Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 10 lutego 2026 21:16
  • Data zakończenia: 10 lutego 2026 22:06

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Wyznacz całkowity względny błąd pomiarowy rezystancji izolacyjnej przewodów, jeśli wskazania miernika wyniosły 200,0 MΩ, a jego niepewność to ± (3% w.w. + 8 cyfr)?

A. 8,3%
B. 3,4%
C. 6,8%
D. 3,0%
Wiele osób może pomylić pojęcie błędu pomiarowego, nie dostrzegając, jak ważne jest zrozumienie różnorodnych źródeł niedokładności. Odpowiedzi 3,0% oraz 6,8% mogą wydawać się kuszące, ponieważ mogą wynikać z niepoprawnych założeń dotyczących obliczenia błędów. W przypadku błędu 3,0%, można błędnie założyć, że tylko błąd procentowy jest istotny, podczas gdy nie uwzględnia się wpływu cyfr, co prowadzi do zaniżenia rzeczywistego błędu. Z kolei odpowiedź 6,8% może sugerować, że błąd wyrażony w cyfrach jest tak samo istotny jak błąd procentowy, co jest mylnym podejściem. W rzeczywistości, aby uzyskać całkowity względny błąd, musimy zrozumieć, że oba te błędy mają różne jednostki i nie można ich po prostu dodać. Dodatkowo, należy pamiętać, że przy pomiarach elektrycznych, takich jak rezystancja, ważne jest, aby znać granice dokładności urządzeń pomiarowych oraz ich wpływ na ostateczne wyniki. Przy pomiarach dużych wartości, jak w tym przypadku 200,0 MΩ, błąd wyrażony w cyfrach jest znacząco mniejszy niż błąd procentowy, co wskazuje na konieczność dokładnej analizy sytuacji. Z takich powodów, pomiar rezystancji izolacji wymaga staranności i przestrzegania norm metrologicznych, aby uzyskać wiarygodne wyniki.

Pytanie 2

Wyłącznik różnicowoprądowy reagujący na prądy różnicowe przemienne, jednopołówkowe ze składową stałą do 6 mA i na prądy wyprostowane, oznaczony jest symbolem graficznym

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Wyłącznik różnicowoprądowy, który reaguje na prądy różnicowe przemienne, jednopołówkowe ze składową stałą do 6 mA oraz na prądy wyprostowane, jest kluczowym elementem w systemach elektroenergetycznych, zapewniającym ochronę przed porażeniem prądem elektrycznym. Oznaczenie, które widzisz w odpowiedzi A, jest zgodne z normami obowiązującymi w branży elektrycznej, w tym z normą IEC 61008-1, która określa wymagania dotyczące wyłączników różnicowoprądowych. Użycie symbolu graficznego z sinusoidą oraz prostą linią z poziomymi kreskami poniżej, wskazuje na jego zdolność do detekcji prądów różnicowych, co jest istotne w kontekście ochrony instalacji elektrycznych. Praktyczne zastosowanie takich wyłączników obejmuje zarówno budynki mieszkalne, gdzie zabezpieczają użytkowników przed zagrożeniem, jak i obiekty przemysłowe, gdzie minimalizują ryzyko uszkodzenia sprzętu. Ich dobór i prawidłowe oznaczenie w dokumentacji technicznej są fundamentalne dla zapewnienia bezpieczeństwa i zgodności z regulacjami prawnymi.

Pytanie 3

Który z poniższych przewodów jest przeznaczony do stosowania na zewnątrz budynków?

A. LNY
B. YDY
C. YKY
D. NYM
Przewód YKY jest specjalnie zaprojektowany do stosowania na zewnątrz budynków. Głównym atutem tego przewodu jest jego izolacja i powłoka ochronna, które zapewniają odporność na warunki atmosferyczne, takie jak deszcz, śnieg czy promieniowanie UV. Dzięki zastosowaniu polwinitowej izolacji oraz dodatkowej powłoki ochronnej, przewód YKY spełnia wymagania norm dotyczących instalacji zewnętrznych. Ważne jest, aby podczas montażu przewodów na zewnątrz budynków stosować materiały certyfikowane i przetestowane pod kątem wytrzymałości na ekstremalne warunki środowiskowe. Przewód YKY jest również odporny na uszkodzenia mechaniczne, co czyni go idealnym wyborem do stosowania na otwartej przestrzeni, gdzie mogą występować różnego rodzaju zagrożenia fizyczne. Z mojego doświadczenia wynika, że przewody te są powszechnie używane w instalacjach ogrodowych, oświetleniowych oraz w miejscach, gdzie wymagana jest niezawodność i trwałość przez długi czas.

Pytanie 4

Co może być przyczyną usterki na przedstawionym schemacie, jeżeli: żarówka E2 świeci się, a żarówka E1 nie świeci się, obie żarówki są sprawne, zmierzone napięcie U12 = 228 V, oprawy E1 i E2 są sprawne?

Ilustracja do pytania
A. Uszkodzone przewody pomiędzy W2 a W3
B. Uszkodzony przewód pomiędzy W3 a E1
C. Uszkodzony przewód pomiędzy W1 a S191B10
D. Uszkodzone przewody pomiędzy W1 a W2
Odpowiedź wskazująca na uszkodzony przewód pomiędzy W3 a E1 jest poprawna, ponieważ analizując sytuację, w której żarówka E2 świeci, a E1 nie, można wywnioskować, że obwód dostarczający prąd do E1 jest przerwany. Pomimo iż napięcie U12 wynosi 228 V, co sugeruje prawidłowe działanie obwodu pomiędzy W1 a W2, to brak świecenia żarówki E1 wskazuje na problem w dalszej części obwodu. W przypadku, gdyby przewody pomiędzy W1 a W2 lub W2 a W3 były uszkodzone, to również E2 nie mogłoby świecić. Praktyczne zastosowanie tej wiedzy odnosi się do diagnostyki usterek w instalacjach elektrycznych, gdzie kluczowym krokiem jest analiza obwodów oraz sprawdzanie, w którym miejscu prąd nie dociera do założonych punktów. W obiektach przemysłowych oraz mieszkalnych, stosowanie schematów połączeń i przeprowadzanie pomiarów napięcia jest niezbędne dla efektywnej diagnostyki i konserwacji. Zgodnie z normami bezpieczeństwa, każdy elektryk powinien być w stanie szybko zidentyfikować potencjalne problemy w obwodach, co prowadzi do oszczędności czasu oraz zasobów.

Pytanie 5

Źródło światła pokazane na zdjęciu to lampa

Ilustracja do pytania
A. sodowa.
B. rtęciowa.
C. rtęci owo-żarowa.
D. halogenowa.
Lampa halogenowa, jaką widzisz na zdjęciu, jest doskonałym przykładem nowoczesnego źródła światła, które charakteryzuje się wyższą efektywnością energetyczną oraz dłuższą żywotnością w porównaniu do tradycyjnych żarówek. Jej budowa składa się z małej bańki, w której znajduje się drucik wolframowy, oraz ze specjalnego naczynia kwarcowego lub szklanego wypełnionego gazem halogenowym, co pozwala na regenerację wolframu i zmniejsza jego parowanie. Dzięki temu, lampa halogenowa emituje jasne i naturalne światło, które jest doskonałe do oświetlenia wnętrz oraz zastosowań w oświetleniu akcentującym. Warto dodać, że lampy halogenowe są powszechnie stosowane w domach, biurach oraz w oświetleniu wystawowym, a ich zastosowanie w przemyśle i motoryzacji jest również znaczące. Przemiany w sektorze oświetleniowym wskazują na rosnącą popularność źródeł LED, jednak lampy halogenowe pozostają cenione za swoje unikalne właściwości w określonych zastosowaniach, takich jak reflektory czy lampy punktowe.

Pytanie 6

Które z oznaczeń określa przewód przeznaczony do wykonania obwodu jednofazowych gniazd wtyczkowych w instalacji wtynkowej w sieci TN-S?

A. \( \text{YLYżo 3} \times 1{,}5 \, \text{mm}^2 \)
B. \( \text{YDYp 2} \times 1{,}5 \, \text{mm}^2 \)
C. \( \text{YDYt 2} \times 2{,}5 \, \text{mm}^2 \)
D. \( \text{YDYtżo 3} \times 2{,}5 \, \text{mm}^2 \)
Poprawnie wybrałeś przewód YDYtżo 3 × 2,5 mm², bo właśnie taki typowo stosuje się do obwodów jednofazowych gniazd wtyczkowych w instalacjach wtynkowych w systemie TN-S. Rozbijmy sobie to oznaczenie na części, bo ono dużo mówi. YDY – przewód o izolacji i powłoce z PVC, przeznaczony do instalacji stałych. Literka „t” oznacza wersję okrągłą do układania pod tynkiem, dobrze znosi ona typowe warunki w bruździe tynkarskiej. Z kolei „żo” informuje, że wśród żył jest żyła ochronna w barwach żółto-zielonych, co w sieci TN-S jest absolutnym standardem: osobny PE i osobny N. Zapis „3 × 2,5 mm²” oznacza trzy żyły (L, N, PE) o przekroju 2,5 mm². Dla obwodów gniazd w instalacjach mieszkaniowych przyjmuje się właśnie 2,5 mm² miedzi jako dobrą praktykę i zgodność z wymaganiami obciążalności długotrwałej i spadków napięcia, szczególnie przy zabezpieczeniach 16 A. W praktyce, jeśli wykonujesz obwód gniazd w pokoju, kuchni czy garażu, to elektrycy z przyzwyczajenia i doświadczenia sięgają właśnie po YDYtżo 3 × 2,5 mm². Dzięki trzem żyłom możesz poprawnie zrealizować układ TN-S: faza, neutralny i ochronny rozdzielone już od rozdzielnicy. Moim zdaniem warto zapamiętać, że do oświetlenia zwykle idzie 1,5 mm², a do gniazd – 2,5 mm², bo to pojawia się non stop zarówno na egzaminach, jak i na budowie. Dodatkowo przewód YDYt w tynku układa się wygodnie, dobrze się go mocuje w bruździe i bez problemu mieści się w typowych peszlach czy korytkach w ścianie. To jest po prostu branżowy standard w budownictwie mieszkaniowym i małym usługowym.

Pytanie 7

Podczas wymiany uszkodzonego gniazda wtykowego w instalacji podtynkowej, prowadzonej w rurach karbowanych, zauważono, że w wyniku poluzowania zacisku, izolacja jednego z przewodów na długości kilku centymetrów straciła swoją elastyczność i zmieniła kolor. Jak powinno się naprawić to uszkodzenie?

A. Polakierować uszkodzoną izolację przewodu
B. Nałożyć gumowy wąż na uszkodzoną izolację przewodu
C. Wymienić uszkodzony przewód na nowy o takim samym przekroju
D. Wymienić wszystkie przewody na nowe o większym przekroju
Wymiana uszkodzonego przewodu na nowy o takim samym przekroju jest prawidłowym rozwiązaniem, ponieważ uszkodzenie izolacji przewodu może prowadzić do poważnych zagrożeń, takich jak zwarcia, przegrzewanie się oraz porażenia prądem. Przewody elektryczne muszą spełniać określone normy techniczne, a ich izolacja powinna być w dobrym stanie, aby zapewnić bezpieczeństwo użytkowania instalacji. W przypadku uszkodzenia izolacji, jak w tym przypadku, zaleca się wymianę całego przewodu, aby uniknąć ryzyka. Przykład zastosowania tej zasady można znaleźć w przepisach elektrycznych, takich jak normy PN-IEC dotyczące instalacji elektrycznych. Warto również pamiętać o tym, że przewody o różnym przekroju mają różne właściwości prądowe, co oznacza, że wymiana na przewód o innym przekroju może prowadzić do przekroczenia dopuszczalnych obciążeń prądowych. Dobrą praktyką w takich sytuacjach jest również przeprowadzenie przeglądu całej instalacji, aby zidentyfikować inne potencjalne problemy.

Pytanie 8

Na podstawie zamieszczonych wyników pomiarów rezystancji w przewodzie elektrycznym przedstawionym na ilustracji można stwierdzić, że żyły

Ilustracja do pytania
A. L1 i L2 są zwarte.
B. N i L3 są zwarte oraz PE jest przerwana.
C. L1 i L2 są przerwane.
D. N i PE są zwarte oraz L3 jest przerwana.
Poprawna odpowiedź wskazuje, że żyły N i PE są zwarte oraz L3 jest przerwana. Wyniki pomiarów rezystancji potwierdzają, że między żyłami N i PE nie ma oporu, co oznacza, że są one ze sobą połączone. Przykładowo, w instalacjach elektrycznych, żyła neutralna (N) oraz żyła ochronna (PE) powinny być połączone w punkcie zerowym, co jest zgodne z normami bezpieczeństwa. W przypadku, gdy rezystancja między L3.1 a L3.2 wynosi ∞, mamy do czynienia z przerwaniem w tej żyle, co może prowadzić do niebezpiecznych sytuacji, takich jak wzrost napięcia na żyłach fazowych. Istotne jest, aby przy każdorazowej kontroli instalacji elektrycznych stosować takie pomiary, aby zidentyfikować wszelkie nieprawidłowości. Praktyki te są zgodne z normami PN-IEC 60364, które określają wymagania dotyczące bezpieczeństwa instalacji elektrycznych. Zrozumienie tych zależności jest kluczowe dla zapewnienia bezpieczeństwa oraz długotrwałej eksploatacji instalacji elektrycznych.

Pytanie 9

W jakiej odległości od siebie powinny być umieszczone miejsca montażu dwóch sufitowych lamp w pomieszczeniu o wymiarach 2 m × 4 m, aby uzyskać optymalną równomierność oświetlenia?

A. 1,5 m
B. 2,0 m
C. 2,5 m
D. 1,0 m
Odpowiedź 2,0 m jest prawidłowa, ponieważ w pomieszczeniu o wymiarach 2 m × 4 m, rozmieszczenie sufitowych opraw oświetleniowych w odległości 2,0 m od siebie zapewnia optymalną równomierność natężenia oświetlenia. Przyjmuje się, że dla pomieszczeń o takich wymiarach, każda lampa powinna pokrywać obszar, który nie jest większy niż 2 m, aby zminimalizować cienie i zapewnić jednolite oświetlenie. W praktyce, rozmieszczając oprawy w odległości 2,0 m, uzyskuje się efekt, w którym każdy punkt w pomieszczeniu jest równomiernie oświetlony, co jest szczególnie istotne w kontekście ergonomii i komfortu użytkowników. Dobre praktyki w projektowaniu oświetlenia wskazują, że zachowanie odległości 2,0 m między oprawami pozwala na zminimalizowanie zjawiska nadmiarowego oświetlenia w jednym miejscu, co mogłoby prowadzić do efektu olśnienia. Ponadto, właściwe rozmieszczenie opraw wpływa także na efektywność energetyczną całego systemu oświetleniowego.

Pytanie 10

Na którym rysunku przedstawiono rozdzielnicę natynkową?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Rozdzielnica natynkowa, jak wskazuje odpowiedź D, jest konstrukcją zaprojektowaną do montażu na powierzchni ścian, co odróżnia ją od modeli podtynkowych, które są osadzone w murze. W odpowiedzi D widzimy wyraźnie rozdzielnicę z drzwiczkami, co umożliwia dostęp do osprzętu elektrycznego, takiego jak bezpieczniki czy wyłączniki. W praktyce, rozdzielnice natynkowe są często stosowane w budynkach użyteczności publicznej, biurach oraz obiektach przemysłowych, gdzie zapewniają łatwy dostęp do instalacji elektrycznych. Dobrze zaprojektowana rozdzielnica powinna przestrzegać norm bezpieczeństwa, takich jak PN-EN 61439, która reguluje wymagania dotyczące rozdzielnic niskonapięciowych. W kontekście aplikacji, uwagę należy zwrócić na odpowiednie rozmieszczenie urządzeń w rozdzielnicy oraz ich oznakowanie, co wspomaga zarówno wykonanie prac serwisowych, jak i codzienną eksploatację instalacji elektrycznej.

Pytanie 11

Który rodzaj przewodu przedstawiono na rysunku?

Ilustracja do pytania
A. Jednożyłowy uzbrojony.
B. Wielodrutowy nieuzbrojony.
C. Wielożyłowy uzbrojony.
D. Jednodrutowy nieuzbrojony.
Właściwa odpowiedź to "Wielodrutowy nieuzbrojony", co można łatwo zidentyfikować na podstawie charakterystyki przedstawionego przewodu. Przewody wielodrutowe są powszechnie stosowane w instalacjach elektrycznych, ze względu na ich elastyczność oraz zdolność do prowadzenia prądu. Składają się z wielu cienkich drutów, które są ze sobą splecione, co zwiększa ich wydajność energetyczną i elastyczność. Zastosowanie izolacji zewnętrznej jest kluczowe, aby zapobiec przepływowi prądu do elementów otaczających, co jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 60228, która określa wymagania dotyczące przewodów elektrycznych. W praktyce takie przewody są wykorzystywane w domowych instalacjach elektrycznych, w systemach oświetleniowych oraz w instalacjach przemysłowych, gdzie wymagana jest duża mobilność i odporność na różne warunki atmosferyczne. Ich nieuzbrojona konstrukcja oznacza, że nie posiadają dodatkowych elementów ochronnych, takich jak metalowe osłony, co czyni je idealnymi do użytku w miejscach, gdzie nie ma ryzyka uszkodzeń mechanicznych.

Pytanie 12

Przedstawiony zrzut ekranu miernika zawiera między innymi wyświetloną w trakcie pomiaru wartość

Ilustracja do pytania
A. znamionowego prądu instalacji.
B. prądu zadziałania zabezpieczenia.
C. spodziewanego prądu zwarcia.
D. maksymalnego prądu obciążenia.
Prawidłowo skojarzyłeś wskazanie miernika z pojęciem spodziewanego prądu zwarcia. Na ekranie widać m.in. parametr Ik = 17,79 A – to właśnie obliczony przez przyrząd spodziewany prąd zwarciowy w danym punkcie instalacji. Miernik najpierw mierzy impedancję pętli zwarcia ZL–N (tu 12,93 Ω) oraz napięcie sieci, a następnie na tej podstawie, zgodnie z prawem Ohma, wylicza, jaki prąd popłynie w przypadku zwarcia między przewodem fazowym a neutralnym lub ochronnym. To jest standardowa funkcja mierników do badań instalacji zgodnie z PN‑HD 60364 i normą PN‑EN 61557. Moim zdaniem to jeden z ważniejszych parametrów w praktyce elektryka, bo na jego podstawie ocenia się, czy zabezpieczenie nadprądowe (wyłącznik nadprądowy, bezpiecznik topikowy) zadziała wystarczająco szybko przy zwarciu. Jeśli spodziewany prąd zwarcia jest zbyt mały, czas wyłączenia może przekroczyć wartości dopuszczalne przez normę, co oznacza brak skutecznej ochrony przeciwporażeniowej przez samoczynne wyłączenie zasilania. W codziennej pracy wygląda to tak, że po wykonaniu pomiaru pętli zwarcia porównujesz Ik z katalogową charakterystyką zabezpieczenia B, C lub D – sprawdzasz, czy osiągnięty prąd mieści się w strefie natychmiastowego zadziałania wyłącznika. W dobrych praktykach pomiarowych przyjmuje się także, że pomiar wykonuje się w najdalszych punktach obwodu (np. ostatnie gniazdo w szeregu), bo tam impedancja jest największa, a więc spodziewany prąd zwarcia – najmniejszy. Jeżeli w tym najgorszym punkcie Ik jest wystarczająco duży, to cała reszta obwodu też będzie spełniała wymagania. Taki sposób myślenia bardzo ułatwia później dobór przekrojów przewodów, długości linii i rodzaju zabezpieczeń, żeby instalacja była nie tylko zgodna z przepisami, ale po prostu bezpieczna w eksploatacji.

Pytanie 13

Który rodzaj sterowania zapewnia układ silnika przedstawiony na schemacie?

Ilustracja do pytania
A. Regulację obrotów przez zmianę napięcia twornika.
B. Hamowanie dynamiczne.
C. Regulację obrotów przez bocznikowanie uzwojenia wzbudzenia.
D. Hamowanie prądnicowe.
W kontekście przedstawionego schematu oraz dostępnych odpowiedzi, wiele osób może błędnie zinterpretować sposób regulacji obrotów silnika. Odpowiedzi związane z hamowaniem prądnicowym i dynamicznym dotyczą zupełnie innych mechanizmów, które nie są odpowiednie w kontekście zmiany napięcia twornika. Hamowanie prądnicowe polega na wykorzystaniu energii kinetycznej wirnika do generowania napięcia, co prowadzi do jego spowolnienia, a nie do regulacji prędkości w sposób ciągły. Z kolei hamowanie dynamiczne, które zazwyczaj polega na podłączeniu rezystorów do obwodu silnika, aby rozproszyć energię, jest techniką używaną głównie do zapewnienia szybkiego zatrzymania, co również nie odpowiada za regulację prędkości obrotowej. Kolejna koncepcja, czyli bocznikowanie uzwojenia wzbudzenia, odnosi się do innego aspektu sterowania silnikami prądu stałego, gdzie zmiana wartości prądu wzbudzenia wpływa na siłę elektromotoryczną, ale nie bezpośrednio na napięcie twornika. Użytkownicy mogą zapominać, że każda z tych metod ma swoje zastosowanie w specyficznych warunkach, co może prowadzić do niepoprawnych wniosków. Kluczowe jest zrozumienie, że regulacja obrotów przez zmianę napięcia twornika pozostaje najskuteczniejszą metodą w wielu zastosowaniach, gdzie płynność i precyzja są najważniejsze.

Pytanie 14

Jakie zmiany w parametrach obwodu elektrycznego wiążą się z zamianą przewodu typu ADYt 3×2,5 na przewód typu YDYt 3×2,5?

A. Zwiększenie wartości prądu dopuszczalnego długotrwale oraz wzrost rezystancji izolacji
B. Obniżenie wartości prądu dopuszczalnego długotrwale oraz wzrost rezystancji izolacji
C. Obniżenie wartości prądu dopuszczalnego długotrwale oraz obniżenie rezystancji izolacji
D. Zwiększenie wartości prądu dopuszczalnego długotrwale oraz obniżenie rezystancji izolacji
Wprowadzenie przewodu YDYt 3×2,5 zamiast ADYt 3×2,5 wiąże się z koniecznością zrozumienia różnic w ich konstrukcji i zastosowaniu. Przewody ADYt, będące przewodami aluminiowymi, mają ograniczone właściwości mechaniczne i elektryczne w porównaniu do ich miedziowych odpowiedników. Zmniejszenie wartości prądu dopuszczalnego długotrwale, jak sugerują niektóre odpowiedzi, jest wynikiem mylnego pojmowania właściwości materiałów. Przewody YDYt, wykonane z miedzi, mają znacznie lepsze przewodnictwo elektryczne, co oznacza, że mogą przewodzić większe prądy bez ryzyka przegrzania. Wartości rezystancji izolacji są także kluczowe przy ocenie jakości przewodu; błędne założenie, że wymiana na przewód YDYt zmniejsza tę rezystancję, jest niezgodne z rzeczywistością. Wyższa rezystancja izolacji w przewodach YDYt przyczynia się do ich większej niezawodności i odporności na czynniki atmosferyczne. Ponadto, w praktyce stosowanie przewodów miedziowych w miejscach o dużym obciążeniu prądowym jest normą, a ich zastosowanie w instalacjach elektrycznych zgodnych z normami IEC oraz PN zwiększa bezpieczeństwo i efektywność energetyczną. Zatem, przy wyborze przewodów elektrycznych, kluczowe jest zrozumienie ich specyfikacji oraz warunków, w jakich będą eksploatowane, aby uniknąć nieporozumień związanych z ich parametrami.

Pytanie 15

Które z podanych narzędzi nie jest potrzebne do zamontowania listew elektroinstalacyjnych na ścianach z użyciem kołków rozporowych?

A. Młotek
B. Piła do metalu
C. Ściągacz izolacji
D. Poziomnica
Ściągacz izolacji to narzędzie, które głównie służy do ściągania izolacji z przewodów elektrycznych, ale do montażu listew elektroinstalacyjnych nie będzie potrzebny. Podczas montażu najważniejsze jest, żeby dobrze umiejscowić listwy na ścianie i upewnić się, że są równo przyczepione. Do tego wystarczą podstawowe narzędzia, jak poziomnica, młotek czy kołki rozporowe. ściągacz nie jest tu konieczny, bo nie pracujemy bezpośrednio z przewodami. Warto korzystać z odpowiednich narzędzi do danego zadania, bo to poprawia efektywność pracy i zmniejsza ryzyko uszkodzeń. Dlatego przy montażu listew najważniejsze są poziomica i młotek do wbijania kołków, żeby wszystko było stabilne i na poziomie.

Pytanie 16

Który z symboli oznacza możliwość bezpośredniego montażu oprawy oświetleniowej wyłącznie na podłożu niepalnym?

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.
Wybór symbolu A., C. lub D. może prowadzić do nieprawidłowych wniosków na temat możliwości montażu opraw oświetleniowych. Na przykład, symbol A. może sugerować, że oprawy oświetleniowe są odpowiednie do montażu na podłożach palnych, co jest sprzeczne z podstawowymi zasadami bezpieczeństwa pożarowego. Montowanie oprawy na powierzchniach palnych zwiększa ryzyko wystąpienia pożaru, zwłaszcza w sytuacji, gdy oprawa generuje wysoką temperaturę. W praktyce, wiele osób może mylnie uważać, że wszystkie oprawy oświetleniowe są uniwersalne i mogą być instalowane w dowolnych warunkach. To podejście jest błędne, ponieważ wiele norm branżowych, takich jak PN-EN 60598, wyraźnie wskazuje, że instalacje powinny być dostosowane do specyfiki pomieszczeń oraz ich przeznaczenia. Wybór błędnego symbolu może wynikać z niedostatecznej wiedzy na temat klasyfikacji materiałów palnych oraz właściwego montażu opraw. Ponadto, niektóre oprawy mogą być zaprojektowane do pracy w trudnych warunkach, co wymaga dodatkowych zabezpieczeń. Dlatego przed dokonaniem wyboru, zawsze warto zapoznać się z dokumentacją techniczną oraz konsultować się z wykwalifikowanym specjalistą w dziedzinie instalacji elektrycznych.

Pytanie 17

Parametry której maszyny elektrycznej zapisano na przedstawionej tabliczce znamionowej?

Ilustracja do pytania
A. Dławika.
B. Transformatora jednofazowego.
C. Prądnicy synchronicznej.
D. Silnika jednofazowego.
Tabliczka znamionowa, którą analizujesz, zawiera kluczowe informacje dotyczące silnika jednofazowego. W szczególności, moc znamionowa wynosząca 1.1 kW oraz prąd znamionowy 7.1 A są typowe dla tego typu silników, które są powszechnie stosowane w aplikacjach domowych oraz przemysłowych. Napięcie 230 V / 50 Hz wskazuje na standardowe parametry zasilania w Europie, co czyni ten silnik odpowiednim do zasilania z sieci elektrycznej. Dodatkowo, prędkość obrotowa 1400 min-1 sugeruje, że silnik jest przystosowany do zastosowań wymagających umiarkowanej prędkości, takich jak małe pompy czy wentylatory. Również obecność kondensatora rozruchowego, o wartości 160 µF/320V, jest charakterystyczna dla silników jednofazowych, które w przeciwieństwie do silników trójfazowych, często wymagają takiego elementu do uruchomienia. Takie silniki są szeroko stosowane w codziennych urządzeniach, takich jak pralki czy odkurzacze, co potwierdza ich znaczenie w nowoczesnym świecie. Zrozumienie tych parametrów jest kluczowe dla prawidłowego doboru silnika do konkretnej aplikacji, co jest zgodne z zasadami efektywnego projektowania systemów elektrycznych.

Pytanie 18

Kabel oznaczony symbolem DYd 750 jest wykonany z

A. drutu pokrytego polwinitem
B. linki pokrytej gumą
C. drutu pokrytego gumą
D. linki pokrytej polwinitem
Przewód oznaczony symbolem DYd 750 wykonany jest z drutu izolowanego polwinitem, co oznacza, że jego główną funkcją jest zapewnienie odpowiedniej elastyczności oraz odporności na różne czynniki zewnętrzne. Polwinit to rodzaj materiału izolacyjnego, który jest szeroko stosowany w przemyśle elektrotechnicznym ze względu na swoje właściwości dielektryczne oraz odporność na działanie wilgoci i chemikaliów. Przewody tego typu są powszechnie używane w instalacjach elektrycznych, w tym w budownictwie oraz w różnych urządzeniach elektrotechnicznych. Dzięki zastosowaniu drutu, przewód charakteryzuje się lepszą przewodnością elektryczną w porównaniu do linki, co czyni go bardziej efektywnym w aplikacjach wymagających stałego połączenia elektrycznego. W standardach branżowych, takich jak PN-EN 60228, przewody tego typu są klasyfikowane jako posiadające wyspecyfikowane właściwości użytkowe, co czyni je odpowiednimi do różnych zastosowań, w tym zasilania w obiektach przemysłowych oraz mieszkalnych.

Pytanie 19

Jakie środki stosuje się w instalacjach elektrycznych w celu zabezpieczenia przed dotykiem pośrednim (dodatkowa ochrona)?

A. ogrodzenia oraz obudowy
B. umiejscowienie poza zasięgiem dłoni
C. urządzenia różnicowoprądowe ochronne
D. separację elektryczną
Ochrona przed dotykiem pośrednim jest kluczowym zagadnieniem w projektowaniu instalacji elektrycznych. Wiele osób może mylnie sądzić, że zastosowanie ochronnych urządzeń różnicowoprądowych jest wystarczające do zapewnienia bezpieczeństwa. Choć te urządzenia są istotnym elementem ochrony przed porażeniem prądem, ich rola polega głównie na wykrywaniu różnic w prądzie, co nie eliminuje całkowicie ryzyka dotyku pośredniego. Ponadto, stosowanie ogrodzeń i obudów, choć przydatne, nie jest skutecznym sposobem na ochronę przed dotykiem pośrednim, ponieważ nie zawsze zapewnia odpowiednie zabezpieczenie w przypadku awarii czy uszkodzeń. Lokowanie elementów elektrycznych poza zasięgiem ręki również nie jest wystarczającym środkiem ochronnym, gdyż nie eliminuje ryzyka wystąpienia sytuacji niebezpiecznych w przypadku, gdy użytkownicy mają dostęp do takich urządzeń. W rzeczywistości kluczowym elementem zapobiegania porażeniom jest zapewnienie odpowiedniej separacji elektrycznej, która gwarantuje, że użytkownicy nie mają fizycznego kontaktu z częściami instalacji narażonymi na działanie napięcia. Z tego powodu, koncentrując się na tych błędnych podejściach, można zrozumieć, jak istotne jest właściwe projektowanie systemów elektrycznych w celu zapewnienia maksymalnego bezpieczeństwa użytkowników. Zachowanie odpowiednich standardów, takich jak norma PN-EN 61140, jest niezbędne, aby wyeliminować ryzyko porażenia prądem i zapewnić skuteczną ochronę przed dotykiem pośrednim.

Pytanie 20

Które stwierdzenie dotyczące normalizacji jest prawdziwe?

A. Stosowanie się do wymagań norm jest dobrowolne, a stosowanie się do wymagań zawartych w dyrektywach UE jest obowiązkowe.
B. Stosowanie się do wymagań norm i stosowanie się do wymagań zawartych w dyrektywach UE jest dobrowolne.
C. Stosowanie się do wymagań norm jest obowiązkowe, a stosowanie się do wymagań zawartych w dyrektywach UE jest dobrowolne.
D. Stosowanie się do wymagań norm i stosowanie się do wymagań zawartych w dyrektywach UE jest obowiązkowe.
W tym pytaniu łatwo się pomylić, bo w praktyce normy i przepisy często „idą w pakiecie” i wiele osób ma wrażenie, że wszystko jest po prostu obowiązkowe. Trzeba jednak rozdzielić dwie rzeczy: akty prawne (ustawy, rozporządzenia, wdrożone dyrektywy UE) oraz normy techniczne. Dyrektywy Unii Europejskiej po wdrożeniu do prawa krajowego stają się podstawą obowiązków prawnych. Przykładowo dyrektywa niskonapięciowa, dyrektywa EMC czy dyrektywa maszynowa wymagają, żeby urządzenia i instalacje były bezpieczne, nie stwarzały zagrożenia porażeniem, pożarem, zakłóceniami itp. Tego nie można sobie odpuścić – niespełnienie wymagań dyrektyw to naruszenie prawa, z wszystkimi konsekwencjami: od kar administracyjnych po odpowiedzialność karną, jeśli dojdzie do wypadku. Inaczej wygląda sytuacja z normami. Normy, takie jak PN-EN 60364 dla instalacji elektrycznych czy zestaw norm dotyczących ochrony przeciwporażeniowej, same w sobie nie są aktem prawnym. To są „uznane zasady techniczne”. Państwo bardzo często odwołuje się do nich w rozporządzeniach, ale zwykle w taki sposób, że ich stosowanie jest domyślną ścieżką wykazania zgodności z wymaganiami prawa. Błędne myślenie polega na założeniu, że albo normy są z natury obowiązkowe (co sugeruje, że każde odejście od zapisów normy jest nielegalne), albo że dyrektywy można traktować jak luźne wytyczne, a ważniejsze są normy. To odwraca role. W rzeczywistości rdzeniem są wymagania prawne z dyrektyw, a normy są narzędziem, żeby je spełnić w sposób uporządkowany i powtarzalny. Spotyka się też przekonanie, że skoro normy są dobrowolne, to można „robić po swojemu” bez głębszej refleksji. To też jest pułapka. Jeżeli ktoś świadomie odchodzi od normy, musi mieć mocne, technicznie uzasadnione argumenty, że wybrany sposób nadal zapewnia poziom bezpieczeństwa co najmniej taki, jak rozwiązanie normowe. W praktyce w branży elektrycznej przyjmuje się, że normy są standardem zawodowym i podstawą oceny przez nadzór techniczny, ubezpieczycieli czy biegłych sądowych. Dlatego warto dobrze rozumieć tę różnicę: obowiązkowe są wymagania prawa i dyrektyw UE, a normy są formalnie dobrowolne, ale w praktyce stanowią najlepszą drogę do spełnienia tych wymagań i ochrony własnej odpowiedzialności.

Pytanie 21

Którą rolę pełni w styczniku element wskazany na ilustracji czarną strzałką?

Ilustracja do pytania
A. Likwiduje magnetyzm szczątkowy.
B. Likwiduje drgania zwory.
C. Zmniejsza napięcie podtrzymania cewki.
D. Zmniejsza siłę docisku zwory.
Element wskazany na ilustracji czarną strzałką w styczniku rzeczywiście pełni rolę tłumika drgań. Jego głównym zadaniem jest eliminowanie drgań zwory, które mogą wystąpić podczas cykli załączania i wyłączania stycznika. Drgania zwory, jeśli nie są skutecznie kontrolowane, mogą prowadzić do problemów z kontaktami, takich jak drgające styki, co w konsekwencji może doprowadzić do uszkodzenia urządzenia lub zakłóceń w jego pracy. W praktyce, zastosowanie tłumika drgań ma kluczowe znaczenie w systemach automatyki, gdzie stabilność i niezawodność działania elementów wykonawczych są niezwykle istotne. Zgodnie z dobrymi praktykami branżowymi, stosowanie tłumików drgań jest standardem w projektowaniu nowoczesnych styczników. Tłumiki te mogą być również wykorzystywane w innych aplikacjach, takich jak siłowniki pneumatyczne czy hydrauliczne, gdzie drgania mogą negatywnie wpływać na wydajność sprzętu. Rekomenduje się regularne sprawdzanie stanu tłumików drgań w celu zapewnienia ich efektywności oraz poprawy ogólnej niezawodności systemu.

Pytanie 22

Na którym rysunku przedstawiono schemat montażowy poprawnie działającego układu, połączonego zgodnie z pokazanym schematem ideowym i zasadami montażu obwodów oświetleniowych?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Odpowiedź D jest prawidłowa, ponieważ przedstawia schemat montażowy, który spełnia wszystkie wymagania dotyczące połączeń przewodów w obwodach oświetleniowych. W tym przypadku przewody fazowe (L), neutralne (N) oraz ochronne są podłączone zgodnie z zasadami montażu, co zapewnia prawidłowe działanie układu oświetleniowego. W praktyce oznacza to, że przewód fazowy jest podłączony do odpowiednich łączników, a przewód neutralny do źródła zasilania. To podejście nie tylko zapewnia bezpieczeństwo użytkowania, ale także eliminuje ryzyko zwarcia czy uszkodzenia elementów instalacji. W branży elektroinstalacyjnej kluczowe jest przestrzeganie norm takich jak PN-IEC 60364, które regulują kwestie bezpieczeństwa w instalacjach elektrycznych. Poprawne połączenie przewodów jest również istotne w kontekście efektywności energetycznej, co ma znaczenie w obliczeniach kosztów eksploatacyjnych układów oświetleniowych.

Pytanie 23

Jakiego urządzenia należy użyć do pomiaru rezystancji izolacji w instalacji elektrycznej?

A. Omomierza
B. Megawoltomierza
C. Watomierza
D. Megaomomierza
Megaomomierz, znany również jako miernik izolacji, jest specjalistycznym urządzeniem stosowanym do pomiaru rezystancji izolacji instalacji elektrycznych. Jego głównym celem jest ocena stanu izolacji przewodów oraz urządzeń elektrycznych, co ma kluczowe znaczenie dla zapewnienia bezpieczeństwa systemu. Pomiar rezystancji izolacji przeprowadza się zazwyczaj przy zastosowaniu napięcia wyższego niż standardowe napięcie robocze, co pozwala na wykrycie potencjalnych uszkodzeń i degradacji materiałów izolacyjnych. Przykładowo, w instalacjach o napięciu 230V, pomiar izolacji przeprowadza się zazwyczaj przy napięciu 500V lub 1000V, co jest zgodne z normami IEC 61010 oraz IEC 60364. Dzięki temu jesteśmy w stanie zidentyfikować uszkodzenia, które mogą prowadzić do porażeń prądem lub zwarć, co czyni ten pomiar niezbędnym w każdej rutynowej konserwacji instalacji elektrycznych.

Pytanie 24

Jakiej z wymienionych czynności nie przeprowadza się w trakcie oględzin urządzenia napędowego z silnikiem elektrycznym podczas pracy?

A. Oceny stanu przewodów ochronnych oraz ich podłączenia
B. Sprawdzenia działania systemów chłodzenia
C. Sprawdzenia szczotek i szczotkotrzymaczy
D. Kontroli stanu osłon elementów wirujących
Odpowiedź dotycząca sprawdzenia szczotek i szczotkotrzymaczy jako czynności, której nie wykonuje się podczas oględzin urządzenia napędowego z silnikiem elektrycznym w czasie ruchu, jest poprawna. Podczas pracy silnika elektrycznego, szczegóły takie jak szczotki i szczotkotrzymacze nie mogą być skutecznie oceniane, ponieważ wymagają one zatrzymania silnika, aby móc przeprowadzić dokładne wizualne i techniczne badania. Szczotki są kluczowymi elementami, które przekazują prąd do wirnika i ich stan ma istotny wpływ na wydajność silnika. W praktyce, regularne kontrole tych komponentów powinny być przeprowadzane w warunkach postoju, aby uniknąć uszkodzeń i zapewnić długotrwałe, bezproblemowe funkcjonowanie napędu. Zaleca się stosowanie standardów takich jak PN-EN 60034, które określają wymagania dotyczące silników elektrycznych, oraz dokumentacji producentów, aby przestrzegać najlepszych praktyk obsługi i konserwacji urządzeń. Wnioskując, ocena stanu szczotek i szczotkotrzymaczy w czasie ruchu nie jest możliwa, co czyni tę odpowiedź prawidłową.

Pytanie 25

Na rysunkach przedstawiono kolejno typy końcówek źródeł światła

Ilustracja do pytania
A. E 14, AR 111, GU 10, MR 16
B. E 14, GU 10, AR 111, MR 16
C. E 14, AR 111, MR 16, GU 10
D. E 14, MR 16, GU 10, AR 111
Poprawna odpowiedź to "E 14, GU 10, AR 111, MR 16". Typy końcówek źródeł światła, które zostały przedstawione na zdjęciu, są kluczowe w zrozumieniu różnych zastosowań oświetleniowych. Końcówka E 14, znana jako mały gwint, jest powszechnie stosowana w lampach domowych, szczególnie w żarówkach LED i energooszczędnych, co czyni ją wszechstronnym rozwiązaniem do użytku przydomowego. Końcówka GU 10, z dwoma pinami i blokadą, jest używana w reflektorach sufitowych i halogenowych, co pozwala na łatwą wymianę żarówek, a jednocześnie zapewnia stabilne mocowanie. Końcówka AR 111, z reflektorem, jest często stosowana w oświetleniu profesjonalnym, na przykład w galeriach sztuki czy sklepach, gdzie istotna jest jakość i kierunek światła. Końcówka MR 16 to popularny wybór w systemach oświetleniowych niskonapięciowych, szczególnie w przypadku oświetlenia punktowego. Znajomość tych typów końcówek jest niezbędna dla każdego, kto zajmuje się projektowaniem i montażem systemów oświetleniowych, a także dla osób wybierających odpowiednie źródła światła do różnych aplikacji.

Pytanie 26

Narzędzie z rysunku służy do

Ilustracja do pytania
A. profilowania przewodów.
B. tworzenia oczek na przewodzie.
C. ściągania izolacji.
D. zaciskania końcówek tulejkowych.
Narzędzie przedstawione na zdjęciu to ściągacz izolacji, który jest niezbędnym przyrządem w dziedzinie prac elektrycznych. Jego głównym zadaniem jest usuwanie izolacji z przewodów bez uszkodzenia samego przewodu, co jest kluczowe dla zapewnienia właściwego połączenia elektrycznego. Dzięki regulowanej średnicy szczęk, ściągacz izolacji może być używany do różnych grubości przewodów, co zwiększa jego uniwersalność. W praktyce, stosowanie tego narzędzia pozwala na szybkie i precyzyjne przygotowanie przewodów do dalszej obróbki, na przykład przed lutowaniem lub zaciskaniem końcówek. W branży elektrycznej, standardy dotyczące bezpieczeństwa i jakości często wymagają, aby przewody były odpowiednio przygotowane, co czyni to narzędzie niezastąpionym. Ponadto, stosowanie ściągacza pozwala na zachowanie integralności przewodu, co ma kluczowe znaczenie dla przewodności elektrycznej i bezpieczeństwa instalacji.

Pytanie 27

Określ sposób podłączenia łącznika przedstawionego na fotografii, aby w układzie, którego schemat przedstawiono na rysunku, zapewnione było sterowanie oświetleniem z trzech niezależnych miejsc.

Ilustracja do pytania
A. I-2, II-4, III-1, IV-3
B. I-4, II-3, III-2, IV-1
C. I-1, II-4, III-2, IV-3
D. I-1, II-2, III-3, IV-4
Poprawne podłączenie łącznika krzyżowego oznaczone jako I-1, II-4, III-2, IV-3 wynika z analizy schematu elektrycznego oraz właściwego oznaczenia wejść i wyjść łącznika. Wejścia 1 i 4 są odpowiedzialne za przyjmowanie sygnałów z dwóch niezależnych punktów sterujących, co pozwala na ich połączenie w systemie wielopunktowego sterowania oświetleniem. Dobrze skonstruowany układ umożliwia użytkownikowi włączanie i wyłączanie źródła światła z trzech różnych punktów, co jest szczególnie przydatne w dużych pomieszczeniach lub korytarzach. Tego typu rozwiązanie jest zgodne z normami instalacji elektrycznych oraz zaleceniami dotyczącymi ergonomii w projektowaniu przestrzeni. Ponadto, zastosowanie łącznika krzyżowego zwiększa elastyczność w zakresie zarządzania oświetleniem, co przyczynia się do oszczędności energii i poprawy komfortu użytkowania, spełniając standardy zrównoważonego rozwoju.

Pytanie 28

Który typ łącznika instalacyjnego przedstawiony jest na schemacie?

Ilustracja do pytania
A. Krzyżowy.
B. Schodowy.
C. Świecznikowy.
D. Dwubiegunowy.
Wybrana odpowiedź jest poprawna, ponieważ schemat przedstawia łącznik świecznikowy. Ten typ łącznika jest zaprojektowany do obsługi dwóch niezależnych obwodów oświetleniowych, co pozwala na ich samodzielne włączanie i wyłączanie z jednego miejsca. W praktyce oznacza to możliwość sterowania dwoma różnymi źródłami światła, na przykład w żyrandolu, gdzie można włączać osobno jedną lub dwie części oświetlenia. W odróżnieniu od łączników schodowych, które służą do sterowania jednym obwodem z dwóch miejsc, łącznik świecznikowy daje większą elastyczność w zarządzaniu oświetleniem w pomieszczeniu. Tego typu rozwiązania są szeroko stosowane w nowoczesnych instalacjach oświetleniowych, gdzie estetyka i funkcjonalność są na pierwszym miejscu. Zastosowanie łączników świecznikowych jest zgodne z normami bezpieczeństwa i efektywności energetycznej, co czyni je popularnym wyborem w projektach instalacji elektrycznych.

Pytanie 29

Symbol graficzny urządzenia AGD - suszarki, przedstawiono na rysunku

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Odpowiedzi A, B i C odnoszą się do innych urządzeń AGD, co może prowadzić do nieporozumień przy identyfikacji symboli graficznych. Symbol A, przedstawiający zmywarkę do naczyń, jest często mylony z oznaczeniem suszarki, szczególnie przez osoby, które nie są zaznajomione z różnicami w symbolice. Zmywarka ma charakterystyczny symbol przedstawiający naczynia, co jest istotne w kontekście jej funkcji, ale nie ma nic wspólnego z obróbką tkanin. Symbol B, dotyczący kuchenki elektrycznej, również nie ma związku z suszarką, co może wynikać z niepoprawnego wnioskowania o podobieństwie kształtów czy form. Brak zrozumienia podstawowych różnic między tymi urządzeniami może prowadzić do błędnych wniosków. Przykładem może być mylenie funkcji kuchenki, która jest przeznaczona do gotowania, z suszarką, która służy do suszenia odzieży. Ostatecznie, symbol C przedstawia pralkę elektryczną, co także jest innym rodzajem urządzenia, które choć może mieć podobieństwo do suszarki, pełni zupełnie różne zadania w gospodarstwie domowym. Typowe błędy, które prowadzą do takich niepoprawnych wyborów, to ignorowanie kontekstu funkcjonalnego urządzenia, a także brak znajomości powszechnie stosowanych oznaczeń w branży AGD. Warto zapoznać się z tymi symbolami i ich znaczeniem, aby uniknąć nieporozumień w przyszłości.

Pytanie 30

Który z przedstawionych rdzeni stosowany jest do produkcji transformatora toroidalnego?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Rdzeń toroidalny, oznaczony literą C, jest kluczowy w produkcji transformatorów toroidalnych, które charakteryzują się wysoką efektywnością oraz niskimi stratami energii. Jego kształt pierścienia pozwala na skoncentrowanie strumienia magnetycznego wewnątrz rdzenia, co minimalizuje straty związane z rozproszeniem. Przykładami zastosowania rdzeni toroidalnych są transformatory w urządzeniach audiofilskich, gdzie kluczowa jest jakość dźwięku oraz minimalizacja zniekształceń. W branży elektrycznej i elektronicznej, rdzenie toroidalnych transformatorów znajdują zastosowanie w zasilaczach oraz w systemach zasilania awaryjnego (UPS), gdzie wymagane są niewielkie wymiary oraz wysoka efektywność energetyczna. Warto również podkreślić, że stosowanie rdzeni toroidalnych jest zgodne z najlepszymi praktykami w zakresie projektowania układów elektronicznych, co potwierdzają normy takie jak IEC 60076, dotyczące transformatorów energetycznych.

Pytanie 31

Jakie czynności nie są częścią przeglądów instalacji elektrycznej?

A. oględzin
B. przeprowadzania konserwacji i napraw
C. przyjęcia do eksploatacji
D. pomiarów napięcia oraz rezystancji izolacji
Odpowiedzi dotyczące pomiarów napięć i rezystancji izolacji, konserwacji i napraw oraz oględzin wskazują na istotne aspekty przeglądów instalacji elektrycznej. Przeglądy te mają na celu ocenę stanu technicznego instalacji oraz wykrywanie potencjalnych problemów, które mogą zagrażać bezpieczeństwu użytkowania. Pomiar napięć jest kluczowy, ponieważ pozwala na ocenę poprawności działania instalacji oraz identyfikację ewentualnych spadków napięcia, które mogą wpływać na efektywność działania urządzeń elektrycznych. Rezystancja izolacji jest równie ważna, gdyż niska wartość tego parametru może wskazywać na uszkodzenia izolacji, co z kolei zwiększa ryzyko porażenia prądem elektrycznym. Konserwacja i naprawa instalacji to działania, które są integralną częścią jej eksploatacji, zapewniającą długoterminowe działanie oraz bezpieczeństwo. Oględziny wizualne pozwalają na szybką identyfikację uszkodzeń, co jest kluczowe dla zapobiegania poważniejszym awariom. Często pojawia się mylne przekonanie, że przyjęcie do eksploatacji jest częścią rutynowych przeglądów, podczas gdy w rzeczywistości jest to oddzielny proces związany z zakończeniem budowy i uruchomieniem nowej instalacji. Różnice te są kluczowe dla zrozumienia cyklu życia instalacji elektrycznej oraz dla zapewnienia, że wszystkie działania są wykonywane zgodnie z obowiązującymi normami i standardami branżowymi.

Pytanie 32

Który z opisów dotyczy funkcji B przekaźnika czasowego o przedstawionych diagramach jego pracy?

Ilustracja do pytania
A. Opóźnione załączenie.
B. Opóźnione cykliczne wyłączanie.
C. Opóźnione cykliczne załączanie.
D. Opóźnione wyłączenie.
Poprawnie powiązałeś funkcję B z opisem „opóźnione załączenie”. Na diagramie widać, że po pojawieniu się napięcia zasilania U przekaźnik nie załącza swoich styków od razu – pozioma kreska przy funkcji B zaczyna się dopiero po czasie t. To właśnie jest klasyczna funkcja „ON-delay”: najpierw odliczanie, potem dopiero przełączenie styków wykonawczych. W praktyce oznacza to, że po podaniu sygnału sterującego (np. pojawienie się napięcia na cewce) przekaźnik czeka ustawiony czas, a dopiero później zamyka lub otwiera styki robocze. Takie przekaźniki stosuje się bardzo często w automatyce budynkowej i przemysłowej. Typowy przykład: łagodne załączanie dużych odbiorników, żeby uniknąć udaru prądowego – najpierw startuje np. wentylacja, a dopiero po kilku sekundach nagrzewnica. Albo sekwencyjne załączanie kilku silników, każdy z opóźnieniem, żeby nie przeciążyć sieci. Z mojego doświadczenia, funkcja opóźnionego załączenia jest też standardem przy sterowaniu oświetleniem awaryjnym, systemami wentylacji, układami gwiazda–trójkąt (jako element logiki sterowania). Ważne jest, że po zaniku napięcia i ponownym podaniu, cykl odmierzania czasu zaczyna się od nowa, zgodnie z katalogowymi opisami producentów (Relpol, Finder, Eaton itp.). Dobrą praktyką jest zawsze dokładne czytanie diagramów czasowych w kartach katalogowych – oznaczenie funkcji samą literą (A, B, C, D) bywa różne u producentów, ale kształt przebiegu zawsze jednoznacznie pokazuje, czy chodzi o opóźnione załączenie, czy wyłączenie, czy pracę cykliczną. Tu funkcja B ewidentnie pokazuje: sygnał wejściowy jest obecny, liczony jest czas t, a dopiero potem następuje załączenie – czyli klasyczne opóźnione załączenie.

Pytanie 33

Jaką funkcję w wyłączniku nadprądowym pełni element wskazany na rysunku czerwoną strzałką?

Ilustracja do pytania
A. Wyzwalacza przeciążeniowego.
B. Komory łukowej.
C. Wyzwalacza zwarciowego.
D. Styku ruchomego.
Element wskazany na rysunku czerwoną strzałką to wyzwalacz zwarciowy, który odgrywa kluczową rolę w działaniu wyłącznika nadprądowego. Jego podstawowym zadaniem jest szybkie reagowanie na sytuacje zwarciowe, co jest niezbędne dla zapewnienia bezpieczeństwa instalacji elektrycznej. W momencie wystąpienia zwarcia, następuje gwałtowny wzrost prądu, który wyzwalacz wykrywa i natychmiast przerywa obwód elektryczny. To działanie zapobiega uszkodzeniom przewodów oraz innych elementów instalacji, a także minimalizuje ryzyko pożaru. W praktyce, zastosowanie wyzwalacza zwarciowego jest normą w instalacjach elektrycznych, a jego obecność jest zgodna z normami takimi jak PN-EN 60947-2, które regulują kwestie bezpieczeństwa urządzeń elektrycznych. Dzięki zastosowaniu wyzwalaczy zwarciowych, użytkownicy mogą mieć pewność, że ich instalacja będzie chroniona przed niebezpiecznymi skutkami awarii. Dodatkowo, w wielu systemach automatyki budynkowej wyzwalacze te mogą być integrowane z systemami monitoringu, co zwiększa poziom ochrony.

Pytanie 34

Którego aparatu należy użyć w celu zastąpienia bezpieczników topikowych w modernizowanej instalacji w obwodzie zasilającym silnik trójfazowy?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Aparat zabezpieczający oznaczony jako "A" jest najodpowiedniejszym rozwiązaniem do zastąpienia bezpieczników topikowych w nowoczesnych instalacjach zasilających silniki trójfazowe. Posiada on trzy wejścia i wyjścia, co jest kluczowe dla prawidłowego zasilania silnika trójfazowego, gdzie każda faza wymaga oddzielnego obwodu. Oznaczenie "C16" wskazuje na charakterystykę wyzwalania, co oznacza, że aparat ten zadziała w odpowiednim czasie w przypadku przeciążenia, a także przy zwarciach, chroniąc w ten sposób silnik przed uszkodzeniem. W przypadku silników trójfazowych, zgodnie z normami IEC 60947-4-1, ważne jest, aby zabezpieczenia były dobrane odpowiednio do prądu znamionowego silnika oraz jego charakterystyki pracy. Należy również pamiętać, że stosowanie nowoczesnych aparatów zabezpieczających, takich jak wyłączniki automatyczne, zapewnia większą niezawodność oraz łatwość w obsłudze w porównaniu do tradycyjnych bezpieczników topikowych, które wymagają wymiany po zadziałaniu. Profesjonalne podejście do doboru zabezpieczeń jest kluczowe dla efektywności i bezpieczeństwa instalacji elektrycznych.

Pytanie 35

Jaki element przewodu oznaczony jest cyfrą 1?

Ilustracja do pytania
A. Oplot włóknisty.
B. Uzbrojenie.
C. Powłoka.
D. Izolacja żyły.
Element oznaczony cyfrą 1 na załączonym obrazku jest powłoką przewodu, co jest kluczowe dla zapewnienia jego właściwego funkcjonowania i długowieczności. Powłoka zewnętrzna pełni istotną funkcję ochronną, osłaniając przewód przed niekorzystnymi warunkami środowiskowymi, takimi jak wilgoć czy zmiany temperatury, które mogą prowadzić do degradacji materiałów. Dobre praktyki branżowe zalecają stosowanie powłok wykonanych z materiałów odpornych na działanie chemikaliów oraz uszkodzenia mechaniczne. Na przykład, w instalacjach przemysłowych często stosuje się przewody z powłoką PVC lub PUR, które zapewniają wysoką odporność na ścieranie i działanie substancji chemicznych. Przykładem zastosowania powłok jest ich użycie w kablach zasilających, które muszą być odpowiednio zabezpieczone przed uszkodzeniami, aby zapewnić bezpieczeństwo użytkowników oraz ciągłość dostaw energii. Właściwie dobrana powłoka to kluczowy element w projektowaniu przewodów, co potwierdzają standardy takie jak IEC 60227 dla kabli instalacyjnych.

Pytanie 36

Jakie oznaczenie powinna posiadać wkładka topikowa do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego elektrycznego bojlera o parametrach znamionowych: PN = 3 kW, UN = 230 V?

A. gG 20 A
B. gG 16 A
C. aM 20 A
D. aM 16 A
Odpowiedź gG 16 A jest prawidłowa, ponieważ wkładki topikowe oznaczone jako gG są przeznaczone do zabezpieczania obwodów przed przeciążeniami oraz zwarciami, a ich charakterystyka czasowa i prądowa jest dostosowana do zastosowań w instalacjach elektrycznych, takich jak obwody zasilające urządzenia elektryczne, w tym bojlery. W przypadku bojlera o mocy 3 kW oraz napięciu znamionowym 230 V, maksymalny prąd roboczy można obliczyć według wzoru: P = U × I, co daje prąd I równy około 13 A. Wybór wkładki gG 16 A zapewnia odpowiedni margines bezpieczeństwa, umożliwiając prawidłowe działanie urządzenia w warunkach normalnych, jednocześnie chroniąc przed skutkami zwarć. W praktyce wkładki gG są używane w sytuacjach, gdzie mogą wystąpić różne rodzaje przeciążeń, co czyni je bardziej elastycznymi i bezpiecznymi w użyciu. Oprócz tego, przy zastosowaniu wkładki gG 16 A, spełnione są normy dotyczące zabezpieczeń elektrycznych, co jest istotne dla bezpieczeństwa użytkowników i zgodności z przepisami budowlanymi.

Pytanie 37

Zmierzono różnicowy prąd zadziałania wyłączników różnicowoprądowych w instalacji elektrycznej. Jaki wniosek można wyciągnąć z pomiarów przedstawionych w tabeli?

Nr wyłącznikaOznaczenieRóżnicowy prąd zadziałania
IP 304 40-30-AC25 mA
IIP 304 40-100-AC70 mA
IIIP 302 25-30-AC12 mA
A. Żaden wyłącznik nie nadaje się do dalszej eksploatacji.
B. Wyłącznik nr II nie nadaje się do dalszej eksploatacji.
C. Wyłącznik nr III nie nadaje się do dalszej eksploatacji.
D. Wszystkie wyłączniki nadają się do dalszej eksploatacji.
Analizując dostępne odpowiedzi, można zauważyć szereg błędnych wniosków dotyczących stanu wyłączników różnicowoprądowych. Pierwsza z błędnych koncepcji mówi o tym, że żaden z wyłączników nie nadaje się do dalszej eksploatacji. Takie sformułowanie wprowadza w błąd, ponieważ na podstawie przedstawionych danych można zauważyć, że nie wszystkie wyłączniki miały problemy z zadziałaniem. Kolejnym błędnym podejściem jest stwierdzenie, że wyłącznik nr II nie nadaje się do dalszej eksploatacji. Bez analizy konkretnej wartości prądu różnicowego dla tego wyłącznika, nie można wnioskować o jego stanie. Koncentracja na jednym wyłączniku, bez uwzględnienia reszty, prowadzi do mylnych konkluzji. W przypadku wyłącznika nr III, kluczowe jest zrozumienie, że nie zadziałał on przy prądzie 12 mA, co jest poniżej wymaganych 15 mA. W praktyce, przy ocenie stanu technicznego wyłączników różnicowoprądowych, niezbędne jest uwzględnienie norm oraz wartości nominalnych zadziałania, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Błędem jest również zakładanie, że wystarczy jedynie pomiar prądu różnicowego, aby ocenić stan wyłącznika. Każdy z wyłączników powinien być analizowany indywidualnie, w kontekście jego specyfikacji i wymagań bezpieczeństwa, zgodnie z obowiązującymi normami branżowymi.

Pytanie 38

Jakie typy przewodów instaluje się na izolatorach wspornikowych?

A. Szynowe
B. Rdzeniowe
C. Uzbrojone
D. Kabelkowe
Odpowiedź 'szynowe' jest poprawna, ponieważ szyny montowane są na izolatorach wsporczych w systemach elektroenergetycznych. Izolatory wsporcze pełnią kluczową rolę w podtrzymywaniu szyn, zapewniając jednocześnie ich izolację od otoczenia. Szyny są elementami wykorzystywanymi do przesyłania energii elektrycznej na dużą skalę, a ich zastosowanie w instalacjach wysokiego napięcia jest standardem w branży. Przykładem mogą być linie przesyłowe oraz rozdzielnie, gdzie szyny są stosowane do efektownego i bezpiecznego przekazywania prądu. Dobrą praktyką jest również korzystanie z szyn w instalacjach przemysłowych, gdzie ich zastosowanie zwiększa niezawodność oraz zmniejsza opory elektryczne. W instalacjach szynowych należy przestrzegać standardów dotyczących materiałów i konstrukcji, co zapewnia długotrwałość i bezpieczeństwo operacyjne tych systemów.

Pytanie 39

Którego z wymienionych narzędzi należy użyć do połączenia przewodów przy użyciu złączki przedstawionej na rysunku?

Ilustracja do pytania
A. Praski hydraulicznej.
B. Lutownicy.
C. Szczypiec uniwersalnych.
D. Wkrętaka.
Użycie praski hydraulicznej do połączenia przewodów za pomocą złączki tulejowej jest najlepszym rozwiązaniem, ponieważ praska hydrauliczna zapewnia odpowiednią siłę, co jest kluczowe dla uzyskania trwałego i bezpiecznego połączenia elektrycznego. Zaciskanie złączki tulejowej przy użyciu tego narzędzia pozwala na równomierne rozłożenie nacisku, co jest niezwykle istotne, aby uniknąć uszkodzenia przewodów. W praktyce, praski hydrauliczne są szeroko stosowane w branży elektrycznej i telekomunikacyjnej, zgodnie z normami, takimi jak PN-EN 60947-1. Używając praski, można również osiągnąć doskonałe połączenia, które są odporne na wibracje i zmiany temperatury, co jest kluczowe w instalacjach przemysłowych czy budowlanych. Dzięki tym właściwościom, praska hydrauliczna gwarantuje wysoką jakość połączeń, co ma bezpośredni wpływ na bezpieczeństwo i niezawodność systemów elektrycznych.

Pytanie 40

W instalacji elektrycznej, której schemat przedstawiono na rysunku błędnie podłączono

Ilustracja do pytania
A. przewód ochronny.
B. żyrandol.
C. przewody zasilające.
D. łącznik.
Wybór łącznika jako błędnie podłączonego elementu jest poprawny, ponieważ łącznik powinien być zawsze podłączony w obwodzie fazowym (L) w celu prawidłowej kontroli zasilania. W sytuacji, gdy łącznik przerywa obwód neutralny (N), mamy do czynienia z poważnym zagrożeniem dla bezpieczeństwa użytkowników. Zgodnie z normami PN-IEC 60364, instalacje elektryczne powinny być projektowane oraz wykonywane w sposób zapewniający ich bezpieczeństwo, co obejmuje również właściwe podłączenie łączników. Praktyka poprawnego stosowania łączników w instalacjach elektrycznych polega na tym, że przy włączonym obwodzie fazowym, możliwe jest odcięcie zasilania i tym samym zapewnienie bezpieczeństwa podczas konserwacji urządzeń. Dobrą praktyką jest również stosowanie łączników, które posiadają oznaczenia wskazujące ich położenie w obwodzie, co ułatwia identyfikację w razie awarii. Podczas projektowania instalacji, należy także uwzględnić odpowiednie zabezpieczenia, takie jak wyłączniki różnicowoprądowe, aby minimalizować ryzyko porażenia prądem. Dlatego poprawne podłączenie łącznika jest kluczowe dla ogólnego bezpieczeństwa instalacji elektrycznej.