Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 3 grudnia 2025 11:33
  • Data zakończenia: 3 grudnia 2025 11:54

Egzamin niezdany

Wynik: 16/40 punktów (40,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Które z przedstawionych parametrów dotyczą wyłącznika silnikowego?

  • Napięcie zasilania 230 V AC
  • Styk separowany 2P
  • Zakres nastawy czasu 0,1 s ÷ 576 h
  • Rodzaje funkcji A, B, C, D
  • Ilość modułów 1
  • Stopień ochrony IP 20
  • Napięcie znamionowe łączeniowe 230/400 V AC
  • Prąd znamionowy 25 A
  • Prąd znamionowy różnicowy 100 mA
  • Stopień ochrony IP 40
  • Max. moc silnika 1,5 kW
  • Zakres nastawy wyzwalacza przeciążeniowego It = 2,5 ÷ 4 A
  • Zakres nastawy wyzwalacza zwarciowego Im = 56 A
  • Prąd znamionowy 20 A
  • Napięcie znamionowe 24 V AC
  • Konfiguracja zestyków 1 NO + 1 NC
  • Ilość modułów 1
  • Znamionowa moc przy napięciu 230 V: 4 kW
A.B.C.D.
A. C.
B. B.
C. D.
D. A.
Wybór odpowiedzi, która nie odnosi się do parametrów wyłącznika silnikowego, wskazuje na nieporozumienie dotyczące funkcji i zastosowania tego urządzenia w systemach elektrycznych. Wyłączniki silnikowe mają na celu ochronę silników przed przeciążeniem oraz zwarciem, a ich kluczowymi parametrami są maksymalna moc, prąd znamionowy oraz czas reakcji. Niezrozumienie tych podstawowych zasad może prowadzić do poważnych konsekwencji w kontekście bezpieczeństwa i efektywności instalacji elektrycznych. Nieopatrzne wybieranie wyłącznika bez znajomości jego maksymalnych parametrów może skutkować uszkodzeniem silnika, co wiąże się z kosztownymi naprawami oraz przestojami w pracy. Ponadto, brak wiedzy na temat standardów, takich jak IEC 60947-4-1, może prowadzić do zastosowania niewłaściwych rozwiązań, które nie spełniają wymogów bezpieczeństwa. Zrozumienie koncepcji dotyczących wyłączników silnikowych i ich specyfikacji jest kluczowe dla inżynierów oraz techników zajmujących się projektowaniem i utrzymywaniem infrastruktury elektrycznej. Dlatego ważne jest, aby zwracać uwagę na szczegółowe parametry techniczne przy doborze wyłącznika, aby uniknąć typowych błędów, które mogą wyniknąć z niedostatecznej wiedzy lub ignorancji branżowych standardów.

Pytanie 2

Posługując się tabelą dobierz wyłącznik nadmiarowo-prądowy o największym prądzie znamionowym, który może zabezpieczać obwód jednofazowy, wykonany przewodami o przekroju 1,5 mm2, ułożonymi w sposób B2.

Tabela: Obciążalność długotrwała I, [A] przewodów miedzianych o izolacji polwinitowej przy obliczeniowej temperaturze 25oC
UłożenieA1A2B1B2CE
Liczba jednocześnie obciążonych żył232323232323
Przekrój mm2Dopuszczalna obciążalność długotrwała, A
1,515,514,515,51418,516,517,5162118,52319,5
2,5211918,519,52522242129253227
4282527243430322928344236
A. C6
B. B16
C. B20
D. B6
Odpowiedź "B16" jest poprawna, ponieważ wyłącznik nadmiarowo-prądowy oznaczony jako B16 ma prąd znamionowy 16 A, co jest najbliższą wartością nieprzekraczającą dopuszczalnej obciążalności długotrwałej przewodów o przekroju 1,5 mm² ułożonych w sposób B2 wynoszącej 16,5 A. Wybór odpowiedniego wyłącznika nadmiarowo-prądowego jest kluczowy w kontekście zapewnienia bezpieczeństwa instalacji elektrycznej. W przypadku przewodów o takim przekroju, należy pamiętać, że ich maksymalna obciążalność długotrwała powinna być zawsze przekraczana przez wartość prądową wyłącznika, jednak nie może ona jej przekraczać o więcej niż 10%. Używając wyłącznika B16, możemy być pewni, że ochrona przewodów będzie odpowiednia, a ryzyko przegrzania lub ich uszkodzenia zostanie zminimalizowane. Rekomendacje dotyczące użycia wyłączników nadmiarowo-prądowych w instalacjach jednofazowych, takie jak te zawarte w normie PN-IEC 60898-1, jasno określają, że dobór odpowiedniego zabezpieczenia powinien być uzależniony od zastosowania oraz przewidywanego obciążenia. Przykładowo, w przypadku obwodów zasilających gniazdka w domach jednorodzinnych, wyłącznik B16 jest standardowym wyborem, zapewniającym nie tylko ochronę przed przeciążeniem, ale również przed zwarciem.

Pytanie 3

Który z łączników dysponuje komorami gaszeniowymi i ma zdolność do przerywania prądów zwarciowych?

A. Odłącznik
B. Stycznik
C. Wyłącznik
D. Rozłącznik
Odłącznik, rozłącznik i stycznik to urządzenia elektryczne, które pełnią różne funkcje, ale nie są w stanie zastąpić wyłącznika w kontekście gaszenia łuku elektrycznego w przypadku zwarcia. Odłącznik to urządzenie, które umożliwia bezpieczne odłączenie obwodu od źródła zasilania, jednak nie ma zdolności do wyłączania prądów zwarciowych. Jego głównym celem jest izolacja obwodu na potrzeby konserwacji i napraw. Rozłącznik działa w podobny sposób, ale z reguły jest przeznaczony do pracy pod obciążeniem, co oznacza, że również nie jest zaprojektowany do gaszenia łuków zwarciowych. Stycznik z kolei jest używany do załączania i wyłączania obwodów w normalnych warunkach pracy, a jego zdolności do radzenia sobie z prądami zwarciowymi są ograniczone. Dlatego, wybierając odpowiednie urządzenie do zarządzania prądami zwarciowymi, kluczowe jest zrozumienie różnicy między tymi urządzeniami. W praktyce, pomylenie ich funkcji może prowadzić do poważnych konsekwencji, w tym uszkodzenia sprzętu, a także zwiększonego ryzyka dla bezpieczeństwa personelu oraz instalacji. Dlatego tak ważne jest stosowanie odpowiednich urządzeń zgodnie z ich przeznaczeniem i normami branżowymi.

Pytanie 4

Jaki procent strumienia świetlnego jest kierowany w dół w oprawie oświetleniowej klasy V?

A. (0 ÷ 10) %
B. (90 ÷ 100) %
C. (60 ÷ 90) %
D. (40 ÷ 60) %
Odpowiedzi takie jak (90 ÷ 100) %, (40 ÷ 60) % oraz (60 ÷ 90) % nie uwzględniają specyfiki opraw oświetleniowych V klasy. Wrażenie, że znacząca część strumienia świetlnego może być skierowana w dół, jest mylne i wynika z niepełnego zrozumienia zasad projektowania oświetlenia. Oprawy te są konstruowane z zamiarem ograniczenia emisji światła w kierunku podłogi, co jest kluczowe dla efektywności energetycznej oraz komfortu użytkowników. Odpowiedzi te sugerują, że oprawy V klasy działają podobnie jak tradycyjne oprawy oświetleniowe, co jest nieprawidłowe. W praktyce, odpowiednie wykorzystanie tych opraw polega na kierowaniu strumienia świetlnego głównie w górę, co sprzyja stworzeniu efektów iluminacyjnych oraz estetycznych, a nie oświetleniu przestrzeni roboczej. Pojęcia te mogą również wprowadzać w błąd, jeśli chodzi o zastosowanie oświetlenia w różnych kontekstach, na przykład w architekturze czy oświetleniu ulicznym, gdzie inne klasy opraw mogą być stosowane dla zapewnienia odpowiedniego poziomu jasności. Kluczowym błędem myślowym jest założenie, że większa ilość światła skierowanego w dół jest zawsze korzystna, co nie zawsze jest zgodne z zasadami efektywności oświetleniowej i ergonomii.

Pytanie 5

Które żyły przewodów należy połączyć ze sobą w puszce rozgałęźnej układu elektrycznego, przedstawionej na rysunku, aby połączenie zapewniało sterowanie oświetleniem i było zgodne ze sztuką monterską?

Ilustracja do pytania
A. L z 4, N z 1, 2 z 3
B. L z 1, N z 4, 2 z 3
C. L z 1, N z 3, 2 z 4
D. L z 3, N z 2, 1 z 4
Wybór niewłaściwej kombinacji przewodów może prowadzić do poważnych problemów w instalacji elektrycznej. Na przykład, w przypadku połączenia L z 3, N z 2 oraz 1 z 4, przewód fazowy (L) zostaje połączony z niewłaściwym punktem, co nie tylko może uniemożliwić włączenie oświetlenia, ale także stwarza ryzyko niebezpiecznych sytuacji, takich jak zwarcie czy porażenie prądem. Przewód neutralny (N) w takim układzie może pozostać niepodłączony lub niewłaściwie połączony, co zakłóca prawidłowy przepływ prądu. W praktyce, połączenie przewodów w puszce rozgałęźnej jest kluczowe do zapewnienia, że wszystkie elementy działają w zgodzie ze sobą. Zdarza się, że osoby wykonujące instalacje pomijają te fundamentalne zasady, co prowadzi do typowych błędów, takich jak nieprawidłowe łączenie przewodów, nieprzestrzeganie kolorów przewodów (np. nieodpowiednie użycie przewodu neutralnego), czy niezrozumienie roli przełącznika. Należy pamiętać, że każde połączenie powinno być zgodne z obowiązującymi normami, aby zapewnić bezpieczeństwo oraz efektywność całego obwodu. Z tego powodu kluczowe jest zrozumienie podstawowych zasad i standardów montażu elektrycznego, aby uniknąć takich pomyłek.

Pytanie 6

Który rodzaj pomiaru pokazany jest na rysunku?

Ilustracja do pytania
A. Ciągłości przewodów.
B. Napięcia dotykowego.
C. Impedancji zwarciowej.
D. Rezystancji izolacji stanowiska.
Nieznajomość pomiarów elektrycznych może prowadzić do błędnych wniosków i zagrożeń. Widzisz, jeśli chodzi o napięcie dotykowe, ciągłość przewodów czy impedancję zwarciową, to nie są te same pojęcia co pomiar rezystancji izolacji. Napięcie dotykowe dotyczy zagrożenia, jakie występuje, gdy mamy do czynienia z elementami pod napięciem. Jego pomiar nie mówi nic o stanie izolacji, a bardziej o ryzyku. Z kolei pomiar ciągłości przewodów potwierdza, że wszystko działa jak powinno, więc to też oddzielna sprawa. A impedancja zwarciowa to zupełnie inny temat, bo bada, co się dzieje w przypadku zwarcia. Mylenie tych pojęć może prowadzić do nieodpowiednich działań, a w konsekwencji do poważnych awarii. Dlatego ważne jest, żeby zrozumieć, czym różnią się te pomiary oraz jak je stosować w kontekście bezpieczeństwa instalacji elektrycznych.

Pytanie 7

Którą funkcję w wyłączniku nadprądowym pełni element wskazany na ilustracji czerwoną strzałką?

Ilustracja do pytania
A. Reaguje na przeciążenia.
B. Łączy styki.
C. Gasi łuk elektryczny.
D. Reaguje na zwarcia.
Zrozumienie roli poszczególnych komponentów wyłączników nadprądowych jest kluczowe dla prawidłowego funkcjonowania systemów ochrony elektrycznej. W przypadku, gdy ktoś identyfikuje bimetaliczny wyzwalacz jako element, który gasi łuk elektryczny, ma miejsce fundamentalne nieporozumienie. Gasić łuk elektryczny to zadanie przypisane innym elementom, takim jak układy łukotłumiące, które skutecznie minimalizują skutki pojawiającego się łuku w momencie rozłączania obwodu. Z kolei odpowiedź sugerująca, że wyzwalacz łączy styki, również jest myląca, ponieważ bimetaliczny wyzwalacz nie ma funkcji fizycznego łączenia styków, lecz jedynie uruchamia mechanizm ich rozłączenia w odpowiedzi na zjawiska prądowe. Jeśli ktoś błędnie interpretuje rolę tego elementu jako reagującą na przeciążenia, może to prowadzić do niebezpiecznych sytuacji. Wyzwalacze przeciążeniowe, choć mogą być zintegrowane w konstrukcji wyłącznika, działają na innej zasadzie i odpowiadają za inny typ anomalii w obwodzie. Istotne jest, aby zrozumieć, że każdy z tych elementów ma swoje specyficzne zadania i pomyłki w ich identyfikacji mogą prowadzić do błędnych wniosków oraz potencjalnych zagrożeń w użytkowaniu instalacji elektrycznych.

Pytanie 8

Wiatrołap jest oświetlany dwoma żarówkami. Żarówki w oprawach są włączane przez wyłącznik zmierzchowy. Gdy jedna z żarówek przestała świecić, jakie kroki należy podjąć, aby zidentyfikować i usunąć potencjalne przyczyny tej usterki?

A. Wymienić żarówkę, która się nie świeci, sprawdzić przewody i oprawę oświetleniową
B. Sprawdzić działanie wyłącznika, zweryfikować oprawę i przewody
C. Zamienić żarówkę, która nie świeci, sprawdzić funkcjonowanie wyłącznika oraz oprawy oświetleniowej
D. Zweryfikować przewody, sprawdzić działanie wyłącznika, wymienić żarówkę
Odpowiedź polegająca na wymianie żarówki, która się nie świeci, oraz sprawdzeniu przewodów i oprawy oświetleniowej jest prawidłowa, ponieważ pozwala na kompleksowe zdiagnozowanie problemu. W pierwszej kolejności należy wymienić żarówkę, aby upewnić się, że usterka nie leży po stronie źródła światła. Zgodnie z dobrą praktyką, przed wymianą żarówki warto upewnić się, że źródło zasilania jest wyłączone, co zapewnia bezpieczeństwo podczas pracy. Następnie, sprawdzenie przewodów pozwala na wykrycie ewentualnych uszkodzeń lub przerwań, które mogą powodować brak zasilania. Warto również sprawdzić oprawę oświetleniową pod kątem korozji, zanieczyszczeń czy uszkodzeń mechanicznych, które mogą wpływać na funkcjonowanie układu. Przeprowadzanie tych kroków zgodnie z procedurami przewidzianymi w normach elektrycznych pozwala na skuteczną eliminację przyczyn usterki oraz zapobiega ewentualnym przyszłym problemom z oświetleniem. Długoterminowe utrzymanie systemów oświetleniowych w dobrym stanie technicznym jest kluczowe dla zapewnienia efektywności energetycznej i bezpieczeństwa użytkowników.

Pytanie 9

W jakiej sytuacji poślizg silnika indukcyjnego wyniesie 100%?

A. Silnik będzie funkcjonować w trybie jałowym
B. Silnik będzie zasilany prądem w przeciwnym kierunku
C. Wirnik silnika osiągnie prędkość wyższą niż prędkość synchroniczna
D. Gdy silnik będzie zasilany, jego wirnik pozostanie w bezruchu
Poślizg silnika indukcyjnego określa różnicę między prędkością synchroniczną a rzeczywistą prędkością wirnika. Gdy wirnik jest nieruchomy, oznacza to, że nie porusza się w stosunku do pola magnetycznego wytwarzanego przez uzwojenia statora. W takiej sytuacji prędkość wirnika wynosi 0, a prędkość synchroniczna, zależna od częstotliwości zasilania i liczby par biegunów, jest znacznie wyższa. Z tego powodu poślizg wynosi 100%, co oznacza maksymalne obciążenie silnika, a jego moment obrotowy jest równy zeru, co jest warunkiem niezbędnym do rozpoczęcia pracy silnika. W praktyce taka sytuacja ma miejsce podczas uruchamiania silników, gdy są one podłączane do zasilania, ale wirnik nie ma jeszcze możliwości obrotu, na przykład w przypadku zablokowania. W przemyśle, szczególnie w aplikacjach wymagających dużego momentu rozruchowego, jak w przypadku transportu materiałów, monitoruje się poślizg, aby zapewnić optymalne działanie silników. Zrozumienie poślizgu jest kluczowe dla efektywności energetycznej i żywotności silników indukcyjnych.

Pytanie 10

W układzie przedstawionym na rysunku, po podłączeniu odbiornika, zadziałał wyłącznik różnicowoprądowy. Przyczyną tego jest

Ilustracja do pytania
A. dotyk bezpośredni przewodu pod napięciem.
B. nieprawidłowe połączenie przewodu neutralnego i ochronnego.
C. pojawienie się napięcia na części metalowej normalnie nie przewodzącej.
D. zwarcie między przewodem neutralnym i ochronnym.
Nieprawidłowe połączenie przewodu neutralnego (N) z przewodem ochronnym (PE) jest kluczowym czynnikiem, który spowodował zadziałanie wyłącznika różnicowoprądowego. W momencie, gdy te dwa przewody są połączone, wyłącznik różnicowoprądowy wykrywa różnicę w prądzie, co prowadzi do jego zadziałania w celu ochrony użytkowników przed porażeniem prądem. Przykładowo, w przypadku instalacji elektrycznych w budynkach mieszkalnych, zaleca się stosowanie wyłączników różnicowoprądowych w obwodach zasilających gniazda, co zwiększa bezpieczeństwo użytkowników. W praktyce, aby zapewnić prawidłowe działanie wyłączników, konieczne jest przestrzeganie standardów, takich jak norma PN-EN 61008-1, która określa wymagania dla różnicowoprądowych wyłączników nadprądowych. Dobre praktyki obejmują regularne testowanie tych urządzeń, aby upewnić się, że działają prawidłowo i mogą skutecznie chronić przed zagrożeniami elektrycznymi.

Pytanie 11

Jakiej z wymienionych czynności nie przeprowadza się w trakcie oględzin urządzenia napędowego z silnikiem elektrycznym podczas pracy?

A. Oceny stanu przewodów ochronnych oraz ich podłączenia
B. Sprawdzenia działania systemów chłodzenia
C. Kontroli stanu osłon elementów wirujących
D. Sprawdzenia szczotek i szczotkotrzymaczy
Podczas analizy działań związanych z oględzinami urządzenia napędowego z silnikiem elektrycznym, ważne jest zrozumienie, że wiele czynności może być wykonanych w czasie pracy, a inne wymagają zatrzymania silnika. Kontrola stanu osłon części wirujących, sprawdzenie działania układów chłodzenia oraz ocena stanu przewodów ochronnych i ich podłączenia to czynności, które można przeprowadzić bez konieczności zatrzymywania maszyny. Osłony mają kluczowe znaczenie w zapewnieniu bezpieczeństwa, zapobiegając kontaktowi z ruchomymi częściami silnika, co jest zgodne z zasadami BHP oraz standardami ochrony. Kontrola układów chłodzenia jest niezbędna dla zapewnienia prawidłowego funkcjonowania silników elektrycznych, ponieważ ich przegrzanie może prowadzić do awarii. Sporadyczne sprawdzanie przewodów ochronnych oraz ich podłączenia jest istotne z punktu widzenia ochrony elektrycznej, co jest podkreślone w normach PN-IEC 60364, dotyczących instalacji elektrycznych. Ignorowanie tych czynności może prowadzić do poważnych usterek technicznych lub zagrożeń dla zdrowia i życia operatorów. Wiele osób myli te aspekty, myśląc, że wszystkie kontrole można przeprowadzić wyłącznie w czasie postoju urządzenia. To błędne podejście może skutkować ignorowaniem potencjalnych zagrożeń, które mogłyby być zidentyfikowane podczas działania. Dlatego istotne jest, aby operatorzy byli dobrze przeszkoleni i świadomi, które czynności mogą być bezpiecznie wykonane w trakcie użytkowania, a które wymagają zatrzymania urządzenia.

Pytanie 12

Zgodnie z normą PN-IEC 664-1 dotyczącą klasyfikacji instalacji, minimalna wytrzymałość udarowa urządzeń 230/400 V w I kategorii powinna wynosić

A. 1,5 kV
B. 2,5 kV
C. 4,0 kV
D. 6,0 kV
Wybór wytrzymałości udarowej 2,5 kV, 4,0 kV czy 6,0 kV może wynikać z błędnych założeń co do tego, jakie normy powinny być stosowane w instalacjach elektrycznych. Może się wydawać, że wyższa wytrzymałość oznacza lepszą ochronę przed przepięciami, ale norma PN-IEC 664-1 jasno określa konkretne wartości dla różnych kategorii urządzeń. Jeśli wybierzesz zbyt wysoką wytrzymałość w I kategorii, to tak naprawdę może generować niepotrzebne koszty, które nie przekładają się na większe bezpieczeństwo. Dodatkowo, nadmierne wymagania mogą ograniczać dostępność i wybór sprzętu na rynku, co w efekcie wpływa na innowacyjność. Często też zdarza się, że nie odróżnia się kategorii urządzeń i ich rzeczywistych zastosowań, co jest naprawdę istotne. W praktyce wyższe wartości udarowe są używane w trudniejszych warunkach, jak II kategoria, gdzie ryzyko większych przepięć jest realne. Dlatego ważne, żeby spojrzeć na wymagania dotyczące wytrzymałości udarowej w kontekście konkretnych sytuacji i zagrożeń, żeby podejmować lepsze decyzje projektowe.

Pytanie 13

Do którego rodzaju ochrony przeciwporażeniowej zaliczane są środki ochrony opisane w tabeli?

1.Urządzenia ochronne różnicowoprądowe o znamionowym prądzie różnicowym nieprzekraczającym 30 mA.
2.Dodatkowe połączenia wyrównawcze ochronne.
A. Ochrony przy uszkodzeniu (dodatkowej).
B. Ochrony uzupełniającej.
C. Ochrony przez zastosowanie bardzo niskiego napięcia.
D. Ochrony podstawowej.
Wiesz, te środki ochrony, które były w tabeli, jak urządzenia różnicowoprądowe i połączenia wyrównawcze, to naprawdę ważna sprawa, jeśli chodzi o bezpieczeństwo instalacji elektrycznych. Ochrona uzupełniająca to coś, co wchodzi w grę, gdy standardowe zabezpieczenia nie są wystarczające. To szczególnie istotne w miejscach, gdzie ryzyko porażenia prądem jest większe, na przykład w łazienkach czy kuchniach. RCD świetnie działa, bo wyłapuje prąd upływu i go eliminuje, co naprawdę ratuje życie. Połączenia wyrównawcze też mają swoje miejsce, szczególnie tam, gdzie jest kilka źródeł zasilania. Dzięki nim zmniejsza się różnica potencjałów, co podnosi bezpieczeństwo użytkowników. Warto też znać normy, takie jak IEC 60364 i PN-EN 61008, bo one mówią, jak budować te instalacje, żeby były bezpieczne. Zrozumienie ochrony uzupełniającej to klucz do tego, żeby każdy, kto projektuje i wykonuje instalacje elektryczne, mógł to robić dobrze.

Pytanie 14

Który rodzaj układu sieciowego przedstawiono na schemacie?

Ilustracja do pytania
A. TT
B. IT
C. TN-C
D. TN-S
Odpowiedzi IT, TT i TN-S są nieprawidłowe z różnych powodów związanych z charakterystyką układów sieciowych. Układ IT oznacza instalację, w której przewody nie są uziemione, a uziemienie ochronne jest realizowane w sposób alternatywny. Takie podejście, choć może być stosowane w niektórych specyficznych warunkach, nie pozwala na wykorzystanie wspólnego przewodu neutralnego i ochronnego, co jest kluczowe w układzie TN-C. Odpowiedź TT wskazuje na układ, w którym przewód neutralny jest oddzielony od przewodu ochronnego, co również jest sprzeczne z zasadami TN-C, gdzie przewody te są połączone. Układ TN-S, z kolei, w odróżnieniu od TN-C, zakłada oddzielne przewody neutralny i ochronny, co czyni go mniej efektywnym pod względem kosztów w instalacjach, w których można zastosować TN-C. Typowe błędy myślowe przy wyborze tych odpowiedzi często wynikają z nieznajomości praktycznych różnic między tymi układami a ich realnych zastosowań w instalacjach elektrycznych. Znajomość norm i standardów, takich jak PN-IEC 60364, jest kluczowa dla właściwego doboru układów sieciowych, co pozwala na uniknięcie nieporozumień i zapewnienie bezpieczeństwa w eksploatacji urządzeń elektrycznych.

Pytanie 15

Przedstawione w tabeli parametry techniczne dotyczą

Parametry techniczne
  • Moc przyłączeniowa
  • Rodzaj przyłącza
  • Rodzaj uziomu
  • Typy przewodów
  • Liczba obwodów
A. instalacji elektrycznej.
B. instalacji odgromowej budynku.
C. linii napowietrznej niskiego napięcia.
D. linii kablowej zasilającej budynek.
Wybór instalacji elektrycznej jako poprawnej odpowiedzi jest zasłużony, ponieważ parametry techniczne przedstawione w tabeli, takie jak moc przyłączeniowa, rodzaj przyłącza, uziemienie oraz liczba obwodów, są kluczowe dla prawidłowego zaprojektowania i funkcjonowania instalacji elektrycznej w obiektach budowlanych. Moc przyłączeniowa wskazuje na maksymalne zapotrzebowanie na energię elektryczną, co jest istotne przy doborze odpowiednich przewodów i zabezpieczeń. Rodzaj przyłącza oraz system uziemienia są niezwykle ważne dla bezpieczeństwa użytkowników, gdyż wpływają na właściwe odprowadzenie ładunków elektrycznych i ochronę przed porażeniem prądem. Typy przewodów oraz liczba obwodów są również kluczowe dla zapewnienia stabilności i elastyczności instalacji, umożliwiając podział obciążenia oraz efektywne zarządzanie energią w budynku. Zgodność z normami PN-IEC 60364 oraz innymi standardami branżowymi jest niezbędna dla osiągnięcia wysokich standardów bezpieczeństwa oraz efektywności energetycznej.

Pytanie 16

Podczas inspekcji świeżo zrealizowanej instalacji elektrycznej nie ma potrzeby weryfikacji

A. wyboru i oznakowania przewodów
B. wartości natężenia oświetlenia na stanowiskach pracy
C. wyboru zabezpieczeń oraz urządzeń
D. rozmieszczenia tablic informacyjnych i ostrzegawczych
Wartość natężenia oświetlenia na stanowiskach pracy nie jest bezpośrednio związana z podstawowymi wymaganiami, jakimi są bezpieczeństwo i sprawność instalacji elektrycznej. W kontekście nadzoru nad nowo wykonanymi instalacjami, ważniejsze jest upewnienie się, że instalacja jest zgodna z normami oraz dobrze zorganizowana pod względem zabezpieczeń, oznaczeń i tablic informacyjnych. Obowiązki związane z badaniem natężenia oświetlenia są zazwyczaj związane z ergonomią pracy i komfortem użytkowników, co zalicza się do bardziej szczegółowych aspektów eksploatacji. W praktyce, standardy takie jak PN-EN 12464-1 oferują wytyczne dotyczące oświetlenia miejsc pracy, ale przed przystąpieniem do pomiarów natężenia, należy upewnić się, że sama instalacja elektryczna działa sprawnie i jest bezpieczna.

Pytanie 17

Które oznaczenie literowe ma przewód o przekroju przedstawionym na rysunku?

Ilustracja do pytania
A. YDY
B. YDYp
C. DY
D. LgY
Odpowiedź YDY jest poprawna, ponieważ oznaczenie to dotyczy przewodów miedzianych, które są izolowane polwinitiem i posiadają ekran zewnętrzny. Przewody te znajdują zastosowanie w instalacjach elektrycznych, gdzie wymagane jest zabezpieczenie przed zakłóceniami elektromagnetycznymi oraz ochrona przed wpływem warunków atmosferycznych. W praktyce, przewody YDY są często stosowane w budynkach mieszkalnych i użyteczności publicznej do zasilania urządzeń elektrycznych, a także w obiektach przemysłowych. Dzięki zastosowaniu ekranu, przewody te charakteryzują się wysoką odpornością na zakłócenia, co jest kluczowe dla utrzymania stabilności i jakości sygnałów. Oznaczenie to jest zgodne z normami PN-EN 50525-2-51, które określają wymagania dla przewodów w instalacjach niskiego napięcia. Znajomość tych oznaczeń jest niezbędna dla każdej osoby zajmującej się projektowaniem lub wykonawstwem instalacji elektrycznych.

Pytanie 18

Którą wstawkę kalibrową należy zastosować do podstawy bezpiecznikowej przeznaczonej dla wkładki topikowej typu D o oznaczeniu literowym gG i prądzie znamionowym 25 A?

Ilustracja do pytania
A. Wstawkę 1.
B. Wstawkę 4.
C. Wstawkę 3.
D. Wstawkę 2.
Wstawka kalibrowa, którą należy zastosować do podstawy bezpiecznikowej przeznaczonej dla wkładki topikowej typu D o oznaczeniu literowym gG i prądzie znamionowym 25 A, to wstawkę 3. Wstawkę tę oznacza się jako 25/500, co wskazuje, że jest ona przeznaczona dla prądu znamionowego 25 A oraz wytrzymuje napięcie do 500 V. W praktyce, jako element zabezpieczający, wstawka kalibrowa zapobiega włożeniu wkładek o wyższych prądach znamionowych, co mogłoby prowadzić do przegrzania lub pożaru. W przypadku stosowania wkładek gG, które są odpowiednie do zabezpieczania obwodów z impulsowymi prądami zwarciowymi, ważne jest, aby zawsze dobrać właściwą wstawkę kalibrową, zgodnie z normą IEC 60269. Tylko wtedy można osiągnąć optymalną ochronę i wydajność systemu elektrycznego. Wstawkę 3 stosuje się powszechnie w instalacjach przemysłowych, gdzie wymagana jest wysoka niezawodność i ochrona przed zwarciem.

Pytanie 19

Na podstawie wyników pomiarów rezystancji w przewodzie elektrycznym przedstawionym na ilustracji można stwierdzić, że żyły

Pomiar pomiędzy końcami żyłRezystancja w Ω
L1.1 – L1.20
L2.1 – L2.20
L3.1 – L3.2
N.1 – N.20
PE.1 – PE.20
L1.1 – L2.1
L1.1 – L3.1
L1.1 – N.1
L1.1 – PE.1
N.1 – PE.10
N.1 – L2.1
N.1 – L3.1
Ilustracja do pytania
A. N i L3 są zwarte oraz PE jest przerwana.
B. L1 i L2 są przerwane.
C. N i PE są zwarte oraz L3 jest przerwana.
D. L1 i L2 są zwarte.
Analizując inne odpowiedzi, można zauważyć, że stwierdzenie, iż żyły N i L3 są zwarte, bazuje na błędnym rozumieniu pomiarów rezystancji. W przypadku, gdy L3 byłaby rzeczywiście zwarte, rezystancja między N a L3 musiałaby wynosić 0 Ω. Kolejne podejście, które sugeruje, że L1 i L2 są przerwane, pomija kluczową informację, że ich rezystancja również wynosi 0 Ω, co oznacza, że są sprawne. Warto zwrócić uwagę na to, że mylenie pojęć związanych z pomiarami rezystancji prowadzi do fałszywych wniosków. Rezystancja nieskończona, jak w przypadku L3, nie może być interpretowana jako stan zwarty. Ostatecznie, błędne odpowiedzi pokazują, że zrozumienie, jak powinny działać różne żyły w instalacji elektrycznej, jest niezbędne dla prawidłowego diagnozowania problemów. Kluczowym aspektem jest znajomość funkcji żył neutralnych, ochronnych oraz fazowych w instalacji, co jest fundamentem dla zapewnienia bezpieczeństwa oraz efektywności systemów elektrycznych.

Pytanie 20

Jaką kategorię urządzeń elektrycznych reprezentują przekładniki prądowe?

A. Do wzmacniaczy maszynowych
B. Do transformatorów
C. Do indukcyjnych sprzęgieł dwukierunkowych
D. Do prądnic tachometrycznych
Wybór odpowiedzi spośród wzmacniaczy maszynowych, indukcyjnych sprzęgieł dwukierunkowych czy prądnic tachometrycznych wprowadza w błąd, gdyż te urządzenia pełnią zupełnie inne funkcje i mają odmienną budowę oraz zastosowanie. Wzmacniacze maszynowe są urządzeniami służącymi do wzmacniania sygnałów, co jest kluczowe w procesach automatyzacji i kontroli, ale nie mają bezpośredniego związku z pomiarami prądu. Indukcyjne sprzęgła dwukierunkowe z kolei są stosowane do transmisji momentu obrotowego między dwoma elementami, co również jest oddalone od funkcji przekładników prądowych. Prądnice tachometryczne natomiast są wykorzystywane do pomiaru prędkości obrotowej i koncentrują się na generowaniu sygnałów proporcjonalnych do prędkości obrotowej, co nie ma nic wspólnego z pomiarem prądu elektrycznego. Wybór nieodpowiednich odpowiedzi wynika często z mylnego skojarzenia funkcji tych urządzeń z ich zastosowaniami. Aby zrozumieć różnice, warto zwrócić uwagę na specyfikę działania każdego z tych urządzeń oraz ich zastosowanie w różnych dziedzinach, co jest istotne dla prawidłowego rozumienia i wykorzystania technologii elektrycznej.

Pytanie 21

Jakie minimalne napięcie znamionowe może posiadać izolacja przewodów używanych w sieci trójfazowej o niskim napięciu 230/400 V?

A. 100/100 V
B. 300/500 V
C. 300/300 V
D. 450/750 V
Izolacja przewodów stosowanych w sieciach trójfazowych niskiego napięcia, takich jak 230/400 V, powinna spełniać określone normy dotyczące napięcia znamionowego. Odpowiedź 300/500 V jest prawidłowa, ponieważ zapewnia odpowiedni margines bezpieczeństwa i wytrzymałość na napięcia krótkotrwałe, które mogą wystąpić w wyniku zakłóceń lub przepięć. Przykładowo, przewody o izolacji 300/500 V są powszechnie stosowane w instalacjach domowych oraz przemysłowych, gdzie wymagane jest zabezpieczenie przed zwarciami i innymi problemami elektrycznymi. Zgodnie z normą PN-EN 60228, przewody te muszą być odporne na wysokie temperatury oraz działanie substancji chemicznych, co czyni je idealnym wyborem do różnorodnych zastosowań. W praktyce, dobór odpowiedniej izolacji ma kluczowe znaczenie dla bezpieczeństwa i efektywności systemów elektrycznych, dlatego ważne jest, aby stosować przewody zgodne z wymaganiami dotyczącymi napięcia znamionowego, zapewniając tym samym wysoką jakość instalacji elektrycznych.

Pytanie 22

Które aparaty oznaczono na schemacie cyframi 1 i 2?

Ilustracja do pytania
A. 1 – wyłącznik różnicowoprądowy; 2 – odłącznik instalacyjny.
B. 1 – wyłącznik nadprądowy; 2 – odłącznik instalacyjny.
C. 1 – wyłącznik nadprądowy; 2 – wyłącznik nadprądowy.
D. 1 – wyłącznik różnicowoprądowy; 2 – wyłącznik nadprądowy.
Analizując podane odpowiedzi, można zauważyć, że wiele z nich zawiera nieprawidłowe założenia dotyczące funkcji wyłączników różnicowoprądowych i nadprądowych. Na przykład, niektóre z odpowiedzi mylnie klasyfikują wyłącznik nadprądowy jako odłącznik, co jest istotnym błędem w zrozumieniu ich funkcji. Odłącznik instalacyjny nie zabezpiecza przed przeciążeniem ani zwarciem, a jedynie służy do rozłączania obwodu w celach serwisowych. W praktyce, w przypadku awarii, wyłącznik różnicowoprądowy jest kluczowy, ponieważ jego zadaniem jest zapobieganie porażeniom prądem elektrycznym. Dodatkowo, wyłączniki nadprądowe i różnicowoprądowe mają różne mechanizmy działania. Wyłącznik nadprądowy reaguje na nadmierny prąd, natomiast wyłącznik różnicowoprądowy monitoruje równowagę prądów w obwodzie. Te różnice są fundamentalne do prawidłowego doboru i zastosowania tych urządzeń w instalacjach elektrycznych. W związku z tym, zrozumienie tych koncepcji jest kluczowe dla zapewnienia bezpieczeństwa oraz funkcjonalności instalacji elektrycznych, a także dla unikania zagrożeń związanych z ich niewłaściwym stosowaniem.

Pytanie 23

Którym z kluczy nie da się skręcić stojana silnika elektrycznego śrubami jak przedstawiona na ilustracji?

Ilustracja do pytania
A. Płaskim.
B. Imbusowym.
C. Oczkowym.
D. Nasadowym.
Odpowiedź "imbusowym" jest poprawna, ponieważ klucz imbusowy jest przeznaczony do stosowania ze śrubami, które mają gniazdo sześciokątne wewnętrzne. W przypadku przedstawionym na ilustracji mamy do czynienia z klasyczną śrubą o sześciokątnej główce, co oznacza, że do jej dokręcenia można zastosować inne rodzaje kluczy, takie jak klucz nasadowy, oczkowy lub płaski. Każdy z tych kluczy posiada odpowiedni kształt, który umożliwia odpowiednie dopasowanie do główki śruby, co zapewnia efektywne przenoszenie momentu obrotowego. Klucz nasadowy jest powszechnie używany w mechanice, ponieważ jego konstrukcja pozwala na łatwe dokręcanie oraz odkręcanie śrub w trudnodostępnych miejscach. Klucz oczkowy z kolei umożliwia precyzyjne dokręcanie w ciasnych przestrzeniach, a klucz płaski jest podstawowym narzędziem w warsztatach mechanicznych. Wiedza na temat właściwego doboru narzędzi jest kluczowa dla zapewnienia efektywności i bezpieczeństwa pracy w każdej aplikacji mechanicznej.

Pytanie 24

Schemat jakiego łącznika instalacyjnego przedstawiono na rysunku?

Ilustracja do pytania
A. Świecznikowego.
B. Hotelowego.
C. Schodowego.
D. Krzyżowego.
Niezrozumienie charakterystyki poszczególnych typów łączników instalacyjnych może prowadzić do nieprawidłowych wniosków. Łącznik schodowy, który byłby jednym z możliwych wyborów, jest zaprojektowany do sterowania jednym obwodem świetlnym z dwóch miejsc, co różni go od łącznika krzyżowego. Użytkownik, który wybiera łącznik schodowy, może myśleć, że wystarczy go zastosować w każdej sytuacji, co jest błędne, zwłaszcza w przypadku dużych pomieszczeń. Z kolei łącznik hotelowy jest używany w systemach zdalnego sterowania, gdzie np. w pokoju hotelowym można zarządzać oświetleniem z jednego panelu. To z kolei nie odnosi się do funkcji łącznika krzyżowego. Ponadto, łącznik świecznikowy, którego zastosowanie ogranicza się do prostych obwodów, również nie spełni wymagań skomplikowanych instalacji, w których potrzebne jest sterowanie z trzech lub więcej miejsc. Warto zauważyć, że błędne wybory mogą wynikać z niepełnego zrozumienia schematów oraz funkcji poszczególnych łączników, co jest powszechnym problemem wśród osób nieposiadających odpowiedniego przeszkolenia w zakresie instalacji elektrycznych. Właściwe dobieranie komponentów do instalacji elektrycznych jest kluczowe dla zapewnienia ich efektywności i bezpieczeństwa.

Pytanie 25

Na którym rysunku przedstawiono przenośny uziemiacz służący do uziemiania żył przewodów instalacji kablowych w miejscu wykonywanych prac konserwacyjno-remontowych oraz w miejscu wyłączenia instalacji spod napięcia?

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.
Wybór odpowiedzi spoza opcji D wskazuje na brak zrozumienia podstawowych zasad dotyczących przenośnych uziemiaczy. Uziemiacze te są niezbędne w każdym środowisku, gdzie prowadzone są prace elektryczne, a ich właściwe zastosowanie może uchronić przed tragicznymi konsekwencjami. Odpowiedzi A, B i C mogą przedstawiać różne narzędzia, ale żadne z nich nie spełniają funkcji przenośnego uziemiacza. W praktyce, niektóre odpowiedzi mogą przedstawiać urządzenia, które są stosowane w inny sposób, na przykład narzędzia pomiarowe lub akcesoria, ale nie mają one zastosowania w kontekście tymczasowego uziemienia. Typowym błędem jest mylenie różnych narzędzi i ich funkcji, co prowadzi do nieprawidłowych wniosków o ich zastosowaniu. Przykładami tego mogą być różne narzędzia elektryczne, które nie mają charakterystyki uziemiającej. Właściwe zrozumienie funkcji przenośnego uziemiacza jest kluczowe, aby uniknąć sytuacji potencjalnie zagrażających zdrowiu i życiu, a także zapewnić bezpieczeństwo podczas prowadzenia prac konserwacyjnych. Standardy branżowe, takie jak OSHA oraz IEC, jasno określają konieczność stosowania uziemiaczy w odpowiednich miejscach pracy, co powinno być priorytetem w każdej sytuacji związanej z pracą z energią elektryczną.

Pytanie 26

Odbiornik elektryczny można przyłączyć do sieci typu TN-S stosując gniazdo umieszczone na rysunku

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Gniazdo typu B jest odpowiednie dla systemu TN-S, ponieważ zapewnia oddzielne zaciski dla przewodów ochronnego PE i neutralnego N. W systemie TN-S, kluczowym aspektem jest zachowanie separacji między tymi dwoma przewodami na całej długości instalacji, co minimalizuje ryzyko zakłóceń i zapewnia bezpieczeństwo użytkowników. Przykład zastosowania gniazda typu B można znaleźć w instalacjach elektrycznych w budynkach komercyjnych, gdzie stosowane są różnorodne odbiorniki elektryczne wymagające niezawodnego uziemienia oraz neutralnego przewodu. Dzięki oddzieleniu tych przewodów, osoby obsługujące gniazdo są lepiej chronione przed porażeniem elektrycznym. Zgodność z normami takimi jak PN-EN 60364-4-41, które określają wymagania dotyczące ochrony przed porażeniem elektrycznym, jest kluczowa dla zapewnienia wysokiego poziomu bezpieczeństwa w instalacjach elektrycznych.

Pytanie 27

Jakie optymalne odległości X, Y i Z należy zachować, trasując przebieg przewodów instalacji podtynkowej, przedstawionej na rysunku?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Odpowiedź C (30 cm, 15 cm, 30 cm) jest prawidłowa, ponieważ odpowiada ogólnym normom i przepisom dotyczącym instalacji elektrycznych podtynkowych, które są kluczowe dla zapewnienia bezpieczeństwa oraz funkcjonalności. Zachowanie takich odległości od krawędzi ścian i otworów drzwiowych minimalizuje ryzyko uszkodzenia przewodów podczas dalszych prac budowlanych, takich jak wiercenie lub montaż elementów wykończeniowych. W praktyce, odpowiednia separacja przewodów od konstrukcji budynku pozwala na uniknięcie przegrzewania się instalacji, co z kolei redukuje ryzyko pożaru. Zgodnie z normą PN-IEC 60364, minimalne odległości są ustalone na podstawie analizy potencjalnych zagrożeń, co czyni je standardem w branży. Dodatkowo, zachowanie tych odległości ułatwia ewentualną konserwację oraz naprawy, co jest istotne w dłuższej perspektywie użytkowania budynku. Przykładem zastosowania tej wiedzy jest planowanie rozkładu gniazdek elektrycznych w nowoczesnych wnętrzach, gdzie estetyka i funkcjonalność muszą iść w parze z bezpieczeństwem. W związku z tym, odpowiedź C jest nie tylko zgodna z przepisami, ale także praktyczna w codziennym użytkowaniu instalacji elektrycznych.

Pytanie 28

Na którym rysunku przedstawiono oprawę oświetleniową rastrową?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Wybór innej odpowiedzi może wynikać z niezrozumienia podstawowych różnic pomiędzy różnymi typami opraw oświetleniowych. Oprawy oznaczone jako A, C i D mogą wydawać się odpowiednie z perspektywy ich wyglądu, jednak nie posiadają one charakterystycznej konstrukcji rastrowej. Często błędnie sądzimy, że każda oprawa, która rozprasza światło, spełnia funkcje rastrowe. Oprawy z innymi typami osłon, mogą być wyposażone w przesłony, które jedynie zmniejszają natężenie światła, ale nie rozpraszają go w sposób równomierny. Istotnym aspektem jest fakt, że oświetlenie rastrowe jest projektowane z myślą o minimalizacji olśnienia, co jest realizowane przez zastosowanie odpowiednich materiałów i struktury. Ponadto, nieodpowiednie zrozumienie tych zasad może prowadzić do wyboru opraw, które nie tylko nie spełniają oczekiwań użytkowników, ale mogą także wprowadzać w błąd w kontekście spełniania norm dotyczących jakości oświetlenia w miejscach pracy. Dlatego kluczowe jest, aby przed podjęciem decyzji o wyborze oprawy oświetleniowej, dokładnie zapoznać się z ich właściwościami oraz przeznaczeniem, aby uniknąć typowych błędów związanych z niewłaściwym doborem oświetlenia.

Pytanie 29

Jakie działania są uwzględnione w procederze oględzin systemu elektrycznego w budynku mieszkalnym?

A. Kontrola zabezpieczeń z użyciem SELV, PELV, separacji elektrycznej lub nieuziemionych połączeń wyrównawczych lokalnych
B. Nastawienie sprzętu zabezpieczającego i sygnalizacyjnego, ocena dostępności urządzeń, co umożliwia komfortową obsługę, identyfikację oraz konserwację
C. Pomiar rezystancji izolacji przewodów, weryfikacja ciągłości przewodów ochronnych
D. Mierzenie ciągłości przewodów ochronnych i czynnych w obwodach odbiorczych, a także ocena efektywności ochrony w razie uszkodzenia za pomocą automatycznego wyłączenia zasilania
Wybór odpowiedzi związanej z pomiarem rezystancji izolacji przewodów i sprawdzeniem ciągłości przewodów ochronnych może wydawać się logiczny, jednakże nie obejmuje kluczowego aspektu oględzin instalacji elektrycznej, jakim jest nastawienie urządzeń zabezpieczających. Oględziny powinny skupiać się nie tylko na pomiarach, ale także na funkcjonalności i dostępności urządzeń, które mają na celu ochronę użytkowników przed zagrożeniami. Pomiar rezystancji izolacji jest istotny, ale nie wystarczy sam w sobie, aby zapewnić bezpieczeństwo instalacji. Z kolei sprawdzenie ochrony poprzez separację elektryczną lub inne metody, takie jak SELV czy PELV, jest ważne w kontekście ochrony przed porażeniem prądem, ale również nie wyczerpuje tematu oględzin. Kluczowym aspektem jest również zrozumienie, że urządzenia zabezpieczające muszą być regularnie nastawiane oraz testowane, aby spełniały swoje funkcje w momencie awarii. Odpowiedź dotycząca pomiaru ciągłości przewodów również nie oddaje pełnego obrazu, ponieważ nie uwzględnia aspektu dostępności czy identyfikacji urządzeń, które są niezbędne dla ich efektywnej konserwacji. To prowadzi do niepełnej oceny stanu instalacji oraz potencjalnych zagrożeń, co jest kluczowe dla zapewnienia bezpieczeństwa w budynku mieszkalnym.

Pytanie 30

Na rysunku przedstawiono

Ilustracja do pytania
A. badanie skuteczności ochrony podstawowej.
B. pomiar impedancji pętli zwarcia.
C. sprawdzanie ciągłości przewodów ochronnych.
D. pomiar rezystancji izolacji przewodów ochronnych.
Chociaż odpowiedzi dotyczące badania skuteczności ochrony podstawowej, pomiaru rezystancji izolacji przewodów ochronnych czy pomiaru impedancji pętli zwarcia są związane z instalacjami elektrycznymi, nie odnoszą się bezpośrednio do opisanej sytuacji. Badanie skuteczności ochrony podstawowej dotyczy oceny, czy system ochrony przed porażeniem prądem elektrycznym spełnia swoje funkcje, co jest analizowane w kontekście całej instalacji, a nie tylko pojedynczych przewodów. Z kolei pomiar rezystancji izolacji jest procedurą, która ma na celu wykrycie uszkodzeń izolacji, co również nie odnosi się do sprawdzania ciągłości przewodów ochronnych. Pomiar impedancji pętli zwarcia jest natomiast techniką służącą do oceny skuteczności zabezpieczeń przeciwzwarciowych i nie ma związku ze sprawdzaniem ciągłości przewodów. Często pojawiające się błędne rozumienie zasadności tych pomiarów wynika z mylnego utożsamiania różnych procedur kontrolnych. Należy pamiętać, że każda z tych metod ma swoje specyficzne zastosowanie i w kontekście przedstawionego rysunku, tylko sprawdzanie ciągłości przewodów ochronnych jest w pełni adekwatne. Przez nieprecyzyjne odpowiedzi możemy nieświadomie zignorować kluczowe aspekty bezpieczeństwa elektrycznego, co może prowadzić do poważnych konsekwencji.

Pytanie 31

Którego z przedstawionych przyrządów pomiarowych należy użyć w celu wyznaczenia tras ułożenia przewodów elektrycznych w instalacjach podtynkowych?

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.
Wybór odpowiedzi A, B lub C wskazuje na nieporozumienia dotyczące funkcji poszczególnych przyrządów pomiarowych. Miernik grubości powłoki, choć istotny w kontekście badania kondycji materiałów, nie ma zastosowania w lokalizacji przewodów elektrycznych. Jego głównym zadaniem jest pomiar grubości różnych powłok ochronnych, co nie jest pomocne przy planowaniu tras instalacji elektrycznych. Kamera termowizyjna, z kolei, jest używana do wykrywania różnic temperatur na powierzchniach, co może być przydatne przy diagnostyce problemów z instalacjami, ale nie oferuje precyzyjnego wskazania położenia przewodów. Miernik poziomu dźwięku również nie jest narzędziem właściwym do tego celu, ponieważ jego funkcja polega na rejestrowaniu natężenia dźwięku, co nie ma związku z lokalizacją przewodów. Typowe błędy myślowe, które prowadzą do takich wyborów, to utożsamianie przyrządów pomiarowych z ich funkcjami, które nie są bezpośrednio związane z konkretnym zadaniem. Właściwe dobieranie narzędzi do pracy jest kluczowe dla efektywności i bezpieczeństwa instalacji elektrycznych, dlatego warto dokładnie zapoznać się z charakterystyką każdego z nich i ich przeznaczeniem w praktyce.

Pytanie 32

Na którym rysunku zamieszczono gniazdo wtyczkowe bryzgoszczelne?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Gniazdo wtyczkowe bryzgoszczelne, które widzisz na zdjęciu C, zostało zaprojektowane tak, żeby dobrze chronić przed wilgocią i wodą. To znaczy, że nadaje się do miejsc, gdzie warunki atmosferyczne mogą być naprawdę trudne. Jest zgodne z normami PN-EN 60670-1, które mówią, jakie powinny być wymagania dla takich gniazd. Często mają dodatkowe uszczelki i osłony, które blokują wodę przed dostaniem się do wnętrza połączenia elektrycznego. W praktyce, gniazda bryzgoszczelne stosuje się w ogrodach, na tarasach albo w pobliżu basenów, gdzie zwykłe gniazda mogłyby się łatwo zepsuć. Fajnie jest też zwracać uwagę na oznaczenia IP, które mówią, jak to gniazdo jest chronione przed wodą i pyłem. Używanie takich gniazd to lepsze bezpieczeństwo dla użytkowników i dłuższa żywotność naszej instalacji elektrycznej.

Pytanie 33

Które z poniższych oznaczeń dotyczy wyłącznika silnikowego?

A. Z-MS-16/3
B. FRCdM-63/4/03
C. Ex9BP-N 4P C10
D. SM 25-40
Pozostałe oznaczenia, takie jak SM 25-40, Ex9BP-N 4P C10 oraz FRCdM-63/4/03, nie odnoszą się do wyłączników silnikowych, co może prowadzić do nieporozumień w zakresie ich funkcji i zastosowania. Oznaczenie SM 25-40 zazwyczaj odnosi się do styczników, które służą do załączania i wyłączania obwodów elektrycznych, ale nie mają funkcji ochrony silnika przed przeciążeniem lub zwarciem. Styki w takich urządzeniach są zaprojektowane do pracy w określonych warunkach, lecz nie zrealizują funkcji zabezpieczenia, jaką oferuje wyłącznik silnikowy. Z kolei Ex9BP-N 4P C10 to oznaczenie wyłącznika automatycznego, który może być używany w obwodach elektrycznych, ale nie są one dedykowane do ochrony silników. Zastosowanie tego typu wyłącznika do zabezpieczenia silników może prowadzić do niewłaściwego działania i potencjalnych uszkodzeń. Natomiast oznaczenie FRCdM-63/4/03 wskazuje na urządzenie, które najprawdopodobniej jest wyłącznikiem różnicowoprądowym, stosowanym głównie do ochrony przed porażeniem prądem elektrycznym, a nie przed przeciążeniem silników. Tego typu wyłączniki mają zupełnie inne zastosowanie i nie spełniają wymogów ochrony silników. Właściwe rozróżnienie pomiędzy tymi urządzeniami jest kluczowe w kontekście bezpieczeństwa oraz efektywności pracy instalacji elektrycznych. Użytkownicy powinni być świadomi, że niewłaściwe dobranie urządzenia ochronnego może prowadzić do poważnych konsekwencji, zarówno w aspekcie bezpieczeństwa, jak i wydajności systemów elektrycznych.

Pytanie 34

Jakie zadanie dotyczy konserwacji instalacji elektrycznej?

A. Modernizacja rozdzielnicy instalacji elektrycznej
B. Wymiana uszkodzonych źródeł światła
C. Zmiana rodzaju zastosowanych przewodów
D. Instalacja dodatkowego gniazda elektrycznego
Nie każda rzecz związana z instalacją elektryczną to prace konserwacyjne. Na przykład zmiana przewodów, mimo że ważna, to zazwyczaj jest modernizacja albo rozbudowa, a nie tylko konserwacja. Powinno się dobierać przewody według norm, jak PN-IEC 60364, które mówią o bezpieczeństwie i wydajności. A modernizacja rozdzielnicy to już w ogóle wykracza poza standardowe konserwacje, bo może oznaczać dodawanie nowych obwodów czy zmienianie konfiguracji. Takie rzeczy potrzebują zezwoleń i lepiej, żeby zajmował się tym kto ma odpowiednie kwalifikacje. Instalacja dodatkowego gniazda również wymaga przemyślenia, czasem projektu i zgód, a to już nie jest tylko prosta konserwacja. To wszystko pokazuje, że konserwacja w instalacjach elektrycznych powinna się skupić głównie na przywracaniu funkcji i bezpieczeństwa, a nie na jakichś modyfikacjach czy rozbudowach.

Pytanie 35

Z oznaczenia kabla YDYp 3x1 mm2 300/500 V wynika, że maksymalne wartości skuteczne napięć pomiędzy żyłą przewodu a ziemią oraz pomiędzy poszczególnymi żyłami wynoszą odpowiednio

A. 300 V i 500 V
B. 200 V i 500 V
C. 200 V i 300 V
D. 500 V i 300 V
Wybór 300 V i 500 V jest jak najbardziej trafny. Przewód YDYp 3x1 mm2 300/500 V ma dwa ważne parametry. Pierwszy, 300 V, to maksymalne napięcie między żyłą a ziemią, a drugi, 500 V, dotyczy napięcia między żyłami. Te oznaczenia są zgodne z normami bezpieczeństwa, co jest istotne, gdy instalujemy elektrykę w domach czy biurach. W praktyce używa się takich przewodów do zasilania różnych rzeczy, jak oświetlenie czy gniazdka. Dzięki tym wartościom nie tylko efektywnie działamy, ale przede wszystkim dbamy o bezpieczeństwo, zmniejszając ryzyko porażenia prądem. Pamiętaj, że wybór odpowiednich przewodów jest kluczowy, by spełniały one polskie normy PN-IEC dotyczące instalacji elektrycznych.

Pytanie 36

Który z podanych łączników elektrycznych jest przeznaczony do osobnego sterowania dwiema sekcjami oświetlenia w żyrandolu?

A. Schodowy
B. Świecznikowy
C. Krzyżowy
D. Dwubiegunowy
Świecznikowy łącznik instalacyjny jest zaprojektowany w taki sposób, aby umożliwiać niezależne sterowanie różnymi sekcjami źródeł światła w lampach, w tym żyrandolach. Jego konstrukcja pozwala na włączenie i wyłączenie poszczególnych źródeł światła, co jest szczególnie przydatne w przypadku żyrandoli z wieloma żarówkami. Dzięki temu użytkownik może dostosować natężenie oświetlenia w pomieszczeniu w zależności od potrzeb, co zwiększa funkcjonalność i komfort użytkowania. Przykładowo, w jadalni, gdzie często zasiadamy z rodziną lub gośćmi, można włączyć tylko kilka żarówek, aby stworzyć przytulną atmosferę. Zastosowanie łącznika świecznikowego jest zgodne z ogólnymi normami instalacji elektrycznych, które zalecają elastyczność w sterowaniu oświetleniem. Dobrą praktyką w projektowaniu systemów oświetleniowych jest również uwzględnienie możliwości dalszej rozbudowy instalacji oraz zastosowanie łączników, które umożliwiają późniejszą modyfikację układów oświetleniowych.

Pytanie 37

W jaki sposób realizowana jest ochrona przed porażeniem elektrycznym poprzez dotyk pośredni w oprawie oświetleniowej drugiej klasy ochronności działającej w sieci TN-S?

A. Zasilanie z transformatora izolacyjnego
B. Użycie napięcia zasilania o zmniejszonej wartości
C. Zastosowanie podwójnej warstwy izolacji
D. Połączenie obudowy z przewodem ochronnym sieci
W kontekście ochrony przed dotykiem pośrednim, wiele podejść może wydawać się atrakcyjnych, jednak nie są one wystarczające do zapewnienia właściwego poziomu bezpieczeństwa. Zastosowanie napięcia zasilającego o obniżonej wartości, choć teoretycznie może zredukować ryzyko porażenia, nie eliminuje go całkowicie, ponieważ w przypadku awarii izolacji nadal może wystąpić ryzyko niebezpiecznego napięcia. Zasilanie z transformatora separacyjnego również nie stanowi pełnej odpowiedzi na problem, gdyż chociaż transformator ten ogranicza ryzyko porażenia, to nie jest to rozwiązanie wystarczające w przypadku urządzeń, które nie są dostatecznie izolowane. Połączenie obudowy z przewodem ochronnym sieci jest bardziej charakterystyczne dla urządzeń klasy I, gdzie niezbędne jest uziemienie, natomiast w oprawach klasy II, które są projektowane bez przewodu ochronnego, takie podejście jest nieadekwatne. Te nieprawidłowe koncepcje często wynikają z braku zrozumienia zasad klasyfikacji sprzętu elektrycznego oraz norm bezpieczeństwa, takich jak IEC 61140, które jasno definiują wymagania dotyczące ochrony przeciwporażeniowej. Właściwe zrozumienie i zastosowanie zasad dotyczących izolacji oraz konstrukcji sprzętu jest kluczowe dla zapewnienia bezpieczeństwa użytkowników, co jest często pomijane w praktycznych zastosowaniach.

Pytanie 38

Aby podłączyć metalowe rury gazowe do uziemionej instalacji ochronnej w budynku jednorodzinnym, konieczne jest

A. zamontowanie odpowiedniej wstawki izolacyjnej pomiędzy miejscem przyłączenia przewodu wyrównawczego a miejscem wprowadzenia rurociągu do obiektu
B. zainstalowanie wstawki izolacyjnej na przyłączu gazowym w odległości co najmniej 10 m od obiektu
C. nałożenie na rurę gazową przyłączeniową otuliny izolacyjnej na długości co najmniej 15 m od obiektu
D. bezpośrednie podłączenie rur gazowych do systemu połączeń wyrównawczych
Zainstalowanie wstawki izolacyjnej na przyłączu gazowym w odległości co najmniej 10 m od budynku jest podejściem, które nie uwzględnia specyfiki instalacji gazowych i ich interakcji z innymi systemami budowlanymi. Przede wszystkim, odległość 10 m nie ma uzasadnienia w kontekście ochrony przed porażeniem prądem elektrycznym, ponieważ izolacja powinna być stosowana bezpośrednio w miejscu, gdzie istnieje ryzyko pojawienia się napięcia na rurach gazowych. Instalowanie wstawki izolacyjnej zbyt daleko od punktu przyłączenia może prowadzić do niekontrolowanego przewodzenia prądu do systemu gazowego, co stwarza poważne zagrożenie. Przyłączenie bezpośrednio rur gazowych do systemu połączeń wyrównawczych jest również błędnym podejściem, ponieważ metalowe rury gazowe są przewodnikami prądu i ich bezpośrednie połączenie z systemem mogą prowadzić do niebezpiecznych sytuacji, takich jak korozja elektrochemiczna, co osłabia integralność strukturalną rur. Podobnie, zakładanie otuliny izolacyjnej na rurę gazową bez odpowiedniej wstawki izolacyjnej również nie zapewnia koniecznej ochrony, ponieważ sama otulina nie jest wystarczająca do eliminacji ryzyka przewodzenia prądu. W kontekście bezpieczeństwa instalacji gazowych, kluczowe jest przestrzeganie aktualnych norm i standardów, które podkreślają znaczenie właściwych praktyk w zakresie podłączeń i izolacji.

Pytanie 39

Jakie oznaczenia oraz jaka wartość minimalnego prądu znamionowego powinna mieć wkładka topikowa, służąca do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego elektrycznego bojlera o danych znamionowych: PN = 3 kW, UN = 230 V?

A. gB 20 A
B. aR 16 A
C. aM 20 A
D. gG 16 A
Inne oznaczenia, takie jak aR 16 A, aM 20 A oraz gB 20 A, nie spełniają wymogów dotyczących ochrony przed przeciążeniami i zwarciami w obwodzie bojlera. Wkładki aR są przeznaczone przede wszystkim do ochrony w przypadku zwarć, ale nie są zalecane do obwodów, gdzie mogą występować znaczne przeciążenia, co czyni je niewłaściwym wyborem dla bojlera. Ponadto, wkładki aM, które są używane głównie w obwodach silnikowych, charakteryzują się zdolnością do znoszenia długotrwałych przeciążeń, ale ich zastosowanie w obwodach grzewczych, takich jak bojler, nie jest optymalne. Wkładki gB 20 A są przystosowane do pracy w obwodach elektrycznych, ale ich wartość prądu znamionowego jest wyższa od obliczonego prądu roboczego, co może prowadzić do nieskutecznej ochrony w razie wystąpienia zwarcia. Niezrozumienie różnic pomiędzy tymi klasami wkładek może skutkować nieodpowiednim doborem zabezpieczeń, co z kolei zwiększa ryzyko wystąpienia uszkodzeń instalacji, a nawet pożarów. Kluczowe jest, aby na etapie projektowania instalacji elektrycznych świadomie dobierać odpowiednie zabezpieczenia, kierując się ich właściwościami oraz normami branżowymi, co pozwala na zminimalizowanie potencjalnych zagrożeń i zapewnienie zgodności z przepisami bezpieczeństwa.

Pytanie 40

Na rysunku przedstawiono charakterystykę wyłącznika nadmiarowo-prądowego KS6 B32/3 znajdującą się w katalogu producenta. Wyłącznik ten można zastosować do zabezpieczenia przewodów o obciążalności długotrwałej

Ilustracja do pytania
A. 34 A
B. 29 A
C. 30 A
D. 25 A
Wybór niewłaściwej obciążalności przewodów, na przykład 29 A, 25 A czy 30 A, wynika często z niewłaściwego zrozumienia zasad doboru zabezpieczeń elektrycznych. Prąd znamionowy wyłącznika nadmiarowo-prądowego KS6 B32/3 wynosi 32 A, co oznacza, że obciążalność długotrwała przewodów musi być wyższa od tej wartości, aby uniknąć sytuacji, w której wyłącznik będzie się zbyt często wyzwalał podczas normalnej pracy. Wybór 29 A to minimalna wartość, która nie spełnia wymogu większej obciążalności długotrwałej, co może prowadzić do niepożądanych wyłączeń urządzenia. Z kolei 25 A jest jeszcze bardziej nieodpowiedni, ponieważ nie tylko nie przekracza prądu znamionowego wyłącznika, ale także stwarza ryzyko uszkodzenia instalacji w przypadku krótkotrwałego wzrostu obciążenia. Wybór 30 A również jest niewłaściwy, gdyż nie zapewnia odpowiedniego marginesu, co może prowadzić do nieefektywności systemu zabezpieczeń. Podstawową zasadą projektowania instalacji elektrycznych jest zapewnienie, że każdy element systemu jest dobrany z odpowiednim zapasem, co nie tylko zwiększa bezpieczeństwo, ale również stabilność i niezawodność całej instalacji. Niezrozumienie tych zasad może prowadzić do poważnych konsekwencji, w tym ryzyka uszkodzenia sprzętu oraz zagrożenia dla użytkowników.