Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 8 grudnia 2025 08:44
  • Data zakończenia: 8 grudnia 2025 09:12

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Jaki element elektroniczny jest określany przez symbole: S-źródło, G-bramka, D-dren?

A. Tranzystor unipolarny
B. Tranzystor bipolarny
C. Trymer
D. Tyrystor
Tranzystor unipolarny, znany również jako tranzystor MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), jest elementem elektronicznym, który charakteryzuje się trzema głównymi terminalami: źródłem (S), bramką (G) oraz drenem (D). Te oznaczenia są standardem w dokumentacji technicznej i umożliwiają zrozumienie, jak tego typu tranzystor funkcjonuje. W tranzystorze unipolarnym prąd przepływa między drenem a źródłem, gdy na bramkę przyłożone jest odpowiednie napięcie, co kontroluje jego stan włączony lub wyłączony. Zastosowania tranzystorów unipolarnych obejmują obwody cyfrowe, wzmacniacze oraz układy przełączające, co czyni je niezwykle wszechstronnymi w różnych dziedzinach elektroniki, od komputerów po systemy komunikacji. Warto zauważyć, że ze względu na ich niskie zużycie energii i wysoką szybkość przełączania, tranzystory MOSFET są szeroko stosowane w nowoczesnych urządzeniach elektronicznych, co podkreśla ich znaczenie w branży.

Pytanie 3

Jaką minimalną przestrzeń należy utrzymać (dla kabla o długości przekraczającej 35 m – nie odnosi się to do ostatnich 15 m) pomiędzy zasilaniem a nieekranowaną skrętką komputerową w konfiguracji bez separatora?

A. 100 mm
B. 50 mm
C. 20 mm
D. 200 mm
Odpowiedź 200 mm jest prawidłowa, ponieważ zgodnie z normami dotyczącymi instalacji kablowych, zachowanie odpowiedniej odległości pomiędzy przewodami zasilającymi a nieekranowanymi kablami komputerowymi jest kluczowe dla minimalizacji zakłóceń elektromagnetycznych. W przypadku tras kablowych dłuższych niż 35 m, zaleca się, aby odległość ta wynosiła co najmniej 200 mm, co jest zgodne z wytycznymi określonymi w normach TN i IEEE. Przykładem zastosowania tej zasady jest instalacja sieci komputerowej w biurze, gdzie unikanie bliskiego układania kabli zasilających i transmisyjnych pozwala na stabilniejszą i bardziej niezawodną komunikację sieciową. Dbanie o takie odległości przekłada się na mniejsze ryzyko interferencji oraz lepszą jakość sygnału, co jest kluczowe w środowiskach o dużym natężeniu ruchu sieciowego. Dlatego przestrzeganie tych norm nie tylko zabezpiecza instalację przed problemami technicznymi, ale również poprawia komfort użytkowników i wydajność systemów informatycznych.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Analogowy oscyloskop dwukanałowy pozwala na pomiar

A. stosunku sygnału do szumu
B. bitowej stopy błędów
C. przesunięcia fazowego
D. współczynnika błędów modulacji
Odpowiedź "przesunięcie fazowe" jest poprawna, ponieważ analogowy oscyloskop dwukanałowy jest szczególnie przydatny do analizy sygnałów w czasie rzeczywistym, umożliwiając bezpośrednie porównanie dwóch sygnałów. Przesunięcie fazowe oznacza różnicę w czasie pomiędzy dwoma sygnałami, co jest kluczowe w wielu zastosowaniach elektronicznych, takich jak synchronizacja systemów, modulacja czy analiza obwodów. Z pomocą oscyloskopu można zaobserwować, jak dwa sygnały współpracują ze sobą, co pozwala na dokładne pomiary przesunięcia fazowego. Przykładem zastosowania tej techniki może być analizowanie sygnałów w systemach komunikacyjnych, gdzie dokładna synchronizacja sygnałów jest kluczowa dla poprawnego odbioru informacji. Ponadto, w przypadku analizy filtrów, przesunięcie fazowe może dostarczyć informacji o stabilności i charakterystyce częstotliwościowej systemu, co jest zgodne z najlepszymi praktykami w obszarze inżynierii elektronicznej.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

W celu montażu kabli instalacji alarmowej na ścianie drewnianej w domu należy zastosować elementy oznaczone literą

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Odpowiedź A. jest prawidłowa, ponieważ uchwyty kablowe z gwoździem są specjalnie zaprojektowane do montażu kabli na powierzchniach drewnianych. Gwoździe zapewniają stabilność oraz odpowiednie trzymanie kabli, co jest kluczowe w instalacjach alarmowych. W praktyce, taki sposób montażu ułatwia pracę w miejscach, gdzie użycie wkrętów mogłoby być kłopotliwe lub czasochłonne. Gwoździe wbijane bezpośrednio w drewno są stosunkowo łatwe do zamocowania i pozwalają na szybkie wykonanie pracy. Dodatkowo, zgodnie z normami instalacyjnymi, ważne jest, aby kable były odpowiednio prowadzone, co zapobiega ich uszkodzeniu oraz minimalizuje ryzyko zwarcia. Dzięki odpowiedniemu montażowi można zyskać nie tylko estetykę, ale także bezpieczeństwo całej instalacji. Uchwyty kablowe pozwalają na zachowanie porządku w instalacji, co jest zgodne z najlepszymi praktykami w branży elektrycznej.

Pytanie 9

Dokładne umycie i odtłuszczenie powierzchni płytki przed instalacją elementów elektronicznych jest wykonywane w celu

A. zwiększenia adhezji lutowia do pola lutowniczego
B. zwiększenia temperatury topnienia lutu
C. zapobiegania pękaniu lutu
D. zapobiegania utlenianiu lutu
Zaniechanie starannego mycia i odtłuszczenia powierzchni może prowadzić do szeregu problemów, jednak twierdzenie, że ma to na celu zapobieganie utlenianiu się lutu, jest błędne. Utlenianie lutu to proces chemiczny, który zachodzi niezależnie od czystości powierzchni płytki, zwłaszcza gdy lutowia są narażone na działanie atmosfery. W rzeczywistości, utlenianie może być kontrolowane poprzez odpowiednią manipulację temperaturą lutowania oraz stosowanie odpowiednich topników, a nie przez czystość przygotowanego podłoża. Ponadto, zapobieganie pękaniu lutu jest wynikiem właściwego doboru materiałów lutowniczych i technik lutowania, a nie samego mycia powierzchni. Zastosowanie odpowiednich materiałów o właściwej plastyczności i wytrzymałości pozwala na skuteczne zapobieganie pękaniu połączeń lutowniczych. Warto również zauważyć, że zwiększenie temperatury topnienia lutu nie jest związane z czystością powierzchni, ale z właściwościami chemicznymi i fizycznymi samego lutowia. Prawidłowe przygotowanie powierzchni jest częścią szerszej praktyki inżynieryjnej, która obejmuje nie tylko mycie, ale również kontrolę procesów lutowniczych, co podkreśla znaczenie wieloaspektowego podejścia do problemu jakości w elektronice.

Pytanie 10

Który układ cyfrowy należy wykorzystać do konwersji kodu BCD na kod dla wyświetlacza siedmiosegmentowego?

A. Transkoder
B. Enkoder
C. Koder
D. Dekoder
Jeśli w kontekście zamiany kodu BCD na kod dla wyświetlacza siedmiosegmentowego wybrałeś coś innego jak dekoder, koder czy enkoder, to niewątpliwie coś poszło nie tak. Dekoder zamienia sygnały binarne na specjalne sygnały wyjściowe i jest użyteczny, gdy chcemy aktywować jedno z wielu wyjść na podstawie danych wejściowych, ale nie jest stworzony do konwersji z BCD. Koder działa z kolei odwrotnie - przyjmuje sygnały z różnych linii i skraca je do krótszego kodu binarnego, więc też nie pasuje do naszej sytuacji. Co do enkodera, to on zamienia sygnały analogowe na cyfrowe, więc w ogóle nie wchodzi w grę. Generalnie, wybór niewłaściwych układów często bierze się z braku zrozumienia, czym te komponenty się różnią i jakie mają zastosowania. Zamiast tego, do tej konwersji potrzebny jest transkoder, który jest właściwie do tego stworzony i wszystko działa tak, jak trzeba.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Wysokie napięcia w punktach przejściowych, w gniazdach abonenckich, na stacji głównej telewizji kablowej oraz na wejściu urządzenia abonenckiego mogą się pojawić w wyniku

A. zmiany częstotliwości sygnału
B. wyrównywania potencjałów połączeń
C. zjawiska indukcji
D. tłumienia impulsów napięcia
Wysokie napięcia w punktach przejściowych, gniazdach abonenckich oraz w stacji głównej telewizji kablowej mogą być mylnie interpretowane przez pryzmat kilku zjawisk elektrycznych. Wyrównywanie potencjałów połączeń, chociaż istotne w kontekście bezpieczeństwa, nie jest bezpośrednią przyczyną powstawania wysokich napięć. Proces ten ma na celu zminimalizowanie różnic potencjałów, a nie wytwarzanie ich. Tłumienie impulsów napięcia odnosi się głównie do ochrony przed nagłymi wzrostami napięcia, a nie do generowania wysokich napięć. W praktyce, gdy napięcie jest tłumione, jego amplituda maleje, co jest zjawiskiem pożądanym w kontekście ochrony urządzeń. Zmiana częstotliwości sygnału dotyczy transmisji danych i nie wpływa bezpośrednio na pojawianie się wysokich napięć; częstotliwość sygnału jest istotna dla odpowiedniego przesyłania informacji, ale nie generuje ona wyższych napięć w punktach przejściowych. W związku z tym, posługiwanie się tymi pojęciami w kontekście wysokich napięć może prowadzić do błędnych wniosków. Kluczowe jest zrozumienie, że zjawisko indukcji, będące podstawą wielu technologii, jest głównym źródłem powstawania niepożądanych napięć i powinno być uwzględniane w projektowaniu systemów elektrycznych oraz telekomunikacyjnych, zgodnie z obowiązującymi normami i zasadami bezpieczeństwa.

Pytanie 13

W przypadku połączeń znacznie oddalonych urządzeń akustycznych, jakie kable powinny być używane?

A. symetryczne (balanced)
B. sygnalizacyjne YKSY
C. sygnalizacyjne YKSwXs
D. niesymetryczne (unbalanced)
Odpowiedź "symetryczne (balanced)" jest poprawna, ponieważ w przypadku połączeń znacznie odległych urządzeń akustycznych ważne jest minimalizowanie zakłóceń elektromagnetycznych oraz strat sygnału. Kable symetryczne są zaprojektowane w taki sposób, że wykorzystują dwa przewody do przesyłania sygnału, co pozwala na zniesienie zakłóceń dzięki różnicy potencjałów między nimi. W praktyce oznacza to, że sygnał przesyłany jest w formie różnicy napięć, co czyni go odpornym na wpływ zewnętrznych źródeł zakłóceń, takich jak inne urządzenia elektroniczne czy linie energetyczne. Przykładem zastosowania kabli symetrycznych są profesjonalne systemy nagłośnieniowe, gdzie długie odległości pomiędzy mikrofonami a mikserami wymagają wysokiej jakości przesyłu dźwięku bez straty jego integralności. W branży audio standardem jest używanie kabli XLR, które są typowymi kablami symetrycznymi, zapewniającymi niezawodność i wysoką jakość dźwięku. Znajomość tych aspektów jest niezbędna dla każdego technika dźwięku, aby zapewnić optymalne działanie systemów akustycznych.

Pytanie 14

Telewizor nie odbiera żadnego sygnału z zewnętrznej anteny w transmisji naziemnej, natomiast prawidłowo wyświetla obraz z tunera satelitarnego połączonego z telewizorem kablem EURO SCART oraz z kamery VHS-C. Wskazane symptomy sugerują, że uszkodzony jest moduł

A. odchylania poziomego i pionowego
B. wielkiej i pośredniej częstotliwości
C. wzmacniacza obrazu
D. separatora sygnałów
Wybór odpowiedzi dotyczących wzmacniacza wizji jest nieprawidłowy, ponieważ wzmacniacz wizji odpowiada za wzmocnienie sygnału wizyjnego po demodulacji, co nie ma bezpośredniego wpływu na odbiór sygnału z anteny. W przypadku braku sygnału z anteny, wzmacniacz wizji nie jest przyczyną problemu, lecz skutkiem złego odbioru. Separator impulsów jest układem używanym w niektórych telewizorach do oddzielania sygnałów synchronizacji od sygnałów wideo, jednak w omawianym przypadku brak obrazu z anteny wskazuje na problem na poziomie sygnałów RF i IF, a nie na poziomie przetwarzania wizyjnego. Uszkodzenie odchylania poziomego i pionowego również nie tłumaczy braku odbioru z anteny, ponieważ te moduły odpowiadają za poprawne wyświetlanie obrazu na ekranie, a nie za jego odbiór. Typowe błędy myślowe prowadzące do takich wniosków to skupienie się na symptomach, a nie na źródłach problemu. Przy diagnozowaniu usterek w odbiornikach telewizyjnych istotne jest przeprowadzenie analizy sygnału na różnych etapach przetwarzania, co pozwala na szybkie zidentyfikowanie rzeczywistych przyczyn problemów z odbiorem sygnału.

Pytanie 15

Całkowity koszt wykonania instalacji alarmowej, przy wartości materiałów wynoszącej 2 000 zł netto oraz kosztach robocizny w wysokości 1 000 zł netto, wyniesie ile, jeżeli materiały są objęte 23% a usługa 8% podatkiem VAT?

A. 3 460 zł
B. 3 540 zł
C. 3 080 zł
D. 3 240 zł
Obliczanie kosztów instalacji alarmowej może prowadzić do różnych błędnych wniosków, jeśli nie uwzględnimy wszystkich składników oraz odpowiednich stawek VAT. W przypadku podanych opcji, wiele osób może popełnić błąd, zapominając o konieczności osobnego doliczenia VAT dla materiałów oraz robocizny. Często myślą, że wystarczy zsumować netto i doliczyć jeden wspólny procent VAT, co prowadzi do nieprawidłowych wyników. Na przykład, jeśli ktoś zastosuje stawkę VAT 23% do całkowitej kwoty 3 000 zł (2 000 zł materiałów + 1 000 zł robocizny), otrzyma błędny wynik 3 690 zł, co jest całkowicie mylne, ponieważ nie uwzględnia różnych stawek VAT dla różnych usług. Ponadto, niektórzy mogą omyłkowo pomyśleć, że koszt robocizny powinien być wyższy lub pominięty w obliczeniach, co również prowadzi do zafałszowanych kalkulacji. Ważne jest, aby w takich obliczeniach zawsze rozdzielać poszczególne składniki kosztów, stosując odpowiednie stawki VAT, zgodnie z praktykami branżowymi i przepisami prawa. Poprawne podejście nie tylko zapewnia zgodność z obowiązującymi normami, ale także poprawia przejrzystość finansową projektu.

Pytanie 16

Jaką rolę odgrywa urządzenie kontrolno-pomiarowe w systemie automatyki przemysłowej?

A. zawór elektromagnetyczny
B. przetwornik
C. zawór regulacyjny
D. kontroler
Przepustnica, będąca urządzeniem stosowanym w systemach wentylacyjnych i cieplnych, pełni funkcję regulacji przepływu powietrza lub cieczy. Choć istotna w kontekście zarządzania mediami, nie ma ona zdolności pomiarowych, co czyni ją niewłaściwym wyborem w kontekście funkcji kontrolno-pomiarowych. Sterownik, będący centralnym elementem systemów automatyki, działa na podstawie dostarczanych mu sygnałów, jednak jego rola nie polega na bezpośrednim pomiarze parametrów fizycznych. Zamiast tego, sterownik interpretuje dane z przetworników i podejmuje decyzje operacyjne w oparciu o algorytmy. Elektrozawór, z drugiej strony, steruje przepływem cieczy lub gazów w systemach, ale również nie zajmuje się bezpośrednim pomiarem. Typowym błędem myślowym jest mylenie funkcji urządzeń pomiarowych z urządzeniami wykonawczymi i regulacyjnymi. W kontekście automatyki przemysłowej kluczowe jest rozróżnienie pomiędzy pomiarem a kontrolą, ponieważ każde z tych urządzeń pełni odmienną rolę w systemie. Aby systemy były efektywne, konieczne jest zastosowanie przetworników, które dostarczają dokładne dane, niezbędne dla prawidłowego funkcjonowania sterowników oraz elementów wykonawczych.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Którą z czynności serwisowych w instalacji sieciowej można zignorować?

A. Testowanie przewodów sieciowych za pomocą testera
B. Ocena stanu zewnętrznej powłoki przewodów
C. Wymiana luźnych złączy RJ
D. Sprawdzenie przewodów sieciowych omomierzem
Odpowiedź dotycząca pominięcia sprawdzenia przewodów sieciowych omomierzem jest prawidłowa, ponieważ omomierz jest narzędziem stosowanym głównie do pomiaru oporu elektrycznego, co nie jest krytyczne dla prawidłowego działania instalacji sieciowej. W praktyce, bardziej istotne jest zapewnienie, że złącza RJ są prawidłowo zamocowane (wymiana obluzowanych złącz), ponieważ to bezpośrednio wpływa na jakość sygnału i stabilność połączenia. Sprawdzanie przewodów sieciowych testerem pozwala na wykrycie ewentualnych błędów w okablowaniu, takich jak zwarcia czy przerwy, które mogą prowadzić do problemów z transmisją danych. Z kolei ocena stanu powłoki zewnętrznej przewodów jest kluczowa dla ochrony przed uszkodzeniami mechanicznymi oraz wpływem środowiska. W związku z tym, choć pomiar omomierzem może być użyteczny w niektórych kontekstach, nie jest on niezbędny do utrzymania sprawności instalacji sieciowej.

Pytanie 19

Który przewód powinien być użyty do połączenia z siecią elektryczną transformatora znajdującego się w metalowej obudowie systemu alarmowego?

A. YTDY 2 x 0,75 mm2
B. YDY 3 x 1,5 mm2
C. YTDY 4 x 0,75 mm2
D. YDY 2 x 1,5 mm2
Wybór innych przewodów, takich jak YTDY 2 x 0,75 mm2, YDY 2 x 1,5 mm2 lub YTDY 4 x 0,75 mm2, wiąże się z istotnymi problemami technicznymi. Przewód YTDY 2 x 0,75 mm2 jest zbyt cienki i niedostatecznie wydajny do obsługi transformatora, co może prowadzić do przeciążenia i przegrzania, a w konsekwencji do awarii. Przekrój 0,75 mm2 nie spełnia wymagań dotyczących bezpieczeństwa i wydajności w takich instalacjach. Z kolei YDY 2 x 1,5 mm2, mimo że posiada odpowiedni przekrój, ma tylko dwie żyły, co nie jest wystarczające do zasilania transformatora z odpowiednią stabilnością i bezpieczeństwem. Zastosowanie przewodu YTDY 4 x 0,75 mm2, mimo że ma cztery żyły, wciąż pozostaje niewłaściwe ze względu na zbyt mały przekrój żył, co może prowadzić do zbyt wysokiego oporu elektrycznego i strat energii. W przypadku systemów alarmowych, które muszą działać niezawodnie, kluczowe jest stosowanie przewodów, które nie tylko spełniają normy techniczne, ale także zapewniają odpowiednią ochronę i niezawodność w trudnych warunkach operacyjnych. Wszelkie niewłaściwe decyzje dotyczące doboru przewodów mogą prowadzić do awarii systemu, co może zagrażać bezpieczeństwu użytkowników. Dlatego zawsze należy kierować się zasadami dostosowania przekroju przewodu do obciążenia oraz wymaganiami normatywnymi.

Pytanie 20

Przed wymianą urządzenia w systemie elektronicznym, konieczne jest odłączenie przewodu zasilającego?

A. po zakończeniu montażu
B. w trakcie instalacji nowego sprzętu
C. zanim rozpoczną się prace demontażowe
D. po usunięciu starego urządzenia
Odpowiedź "przed rozpoczęciem prac demontażowych" jest prawidłowa, ponieważ bezpieczeństwo jest kluczowym aspektem w pracy z instalacjami elektronicznymi. Przed przystąpieniem do jakichkolwiek działań związanych z wymianą urządzenia, kluczowe jest odłączenie przewodu zasilającego. To działanie minimalizuje ryzyko porażenia prądem oraz uszkodzenia sprzętu. W praktyce, każdy technik powinien stosować się do procedur zawartych w normach bezpieczeństwa, takich jak PN-EN 50110-1, które nakładają obowiązek odłączenia zasilania przed przystąpieniem do pracy. Dodatkowo, w przypadku wymiany urządzeń, zawsze warto stosować się do zasad dotyczących oznaczania i dokumentacji prac, aby mieć pewność, że wszystkie etapy demontażu i montażu są odpowiednio udokumentowane. Przykładem może być sytuacja, gdy technik wymienia starą lampę na nową; przed przystąpieniem do demontażu lampy, powinien najpierw wyłączyć zasilanie, co zapewnia bezpieczeństwo zarówno jego, jak i osób znajdujących się w pobliżu.

Pytanie 21

Jaką zaciskarkę oznaczoną należy zastosować do zaciśnięcia końcówek RJ-11 na przewodzie telefonicznym?

A. 8P8C
B. 10P10C
C. 6P2C
D. 4P4C
Odpowiedź 6P2C jest prawidłowa, ponieważ oznaczenie to odnosi się do specyfikacji końcówek stosowanych w telefonii, a konkretnie do złącza RJ-11. W terminologii 6P2C oznacza to, że złącze posiada 6 pinów, z czego 2 są aktywne w przypadku transmisji. W praktyce RJ-11 jest szeroko stosowane do podłączania telefonów do linii telefonicznych w domach oraz biurach. Użycie zaciskarki 6P2C zapewnia prawidłowe i niezawodne połączenie, co jest kluczowe dla jakości przesyłanego sygnału. Standardy, takie jak TIA/EIA-568, określają właściwe procedury instalacji i zaciśnięcia, co przekłada się na lepszą funkcjonalność urządzeń. Właściwe podejście do zaciśnięcia końcówek gwarantuje, że sygnał będzie przesyłany bez zakłóceń, co ma kluczowe znaczenie w przypadku komunikacji głosowej oraz transmisji danych.

Pytanie 22

Fotografia przedstawia tylną ścianę obudowy

Ilustracja do pytania
A. konwertera telewizji satelitarnej.
B. rejestratora sygnału wideo.
C. kamery przemysłowej.
D. wzmacniacza antenowego.
Odpowiedź "kamery przemysłowej" jest poprawna, ponieważ na fotografii przedstawiona jest tylna ściana urządzenia, które ma charakterystyczne cechy dla kamer przemysłowych. Widzimy wyjście wideo (VIDEO OUT), które umożliwia przesyłanie sygnału wideo do rejestratora lub monitora, oraz wejście na zasilanie DC 12V, co jest standardem w branży zabezpieczeń i monitoringu wizyjnego. Dodatkowo, obecność regulacji ALC (Automatic Level Control) oraz AUTO IRIS wskazuje na możliwość automatycznego dostosowywania poziomu ekspozycji oraz otwarcia przysłony, co jest niezbędne w zmieniających się warunkach oświetleniowych w zastosowaniach przemysłowych i monitoringu. Kamery przemysłowe są wykorzystywane w różnych aplikacjach, takich jak monitoring obiektów, kontrola dostępu oraz jako element systemów zabezpieczeń. Znajomość tych specyfikacji pozwala technikom na właściwe dobieranie urządzeń do konkretnych zastosowań w zależności od wymagań projektu. W praktyce, wybór odpowiedniej kamery przemysłowej wpływa na jakość obrazu, efektywność monitorowania oraz bezpieczeństwo obiektu.

Pytanie 23

Jaka jest prawidłowa kolejność wlutowywania elementów elektronicznych na płytkę obwodu drukowanego przedstawionego na rysunku podczas montażu przewlekanego?

Ilustracja do pytania
A. Układ scalony, kondensatory elektrolityczne, kondensatory ceramiczne, rezystory.
B. Rezystory, układ scalony, kondensatory ceramiczne, kondensatory elektrolityczne.
C. Kondensatory elektrolityczne, kondensatory ceramiczne, rezystory, układ scalony.
D. Rezystory, kondensatory ceramiczne, kondensatory elektrolityczne, układ scalony.
Prawidłowa odpowiedź wskazuje właściwą kolejność lutowania elementów elektronicznych na płytce obwodu drukowanego. Rozpoczęcie montażu od rezystorów, które są najmniejsze i mniej wrażliwe na temperaturę, jest zgodne z najlepszymi praktykami w przemyśle elektronicznym. Następnie kondensatory ceramiczne, również odporne na wysoką temperaturę, mogą być wlutowane. Kluczowym aspektem jest montaż kondensatorów elektrolitycznych przed układami scalonymi, gdyż są one bardziej wrażliwe na ciepło i mogą ulec uszkodzeniu, jeśli zostaną poddane zbyt wysokim temperaturom podczas lutowania. Na końcu montuje się układy scalone, które powinny być chronione przed działaniem wysokiej temperatury, co jest istotnym elementem w zapewnieniu trwałości i niezawodności całego układu. W praktyce, stosowanie tej metody znacznie zmniejsza ryzyko uszkodzenia komponentów i zapewnia lepszą jakość finalnego produktu.

Pytanie 24

Czas potrzebny na naprawę magnetowidu to 0,5 godziny. Koszt materiałów wynosi 80 zł, a stawka godzinowa technika to 40 zł. Jaki będzie całkowity koszt naprawy, uwzględniając 22% podatek VAT?

A. 146,40 zł
B. 122,00 zł
C. 100,00 zł
D. 117,60 zł
Jak rozwiązywałeś to zadanie, to mogłeś się pogubić w liczeniu całkowitego kosztu usługi. Trzeba zrozumieć, że trzeba zsumować koszty materiałów, pensję pracownika i VAT. Jak coś pominiesz, na przykład wynagrodzenie serwisanta to może być problem. Możliwe, że niektóre odpowiedzi skupiły się na złych wartościach, co mogło prowadzić do błędnych wyników. Niekiedy też można pomylić kwoty, co oczywiście wpływa na zadania z dodawaniem czy obliczeniami procentowymi. W praktyce najważniejsze, żeby dokładnie policzyć wszystkie elementy kosztów. Może warto też korzystać z gotowych szablonów kosztorysów, które pomogą lepiej wszystko zaaranżować. Poza tym, czasami błędne odpowiedzi mogą wynikać z niepełnego ogarnięcia tematu VAT czy innego zrozumienia wartości procentowych. Warto wszystko dokładnie analizować, bo to naprawdę pozwala lepiej ogarniać finanse w każdym serwisie.

Pytanie 25

Jakim przyrządem dokonuje się pomiaru ciągłości połączeń w instalacjach urządzeń elektronicznych?

A. woltomierzem przy aktywnym zasilaniu elektrycznym
B. amperomierzem przy aktywnym zasilaniu elektrycznym
C. omomierzem przy wyłączonym zasilaniu elektrycznym
D. omomierzem przy aktywnym zasilaniu elektrycznym
Pomiar ciągłości połączeń w instalacjach urządzeń elektronicznych powinien być wykonywany omomierzem przy wyłączonym zasilaniu elektrycznym. Omomierz to przyrząd, który mierzy opór elektryczny, a jego stosowanie w tym kontekście pozwala na dokładną ocenę, czy połączenia są prawidłowe i nie mają przerw. Przy wyłączonym zasilaniu można uniknąć potencjalnych uszkodzeń omomierza oraz zagrożeń związanych z porażeniem prądem. Dobre praktyki w branży zalecają przeprowadzanie takich pomiarów przed przystąpieniem do jakichkolwiek prac serwisowych lub diagnostycznych. Na przykład, w instalacjach elektrycznych, które wymagają regularnej konserwacji, pomiar ciągłości połączeń jest kluczowym krokiem w zapewnieniu bezpieczeństwa i sprawności działania urządzeń. Zgodnie z normami takimi jak PN-EN 60204-1, ciągłość przewodów ochronnych i połączeń jest kluczowym aspektem zapewnienia bezpieczeństwa użytkowania maszyn i urządzeń elektrycznych.

Pytanie 26

Czujnik typu PIR służy do wykrywania

A. dymu
B. wilgoci
C. światła
D. ruchu
Czujka typu PIR (Passive Infrared Sensor) jest urządzeniem wykrywającym ruch na podstawie analizy promieniowania podczerwonego emitowanego przez obiekty w swoim zasięgu. Działa na zasadzie detekcji zmian temperatury w polu widzenia czujnika, co jest istotne w kontekście monitorowania obszaru. Czujki te są szeroko stosowane w systemach zabezpieczeń, automatyce budynkowej oraz inteligentnych domach. Przykładem zastosowania jest system alarmowy, w którym czujka PIR uruchamia alarm w momencie wykrycia ruchu, co zwiększa bezpieczeństwo obiektu. Standardy branżowe, takie jak EN 50131, definiują wymagania dotyczące wydajności i niezawodności takich czujek, aby zapewnić ich skuteczność w detekcji ruchu. Dzięki swojej konstrukcji czujki PIR są energooszczędne, co czyni je idealnym wyborem do zastosowań w nowoczesnych systemach automatyzacji, gdzie ważna jest efektywność energetyczna. Właściwe umiejscowienie czujnika oraz jego kalibracja są kluczowe dla optymalizacji działania, co podkreśla potrzebę stosowania dobrych praktyk w instalacji i użytkowaniu tych urządzeń.

Pytanie 27

Do połączenia przerwanego kabla doprowadzającego sygnał telewizyjny do gniazda abonenckiego wykorzystuje się łącznik wtyków F (beczka) przedstawiony na rysunku

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Odpowiedź C jest poprawna, ponieważ łącznik wtyków F, zwany również 'beczką', jest kluczowym elementem w instalacjach telewizyjnych, szczególnie w kontekście kabli koncentrycznych. Ten typ łącznika umożliwia bezpieczne połączenie dwóch odcinków kabla, co jest istotne dla utrzymania integralności sygnału telewizyjnego. Użycie łącznika F zapewnia minimalizację strat sygnału oraz zakłóceń, co jest zgodne z najlepszymi praktykami w branży telekomunikacyjnej. W przypadku awarii jednego z odcinków kabla, zastosowanie łącznika F pozwala na szybkie i efektywne naprawy, co jest niezwykle praktyczne w codziennym użytkowaniu. Wysoka jakość takich połączeń wpływa na stabilność odbioru telewizyjnego, a także na eliminację błędów, które mogą wystąpić w wyniku złego połączenia. Warto również zauważyć, że łączniki te są standardowo stosowane w instalacjach RTV, co potwierdza ich szeroką akceptację oraz niezawodność w zastosowaniach profesjonalnych.

Pytanie 28

Aby zarchiwizować materiał wideo w rejestratorze, należy podłączyć go do gniazda na wewnętrznym dysku twardym

A. USB
B. LAN
C. HDMI
D. SATA
Złącze SATA (Serial ATA) jest standardem interfejsu, które umożliwia podłączenie dysków twardych oraz napędów SSD do systemów komputerowych. W kontekście archiwizacji materiału wideo w rejestratorze, złącze SATA jest preferowanym rozwiązaniem, ponieważ zapewnia wysoką przepustowość i niskie opóźnienia w transferze danych. Dyski twarde podłączone przez SATA mogą osiągać prędkości transferu danych rzędu 6 Gbps, co jest kluczowe przy pracy z dużymi plikami wideo, które wymagają szybkiego dostępu do przechowywanych informacji. Przykładowo, podczas nagrywania materiału w wysokiej rozdzielczości, jak 4K, niezbędne jest, aby system był w stanie szybko zapisywać i odczytywać duże ilości danych. Współczesne rejestratory wideo często wykorzystują napędy SATA, aby zapewnić optymalną wydajność oraz niezawodność w długoterminowym przechowywaniu danych. Ponadto, zgodność z tym standardem sprawia, że wymiana lub modernizacja dysków jest znacznie prostsza i tańsza, co jest zgodne z dobrymi praktykami w dziedzinie zarządzania infrastrukturą IT.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Przedstawiony element stosowany jest do kontroli

Ilustracja do pytania
A. położenia okien, drzwi.
B. stężenia tlenku węgla.
C. obecności dymu.
D. zmian promieniowania podczerwonego.
Odpowiedź dotycząca położenia okien i drzwi jest prawidłowa, ponieważ element zaprezentowany na zdjęciu to kontaktron, który został zaprojektowany do monitorowania stanu otwarcia i zamknięcia okien oraz drzwi. Kontaktrony działają na zasadzie detekcji magnetycznej - jeden z ich elementów jest instalowany na ruchomej części (np. drzwiach), a drugi na stałej (np. futrynie). Kiedy drzwi lub okno są zamknięte, oba elementy są blisko siebie, co zapewnia zamknięcie obwodu elektrycznego. Gdy drzwi lub okno zostaną otwarte, odległość między nimi powoduje przerwanie obwodu, co aktywuje system alarmowy. Kontaktrony są powszechnie stosowane w systemach zabezpieczeń budynków, a ich niezawodność i prostota montażu czynią je standardowym rozwiązaniem w branży. Przykładem zastosowania mogą być systemy alarmowe w domach, biurach oraz obiektach przemysłowych, gdzie bezpieczeństwo jest kluczowe. Dodatkowo, stosując kontaktrony w połączeniu z odpowiednim systemem centralnym, możemy monitorować i kontrolować stan wszystkich punktów dostępu do budynku, co zwiększa poziom bezpieczeństwa oraz komfortu użytkowników.

Pytanie 32

Korytka kablowe powinny być

A. przyklejone
B. przykręcone
C. przyspawane
D. zaciskane
Odpowiedź 'przykręcić' jest poprawna, ponieważ korytka kablowe do ściany budynku powinny być montowane w sposób zapewniający ich stabilność i trwałość. Przykręcanie korytek do ściany umożliwia ich solidne mocowanie, co jest istotne dla ochrony przewodów elektrycznych przed uszkodzeniami mechanicznymi oraz wpływem warunków atmosferycznych. Do montażu korytek często stosuje się wkręty samowiercące lub wkręty do drewna, w zależności od materiału, z którego wykonana jest ściana. Przykładowo, w przypadku ścian betonowych lub murowanych można użyć kołków rozporowych. Dobrą praktyką jest również wykorzystanie odpowiednich dystansów, które pomogą w utrzymaniu korytka w odpowiedniej odległości od ściany, co sprzyja wentylacji i minimalizuje ryzyko przegrzewania się kabli. Zgodnie z normami, takimi jak PN-IEC 60364, odpowiedni montaż korytek kablowych jest kluczowy dla zapewnienia bezpieczeństwa instalacji elektrycznej.

Pytanie 33

Oznaczenie RG6 odnosi się do typu kabla

A. głośnikowego
B. symetrycznego
C. współosiowego
D. ethernetowego
Odpowiedź 'współosiowy' jest prawidłowa, ponieważ kabel RG6 to typ kabla współosiowego, który jest powszechnie używany w systemach telewizyjnych i szerokopasmowych. Kabel ten składa się z centralnego przewodnika, otoczonego izolatorem, ekranem i powłoką zewnętrzną. Jego konstrukcja umożliwia przesyłanie sygnałów o wysokiej jakości z minimalnymi stratami oraz zakłóceniami. RG6 charakteryzuje się niską tłumiennością, co czyni go idealnym do zastosowań wymagających dużej szerokości pasma, takich jak telewizja kablowa, satelitarna oraz internet szerokopasmowy. Przykłady zastosowania obejmują instalacje w domach jednorodzinnych, biurach oraz w większych systemach rozprowadzających sygnał. Standardy branżowe, takie jak ANSI/SCTE 74, określają wymagania dla kabli współosiowych, a ich poprawna instalacja i użycie są kluczowe dla zapewnienia optymalnej jakości sygnału oraz zadowolenia użytkowników.

Pytanie 34

Element, którego symbol graficzny przedstawiono na rysunku to

Ilustracja do pytania
A. transoptor.
B. rezystor nastawny.
C. tranzystor.
D. dioda elektroluminescencyjna.
Symbol przedstawiony na rysunku to dioda elektroluminescencyjna, znana również jako LED (Light Emitting Diode). Dioda ta emituje światło, gdy przez nią przepływa prąd elektryczny, co jest jasno sygnalizowane przez charakterystyczną strzałkę w symbolu. Dioda LED znajduje szerokie zastosowanie w różnych dziedzinach, od oświetlenia po sygnalizację i wyświetlacze. Przykładowo, diody LED są powszechnie używane w oświetleniu ulicznym, oświetleniu wnętrz oraz w urządzeniach elektronicznych, gdzie efektywność energetyczna i długowieczność są kluczowe. W porównaniu z tradycyjnymi żarówkami, diody LED zużywają znacznie mniej energii, a ich trwałość wynosi często kilkanaście tysięcy godzin. Stosowanie diod LED w projektowaniu układów elektronicznych jest zgodne z najlepszymi praktykami branżowymi, które podkreślają konieczność efektywności energetycznej i minimalizacji kosztów eksploatacji. Dzięki temu, ich rola w nowoczesnym projektowaniu sprzętu elektronicznego staje się coraz bardziej istotna.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Zgodnie z dyrektywą 2002/95/EC Parlamentu Europejskiego z dnia 27 stycznia 2003, w sprzęcie ogólnego przeznaczenia (z wyjątkiem wybranych urządzeń techniki komputerowej oraz systemów telekomunikacyjnych) zabrania się stosowania w stopach lutowniczych

A. kalafonii
B. cyny
C. pasty lutowniczej
D. ołowiu
Zgodnie z dyrektywą 2002/95/EC, znaną jako dyrektywa RoHS (Restriction of Hazardous Substances), stosowanie ołowiu w sprzęcie powszechnego użytku jest zabronione ze względu na jego potencjalnie szkodliwy wpływ na zdrowie ludzi i środowisko. Ołów jest substancją toksyczną, która może prowadzić do poważnych problemów zdrowotnych, w tym uszkodzenia układu nerwowego, szczególnie u dzieci. Dlatego dyrektywa RoHS ma na celu ograniczenie obecności niebezpiecznych substancji w produktach elektronicznych. Przykładowo, w produkcji lutowia stosuje się alternatywne materiały, takie jak lutowie bezołowiowe, które może zawierać cynę, srebro i miedź, aby spełniać wymagania środowiskowe i zdrowotne. Warto również zauważyć, że zgodność z dyrektywą RoHS jest kluczowym elementem procesów certyfikacji produktów elektronicznych, co przekłada się na ich akceptację na rynkach europejskich.

Pytanie 38

Czynniki wpływające na zniekształcenie sygnału przesyłanego w światłowodzie jednomodowym to

A. pole elektrostatyczne
B. dyspersja międzymodowa
C. dyspersja chromatyczna
D. pole elektromagnetyczne
Dyspersja chromatyczna jest kluczowym zjawiskiem, które prowadzi do zniekształceń sygnału przesyłanego światłowodem jednomodowym. Polega ona na różnym czasie propagacji fal światła o różnych długościach, co skutkuje rozmyciem impulsów świetlnych w czasie. W praktyce, gdy sygnał świetlny przechodzi przez światłowód, różne długości fal mogą ulegać różnym opóźnieniom, co prowadzi do zniekształcenia informacji. W światłowodach jednomodowych, które używane są głównie w telekomunikacji, dyspersja chromatyczna jest szczególnie istotna, ponieważ wpływa na maksymalną odległość, na jaką można przesyłać sygnał bez regeneracji. Standardy, takie jak ITU-T G.652 dotyczące światłowodów, uwzględniają te zjawiska, co pozwala na optymalizację projektów sieciowych i zmniejszenie wpływu dyspersji na jakość sygnału. W praktyce, inżynierowie sieci często stosują techniki kompensacji dyspersji, aby zminimalizować jej wpływ, co jest kluczowe dla zapewnienia niezawodności i wydajności systemów optycznych.

Pytanie 39

Która forma transmisji sygnału jest najbardziej odporna na zakłócenia elektromagnetyczne?

A. skrętki ekranowanej
B. światłowodu
C. skrętki nieekranowanej
D. kabla koncentrycznego
Transmisja sygnału za pośrednictwem światłowodu jest uważana za najbardziej odporną na zakłócenia elektromagnetyczne, co wynika z samej natury światłowodów. Sygnał przesyłany w światłowodach oparty jest na zjawisku całkowitego wewnętrznego odbicia światła, co sprawia, że sygnał nie jest narażony na zakłócenia elektromagnetyczne, jakie mogą wpływać na transmisję w przewodach miedzianych. W praktyce oznacza to, że światłowody są idealnym rozwiązaniem w środowiskach, gdzie występują silne źródła zakłóceń, takie jak w pobliżu dużych maszyn przemysłowych czy nadajników radiowych. Przykładem zastosowania światłowodów są sieci telekomunikacyjne oraz systemy informacyjne w dużych miastach, gdzie niezawodność i jakość transmisji danych są kluczowe. Zgodnie z normami ITU-T G.652 oraz G.657, światłowody zapewniają wysoką przepustowość i niskie tłumienie sygnału, co czyni je standardem w nowoczesnych instalacjach telekomunikacyjnych.

Pytanie 40

Wykonano pomiar napięcia stałego za pomocą woltomierza cyfrowego w zakresie 20 V, uzyskując wynik 5 V. Błąd przyrządu wynosi ± 1 % ± 2 D, a pole odczytowe miernika to 3,5 cyfry. Która forma zapisu wyniku pomiaru jest właściwa?

A. U = (5,00 ± 0,05) V
B. U = (5,00 ± 0,01) V
C. U = (5,00 ± 0,02) V
D. U = (5,00 ± 0,07) V
Niepoprawne odpowiedzi wykazują pomyłki w obliczaniu błędów pomiarowych oraz ich interpretacji. W przypadku pierwszej koncepcji, błąd ± 0,05 V nie uwzględnia błędu stałego, co prowadzi do niedoszacowania niepewności wyniku. Przyjęcie tylko błędu procentowego na poziomie 1 % przy odczycie 5 V to niewystarczające podejście, ponieważ rzeczywisty błąd instrumentu obejmuje również komponent stały, który nie może być pominięty. W drugiej opcji, ± 0,02 V nie odzwierciedla rzeczywistej sytuacji, ponieważ jest to tylko błąd wynikający z błędu stałego, podczas gdy błąd procentowy nadal pozostaje ważny i musi być uwzględniony. Z kolei w trzeciej odpowiedzi podano zbyt niski błąd, co wynika z nieprawidłowych obliczeń, które nie sumują błędów w sposób właściwy. Wysoka jakość pomiarów wymaga uwzględnienia wszystkich źródeł niepewności, co jest kluczowym elementem standardów metrologicznych. Bez prawidłowego zrozumienia tych koncepcji, pomiary mogą prowadzić do błędnych wniosków oraz decyzji, co w profesjonalnych zastosowaniach, takich jak inżynieria, może mieć poważne konsekwencje. Kluczowe jest, aby każdy pomiar był dokumentowany z uwzględnieniem pełnej charakterystyki błędów, co jest zgodne z najlepszymi praktykami w branży.