizuje ryzyko poślizgu i uszkodzenia zarówno narzędzia, jak i samej śruby. Wkrętak torx zapewnia również lepszy moment obrotowy w porównaniu do standardowych wkrętaków, co pozwala na skuteczniejsze odkręcanie lub przykręcanie śrub. W zastosowaniach przemysłowych i technicznych, śruby torx są często preferowane ze względu na ich wytrzymałość i zdolność do przenoszenia większych obciążeń. Dobór odpowiedniego narzędzia jest kluczowy dla efektywności prac montażowych czy serwisowych, a stosowanie wkrętaka torx w przypadku śrub tego typu jest zgodne z branżowymi standardami, co wpływa na jakość i bezpieczeństwo wykonywanych prac.

Pytanie 27

Jakie medium powinno być użyte do łączenia systemów komunikacyjnych w obiekcie przemysłowym, gdzie występują znaczące zakłócenia elektromagnetyczne?

A. Światłowód
B. Sygnał radiowy
C. Kabel UTP
D. Kabel telefoniczny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Światłowód to najskuteczniejsze medium wykorzystywane do komunikacji w środowiskach, gdzie występują silne zakłócenia elektromagnetyczne. Jego konstrukcja oparta na szkle lub tworzywie sztucznym pozwala na przesyłanie sygnałów świetlnych, co eliminuje problemy związane z zakłóceniami elektromagnetycznymi, które mogą wpływać na inne media transmisyjne, takie jak kable miedziane. W praktyce, zastosowanie światłowodów w halach przemysłowych, w pobliżu dużych maszyn czy urządzeń generujących pole elektromagnetyczne, zapewnia stabilną i niezawodną komunikację. Przykładem może być wdrożenie infrastruktury światłowodowej w fabrykach produkcyjnych, gdzie precyzyjna i szybka wymiana danych pomiędzy różnymi sekcjami jest kluczowa dla efektywności procesów produkcyjnych. Światłowody są także zgodne z wieloma normami, takimi jak ISO/IEC 11801, które definiują standardy kablowe i zapewniają wysoką jakość sygnału oraz bezpieczeństwo w instalacjach telekomunikacyjnych. Dodatkowo, światłowody są odporne na działanie wysokich temperatur oraz chemikaliów, co czyni je idealnym rozwiązaniem w trudnych warunkach przemysłowych.

Pytanie 28

Jak definiuje się natężenie przepływu Q cieczy w rurociągu?

A. iloczyn ciśnienia cieczy oraz pola przekroju rurociągu.
B. stosunek pola przekroju rurociągu do prędkości, z jaką ciecz przepływa.
C. stosunek objętości cieczy, która przechodzi przez przekrój do czasu, w jakim dokonuje się ten przepływ.
D. iloczyn prędkości cieczy oraz czasu jej przepływu.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź definiuje natężenie przepływu Q jako stosunek objętości cieczy przepływającej przez przekrój poprzeczny rurociągu do czasu, w którym ta objętość przechodzi przez dany przekrój. Wzór na natężenie przepływu można zapisać jako Q = V/t, gdzie V to objętość cieczy, a t to czas. To podejście jest fundamentalne w hydraulice i inżynierii cieczy, ponieważ pozwala na dokładne określenie ilości cieczy przepływającej przez system. W praktyce, znajomość natężenia przepływu jest kluczowa przy projektowaniu systemów wodociągowych, kanalizacyjnych oraz instalacji przemysłowych, gdzie zachowanie odpowiednich parametrów przepływu jest niezbędne dla efektywności i bezpieczeństwa. W standardach branżowych, takich jak normy ISO dotyczące przepływu cieczy, definiuje się metody pomiaru Q, co podkreśla znaczenie tej wielkości w inżynierii fluidów. Właściwe obliczenie natężenia przepływu jest także kluczowe w kontekście zachowania energii w systemach hydraulicznych, co wpływa na dobór odpowiednich pomp oraz armatury.

Pytanie 29

W jaki sposób można zmienić kierunek obrotów wału w trójfazowym silniku indukcyjnym?

A. obniżyć częstotliwość zasilania
B. zwiększyć obciążenie
C. zamienić miejscami dwa dowolne fazowe przewody zasilające
D. podłączyć przewód neutralny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Żeby zmienić kierunek wirowania wału w silniku indukcyjnym trójfazowym, wystarczy zamienić ze sobą dwa przewody zasilające. To takie proste! Chodzi o to, żeby zmienić kolejność, w jakiej napięcie działa na uzwojenia silnika. W silnikach trójfazowych, wirujące pole magnetyczne jest tworzone przez zasilanie fazowe, a jego kierunek jest zależny od tego, w jakiej kolejności te fazy są podłączone. Jak zamienisz te przewody, to zmienia się sekwencja faz, a to prowadzi do tego, że kierunek wirowania się odwraca. W praktyce to jest często wykorzystywane i jeżeli robisz to na zgodnych zasadach bezpieczeństwa, nie ma ryzyka, że coś się zepsuje. W wielu branżach przemysłowych, gdzie używa się silników trójfazowych, umiejętność zmiany kierunku wirowania jest ważna, żeby maszyny działały prawidłowo, na przykład przy transporcie materiałów czy w produkcji. Zmiana kierunku wirowania sprawia też, że silnik lepiej dopasowuje się do zmieniających się warunków, co jest super istotne w efektywnym zarządzaniu energią.

Pytanie 30

Jaką metodę łączenia materiałów powinno się wybrać do skrzyżowania elementów ze stali nierdzewnej i mosiądzu?

A. Zgrzewanie
B. Sklejanie
C. Lutowanie twarde
D. Lutowanie miękkie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Lutowanie twarde jest optymalną techniką łączenia stali nierdzewnej i mosiądzu ze względu na różnice w temperaturze topnienia tych materiałów oraz ich właściwościach mechanicznych. Lutowanie twarde polega na stosowaniu lutów o temperaturze topnienia powyżej 450 °C, co pozwala na skuteczne tworzenie połączeń o wysokiej wytrzymałości. W przypadku stali nierdzewnej i mosiądzu lutowanie twarde jest szczególnie ważne, ponieważ oba materiały różnią się nie tylko składem chemicznym, ale również współczynnikiem rozszerzalności cieplnej. Lutowanie twarde zapewnia dobre wypełnienie szczelin oraz pozwala na uzyskanie mocnych połączeń, które są odporne na korozję, co ma kluczowe znaczenie w zastosowaniach inżynieryjnych i przemysłowych. Przykłady zastosowania lutowania twardego to produkcja sprzętu medycznego, elementów hydraulicznych oraz instalacji przemysłowych, gdzie wymagana jest trwałość i odporność na wysokie temperatury. Zastosowanie tej techniki w zgodzie z odpowiednimi normami, takimi jak PN-EN 1045, zapewnia jakość oraz niezawodność wykonanych połączeń.

Pytanie 31

Dławienie zaworów dławiąco-zwrotnych przedstawionych na schemacie ustawiono odpowiednio
1V1 – 50% i 1V2 - 100%. Określ prędkość wysuwania tłoczyska A1 przyjmując, że 0% oznacza całkowite dławienie, 100% oznacza brak dławienia.

Ilustracja do pytania
A. Dwa razy większa niż wsuwania.
B. Dwa razy mniejsza niż wsuwania.
C. Cztery razy większa niż wsuwania.
D. Równa prędkości wsuwania.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prędkość wysuwania tłoczyska A1 wynika z różnych ustawień dławienia zaworów 1V1 i 1V2. Zawór 1V1 jest ustawiony na 50% dławienia, co oznacza, że ogranicza on przepływ oleju podczas wsuwania tłoczyska. Natomiast zawór 1V2 jest na 100%, co oznacza, że nie występuje żadne dławienie podczas wysuwania. W praktyce oznacza to, że podczas wysuwania tłoczyska dostępny jest pełny przepływ oleju, co zwiększa jego prędkość. Zastosowanie takich regulacji jest istotne w automatyzacji procesów, gdzie kontrola nad prędkościami ruchów jest kluczowa dla efektywności i bezpieczeństwa. W standardach branżowych, takich jak ISO 4413 dotyczące hydrauliki, wskazuje się na znaczenie precyzyjnego dostosowania parametrów pracy urządzeń, co wpływa na ich żywotność oraz funkcjonalność. Dlatego zrozumienie, jak dławienie wpływa na prędkości wysuwania i wsuwania, jest niezbędne dla inżynierów projektujących systemy hydrauliczne.

Pytanie 32

Który z elementów tyrystora ma funkcję sterowania?

A. Anoda
B. Bramka
C. Katoda
D. Źródło

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Bramka tyrystora, znana również jako terminal bramkowy, odgrywa kluczową rolę w jego działaniu, pełniąc funkcję sterującą. W momencie dostarczenia sygnału sterującego na bramkę, dochodzi do zainicjowania przewodzenia prądu pomiędzy anodą a katodą. Tyrystory są szeroko stosowane w aplikacjach wymagających precyzyjnego zarządzania dużymi prądami i napięciami, takich jak prostowniki, regulatory mocy oraz układy przełączające. Dzięki możliwości sterowania prądem za pomocą niskiego napięcia na bramce, tyrystory pozwalają na zdalne zarządzanie obciążeniem bez konieczności stosowania skomplikowanych układów mechanicznych. W praktyce, tyrystory z bramką są kluczowe w systemach automatyki przemysłowej, gdzie stabilna i efektywna kontrola mocy jest niezbędna do zapewnienia prawidłowego funkcjonowania maszyn.

Pytanie 33

Aby zatrzymać tłoczysko siłownika pneumatycznego o działaniu dwustronnym w dowolnym miejscu, wykorzystuje się zawór

A. pięciodrogowy trójpołożeniowy (5/3)
B. trójdrogowy dwupołożeniowy (3/2)
C. trójdrogowy trójpołożeniowy (3/3)
D. pięciodrogowy dwupołożeniowy (5/2)

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zawór pięciodrogowy trójpołożeniowy (5/3) to właściwy wybór, bo pozwala na pełną kontrolę nad ruchem tłoczyska w siłowniku pneumatycznym. Można go zatrzymać w dowolnej pozycji, co jest super ważne w różnych zastosowaniach. Ten zawór ma pięć portów i trzy położenia robocze, co oznacza, że możemy zasilać siłownik z jednej strony (położenie 1), z drugiej (położenie 2) lub zatrzymać go w neutralnej pozycji (położenie 3). Dzięki temu wszystko działa precyzyjnie, co jest kluczowe np. w automatyce produkcyjnej czy robotyce. Używanie takich standardowych komponentów, jak zawory 5/3, to naprawdę dobry pomysł, bo zapewniają one niezawodność i łatwość w podłączeniu do innych części systemu. Przykładem mogą być linie montażowe, gdzie dokładne pozycjonowanie elementów jest mega istotne dla efektywności.

Pytanie 34

Jaką rolę pełni multiplekser?

A. Porównywanie sygnałów podawanych na wejścia
B. Kodowanie sygnałów na wejściach
C. Przesyłanie danych z wybranego wejścia na jedno wyjście
D. Przesyłanie danych z jednego wejścia do wybranego wyjścia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Multiplekser to kluczowy element w systemach cyfrowych, który umożliwia przesyłanie danych z jednego z kilku wejść do jednego wyjścia na podstawie sygnału kontrolnego. Dzięki tej funkcji, multipleksery są szeroko stosowane w telekomunikacji, gdzie pozwalają na efektywne zarządzanie pasmem i organizowanie ruchu danych. Na przykład, w systemach telewizyjnych, multipleksery pozwalają na wybór sygnału z różnych źródeł (np. anteny, kablówki, satelity) i kierowanie go do jednego wyjścia, aby zminimalizować potrzebne okablowanie i uprościć architekturę systemu. Ponadto, w kontekście inżynierii komputerowej, multipleksery są niezbędne do realizacji operacji arytmetycznych w jednostkach ALU (Arithmetic Logic Unit), gdzie wybierają odpowiednie dane do dalszej obróbki. Wykorzystanie standardów takich jak ITU-T G.703 w telekomunikacji pokazuje, jak ważne jest zastosowanie multiplekserów do synchronizacji i multiplexowania sygnałów w sieciach cyfrowych. Dobrze zaprojektowany multiplekser zwiększa wydajność systemów oraz pozwala na oszczędność miejsca i zasobów.

Pytanie 35

Określ, na podstawie schematu elektropneumatycznego, jak zachowa się układ po zadziałaniu czujnika 1B2.

Ilustracja do pytania
A. Zostanie włączone działanie przekaźnika KT3.
B. Zostanie wyłączone działanie przekaźnika KT3.
C. Tłoczysko siłownika 1A1 zostanie natychmiast wsunięte.
D. Tłoczysko siłownika 1A1 zostanie natychmiast wysunięte.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Po zadziałaniu czujnika 1B2, na podstawie schematu elektropneumatycznego, obwód elektryczny z przekaźnikiem KT3 zamyka się, co skutkuje jego aktywacją. Czujnik 1B2, będący elementem wykrywającym, uruchamia przepływ prądu do cewki przekaźnika, co prowadzi do włączenia jego działania. W praktyce, przekaźniki są kluczowymi elementami w automatyce przemysłowej, gdyż umożliwiają zdalne sterowanie różnymi układami pneumatycznymi i elektrycznymi. Włączenie KT3 jest istotne, gdyż umożliwia dalsze operacje, takie jak uruchomienie siłowników lub innych urządzeń w systemie. W kontekście standardów, zgodność z normami IEC 60204-1 dotyczącymi bezpieczeństwa w urządzeniach elektrycznych zapewnia, że elementy takie jak przekaźniki są wykorzystywane zgodnie z wymaganiami bezpieczeństwa, co podkreśla ich rolę w niezawodnych i bezpiecznych systemach automatyki.

Pytanie 36

Cechy medium energii pneumatycznej, jakim jest sprężone powietrze, eliminują ryzyko powstania zagrożenia takiego jak

A. nadmierny hałas generowany przez pracujące urządzenia
B. iskra prowadząca do pożaru lub wybuchu
C. przenoszenie wibracji na pracownika
D. odłamki rozrywanych maszyn

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprężone powietrze jako nośnik energii ma szereg właściwości, które sprawiają, że nie powoduje zagrożeń związanych z iskrą mogącą wywołać pożar lub wybuch. Główna cecha sprężonego powietrza polega na tym, że jest to gaz, który nie stwarza ryzyka zapłonu w normalnych warunkach użytkowania. W porównaniu do innych mediów energetycznych, takich jak gazy palne, sprężone powietrze jest bezpieczniejsze, ponieważ nie ma ryzyka powstania iskry w wyniku jego transportu czy użycia. Przykładowo, w przemyśle, gdzie sprężone powietrze jest powszechnie wykorzystywane do zasilania narzędzi pneumatycznych, nie ma obaw o zapłon, co czyni je idealnym rozwiązaniem w strefach zagrożonych wybuchem. Dodatkowo, według norm ISO 8573, które definiują jakość sprężonego powietrza, należy dążyć do minimalizacji zanieczyszczeń, co również wpływa na bezpieczeństwo. W praktyce, sprężone powietrze jest używane w systemach automatyki, pneumatycznych napędach cylindrów oraz w systemach transportu materiałów, gdzie bezpieczeństwo pracy jest kluczowe.

Pytanie 37

Podczas naprawy pieca indukcyjnego pracownik doznał poparzenia ramienia. Jaką pomoc powinien otrzymać w pierwszej kolejności?

A. zdjąć odzież i bieliznę z oparzonych miejsc, a następnie na ranę oparzeniową nałożyć okład z 3% roztworu sody oczyszczonej
B. zdjąć odzież i bieliznę z oparzonych miejsc, a następnie miejsca oparzone polewać wodą utlenioną
C. miejsca oparzone polewać zimną wodą, a następnie na ranę oparzeniową założyć jałowy opatrunek
D. miejsca oparzone posmarować tłustym kremem, a następnie na ranę oparzeniową zastosować okład z 1% kwasu octowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca polewania miejsc oparzonych zimną wodą jest prawidłowa, ponieważ pierwszym krokiem w przypadku oparzeń jest schłodzenie uszkodzonego miejsca. Schłodzenie oparzenia zimną wodą (najlepiej w temperaturze pokojowej lub lekko chłodnej) powinno trwać od 10 do 20 minut. Dzięki temu zmniejsza się ból oraz ogranicza głębokość oparzenia. Woda działa również jako czynnik nawilżający, co jest istotne, ponieważ oparzenia mogą prowadzić do dalszej utraty wilgoci. Po schłodzeniu, na oparzenie należy nałożyć jałowy opatrunek, co jest standardową praktyką w pierwszej pomocy. Opatrunek chroni ranę przed zanieczyszczeniami oraz sprzyja procesowi gojenia. Warto wspomnieć, że w przypadku poważniejszych oparzeń, w tym oparzeń drugiego i trzeciego stopnia, niezbędna jest konsultacja z lekarzem. Stosowanie jałowego opatrunku jest zgodne z wytycznymi zawartymi w podręcznikach dotyczących pierwszej pomocy."

Pytanie 38

Tłoczysko siłownika 1A1 powinno wysunąć się po wciśnięciu przycisku zaworu 1V1, a wsunąć po wciśnięciu przycisku zaworu 1V2. Układ sterowania pneumatycznego, połączony według schematu przedstawionego na rysunku, nie działa poprawnie. Przyczyną jest błędne połączenie

Ilustracja do pytania
A. zespołu przygotowania powietrza 1Z1 i zaworu 1V3
B. zaworów 1V1 i 1V3
C. zaworów 1V2 i 1V3
D. zaworu 1V3 i siłownika 1A1

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybrana odpowiedź jest prawidłowa, ponieważ zawór 1V3 ma kluczowe znaczenie w poprawnym działaniu siłownika 1A1 w omawianym układzie. Zawór 1V3 powinien kierować sprężone powietrze do siłownika w taki sposób, aby realizować wymagane ruchy tłoczyska. Po wciśnięciu przycisku zaworu 1V1, tłoczysko powinno się wysunąć, a po wciśnięciu przycisku zaworu 1V2, powinno się wsunąć. Jeśli zachowanie układu jest odwrotne, to oznacza, że połączenie między tym zaworem a siłownikiem jest błędne. W praktyce, przy projektowaniu układów pneumatycznych kluczowe jest przestrzeganie schematów połączeń oraz zrozumienie zasady działania poszczególnych komponentów. Użycie standardów, takich jak ISO 4414, może pomóc w zachowaniu odpowiednich norm bezpieczeństwa i efektywności działania systemu. Należy również pamiętać, że testowanie połączeń i ich poprawności jest istotnym krokiem podczas uruchamiania systemu, co ma na celu uniknięcie potencjalnych awarii w przyszłości.

Pytanie 39

Jaką wartość rezystancji powinien mieć rezystor R1 ograniczający prąd diody w obwodzie, którego schemat przedstawiono na rysunku?

Ilustracja do pytania
A. 1,2 kΩ
B. 12,0 kΩ
C. 1 200,0 kΩ
D. 120,0 kΩ

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 1,2 kΩ jest poprawna, ponieważ aby obliczyć wartość rezystora R1, musimy zrozumieć rolę, jaką odgrywa on w obwodzie ograniczającym prąd diody. Przy napięciu zasilania wynoszącym 12V i napięciu na diodzie równym 1,6V, różnica napięć wynosi 10,4V, którą musimy rozłożyć na rezystorze R1. Przypominając sobie prawo Ohma (V = I * R), mamy napięcie (V) wynoszące 10,4V i prąd (I) 0,01A. Stąd możemy obliczyć wartość rezystora R1: R = V/I = 10,4V/0,01A = 1040Ω, co po zaokrągleniu daje 1,2 kΩ. W praktyce, dobieranie odpowiednich wartości rezystorów jest kluczowe dla prawidłowego działania komponentów elektronicznych, aby uniknąć ich uszkodzenia, a także zapewnić stabilność w obwodzie. Dobre praktyki inżynierskie zalecają zawsze weryfikować obliczenia i rozważać tolerancje komponentów, co pozwala na zwiększenie niezawodności całego układu.

Pytanie 40

Z przedstawionego rysunku złożeniowego (a) oraz schematu montażowego (b) pompy zębatej wynika, że

Ilustracja do pytania
A. koło pasowe montowane jest przed uszczelnieniem.
B. pokrywa mocowana jest do korpusu przed montażem wału i osi.
C. do montażu pokrywy potrzebne są 2 wkręty.
D. koło zębate montowane na wale i zablokowane kołkiem.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Jak się przyjrzysz rysunkowi i schematowi montażowemu, to widać, że koło zębate na wale to naprawdę istotna część, żeby pompa zębata działała. To koło zębate (to oznaczone jako 7) jest na wale (oznaczonym jako 1) i jest przytrzymane kołkiem (oznaczonym jako 8). Wiesz, to jest bardzo ważne, żeby wszystko było zamocowane zgodnie z inżynieryjnymi zaleceniami. Dzięki temu pompa działa sprawniej i jest bardziej stabilna. Ja mam doświadczenie, że jak koło zębate nie jest dobrze zamocowane, to mogą być różne problemy — od niewłaściwej pracy aż po uszkodzenie mechanizmu. No i pamiętaj, przy montażu warto używać dobrych narzędzi i technik, takich jak odpowiednie momenty dokręcania, co często można znaleźć w instrukcji producenta. Zrozumienie tych zasad naprawdę pomaga w bezpiecznym użytkowaniu pomp w różnych zastosowaniach przemysłowych.