Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 28 stycznia 2026 11:42
  • Data zakończenia: 28 stycznia 2026 12:02

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W regulatorze PID symbolem Kₚ oznacza się współczynnik

A. zdwojenia.
B. proporcjonalności.
C. wyprzedzenia.
D. propagacji.
Regulator PID to jedno z najczęściej stosowanych narzędzi w inżynierii procesowej i automatyce. Kiedy mówimy o współczynniki K_p, mamy na myśli współczynnik proporcjonalności. To właściwie kluczowy element, który odpowiada za natychmiastową reakcję systemu na błąd. W praktycznych zastosowaniach, K_p jest używany do zwiększenia reaktywności systemu na zmiany. Im wyższa wartość K_p, tym system jest bardziej czuły na różnice między wartością rzeczywistą a zadaną. Oczywiście, nie zawsze wyższe oznacza lepsze – zbyt duży K_p może powodować oscylacje, co jest zjawiskiem niekorzystnym. Praktyka pokazuje, że najlepiej jest znaleźć optymalną wartość, która zapewnia stabilność systemu. Dobre praktyki branżowe zalecają przeprowadzanie tuningu regulatora PID, aby uzyskać najlepsze wyniki w specyficznych warunkach pracy, co często odbywa się metodą Zieglera-Nicholsa. Warto pamiętać, że regulator PID jest centralnym elementem wielu systemów sterowania, od prostych kontrolerów temperatury po skomplikowane systemy sterowania w branży lotniczej czy chemicznej. Takie podejście pozwala na przewidywalne i stabilne zachowanie całego systemu sterowania, zwiększając jego efektywność i niezawodność.

Pytanie 2

Narzędzie przedstawione na rysunku to szczypce

Ilustracja do pytania
A. tnące czołowe.
B. tnące boczne.
C. płaskie.
D. uniwersalne.
Świetnie, tnące boczne to narzędzie o naprawdę szerokim zakresie zastosowań w elektronice i elektrotechnice. Moim zdaniem, są one absolutnie niezbędne, jeśli planujesz jakiekolwiek prace związane z cięciem przewodów czy cienkich drutów. Zbudowane są z dwóch ostrzy, które ścinają materiał przez przyłożenie siły z boku, stąd ich nazwa 'boczne'. Typowo wykonane są z hartowanej stali, co zapewnia ich trwałość i długowieczność. Co ciekawe, w profesjonalnych warsztatach często używa się ich także do precyzyjnego modelowania i czyszczenia końców przewodów. Standardy branżowe, takie jak IEC 60900, podkreślają znaczenie właściwego wyboru narzędzi izolowanych do pracy z przewodami pod napięciem. Pamiętaj, że bezpieczeństwo jest kluczem, więc dobre tnące boczne powinny mieć izolację umożliwiającą pracę pod napięciem do 1000 V. To naprawdę ciekawy sprzęt, który przy odpowiednim użytkowaniu może służyć latami.

Pytanie 3

Wskaż stany logiczne wejść I2 i I3 sterownika w układzie przedstawionym na rysunku przy wsuniętym tłoczysku i poprawnej pracy czujników.

Ilustracja do pytania
A. I2 = 0, I3 = 1.
B. I2 = 1, I3 = 1.
C. I2 = 1, I3 = 0.
D. I2 = 0, I3 = 0.
Niepoprawne odpowiedzi wynikają z błędnego zrozumienia funkcji czujników B1 i B2 oraz ich wpływu na wejścia sterownika I2 i I3. Przy wsuniętym tłoczysku, tylko czujnik B1 powinien być aktywowany, co oznacza, że na I2 pojawia się sygnał logiczny 1, a na I3 sygnał logiczny 0, ponieważ B2 nie jest aktywowany. Często spotykanym błędem jest założenie, że oba czujniki mogą być aktywowane jednocześnie w tej pozycji, co prowadzi do błędnej odpowiedzi, że I3 również wynosi 1. Innym częstym nieporozumieniem jest mylenie stanów czujników, zakładając, że brak sygnału to stan wysoki, co jest przeciwieństwem rzeczywistości. W praktyce, zgodnie z zasadami działania czujników krańcowych, aktywacja czujnika (czyli przejście do stanu wysokiego) następuje w momencie, gdy element wykonawczy znajduje się w określonej pozycji. Uważam, że zrozumienie tych zależności jest kluczowe, aby uniknąć problemów w projektach automatyki, gdzie błędne założenia mogą prowadzić do nieprawidłowego działania całego systemu.

Pytanie 4

Który układ łagodnego rozruchu (softstart) należy zastosować do silnika 1-fazowego prądu przemiennego o mocy 0,3 kW, jeżeli będzie on zamontowany bez dodatkowej obudowy, bezpośrednio przy silniku pracującym w środowisku wysokiego zapylenia?

Ilustracja do pytania
A. ATS01N212
B. ATS01N125
C. ATS01N103
D. ATS01N109
Wybór układu ATS01N125 jest trafny ze względu na kilka kluczowych czynników. Po pierwsze, ten model softstartu posiada obudowę o stopniu ochrony IP67, co oznacza, że jest całkowicie odporny na kurz i może być zanurzony w wodzie do pewnej głębokości. W przypadku środowisk o wysokim zapyleniu, taki poziom ochrony jest absolutnie niezbędny, aby zapewnić długotrwałą i niezawodną pracę urządzenia. Ponadto, ATS01N125 jest przystosowany do pracy z silnikami o mocy 2,2 kW przy napięciu 1x230 V, co w pełni zaspokaja wymagania dla silnika 1-fazowego o mocy 0,3 kW. Moim zdaniem, dobór odpowiedniego stopnia ochrony IP to standardowa praktyka inżynierska, która zwiększa bezpieczeństwo i trwałość instalacji. Warto również pamiętać, że stosowanie softstartów pomaga w łagodnym uruchamianiu silników, zmniejszając obciążenie mechaniczne i przedłużając żywotność całego układu. Na rynku można znaleźć wiele rozwiązań, ale zawsze warto kierować się nie tylko mocą, ale i środowiskowymi wymaganiami, aby unikać problemów z eksploatacją.

Pytanie 5

Na rysunku przedstawiono program sterowniczy realizujący funkcję logiczną

Ilustracja do pytania
A. NAND
B. OR
C. AND
D. XNOR
Na rysunku przedstawiono konfigurację wejść zwierających, co może wprowadzać błąd w rozumieniu, czy mamy do czynienia z funkcją typu OR, AND, XNOR czy NAND. Często można pomylić funkcje OR i AND z funkcją NAND, nie rozumiejąc, że różnica tkwi w obecności operacji NOT na końcu działania. Funkcja OR zakłada, że wyjście jest prawdziwe, gdy przynajmniej jedno z wejść jest prawdziwe, co w tym przypadku nie ma miejsca, ponieważ struktura logiczna wymaga, aby oba wejścia były fałszywe dla uzyskania wyjścia prawdziwego. Funkcja AND działa odwrotnie, dając wyjście prawdziwe jedynie, gdy oba wejścia są prawdziwe. Z kolei XNOR, jako odmiana XOR, daje wynik prawdziwy, gdy oba wejścia są takie same, co nie pasuje do przedstawionego schematu. Typowym błędem jest niezrozumienie, że bramka NAND jest de facto negacją bramki AND, co oznacza, że wyjście jest fałszywe tylko wtedy, gdy wszystkie wejścia są prawdziwe. Brak zrozumienia tych podstawowych różnic może prowadzić do niepoprawnego zastosowania logiki w systemach sterujących, co w konsekwencji może skutkować wadliwym działaniem systemu lub nawet jego uszkodzeniem.

Pytanie 6

Na podstawie opisu zamieszczonego na obudowie urządzenia określ jego rodzaj.

Ilustracja do pytania
A. Obiektowy separator napięć 24 V DC
B. Przetwornica akumulatorowa 2x24 V / 230 V AC
C. Zasilacz 230 V AC / 24 V DC
D. Przetwornica napięcia 2x24 V DC / 230 V AC
Rozumiem, że wybór mógł być trudny, ale warto przeanalizować funkcje poszczególnych urządzeń. Separator napięć 24 V DC nie jest odpowiedni, ponieważ jego zadanie polega na izolacji dwóch obwodów, a nie na przekształcaniu napięcia. Taki separator chroni przed przepięciami i prądami błądzącymi, ale nie zmienia rodzaju ani poziomu napięcia. Przetwornica napięcia 2x24 V DC / 230 V AC z kolei działa odwrotnie niż zasilacz – podnosi napięcie z niskiego stałego na wysokie przemienne, co jest przydatne w systemach zasilania awaryjnego, ale nie spełnia zadania w opisie. Przetwornica akumulatorowa 2x24 V / 230 V AC jest podobna, lecz dodatkowo jest zaprojektowana do pracy z akumulatorami, co czyni ją mniej odpowiednią w kontekście przedstawionego zdjęcia. Częstym błędem jest mylenie funkcji tych urządzeń, dlatego warto zwracać uwagę na dokładne oznaczenia i opisy na obudowach, które jasno wskazują, z jakim urządzeniem mamy do czynienia. Wiedza o tym, do czego rzeczywiście służą te urządzenia, pomoże uniknąć nieporozumień w przyszłości.

Pytanie 7

Do bezstykowego pomiaru temperatury gniazda łożyska należy zastosować termometr

A. pirometryczny.
B. bimetalowy.
C. manometryczny.
D. rozszerzalnościowy.
Pirometryczny termometr to narzędzie, które umożliwia bezdotykowy pomiar temperatury. Działa na zasadzie detekcji promieniowania podczerwonego emitowanego przez obiekt, co pozwala na uzyskanie natychmiastowych i dokładnych odczytów. Jest szczególnie przydatny w sytuacjach, gdzie bezpośredni kontakt z mierzonym obiektem jest niemożliwy lub niebezpieczny. Przykładowo, w przemyśle pirometry są stosowane do monitorowania stanu technicznego maszyn i urządzeń, gdzie ważne jest szybkie wykrycie przegrzewania się elementów, takich jak łożyska czy silniki. Zastosowanie pirometru w takich przypadkach pozwala na uniknięcie awarii i kosztownych przestojów w produkcji. Standardy branżowe, takie jak ISO 9001, zalecają użycie pirometrów do monitorowania temperatur w krytycznych punktach procesu produkcyjnego. Pirometry są również używane w laboratoriach, gdzie precyzyjne pomiary temperatury są kluczowe dla dokładności eksperymentów. Moim zdaniem, zrozumienie działania i zastosowania pirometrów to podstawa dla każdego, kto pracuje w branży technicznej, ponieważ pozwala na skuteczne monitorowanie stanu maszyn i zapobieganie ich awariom. Warto więc zagłębić się w ten temat i poznać różne modele i technologie pirometryczne dostępne na rynku.

Pytanie 8

Które elementy na schematach układów pneumatycznych są oznaczane literą V?

A. Zawory.
B. Pompy.
C. Silniki.
D. Siłowniki.
Dokładnie, chodzi o zawory. W układach pneumatycznych, zawory są kluczowe dla kontrolowania przepływu powietrza. Oznaczane są literą V, co jest standardem w schematach technicznych. Zawory mogą spełniać różne funkcje, takie jak regulacja ciśnienia, kierunku przepływu czy rozdziału strumienia. Na przykład, zawory sterujące kierunkiem przepływu umożliwiają zmianę ruchu siłownika z jednego kierunku na drugi. W praktyce, w przemyśle, zawory są wykorzystywane w wielu miejscach, od prostych maszyn po zaawansowane systemy automatyzacji. Istnieje wiele typów zaworów, jak elektromagnetyczne, kulowe czy iglicowe, każdy z nich ma swoje specyficzne zastosowania. Z mojego doświadczenia wynika, że wybór odpowiedniego zaworu jest kluczowy dla efektywności i niezawodności całego układu. Prawidłowe oznaczenie i użycie zaworów zgodnie z normami, jak ISO 1219, zapewnia właściwe działanie systemu i ułatwia serwisowanie czy modernizację układu. To naprawdę fascynujące, jak wiele można osiągnąć dzięki prostym, ale skutecznym rozwiązaniom jak zawory. Warto się z nimi zaprzyjaźnić, bo to podstawa wielu systemów pneumatycznych.

Pytanie 9

Określ, który blok funkcyjny musi być użyty w programie sterującym urządzeniem służącym do pakowania określonej liczby zabawek do kartonu.

A. Regulator PID.
B. Multiplekser analogowy.
C. Licznik dwukierunkowy.
D. Timer TON.
Wybór licznika dwukierunkowego jako odpowiedniego bloku funkcyjnego do sterowania urządzeniem pakującym zabawki do kartonu jest jak najbardziej trafiony. Licznik dwukierunkowy to rodzaj licznika, który potrafi zarówno zwiększać, jak i zmniejszać swoją wartość, w zależności od sygnałów wejściowych. Jest to niezwykle przydatne w sytuacjach, gdzie musimy kontrolować precyzyjne ilości - na przykład liczbę zabawek, które mają zostać zapakowane do jednego kartonu. W praktyce, licznik dwukierunkowy można skonfigurować tak, aby zwiększał swoją wartość o jeden za każdym razem, gdy zabawka jest umieszczana w kartonie, a zmniejszał, gdy coś idzie nie tak i trzeba zabawkę usunąć. Dzięki temu mamy pełną kontrolę nad procesem pakowania i zapewniamy, że w każdym kartonie znajdzie się dokładnie tyle zabawek, ile potrzeba. Takie podejście jest zgodne z dobrymi praktykami inżynierskimi, gdzie dąży się do dokładności i precyzji w procesach produkcyjnych. Warto także podkreślić, że liczniki tego typu są szeroko stosowane w automatyce przemysłowej i stanowią podstawowy element wielu systemów kontrolnych, szczególnie tam, gdzie istotna jest możliwość reagowania na zmieniające się warunki procesu.

Pytanie 10

Do którego przyłącza zaworu hydraulicznego należy podłączyć zbiornik z cieczą hydrauliczną?

Ilustracja do pytania
A. P
B. T
C. A
D. B
Przyłącze T w zaworze hydraulicznym jest przeznaczone do podłączenia zbiornika z cieczą hydrauliczną. To przyłącze, zwane także portem powrotu, umożliwia odprowadzenie cieczy powracającej do zbiornika z systemu hydraulicznego, po tym jak wykonała swoje zadanie, np. przesunięcie tłoka w siłowniku. Jest to kluczowe dla utrzymania prawidłowego obiegu cieczy i zapobiegania nadmiernemu ciśnieniu w układzie. W praktyce, prawidłowe podłączenie zbiornika do przyłącza T pozwala na efektywne działanie całego systemu i uniknięcie awarii spowodowanych zbyt dużym ciśnieniem. Moim zdaniem, znajomość tego typu detali jest niezbędna dla każdego, kto chce pracować z hydrauliką, ponieważ błędne podłączenie może prowadzić do poważnych problemów. Standardy branżowe wyraźnie wskazują na konieczność stosowania się do opisanych zasad przy projektowaniu i konserwacji systemów hydraulicznych.

Pytanie 11

Na podstawie opisu zamieszczonego na obudowie urządzenia określ jego rodzaj.

Ilustracja do pytania
A. Obiektowy separator napięć 24 V DC
B. Zasilacz 230 V AC / 24 V DC
C. Przetwornica napięcia 2x24 V DC / 230 V AC
D. Przetwornica akumulatorowa 2x24 V / 230 V AC
Wybierając niepoprawne odpowiedzi, można natknąć się na pewne powszechne nieporozumienia dotyczące różnicy między zasilaczem a przetwornicą. Przetwornica napięcia 2x24 V DC / 230 V AC oraz przetwornica akumulatorowa 2x24 V / 230 V AC służą do przetwarzania napięcia stałego na przemienne, co jest odwrotnością tego, co robi zasilacz. Są używane w miejscach, gdzie potrzebne jest zasilanie urządzeń z sieci prądu przemiennego przy użyciu baterii lub innego źródła prądu stałego. Natomiast obiektowy separator napięć 24 V DC służy do izolacji galwanicznej w celu ochrony przed przepięciami i zakłóceniami, co również różni się od funkcji zasilacza. Często błędne wyobrażenie wynika z mylenia funkcji urządzeń na podstawie podobnych parametrów napięciowych, jednak kluczowe jest zrozumienie, że funkcją zasilacza jest konwersja i stabilizacja napięcia z sieci do urządzeń. Z mojego doświadczenia wynika, że zrozumienie różnicy w tych funkcjach jest kluczowe dla skutecznej pracy z systemami zasilania w przemyśle.

Pytanie 12

Na rysunku przedstawiono diagram działania jednego z bloków funkcyjnych sterownika PLC. Jest to blok

Ilustracja do pytania
A. timera opóźniającego załączenie TON.
B. licznika impulsów zliczającego w górę CTU.
C. licznika impulsów zliczającego w dół CTD.
D. timera opóźniającego wyłączenie TOF.
W automatyce przemysłowej znajdziemy różne bloki funkcyjne, które pełnią specyficzne funkcje. Timer opóźniający załączenie (TON) oraz timer opóźniający wyłączenie (TOF) operują na zasadzie odmierzania czasu i nie mają związku z zliczaniem impulsów. TON zaczyna odliczanie po aktywacji sygnału wejściowego, po czym załącza wyjście po określonym czasie. TOF natomiast utrzymuje wyjście aktywne przez zdefiniowany czas po zaniku sygnału wejściowego. Są one używane w aplikacjach wymagających opóźnień czasowych, np. w procesach technologicznych, gdzie wymagane jest dokładne odmierzanie czasu. Natomiast licznik zliczający w górę (CTU) działa odwrotnie do CTD. Zwiększa wartość przy każdym impulsie, co jest przydatne w sytuacjach takich jak zliczanie wyprodukowanych jednostek. Wybierając odpowiedni typ licznika lub timera, kluczowe jest zrozumienie, jaka funkcjonalność jest potrzebna w danej aplikacji. Błędne przypisanie funkcji może prowadzić do nieoptymalnego działania systemu. Typowe błędy mogą wynikać z nieuwzględnienia fizycznego charakteru procesu, co może prowadzić do wyboru niewłaściwego bloku funkcyjnego. Dlatego ważne jest, aby dobrze zrozumieć działanie każdego z tych elementów, zanim zostaną zastosowane w projekcie, co pozwala na unikanie takich nieporozumień w praktyce.

Pytanie 13

Który typ złącza przedstawiono na rysunku?

Ilustracja do pytania
A. USB
B. HDMI
C. RS-232
D. RJ-45
Wybrałeś poprawną odpowiedź, ponieważ złącze RS-232 to klasyczny interfejs, który przez lata był standardem komunikacji szeregowej w komputerach i urządzeniach przemysłowych. Złącze te, najczęściej spotykane w wersji DB9, umożliwia przesyłanie danych szeregowo, co oznacza, że bity są przesyłane jeden po drugim. Jest znane ze swojej prostoty i niezawodności, chociaż jego prędkość transmisji nie jest zbyt wysoka w porównaniu z nowoczesnymi standardami. Używane jest często w aplikacjach przemysłowych, systemach POS czy do podłączania modemów i drukarek. Mimo że RS-232 zostało wypierane przez nowsze technologie, takie jak USB czy Ethernet, nadal znajduje zastosowanie tam, gdzie wymagana jest długa odległość transmisji i odporność na zakłócenia. W praktyce, złącza RS-232 są często wykorzystywane do konfiguracji urządzeń sieciowych czy w systemach automatyki przemysłowej. Warto także pamiętać, że ten typ połączenia wymaga odpowiedniego kabla z ekranowaniem, aby zminimalizować wpływ zakłóceń elektromagnetycznych. Moim zdaniem, znajomość RS-232 to podstawa dla każdego, kto interesuje się elektroniką i telekomunikacją, ponieważ pozwala zrozumieć fundamenty komunikacji szeregowej i jej zastosowania w praktyce.

Pytanie 14

Na przedstawionym rysunku siłownik jest połączony ze słupkiem za pomocą

Ilustracja do pytania
A. jarzma.
B. ucha.
C. kołnierza przedniego.
D. łapy.
Wybierając metodę połączenia siłownika ze słupkiem, warto zrozumieć dlaczego niektóre rozwiązania są bardziej popularne niż inne. Rozważmy opcję kołnierza przedniego. Kołnierz jest często stosowany do mocowania elementów w pozycji stacjonarnej, jednak w przypadku siłownika, który musi się obracać podczas pracy, takie połączenie byłoby niepraktyczne. Jarzmo z kolei jest używane w sytuacjach, gdy konieczne jest jednoczesne uchwycenie dwóch równoległych elementów, co nie jest wymagane w przypadku siłownika. Łapa mogłaby być stosowana do przytwierdzenia czegoś do podłoża, lecz w kontekście siłownika, który musi mieć możliwość pewnego zakresu ruchu, jej zastosowanie byłoby nieoptymalne. Typowym błędem jest mylenie funkcji poszczególnych elementów mocujących i ich wpływu na funkcjonowanie systemu. Ważne jest, by wybrać takie połączenie, które zapewni optymalną ruchliwość i stabilność, co osiągamy właśnie poprzez zastosowanie ucha w połączeniach ruchomych.

Pytanie 15

Przetwornik przedstawiony na rysunkach to

Ilustracja do pytania
A. analogowo-cyfrowy konwerter USB.
B. przetwornica napięcia.
C. zadajnik cyfrowo-analogowy.
D. przetwornik PWM.
Wybór błędnej odpowiedzi wynika z niepełnego zrozumienia funkcji i zastosowania przedstawionego układu. Przetwornik PWM to urządzenie służące do modulacji szerokości impulsu, stosowane głównie w sterowaniu silnikami czy oświetleniem LED. Nie jest to odpowiednie dla zadania przetwarzania sygnałów analogowych na cyfrowe dane USB. Przetwornica napięcia, z kolei, przekształca napięcie wejściowe na inne napięcie wyjściowe, co jest zupełnie innym procesem. To urządzenie używane jest w zasilaczach, gdzie pojawia się potrzeba konwersji napięcia z jednego poziomu na inny, ale nie zajmuje się konwersją sygnałów analogowych na cyfrowe. Zadajnik cyfrowo-analogowy konwertuje dane cyfrowe na sygnały analogowe, co jest odwrotnym procesem do konwersji analogowo-cyfrowej przedstawionej w pytaniu. Często stosowany w systemach audio czy sterowania, gdzie wymagane jest wyjście analogowe z danych cyfrowych. Warto zrozumieć, że konwerter analogowo-cyfrowy USB umożliwia przetwarzanie sygnałów z czujników do formatu, który jest kompatybilny z systemami cyfrowymi, co ułatwia ich dalszą analizę i przetwarzanie.

Pytanie 16

Na schemacie przedstawiającym elektrozawór, strzałka wskazuje

Ilustracja do pytania
A. zworę.
B. cewkę.
C. sprężynę.
D. gniazdo.
Zrozumienie, które elementy w elektrozaworze pełnią konkretne funkcje, jest kluczowe dla poprawnego diagnozowania i utrzymania systemów. Zwora w elektrozaworze to ruchomy element, który otwiera lub zamyka przepływ medium, jednak strzałka w schemacie wskazuje na nieruchomy element – cewkę. Gniazdo natomiast odnosi się do miejsca, gdzie medium wchodzi i wychodzi z zaworu, co nie jest wskazywane przez strzałkę. Sprężyna w elektrozaworze pełni rolę powrotu, często przywracając zworę do pozycji zamkniętej po zaniku zasilania cewki. Wybór odpowiedzi takich jak zwora, gniazdo czy sprężyna wynika zwykle z powierzchownego spojrzenia na schematy i braku zrozumienia, jak te elementy współdziałają ze sobą. Typowym błędem jest przypisywanie funkcji elektromagnetycznych innym elementom niż cewka. Warto zatem dokładnie studiować schematy i dokumentacje techniczne, aby unikać takich pomyłek. Wiedza ta jest nieodzowna w branży automatyki i projektowania systemów przepływowych.

Pytanie 17

W celu wykonania połączenia między zasilaczem a sterownikiem punktów oznaczonych jako PE należy zastosować przewód którego izolacja ma kolor

A. żółto-zielony.
B. niebieski.
C. niebiesko-zielony.
D. czerwony.
W instalacjach elektrycznych kolor żółto-zielony jest zarezerwowany dla przewodów ochronnych, znanych również jako przewody PE (Protective Earth). Takie przewody pełnią kluczową rolę w zapewnieniu bezpieczeństwa, chroniąc użytkowników przed porażeniem prądem oraz zabezpieczając urządzenia przed uszkodzeniami. Kolory izolacji w instalacjach elektrycznych są standaryzowane przez normy, takie jak PN-EN 60446, które określają, że przewód ochronny musi być żółto-zielony. Dlatego właśnie, łącząc zasilacz ze sterownikiem, punkty oznaczone jako PE powinny być połączone przewodem o takiej izolacji. W praktyce, w przypadku wystąpienia zwarcia, prąd zwarciowy zostaje skierowany do ziemi, co zapobiega porażeniu użytkownika. Warto również pamiętać, że odpowiednie oznaczenie przewodów w instalacji jest nie tylko kwestią zgodności z normami, ale również dobrym nawykiem, który ułatwia późniejsze prace serwisowe i zmniejsza ryzyko błędów podczas wykonywania instalacji. Moim zdaniem, zrozumienie znaczenia kolorów przewodów to podstawa bezpiecznej i zgodnej z normami pracy każdego elektryka.

Pytanie 18

W dokumentacji powykonawczej nie należy umieszczać

A. warunków gwarancji.
B. protokołów pomiarowych.
C. dowodów zakupu z cenami.
D. certyfikatów użytych materiałów.
Dokumentacja powykonawcza to kluczowy element w każdej budowie czy projekcie technicznym. Jest jak skarb dla każdego inżyniera czy technika, ponieważ zawiera wszystkie istotne informacje o zakończonym projekcie. Dlatego właśnie nie umieszczamy w niej dowodów zakupu z cenami. Dlaczego? Ponieważ dokumentacja powykonawcza ma być przede wszystkim dokumentem technicznym, a nie finansowym. Skupiamy się w niej na aspektach technicznych, takich jak warunki gwarancji, protokoły pomiarowe czy certyfikaty użytych materiałów. Wszystko to jest niezbędne do utrzymania i ewentualnych napraw, ale ceny zakupu nie mają tu większego znaczenia. Ceny mogą się zmieniać, inflacja robi swoje, ale dokumentacja techniczna powinna być zawsze aktualna i zgodna z faktycznym stanem technicznym obiektu. W praktyce, ceny zakupu są ważne na etapie budżetowania i rozliczeń, ale nie w kontekście późniejszej eksploatacji budynku. Moim zdaniem, skupienie się na jakości i technologiach użytych w projekcie ma większe znaczenie i dlatego dowody zakupu z cenami są pomijane.

Pytanie 19

Jakie napięcie wskazuje woltomierz, jeżeli nastawiono zakres Uₘₐₓ = 5 V?

Ilustracja do pytania
A. 15,00 V
B. 1,50 V
C. 6,00 V
D. 0,15 V
W tym przypadku częstym błędem jest odczytanie wartości 30 na skali jako 30 V, bez uwzględnienia rzeczywistego zakresu pomiarowego. Jednak na tarczy wyraźnie widnieje informacja, że Umax = 5 V, a skala jest wyskalowana od 0 do 100 jednostek procentowych. Oznacza to, że pełne wychylenie odpowiada 5 V, a wskazanie 30 oznacza 30% tej wartości. Prawidłowe obliczenie to więc 30/100 × 5 V = 1,5 V. Gdyby ktoś potraktował skalę jako rzeczywiste wolty, wynik byłby błędny o rząd wielkości. Podobny błąd zdarza się przy miernikach z wieloma zakresami, gdy użytkownik nie uwzględni ustawionej czułości przyrządu. W praktyce laboratoryjnej zawsze należy sprawdzić zarówno pozycję przełącznika zakresu, jak i oznaczenie Umax na obudowie – dopiero wtedy można poprawnie odczytać wartość napięcia. Warto też pamiętać, że analogowe mierniki tego typu są bardzo czułe i odczyt wykonuje się patrząc prosto na skalę, by uniknąć błędu paralaksy.

Pytanie 20

Przed montażem sprawdzono parametry elektryczne przewodu. Z jednej strony został on podłączony jak na przedstawionej ilustracji, a z drugiej żyły pozostały niepodłączone. Którego parametru dotyczył wykonany w ten sposób pomiar?

Ilustracja do pytania
A. Rezystancji izolacji między przewodami L1, L2, L3 a przewodem PEN.
B. Sumy rezystancji żył L1, L2, L3 oraz PEN.
C. Rezystancji izolacji między przewodami L1 i L2 i L3.
D. Rezystancji żył L1, L2, L3.
Rozważając inne odpowiedzi, możemy zauważyć pewne błędne koncepcje dotyczące natury pomiarów elektrycznych. Na przykład, pomiar rezystancji żył L1, L2, L3 dotyczyłby sprawdzania przewodności, a nie izolacji. To zupełnie inne podejście, mające na celu ocenę strat energetycznych czy też prawidłowego działania przewodów jako ścieżek prądowych. Podobnie, suma rezystancji żył L1, L2, L3 oraz PEN sugerowałaby sprawdzanie integralności przewodów jako jednej całości, co nie ma bezpośredniego związku z bezpieczeństwem izolacji. Tego typu błędne rozumowanie często prowadzi do niewłaściwego wyboru testów, które nie zwiększają bezpieczeństwa instalacji. W przypadku rezystancji izolacji między przewodami L1 i L2 i L3, pomijamy przewód PEN, co jest błędem, ponieważ PEN jest kluczowy dla zapewnienia ochrony poprzez uziemienie. Takie podejście może wynikać z niedostatecznego zrozumienia roli PEN w systemach TN-C. Typowym błędem jest też traktowanie pomiarów jako jednorazowych działań, podczas gdy powinny one być częścią regularnych procedur diagnostycznych. Wszystkie te elementy prowadzą do zrozumienia, dlaczego tak ważna jest precyzja i wiedza praktyczna przy wykonywaniu pomiarów.

Pytanie 21

Którą cyfrą na prezentowanej płycie oznaczono diodę prostowniczą?

Ilustracja do pytania
A. 1
B. 4
C. 2
D. 3
Rozpoznanie diody prostowniczej na płytce drukowanej jest kluczowe dla zrozumienia działania układów elektronicznych. W tym przypadku, wybierając niepoprawne odpowiedzi, można było opierać się na błędnych przesłankach. Na przykład, tranzystory czy kondensatory również pełnią ważne role, ale ich funkcje różnią się znacznie od diody prostowniczej. Tranzystor, oznaczony tutaj jako element numer 2, działa jako przełącznik lub wzmacniacz sygnałów. Kondensator, z kolei, jak wskazuje pozycja 4, magazynuje energię i stabilizuje napięcie. Błędem jest zakładanie, że ich oznaczenie jest podobne do diod. Kluczowa różnica to kierunek przepływu prądu; dioda prostownicza przepuszcza prąd w jednym kierunku, co jest podstawą jej zastosowania w prostowaniu sygnałów. Często myli się także kondensatory elektrolityczne z diodami ze względu na podobny kształt i oznaczenie biegunowości. Aby unikać takich pomyłek, warto zwrócić większą uwagę na specyfikację elementów i ich oznaczenia na schematach i płytkach PCB, co jest zgodne z dobrymi praktykami w elektronice.

Pytanie 22

Na schemacie przedstawiono

Ilustracja do pytania
A. przetwornik napięcia AC na prąd AC.
B. przetwornik pomiarowy prądu lub napięcia AC.
C. konwerter łącza szeregowego na łącze światłowodowe.
D. regulowany wzmacniacz napięć lub prądów zmiennych.
Na przedstawionym schemacie nie mamy ani przetwornika napięcia AC, ani wzmacniacza sygnałów, ani przetwornika pomiarowego. Widać tu wyraźnie interfejs komunikacyjny RS-232 po lewej stronie (z liniami TxD, RxD, 0V, Sh) oraz wyjścia oznaczone FO po stronie prawej, czyli Fiber Optic – światłowód. To jednoznacznie wskazuje na konwerter łącza szeregowego na łącze światłowodowe. Pozostałe odpowiedzi są niezgodne z charakterem urządzenia: przetwornik napięcia AC na prąd AC służyłby w pomiarach energii elektrycznej, a nie w transmisji danych; przetwornik pomiarowy dotyczy konwersji sygnałów analogowych (np. 0–10 V lub 4–20 mA), nie cyfrowych; natomiast wzmacniacz napięć AC nie posiadałby torów transmisyjnych z diodami optycznymi, jak na tym schemacie. Typowym błędem jest skojarzenie symbolu zasilania (24–240 V AC/DC) z przetwornikami pomiarowymi, ale w tym przypadku napięcie służy jedynie do zasilania modułu komunikacyjnego. Konwertery RS-232/FO stosuje się wtedy, gdy wymagana jest galwaniczna izolacja lub duża odporność na zakłócenia elektromagnetyczne, np. w przemyśle automatyki, kolejnictwie czy telekomunikacji. W praktyce urządzenie to jest niezbędne wszędzie tam, gdzie tradycyjny RS-232 nie zapewnia wystarczającego zasięgu lub bezpieczeństwa transmisji – a więc jego rola jest czysto komunikacyjna, nie pomiarowa.

Pytanie 23

Dobierz narzędzie do montażu / demontażu przewodów podłączonych do sterownika, którego fragment przedstawiono na zdjęciu?

Ilustracja do pytania
A. Wkrętak płaski.
B. Klucz imbusowy.
C. Klucz nasadowy.
D. Wkrętak krzyżowy.
Do montażu i demontażu przewodów w sterownikach, jak ten przedstawiony na zdjęciu, najbardziej odpowiednim narzędziem jest wkrętak płaski. Dlaczego? Ponieważ te zaciski, które widzisz, są typowymi zaciskami śrubowymi, a śruby te mają nacięcia przystosowane właśnie do płaskiego wkrętaka. Wkrętaki płaskie są niezwykle wszechstronne i stosowane powszechnie w instalacjach elektrycznych, automatyce oraz wielu innych dziedzinach techniki. Gdy masz do czynienia z takimi zaciskami, korzystanie z wkrętaka płaskiego pozwala na precyzyjne dokręcenie bądź poluzowanie śruby, co jest kluczowe dla zapewnienia odpowiedniego kontaktu elektrycznego i uniknięcia problemów związanych z luźnymi połączeniami. W praktyce, dobre praktyki branżowe podpowiadają, aby zawsze stosować narzędzia dokładnie dopasowane do typu śrub, co minimalizuje ryzyko uszkodzenia zarówno śrub, jak i samego narzędzia. Takie podejście zwiększa niezawodność i trwałość połączeń, co jest istotne w kontekście długotrwałej pracy urządzeń. Warto zaznaczyć, że wkrętaki płaskie są częścią podstawowego wyposażenia każdego elektryka, co dodatkowo podkreśla ich znaczenie w branży. Właściwe ich stosowanie jest nie tylko kwestią praktyki, ale także bezpieczeństwa i jakości pracy.

Pytanie 24

Połączenie zacisku L2 przemiennika częstotliwości ze źródłem zasilania należy wykonać przewodem w izolacji o kolorze

Ilustracja do pytania
A. białym.
B. brązowym.
C. niebieskim.
D. czerwonym.
Odpowiedź niebieska jest poprawna, ponieważ w systemach elektrycznych zgodnych z normą PN-EN 60446 kolorem niebieskim oznacza się przewody neutralne, czyli te, które są podłączone do bieguna neutralnego zasilania. Praktycznie w każdym przypadku, gdy mamy do czynienia z instalacją elektryczną, neutralne przewody w kolorze niebieskim są kluczowe dla prawidłowego funkcjonowania systemu. Przykładowo, podczas instalacji przemienników częstotliwości, przewód L2 często jest przewodem neutralnym, który uziemia i stabilizuje układ. Ważne jest, aby pamiętać, że właściwe oznaczenie przewodów nie tylko ułatwia serwisowanie, ale przede wszystkim zapewnia bezpieczeństwo i zgodność z przepisami. Moim zdaniem, umiejętność rozpoznawania i prawidłowego łączenia przewodów to fundamentalna umiejętność każdego elektryka, dlatego warto przyłożyć do tego szczególną uwagę. Dobre oznaczenie przewodów to także mniejsze ryzyko pomyłki w przyszłości, co jest jednym z podstawowych standardów w branży elektrycznej.

Pytanie 25

Na rysunku przedstawiono diagram działania jednego z bloków funkcjonalnych sterownika PLC. Jest to blok

Ilustracja do pytania
A. licznika impulsów zliczającego w dół CTD.
B. timera opóźniającego wyłączenie TOF.
C. timera opóźniającego załączenie TON.
D. licznika impulsów zliczającego w górę CTU.
Brawo! Zidentyfikowanie bloku jako licznika impulsów zliczającego w dół CTD to klucz do zrozumienia działania liczników w sterownikach PLC. Liczniki CTD są używane do odliczania w dół od określonej wartości. Z każdym impulsem, wartość aktualna (CV) zmniejsza się o jeden, a gdy osiągnie zero, wyjście (Q) zmienia stan, co może być wykorzystane do wyzwalania innych funkcji w systemie. W praktyce, licznik taki może być używany do zarządzania ilością cykli maszynowych, kontrolowania zużycia materiałów czy monitorowania liczby obrotów w maszynach. Jest to niezastąpione narzędzie w automatyce, pozwalające na precyzyjne kontrolowanie procesów. W branży, standardy często wymagają użycia liczników w aplikacjach, gdzie dokładność i niezawodność są kluczowe. Dobrym przykładem jest produkcja, gdzie licznik może zapewniać, że procesy są wykonywane dokładnie tyle razy, ile jest to wymagane, co minimalizuje straty i optymalizuje wykorzystanie zasobów. Z mojego doświadczenia, zrozumienie i umiejętność implementacji liczników CTD w projektach PLC jest kluczowa dla każdego technika automatyka.

Pytanie 26

Która ilustracja przedstawia zawór szybkiego spustu?

A. Ilustracja 2
Ilustracja do odpowiedzi A
B. Ilustracja 4
Ilustracja do odpowiedzi B
C. Ilustracja 1
Ilustracja do odpowiedzi C
D. Ilustracja 3
Ilustracja do odpowiedzi D
Na ilustracjach 2, 3 i 4 widoczne są zupełnie inne elementy pneumatyki i automatyki, które często bywają mylone z zaworami szybkiego spustu. Drugi element to zawór rozdzielający (najczęściej 5/2 lub 4/2) sterowany ręcznie – służy do zmiany kierunku przepływu powietrza, a nie do jego szybkiego upustu. Trzeci element to zawór dławiąco-zwrotny, którego zadaniem jest regulacja prędkości przepływu powietrza w jednym kierunku (czyli kontrola szybkości ruchu siłownika). Czwarty element natomiast to wyłącznik krańcowy (mechaniczny), wykorzystywany w automatyce do sygnalizacji położenia elementu ruchomego, nie mający żadnego związku z pneumatyką przepływową. Zawór szybkiego spustu można rozpoznać po masywnej, często metalowej obudowie i trzech przyłączach – jedno do zasilania, jedno do siłownika i jedno odpowietrzające. W praktyce stosuje się go bezpośrednio przy siłowniku, żeby skrócić czas opróżniania przewodu roboczego. Typowym błędem jest użycie zwykłego zaworu sterującego zamiast szybkiego spustu, co prowadzi do spowolnienia ruchu tłoka. W układach przemysłowych taki zawór zwiększa efektywność i pozwala osiągnąć większą częstotliwość cykli pracy urządzenia. Rozpoznanie właściwego elementu opiera się więc na analizie jego funkcji – szybkie odprowadzenie powietrza po stronie roboczej jest jednoznacznym zadaniem zaworu szybkiego spustu.

Pytanie 27

Na podstawie danych umieszczonych w tabeli, dobierz średnicę wiertła do wykonania otworu pod gwint M8 o skoku 1 mm.

Średnica
znamionowa
gwintu
Skok
gwintu
mm
Średnica
nominalna
wiertła
mm
M81.256.80
17.00
0.757.25
M91.257.80
18.00
0.758.25
A. 7,80 mm
B. 7,25 mm
C. 6,80 mm
D. 7,00 mm
Odpowiedź 7,00 mm jest prawidłowa, ponieważ zgodnie z tabelą, dla gwintu M8 z skokiem 1 mm, należy użyć wiertła o średnicy 7,00 mm. To ważne, aby zrozumieć, dlaczego dobór właściwej średnicy wiertła jest kluczowy. Gwinty są używane do tworzenia połączeń śrubowych, które muszą być trwałe i wytrzymałe. Jeśli otwór jest za ciasny, może dojść do uszkodzenia narzędzi lub nawet materiału, z którym pracujesz. Z kolei zbyt duży otwór wpłynie na siłę połączenia, a nawet spowoduje jego luzowanie się. Praktyka mówi, że otwór powinien być na tyle duży, by śruba mogła bez problemu wejść, ale jednocześnie na tyle mały, by gwint miał odpowiednią przyczepność. Dobrze jest zapamiętać, że dla gwintów metrycznych, średnicę wiertła często oblicza się jako różnicę średnicy gwintu i skoku gwintu. Dlatego w przypadku M8 (8 mm) i skoku 1 mm, 8 mm - 1 mm = 7 mm. To nie tylko teoria, ale także zasada stosowana w praktyce przez profesjonalistów w branży.

Pytanie 28

Przetwornik poziomu, o zakresie pomiarowym 0 cm ÷ 100 cm, przetwarza liniowo zmierzony poziom na natężenie prądu z przedziału 4 mA ÷ 20 mA. Przy wzroście poziomu z wartości 55 cm na 75 cm natężenie prądu wyjściowego z przetwornika

A. wzrośnie o 1,6 mA
B. zmaleje o 3,2 mA
C. zmaleje o 1,6 mA
D. wzrośnie o 3,2 mA
Kiedy mamy do czynienia z przetwornikiem przetwarzającym poziom na prąd, kluczowe jest zrozumienie, jak funkcjonuje jego liniowość. Zakres od 0 cm do 100 cm jest przekształcany na 4 mA do 20 mA, co oznacza, że każdy centymetr zmiany poziomu ma przypisany konkretny przyrost prądu. W tym przypadku, zmiana o 1 cm odpowiada zmianie prądu o 0,16 mA. Często błędnym jest założenie, że wzrost poziomu automatycznie zmniejsza prąd, choć logicznie byłoby to sprzeczne z proporcjonalnością funkcji liniowej, gdzie większy poziom to wyższy prąd. Podobnie, niektórzy mogą zakładać, że zmiana z 55 cm na 75 cm jest mniejsza niż rzeczywistości, co prowadzi do wniosku, że wzrost mógłby być mniejszy. Takie błędne rozumowanie często wynika z nieuwagi lub niewłaściwego przeliczenia proporcji. Niezrozumienie, że zakresy muszą być bezpośrednio związane proporcjonalnie do siebie, jest typowym źródłem błędów. Dlatego w praktyce, technicy i inżynierowie muszą często sprawdzać swoje obliczenia i stosować wypracowane metody kalibracji, aby uniknąć takich pomyłek. Właściwe zrozumienie zasad działania takich systemów jest kluczowe w kontekście ich zastosowania w automatyzacji procesów przemysłowych, gdzie dokładność odczytów jest fundamentalna dla bezpieczeństwa i efektywności produkcji.

Pytanie 29

Silnik trójfazowy napędzający taśmociąg linii montażowej jest sterowany za pomocą układu łagodnego rozruchu. Aby czas zatrzymania silnika wynosił 1 sekundę, konieczne jest ustawienie pokrętła

Ilustracja do pytania
A. dolnego na 1
B. środkowego na 100
C. górnego na 1
D. dolnego i górnego na 1
Poprawne jest ustawienie dolnego pokrętła (oznaczonego jako t-Stop) na wartość 1 sekundy. Na przedstawionym panelu widoczne są trzy potencjometry: t-Start, U-Start i t-Stop. Pierwszy odpowiada za czas łagodnego rozruchu, drugi za napięcie początkowe przy starcie silnika, a trzeci – dolny – za czas łagodnego zatrzymania. W zadaniu chodzi o uzyskanie zatrzymania w czasie 1 sekundy, więc należy wyregulować właśnie t-Stop. W praktyce przemysłowej taki układ softstartu pozwala uniknąć gwałtownych zmian momentu i obciążeń mechanicznych przy zatrzymywaniu taśmociągu. Ustawienie t-Stop = 1 s oznacza, że napięcie na wyjściu będzie płynnie redukowane do zera w ciągu jednej sekundy, co zapobiega szarpnięciom i luzom w układzie przeniesienia napędu. Moim zdaniem to jedno z najważniejszych ustawień przy układach transportowych – zbyt krótki czas powoduje zbyt szybkie hamowanie i naprężenia w taśmie, a zbyt długi wydłuża cykl produkcyjny. Warto też pamiętać, że t-Start i t-Stop powinny być ustawione proporcjonalnie do masy i bezwładności całego układu, aby zachować płynność pracy.

Pytanie 30

Który element silnika tłokowego wskazuje strzałka?

Ilustracja do pytania
A. Wał korbowy.
B. Korbowód.
C. Wodzik.
D. Dźwignię.
Podczas analizy elementów silnika tłokowego można łatwo pomylić niektóre z nich, szczególnie jeśli nie ma się doświadczenia w tej dziedzinie. Zacznijmy od wodzika. Wodzik w rzeczywistości nie jest częścią silnika tłokowego, a raczej elementem przekładni, który pełni funkcję łącznika w mechanizmach dźwigniowych. Może być używany w innych typach maszyn, ale w kontekście silnika tłokowego to zupełnie co innego. Dźwignia, z drugiej strony, to element, który może być używany w różnych mechanizmach do przenoszenia siły, ale w silniku tłokowym nie znajduje się w bezpośrednim połączeniu z tłokiem. Korbowód, co jest najczęściej mylonym elementem, jest rzeczywiście kluczową częścią silnika tłokowego, ale jego rolą jest połączenie tłoka z wałem korbowym, co pozwala na przeniesienie ruchu liniowego na obrotowy. W praktyce, błędne zrozumienie funkcji i konstrukcji tych elementów może prowadzić do problemów podczas projektowania czy naprawy silnika. Warto znać standardy branżowe i funkcje każdego z elementów silnika, aby prawidłowo go serwisować i diagnozować ewentualne problemy.

Pytanie 31

Przedstawione na ilustracjach narzędzie służy do montażu

Ilustracja do pytania
A. zabezpieczeń E-ring.
B. pierścieni Segera.
C. kołków rozprężnych.
D. podkładek dystansowych.
Choć na pierwszy rzut oka mogą się mylić, narzędzie przedstawione na ilustracjach nie służy do montażu pierścieni Segera. Pierścienie te, znane również jako pierścienie zabezpieczające, wymagają specjalnych szczypiec z końcówkami dopasowanymi do ich otworów. Bez odpowiedniego narzędzia, montaż i demontaż takich pierścieni jest nie tylko trudny, ale i ryzykowny dla mechanizmów. Podobnie, narzędzie to nie jest przeznaczone do montażu kołków rozprężnych, które działają na zasadzie sił rozszerzających, a ich montaż wymaga najczęściej młotka lub prasy. Podkładki dystansowe z kolei nie wymagają użycia tego rodzaju narzędzi, ponieważ są to płaskie elementy mające na celu regulację odległości pomiędzy częściami, a ich montaż jest manualny. Typowym błędem jest mylenie szczypiec do E-ring z innymi narzędziami z powodu ich zewnętrznego podobieństwa. Jednak funkcja i konstrukcja są specjalnie dostosowane do konkretnego zastosowania. W przypadku E-ringów, kluczowe jest odpowiednie dopasowanie narzędzia, aby zapewnić właściwe działanie zabezpieczenia i uniknąć uszkodzeń mechanicznych. Dlatego zawsze warto dokładnie sprawdzić specyfikację techniczną narzędzia przed jego użyciem.

Pytanie 32

Na podstawie fragmentu rysunku wykonawczego określ długość krawędzi X.

Ilustracja do pytania
A. 60 mm
B. 10 mm
C. 30 mm
D. 20 mm
Krawędź X ma długość 20 mm. Wynika to z analizy wymiarów pokazanych na rysunku technicznym. Całkowita wysokość figury to 80 mm, a dolna część ma łącznie 50 mm (20 mm + 30 mm). Oznacza to, że różnica wysokości między górną a dolną częścią wynosi 30 mm, z czego 10 mm przypada na odcinek pionowy z lewej strony (od 30 mm do 20 mm). W efekcie krawędź X, będąca poziomym odcinkiem na wysokości 50 mm, ma długość 20 mm. To typowe zadanie z odczytywania wymiarów na rysunku wykonawczym, gdzie kluczowe jest rozumienie zależności między wymiarami sumarycznymi i częściowymi. W praktyce warsztatowej taka analiza pozwala uniknąć błędów przy obróbce materiału lub frezowaniu, ponieważ wymiary pośrednie często nie są podane bezpośrednio, a wynikają z prostych obliczeń geometrycznych. Moim zdaniem to świetny przykład, że dokładne czytanie rysunku jest równie ważne, jak sama umiejętność mierzenia – w realnym świecie mechanik nie może zgadywać, musi logicznie analizować każdy wymiar.

Pytanie 33

Połączenie zacisku L2 przemiennika częstotliwości ze źródłem zasilania należy wykonać przewodem w izolacji o kolorze

Ilustracja do pytania
A. czerwonym.
B. niebieskim.
C. białym.
D. brązowym.
Świetnie, że wybrałeś niebieski kolor izolacji dla przewodu łączącego zacisk L2 przemiennika częstotliwości ze źródłem zasilania. W instalacjach elektrycznych niebieski kolor jest standardowo używany dla przewodów neutralnych (N). To jest zgodne z międzynarodowymi normami, takimi jak IEC 60446, która określa kolory przewodów używanych w systemach elektrycznych. Prawidłowe oznaczenie przewodów jest kluczowe dla bezpieczeństwa i funkcjonalności instalacji, ponieważ zapobiega popełnieniu błędów podczas konserwacji lub rozbudowy systemu. W praktyce, taki przewód neutralny jest niezbędny do prawidłowego funkcjonowania urządzeń elektrycznych, zapewniając powrót prądu do źródła zasilania i umożliwiając prawidłowe działanie obwodów elektrycznych. W instalacjach trójfazowych, przewody neutralne są szczególnie ważne, ponieważ umożliwiają zrównoważenie obciążeń. Z mojego doświadczenia, pracując z różnymi instalacjami, zawsze warto upewnić się, że przewody są prawidłowo oznaczone, co nie tylko poprawia efektywność pracy, ale też zwiększa bezpieczeństwo. Pamiętaj, że właściwe kolory przewodów mogą się różnić w zależności od przepisów krajowych, dlatego zawsze warto sprawdzić lokalne regulacje.

Pytanie 34

W jaki sposób należy ustawić separator dla toru pomiarowego czujnika 0÷100°C/0÷20 mA dla wejścia sterownika PLC 0÷20 mA?

Ilustracja do pytania
A. input SW1 - 01011010, output SW2 - 0110
B. input SW1 - 01011010, output SW2 - 1001
C. input SW1 - 01001001, output SW2 - 0000
D. input SW1 - 10001100, output SW2 - 0000
Ustawienia separatora dla czujnika muszą być dokładne, aby system działał poprawnie. W przypadku błędnych ustawień, jak w odpowiedziach 1, 2 i 4, w systemie mogą pojawić się istotne błędy pomiarowe. Na przykład, ustawienie SW1 na 01011010 i SW2 na 1001 nie pokrywa właściwego zakresu prądowego, co może prowadzić do niedokładnych odczytów. Podobnie, konfiguracja SW1 na 10001100 i SW2 na 0000 jest nieodpowiednia, ponieważ nie w pełni odpowiada wymaganiom dla zakresu 0÷20 mA. To często spotykany błąd, gdy użytkownik nie dostosowuje ustawień do specyfikacji czujnika i sterownika, co skutkuje błędami w interpretacji danych. Każde urządzenie wymaga precyzyjnej kalibracji i dostosowania, co jest kluczowe w inżynierii systemów automatyki. Również ustawienie SW1 na 01011010 i SW2 na 0110 może być mylące, gdyż nie obejmuje prawidłowego zakresu dla sygnałów. Dobrą praktyką jest zawsze odwoływanie się do dokumentacji technicznej przed dokonaniem ustawień, aby uniknąć niezgodności i zapewnić optymalną pracę systemu.

Pytanie 35

Do pomiaru temperatury w systemie automatyki użyto elementów oznaczonych jako Pt100 z przetwornikami pomiarowymi posiadającymi sygnał wyjściowy 4÷20 mA. Oznacza to, że w urządzeniu pomiarowym zastosowano czujniki

A. termoelektryczne.
B. bimetalowe.
C. rezystancyjne półprzewodnikowe.
D. rezystancyjne metalowe.
Odpowiedź, że czujniki Pt100 są rezystancyjnymi metalowymi czujnikami, jest całkowicie poprawna. Pt100 to jeden z najpopularniejszych typów czujników temperatury stosowanych w przemyśle, a ich nazwa pochodzi od platyny (Pt) używanej w ich konstrukcji oraz wartości nominalnej oporu 100 omów w temperaturze 0°C. Czujniki rezystancyjne, znane również jako RTD (Resistance Temperature Detector), działają na zasadzie zmiany oporu elektrycznego wraz ze zmianą temperatury. Platyna jest wykorzystywana w tych czujnikach ze względu na jej stabilność chemiczną, liniowość charakterystyki oraz dokładność pomiaru. Przetworniki z sygnałem wyjściowym 4–20 mA są standardem w przemyśle, ponieważ umożliwiają precyzyjne przesyłanie wartości pomiarowej na duże odległości z minimalnymi stratami. Dzięki temu, w systemach automatyki, można dokładnie monitorować i kontrolować procesy technologiczne. Warto też wspomnieć, że dzięki specjalnym wersjom czujników Pt100 można mierzyć temperatury w zakresie od -200°C do 850°C, co czyni je niezwykle wszechstronnymi. Moim zdaniem, pracując w automatyce, warto wiedzieć, jakie czujniki są stosowane w różnych aplikacjach, ponieważ każda sytuacja wymaga innego podejścia i narzędzi, a wiedza o działaniu i specyfikacji czujników Pt100 to podstawa w wielu branżach technologicznych.

Pytanie 36

Która z przekładni mechanicznych na pokazanych rysunkach pracuje zgodnie z przedstawionym schematem kinematycznym?

Ilustracja do pytania
A. Przekładnia 1.
Ilustracja do odpowiedzi A
B. Przekładnia 2.
Ilustracja do odpowiedzi B
C. Przekładnia 3.
Ilustracja do odpowiedzi C
D. Przekładnia 4.
Ilustracja do odpowiedzi D
Schemat kinematyczny przedstawia przekładnię, w której osie wałów przecinają się pod kątem prostym – a więc klasyczną przekładnię stożkową. Przekładnia 2 to przekładnia pasowa, gdzie moment przenoszony jest przez elastyczny pas, a osie wałów są równoległe, więc nie odpowiada ona rysunkowi. Przekładnia 3 przedstawia układ ślimakowy – osie również przecinają się pod kątem prostym, ale nie w jednym punkcie, lecz są przesunięte, co daje zupełnie inny charakter pracy (przekształcenie ruchu obrotowego z dużym przełożeniem i samohamownością). Z kolei przekładnia 4 to przekładnia śrubowa, w której osie wałów są równoległe i zazębienie odbywa się liniowo. Typowym błędem jest utożsamianie każdego układu o kącie 90° z przekładnią stożkową – tymczasem tylko ona ma zęby ukształtowane na powierzchni stożka i zapewnia bezpośrednie, punktowe przenoszenie momentu między osiami przecinającymi się w jednym punkcie. W praktyce błędny dobór przekładni może powodować nieprawidłowe przeniesienie siły, zwiększony hałas lub nawet uszkodzenie łożysk i wałów. Dlatego w schematach zawsze zwraca się uwagę na wzajemne położenie osi i rodzaj zazębienia.

Pytanie 37

W celu wykonania połączeń wysokonapięciowych przewodem z jednodrutowymi żyłami miedzianymi w izolacji z polwinitu należy wybrać przewód oznaczony jako

Ilustracja do pytania
A. DG-w
B. DS-w
C. DY-w
D. LY-w
Odpowiedzi inne niż DY-w wskazują na pewne nieporozumienia dotyczące oznakowania i zastosowania przewodów elektrycznych. LY-w sugeruje przewód z linką wielodrutową, co jest błędne w tym kontekście, ponieważ jednodrutowe żyły miedziane są preferowane w zastosowaniach wysokonapięciowych dla ich stabilności mechanicznej. Ponadto, oznaczenie 'L' wskazuje na linkę, która nie jest odpowiednia dla wysokich napięć, gdzie stabilność i sztywność są kluczowymi czynnikami. DG-w z kolei to kombinacja, która może wprowadzać w błąd, ponieważ 'G' w kontekście izolacji oznacza gumę, a nie polwinit, który jest bardziej trwały i odporny na czynniki środowiskowe. Guma nie jest zalecana tam, gdzie wymagane są właściwości samogasnące i trwałość. DS-w również nie pasuje, ponieważ użycie stali 'S' jako materiału żyły byłoby nietypowe dla przewodów, które muszą gwarantować niskie straty mocy i wysoką przewodność. Częstym błędem jest mylenie materiału żyły i materiału izolacji, co prowadzi do niewłaściwego doboru przewodów w zastosowaniach wymagających wysokich standardów bezpieczeństwa i wydajności. Wybór odpowiedniego przewodu wymaga zrozumienia specyfikacji technicznych i ich praktycznego zastosowania, co jest kluczowe w projektowaniu niezawodnych instalacji elektrycznych.

Pytanie 38

Na podstawie przedstawionej tabliczki znamionowej wskaż dopuszczalny zakres napięć zasilania silnika prądu przemiennego, posiadającego uzwojenia połączone w gwiazdę zasilanego z sieci o częstotliwości 60 Hz.

Ilustracja do pytania
A. 440 ÷ 480 V
B. 380 ÷ 420 V
C. 254 ÷ 277 V
D. 220 ÷ 240 V
Analizując niewłaściwe opcje dotyczące zakresu napięć zasilania, warto zwrócić uwagę na kilka kluczowych kwestii. Niewłaściwe dobranie napięcia zasilania może prowadzić do poważnych problemów technicznych, takich jak przegrzanie silnika, zwiększone zużycie energii, a nawet uszkodzenie uzwojeń. Głównym powodem wyboru niewłaściwego zakresu napięć jest często nieuwzględnienie specyfikacji częstotliwości sieci oraz konfiguracji uzwojeń. W przypadku tego silnika, gdy pracuje on przy częstotliwości 60 Hz i w konfiguracji gwiazdy, wyraźnie określony jest zakres 440 ÷ 480 V. Inne wartości, takie jak 220 ÷ 240 V czy 254 ÷ 277 V, mogą być mylące, jeśli nie zwróci się uwagi na inne parametry pracy, takie jak częstotliwość czy sposób połączenia uzwojeń. Zrozumienie, jak te parametry wpływają na wydajność i bezpieczeństwo pracy silnika, jest kluczowe dla unikania błędnych decyzji. Często spotykanym błędem jest stosowanie domyślnych wartości napięcia bez analizy specyficznych wymagań aplikacji, co może prowadzić do nieefektywnej pracy urządzenia i zwiększenia kosztów operacyjnych. Dlatego tak ważne jest gruntowne zapoznanie się z dokumentacją techniczną i stosowanie się do zawartych w niej wskazówek.

Pytanie 39

Na podstawie stanów logicznych określ, która bramka przedstawionego na rysunku układu cyfrowego jest uszkodzona.

Ilustracja do pytania
A. NOT
B. NAND
C. OR
D. AND
{"correct_feedback":"Poprawna odpowiedź to bramka AND. W przedstawionym układzie logicznym pierwsza bramka po lewej (OR, oznaczona symbolem ≥1) otrzymuje na wejście sygnały 1 i 0, więc zgodnie z zasadą OR na wyjściu powinna dać logiczne 1 – i faktycznie tak jest. Następnie sygnał ten trafia do bramki AND razem z drugim wejściem o wartości 0. Działanie poprawnej bramki AND polega na tym, że na wyjściu pojawia się logiczna 1 tylko wtedy, gdy oba wejścia mają wartość 1. W tym przypadku jedno wejście to 1, drugie 0 – więc wynik powinien być 0. Tymczasem na rysunku wyjście tej bramki AND wynosi 1, co jednoznacznie wskazuje, że to właśnie ona jest uszkodzona. W praktyce takie błędy są typowe dla układów TTL i CMOS po przepięciach lub przegrzaniu – bramka może „zawiesić się” w stanie wysokim. Moim zdaniem warto zapamiętać, że diagnostyka bramek logicznych zawsze zaczyna się od analizy tabel prawdy i porównania ich z rzeczywistymi stanami – to prosty, ale skuteczny sposób na wykrycie usterki w dowolnym układzie cyfrowym.

Pytanie 40

Na rysunku przedstawiono diagram działania jednego z bloków funkcjonalnych sterownika PLC. Jest to blok

Ilustracja do pytania
A. timera opóźniającego załączenie TON
B. licznika impulsów zliczającego w dół CTD
C. timera opóźniającego wyłączenie TOF
D. licznika impulsów zliczającego w górę CTU
Większość niepoprawnych odpowiedzi wynika z błędnego rozumienia działania bloków funkcjonalnych w sterownikach PLC. Po pierwsze, timery opóźniające załączenie (TON) i wyłączenie (TOF) są używane do kontrolowania zdarzeń czasowych, nie zliczają impulsów jak liczniki. Timery TON zaczynają odliczać czas od momentu załączenia sygnału, a TOF od momentu jego wyłączenia. To różne zastosowanie w porównaniu do liczników impulsów, które bazują na liczbach impulsów, a nie czasie. Dla przykładu, w aplikacjach, gdzie czas odgrywa kluczową rolę, jak regulacja oświetlenia czy systemy wentylacyjne, timery są bardziej odpowiednie niż liczniki. Ponadto, licznik impulsów zliczający w górę (CTU) działa odwrotnie do CTD, zwiększając swoją wartość przy każdym impulsie. Jest często używany, gdy potrzebujemy wiedzieć, ile impulsów zostało do tej pory zarejestrowanych, co jest przydatne w aplikacjach monitorowania produkcji. Typowy błąd to myślenie, że każdy blok impulsowy działa na tej samej zasadzie, jednak różnią się one w praktycznych zastosowaniach i sposobie działania. Rozróżnienie między timerami a licznikami oraz między różnymi typami liczników jest kluczowe dla właściwego projektowania układów automatyki.