Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 7 lutego 2026 16:59
  • Data zakończenia: 7 lutego 2026 17:19

Egzamin niezdany

Wynik: 15/40 punktów (37,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Aby sprawdzić statystyki użycia pamięci wirtualnej w systemie Linux, należy sprawdzić zawartość pliku

A. /etc/inittab
B. pagefile.sys
C. /proc/vmstat
D. xload
Wiele osób myli się, wybierając nieodpowiednie źródła informacji o pamięci wirtualnej w Linuksie, bo nazwy czy skojarzenia są czasem mylące. Na przykład, xload to aplikacja graficzna wyświetlająca wykres obciążenia systemu, ale kompletnie nie dotyka tematu pamięci wirtualnej – ona bazuje na danych o obciążeniu CPU, a nie stricte o zarządzaniu pamięcią. W praktyce takie narzędzia przydają się na desktopach, a nie na serwerach, gdzie i tak często nie ma środowiska graficznego. Z kolei /etc/inittab kojarzy się z ustawieniami startowymi i inicjalizacją systemu, ale nie ma tam żadnych informacji dotyczących pamięci, to raczej pozostałość po dawnych dystrybucjach, a współczesne systemy często nawet nie mają już tego pliku, bo został wyparty przez systemd. pagefile.sys natomiast to domena systemów Windows – to tam przechowywany jest plik wymiany (swap), który w Linuksie ma inną postać (najczęściej jest to albo dedykowana partycja swap, albo plik swap na dysku, ale z zupełnie inną lokalizacją i mechanizmem działania). To typowy błąd wynikający z przenoszenia nawyków z Windows do Linuksa, co nie zawsze działa. Moim zdaniem, wiele osób niepotrzebnie szuka prostych rozwiązań na podstawie skojarzeń z innych systemów operacyjnych, zamiast po prostu sprawdzić dokumentację Linuksa czy manuale – a te jasno wskazują na /proc/vmstat jako źródło danych o pamięci wirtualnej. W środowiskach produkcyjnych, szczególnie na serwerach, korzystanie z właściwych źródeł informacji to podstawa bezpieczeństwa i efektywnej diagnostyki. Oparcie się na niewłaściwych plikach czy narzędziach może prowadzić do błędnych wniosków, a potem do niepotrzebnej frustracji przy rozwiązywaniu realnych problemów z wydajnością lub stabilnością systemu.

Pytanie 2

Aby podłączyć kasę fiskalną wyposażoną w złącze komunikacyjne DB-9M do komputera stacjonarnego, należy zastosować przewód

A. DB-9M/M
B. DB-9M/F
C. DB-9F/F
D. DB-9F/M
Łatwo się pomylić przy doborze przewodu do łączenia urządzeń przez porty szeregowe, bo na pierwszy rzut oka złącza typu DB-9 wyglądają niemal identycznie, różniąc się tylko obecnością pinów lub otworów. Jednak dobór odpowiedniego kabla jest tu kluczowy. Przewód DB-9M/F, czyli męski po jednej stronie, żeński po drugiej, może wydawać się dobrym wyborem, ale stosuje się go głównie wtedy, gdy jedno z urządzeń ma wejście męskie, a drugie żeńskie – co w praktyce przy połączeniach kasa fiskalna–komputer zdarza się bardzo rzadko. Podobna sytuacja dotyczy kabla DB-9F/M, który tak naprawdę jest lustrzanym odbiciem poprzedniego przypadku, tylko zamienia miejscami końcówki. Natomiast przewód DB-9M/M (męski po obu stronach) często wybierany jest przez osoby, które kierują się stereotypowym myśleniem, że 'męski kabel pasuje do większości gniazd', jednak to prowadzi do sytuacji, gdzie połączyć się fizycznie nie da, bo oba urządzenia mają te same wystające piny i nie ma jak ich ze sobą zestawić. W praktyce, komputer stacjonarny oraz kasa fiskalna są dwiema jednostkami DTE, czyli każde z nich posiada zazwyczaj złącze DB-9M. Typowym błędem jest traktowanie ich jak relacja DTE–DCE (np. komputer–modem), gdzie rzeczywiście używa się kabli z męskimi końcówkami lub mieszanych. Z mojego doświadczenia wynika, że dużo osób sugeruje się wyglądem złączy lub próbuje 'na siłę' używać przejściówek, co wprowadza niepotrzebny chaos i ryzyko uszkodzeń. Najlepiej odwołać się do dokumentacji producenta i pamiętać, że przy połączeniach dwustronnych DTE–DTE należy użyć przewodu DB-9F/F, najlepiej przewodu typu null-modem, który prawidłowo zamienia linie nadawcze i odbiorcze. Tylko wtedy komunikacja będzie możliwa i stabilna. Dobrą praktyką jest też przed podłączeniem sprawdzić fizycznie porty, bo czasem opisy w instrukcjach bywają mylące lub nieaktualne. Ostatecznie chodzi nie tylko o zgodność mechaniczną, ale też o bezpieczeństwo i niezawodność transmisji danych.

Pytanie 3

Jakie środowisko powinien wybrać administrator sieci, aby zainstalować serwer dla stron WWW w systemie Linux?

A. proftpd
B. MySQL
C. Apache
D. vsftpd
Apache to jeden z najpopularniejszych serwerów stron WWW, który jest szeroko stosowany w środowisku Linux. Jego wybór jako środowiska do instalacji serwera WWW wynika z jego wszechstronności, wydajności oraz obsługi wielu dodatkowych modułów, które znacznie rozszerzają jego funkcjonalność. Apache jest zgodny z wieloma standardami webowymi, co czyni go idealnym rozwiązaniem dla różnorodnych aplikacji internetowych. Dzięki architekturze modułowej, administratorzy mogą łatwo dodawać funkcje, takie jak obsługa PHP, SSL, a także integrację z bazami danych. Przykładem zastosowania Apache jest hostowanie dynamicznych stron internetowych, takich jak blogi, sklepy internetowe, czy portale informacyjne. Ponadto, Apache jest znany z solidnej dokumentacji oraz aktywnej społeczności, co ułatwia rozwiązywanie problemów i wdrażanie najlepszych praktyk w zarządzaniu serwerami WWW. Warto również zwrócić uwagę na narzędzia do monitorowania i zarządzania, takie jak mod_status, które pozwala na śledzenie wydajności serwera w czasie rzeczywistym oraz optymalizację jego ustawień.

Pytanie 4

Informacje ogólne na temat zdarzeń systemowych w systemie Linux są zapisywane w

A. pliku messages
B. rejestrze systemowym
C. programie perfmon
D. bibliotece RemoteApp
Zrozumienie, gdzie przechowywane są informacje o zdarzeniach systemowych w Linuxie, jest kluczowe dla każdej osoby zajmującej się administracją systemów. Odpowiedź, która sugeruje rejestr systemowy, odnosi się do koncepcji, która nie ma zastosowania w kontekście Linuxa. Rejestry systemowe to termin używany głównie w systemach operacyjnych Windows, gdzie istnieje centralna baza danych przechowująca ustawienia systemowe oraz informacje o zainstalowanych programach. Z kolei odpowiedź odnosząca się do programu perfmon jest błędna, ponieważ jest to narzędzie do monitorowania wydajności systemu Windows, a nie Linuxa. Użytkownicy mogą mylić funkcje monitorowania wydajności z rejestrowaniem zdarzeń, co może prowadzić do fałszywych wniosków. Ostatnia odpowiedź dotycząca biblioteki RemoteApp również jest myląca, ponieważ odnosi się do technologii zdalnego dostępu w systemie Windows, a nie do systemów Linux. Takie nieporozumienia wynikają często z mieszania terminologii między różnymi systemami operacyjnymi. Kluczowe jest zrozumienie, że Linux korzysta z plików logów, a nie centralnych rejestrów, co jest zgodne z jego architekturą i filozofią otwartego oprogramowania.

Pytanie 5

Do monitorowania aktywnych połączeń sieciowych w systemie Windows służy polecenie

A. net view
B. netstat
C. telnet
D. netsh
Wielu początkujących administratorów czy entuzjastów IT myli narzędzia do obsługi sieci w Windows, bo ich nazwy bywają podobne i faktycznie dotyczą sieci. Jednak każde z nich służy zupełnie innym zadaniom. Telnet to protokół i klient, który umożliwia łączenie się zdalnie z innymi komputerami, głównie po to, by zarządzać nimi za pomocą linii poleceń. Ma swoje zastosowania w testowaniu dostępności portów czy serwerów, ale nie daje informacji o bieżących połączeniach lokalnych ani o tym, co się dzieje na naszym własnym komputerze. Netsh z kolei to bardzo rozbudowane narzędzie konfiguracyjne, pozwalające zarządzać takimi ustawieniami jak zapora czy interfejsy sieciowe, ale samo w sobie nie pokazuje aktywnych połączeń – bardziej służy do ustawiania polityk i parametrów, nie do monitoringu w czasie rzeczywistym. Net view jest jeszcze bardziej specyficzny – jego zadanie to wyświetlanie listy komputerów lub udziałów sieciowych w danej sieci Windows, czyli raczej do zarządzania środowiskiem SMB, nie do obserwowania aktualnych połączeń portów czy adresów IP. Typowym błędem myślowym jest tu utożsamianie narzędzi sieciowych tylko dlatego, że ich nazwy zaczynają się od „net”. W praktyce, do monitorowania lokalnych połączeń sieciowych czy diagnostyki ruchu sieciowego najlepszą i najprostszą opcją pozostaje netstat. Warto zwracać uwagę na konkretne funkcje każdego z narzędzi, bo tylko wtedy dobierzemy właściwe polecenie do zadania – to kluczowe podejście w pracy z systemem Windows i szeroko rozumianym troubleshootingiem.

Pytanie 6

Przedstawiony schemat przedstawia zasadę działania

Ilustracja do pytania
A. skanera płaskiego.
B. drukarki 3D.
C. drukarki laserowej.
D. plotera grawerującego.
Patrząc na ten schemat, bardzo łatwo pomylić go z mechanizmem np. drukarki laserowej czy drukarki 3D albo nawet plotera grawerującego, bo wszędzie tam mamy jakąś precyzyjną optykę i konwersję sygnałów. Jednak w rzeczywistości każdy z tych sprzętów działa zupełnie inaczej i opiera się na innych technologiach. Drukarka 3D nie korzysta z luster ani lamp do odczytu obrazu – tam cały proces polega na nakładaniu materiału warstwa po warstwie na podstawie modelu cyfrowego, a nie na analizie światła odbitego od papieru. W drukarce laserowej natomiast kluczowym elementem jest bęben światłoczuły i laser, który rysuje obraz na bębnie, a nie odczyt optyczny – światło lasera tworzy ładunek elektrostatyczny w odpowiednich miejscach, do których potem przykleja się toner. Z kolei ploter grawerujący, chociaż może wykorzystywać precyzyjne sterowanie, to jednak nie używa matrycy CCD ani przetwornika ADC do analizy obrazu – tam chodzi o mechaniczne lub laserowe usuwanie materiału z powierzchni, według wcześniej przygotowanego wzoru. Typowym błędem jest utożsamianie obecności luster czy soczewek z technologią drukującą albo grawerującą, ale w rzeczywistości takie układy optyczne, jak na schemacie, stosuje się do przetwarzania obrazu z postaci analogowej na cyfrową, czyli przy skanowaniu. Często spotykam się z opinią, że skoro jest tam lampa i coś wygląda na laser, to musi być drukarka – jednak tutaj nie ma ani procesu nanoszenia toneru, ani materiałów eksploatacyjnych typowych dla druku. W praktyce tylko skaner płaski korzysta z tak rozbudowanego toru optycznego do rejestracji obrazu, zgodnie z normami branżowymi dotyczącymi digitalizacji. No i jeszcze jedno – plotery czy drukarki nie wymagają umieszczania dokumentu na szklanej tafli, co jest przecież nieodłączną cechą skanerów płaskich. Takie mylenie funkcji bierze się moim zdaniem głównie z podobieństwa zewnętrznego albo powierzchownego oglądu, ale technicznie to zupełnie inne światy.

Pytanie 7

W sieciach bezprzewodowych Ad-Hoc (Independent Basic Service Set) wykorzystywana jest fizyczna struktura

A. gwiazdy
B. pierścienia
C. magistrali
D. siatki
W analizie sieci bezprzewodowych Ad-Hoc, ważne jest zrozumienie, jak różne topologie wpływają na działanie sieci. Topologia pierścienia, choć interesująca w kontekście tradycyjnych sieci przewodowych, nie jest efektywna w przypadku sieci bezprzewodowych Ad-Hoc. W topologii pierścienia każde urządzenie jest połączone z dwoma sąsiadami, co w sytuacjach zaników sygnału lub awarii jednego z węzłów, prowadzi do problemów z komunikacją w całej sieci. Podobnie, topologia magistrali, gdzie wszystkie urządzenia są podłączone do jednego kabla, nie jest odpowiednia dla sieci Ad-Hoc. Tego rodzaju architektura nie wspiera elastyczności i mobilności, które są kluczowe dla takich rozwiązań. Topologia gwiazdy, z kolei, wymaga centralnego punktu dostępowego, co stoi w sprzeczności z ideą Ad-Hoc, która opiera się na bezpośredniej komunikacji między urządzeniami. Użytkownicy mogą mylić dostępność w takich sieciach z ich strukturą, co prowadzi do błędnych wniosków. Kluczowym błędem jest założenie, że tradycyjne modele topologii mogą być bezpośrednio stosowane w dynamicznych sieciach bezprzewodowych, co prowadzi do nieefektywności w projektowaniu i implementacji systemów sieciowych.

Pytanie 8

Norma PN-EN 50173 rekomenduje montaż przynajmniej

A. jednego punktu rozdzielczego na cały budynek wielopiętrowy
B. jednego punktu rozdzielczego na każde 250m2 powierzchni
C. jednego punktu rozdzielczego na każde piętro
D. jednego punktu rozdzielczego na każde 100m2 powierzchni
Wybór odpowiedzi, że norma PN-EN 50173 zaleca instalowanie jednego punktu rozdzielczego na każde 100m2 lub 250m2 powierzchni jest niezgodny z jej wymaganiami. W rzeczywistości, normy te koncentrują się na zapewnieniu właściwej jakości usług telekomunikacyjnych w kontekście budynków wielokondygnacyjnych, a nie na powierzchni użytkowej. Podejście oparte na metrażu może prowadzić do niewystarczającej infrastruktury sieciowej, szczególnie w budynkach o dużym natężeniu użytkowania, takich jak biurowce czy hotele. Zastosowanie punktów rozdzielczych wyłącznie w oparciu o powierzchnię może skutkować miejscami o niskiej jakości sygnału oraz problemami z dostępem do usług, co jest sprzeczne z podstawowymi założeniami normy. Innym błędnym podejściem jest myślenie, że w całym budynku wystarczy jeden punkt rozdzielczy. Taki model może nie sprostać wymaganiom użytkowników, szczególnie w przypadku dużych obiektów, gdzie wzrasta liczba urządzeń oraz intensywność korzystania z sieci. Niewłaściwe zrozumienie wymagań normy prowadzi do ryzyka wymagającego kosztownych późniejszych poprawek oraz zakłóceń w dostępie do usług. Właściwe planowanie i przestrzeganie norm PN-EN 50173 ma kluczowe znaczenie dla zapewnienia niezawodności oraz wydajności infrastruktury telekomunikacyjnej w obiektach wielopiętrowych.

Pytanie 9

Narzędzie zaprezentowane na rysunku jest wykorzystywane do przeprowadzania testów

Ilustracja do pytania
A. karty sieciowej
B. zasilacza
C. okablowania LAN
D. płyty głównej
Widoczny na rysunku tester okablowania LAN jest specjalistycznym narzędziem używanym do sprawdzania poprawności połączeń w kablach sieciowych takich jak te zakończone złączami RJ-45. Tester taki pozwala na wykrycie błędów w połączeniach kablowych takich jak zwarcia przerwy w obwodzie czy błędne parowanie przewodów co jest kluczowe dla prawidłowego funkcjonowania sieci komputerowej. Praktyczne zastosowanie tego narzędzia obejmuje diagnozowanie problemów sieciowych w biurach i centrach danych gdzie poprawne połączenia sieciowe są niezbędne do zapewnienia stabilnej i szybkiej transmisji danych. Tester przewodów LAN działa zazwyczaj poprzez wysyłanie sygnału elektrycznego przez poszczególne pary przewodów w kablu i weryfikację jego poprawnego odbioru na drugim końcu. Jest to zgodne z normami takimi jak TIA/EIA-568 które określają standardy okablowania strukturalnego. Ponadto dobre praktyki inżynierskie zalecają regularne testowanie nowo zainstalowanych kabli oraz okresową weryfikację istniejącej infrastruktury co może zapobiec wielu problemom sieciowym i umożliwić szybką diagnozę usterek.

Pytanie 10

Jaki jest główny cel stosowania maski podsieci?

A. Szyfrowanie transmisji danych w sieci
B. Ochrona danych przed nieautoryzowanym dostępem
C. Zwiększenie przepustowości sieci
D. Rozdzielenie sieci na mniejsze segmenty
Maska podsieci jest kluczowym elementem w zarządzaniu sieciami komputerowymi, zwłaszcza gdy mówimy o sieciach opartych na protokole IP. Jej główną funkcją jest umożliwienie podziału większych sieci na mniejsze, bardziej zarządzalne segmenty, zwane podsieciami. Dzięki temu administrator może lepiej kontrolować ruch sieciowy, zarządzać adresami IP oraz zwiększać efektywność wykorzystania dostępnych zasobów adresowych. Maska podsieci pozwala na określenie, która część adresu IP odpowiada za identyfikację sieci, a która za identyfikację urządzeń w tej sieci. Z mojego doświadczenia, dobrze zaplanowane podsieci mogą znacząco poprawić wydajność i bezpieczeństwo sieci, minimalizując ryzyko kolizji adresów IP oraz niepotrzebnego ruchu między segmentami sieci. W praktyce, stosowanie masek podsieci jest nie tylko standardem, ale i koniecznością w dużych organizacjach, które muszą zarządzać setkami, a nawet tysiącami urządzeń. Optymalizacja przydziału adresów IP w ten sposób jest zgodna z najlepszymi praktykami branżowymi, promowanymi przez organizacje takie jak IETF.

Pytanie 11

Który interfejs bezprzewodowy, komunikacji krótkiego zasięgu pomiędzy urządzeniami elektronicznymi, korzysta z częstotliwości 2,4 GHz?

A. Bluetooth
B. FireWire
C. USB
D. IrDA
W tym pytaniu kluczowe są dwa słowa: „bezprzewodowy” i „częstotliwość 2,4 GHz”. Łatwo się pomylić, bo wiele osób kojarzy różne złącza i interfejsy bardziej z nazw niż z tym, jak faktycznie działają. IrDA była kiedyś dość popularna w starszych laptopach i telefonach, ale to interfejs podczerwieni, wymagający zazwyczaj „widoczności optycznej” między urządzeniami. IrDA nie korzysta z fal radiowych 2,4 GHz, tylko z promieniowania podczerwonego, więc nie ma tu klasycznej transmisji radiowej jak w Bluetooth czy Wi‑Fi. W dodatku zasięg IrDA jest bardzo mały i mocno zależny od ustawienia nadajnika względem odbiornika, co w praktyce było dość niewygodne. USB i FireWire z kolei często mylą się osobom, które kojarzą je po prostu jako „sposób podłączenia urządzeń”. Jednak oba te standardy to interfejsy przewodowe. USB (Universal Serial Bus) wymaga fizycznego kabla i złącza, podobnie FireWire (IEEE 1394). Nie pracują one w paśmie radiowym, nie nadają na częstotliwości 2,4 GHz, tylko przesyłają sygnał elektryczny po przewodzie. Czasem mylące jest to, że są adaptery USB–Bluetooth czy USB–Wi‑Fi i wtedy ktoś widzi „USB” i myśli, że to USB jest tym bezprzewodowym interfejsem, a w rzeczywistości USB jest tylko magistralą do podłączenia modułu radiowego. Typowy błąd myślowy w takich pytaniach polega na skupieniu się na nazwie technologii zamiast na warstwie fizycznej transmisji: czy to idzie po kablu, po świetle (IR), czy po radiu. W standardach krótkiego zasięgu na 2,4 GHz mieszczą się Bluetooth i Wi‑Fi 2,4 GHz, natomiast IrDA, USB i FireWire do tej kategorii po prostu nie pasują. Dobra praktyka w branży to zawsze rozróżniać: złącze fizyczne (USB, FireWire), medium transmisyjne (kabel, IR, radio) i pasmo częstotliwości (np. 2,4 GHz, 5 GHz). Dopiero wtedy takie pytania stają się bardzo proste.

Pytanie 12

Aby umożliwić wymianę informacji pomiędzy sieciami VLAN, wykorzystuje się

A. modem.
B. koncentrator.
C. punkt dostępowy.
D. router.
Modemy, koncentratory i punkty dostępowe odgrywają różne role w architekturze sieciowej, ale nie są odpowiednie do realizacji komunikacji między VLAN-ami. Modemy, na przykład, są urządzeniami, które konwertują sygnały cyfrowe na analogowe i vice versa, umożliwiając dostęp do Internetu, ale nie są zaprojektowane do trasowania ruchu między różnymi sieciami VLAN. Ich rola koncentruje się na połączeniach z dostawcami usług internetowych, a nie na zarządzaniu wewnętrznym ruchem sieciowym. Koncentratory, z drugiej strony, są urządzeniami działającymi na warstwie pierwszej modelu OSI, które po prostu przesyłają dane do wszystkich portów w sieci, co nie pozwala na kontrolę ruchu ani separację VLAN-ów. W związku z tym, są one nieefektywne w scenariuszach, gdzie wymagane jest zarządzanie wieloma segmentami sieci. Punkty dostępowe z kolei to urządzenia, które pozwalają na bezprzewodowe połączenie z siecią lokalną, ale również nie posiadają funkcji trasowania czy inspekcji pakietów, które są niezbędne do komunikacji między VLAN-ami. Typowe błędy w myśleniu prowadzące do takich niepoprawnych wniosków to mylenie funkcji urządzeń sieciowych oraz niedostateczna znajomość wspomnianych standardów i praktyk, które jasno określają, że do komunikacji między VLAN-ami konieczne jest wykorzystanie routerów.

Pytanie 13

Który z adresów IPv4 jest odpowiedni do ustawienia interfejsu serwera DNS zarejestrowanego w lokalnych domenach?

A. 172.16.7.126
B. 111.16.10.1
C. 240.100.255.254
D. 192.168.15.165
Adresy IPv4, takie jak 192.168.15.165, 240.100.255.254 oraz 172.16.7.126, nie nadają się do konfiguracji publicznego serwera DNS, co wynika z ich specyficznych właściwości. Adres 192.168.15.165 jest adresem prywatnym, co oznacza, że jest przeznaczony do użytku w zamkniętych sieciach, takich jak sieci lokalne w domach czy biurach. Nie jest on routowalny w Internecie, dlatego serwery DNS skonfigurowane z takim adresem nie będą mogły odbierać zapytań spoza lokalnej sieci. Adres 172.16.7.126 również należy do zakresu adresów prywatnych, co ogranicza jego użycie tylko do lokalnych aplikacji. Z kolei adres 240.100.255.254, chociaż jest w zakresie adresów publicznych, jest częścią zarezerwowanej przestrzeni adresowej i nie jest dostępny do użycia w Internecie. W praktyce, aby serwer DNS mógł skutecznie odpowiadać na zapytania z sieci globalnej, musi być skonfigurowany z poprawnym, publicznie routowalnym adresem IP. Często pojawiające się nieporozumienia dotyczące wyboru adresów IP do serwerów DNS wynikają z braku zrozumienia różnicy między adresami publicznymi a prywatnymi oraz z mylnego założenia, że każdy adres publiczny może być użyty. Warto pamiętać, że konfiguracja serwera DNS wymaga również uwzględnienia dobrych praktyk w zakresie zabezpieczeń oraz zarządzania ruchem sieciowym, co dodatkowo podkreśla znaczenie wyboru odpowiedniego adresu IP.

Pytanie 14

Dostarczanie błędnych napięć do płyty głównej może spowodować

A. brak możliwości instalacji oprogramowania
B. uruchomienie jednostki centralnej z kolorowymi pasami i kreskami na ekranie
C. wystąpienie błędów pamięci RAM
D. puchnięcie kondensatorów, zawieszanie się jednostki centralnej oraz nieoczekiwane restarty
Dostarczanie nieprawidłowych napięć do płyty głównej jest jednym z najczęstszych problemów, które mogą prowadzić do uszkodzeń komponentów sprzętowych. W przypadku kondensatorów, które są kluczowymi elementami w obiegu zasilania na płycie głównej, nieprawidłowe napięcie może prowadzić do puchnięcia, a nawet wybuchu. Takie zjawisko jest szczególnie niebezpieczne, ponieważ może skutkować nie tylko uszkodzeniem płyty głównej, ale również innych podzespołów komputera. Zawieszanie się jednostki centralnej oraz niespodziewane restarty są typowymi objawami, które mogą wystąpić w wyniku niestabilności zasilania. W praktyce, aby zapobiec takim sytuacjom, zaleca się korzystanie z zasilaczy o wysokiej jakości, które są zgodne z certyfikatami, takimi jak 80 PLUS, co zapewnia efektywność energetyczną oraz stabilność napięcia. Dobre praktyki obejmują także regularne kontrolowanie stanu kondensatorów, co można zrobić poprzez wizualną inspekcję oraz stosowanie narzędzi diagnostycznych. Ta wiedza jest kluczowa dla każdego, kto zajmuje się budową lub konserwacją komputerów, ponieważ niewłaściwe zasilanie może prowadzić do poważnych i kosztownych uszkodzeń.

Pytanie 15

Jaki procesor powinien być zastosowany przy składaniu komputera osobistego z płytą główną Asus M5A78L-M/USB3 AMD760G socket AM3+?

A. AMD APU A4 6320 3800MHz FM2
B. AMD APU A8 7650K 3300MHz FM2+ BOX
C. AMD A8-7600 S.FM2 BOX
D. AMD FX 8300 3300MHz AM3+ Oem
Poprawna odpowiedź to AMD FX 8300 3300MHz AM3+ Oem, ponieważ jest to procesor kompatybilny z gniazdem AM3+, które znajduje się na płycie głównej Asus M5A78L-M/USB3. Gniazdo AM3+ obsługuje szereg procesorów z rodziny AMD FX, które oferują wyższą wydajność w porównaniu do procesorów z gniazda FM2. Wybór FX 8300 pozwala na lepsze zarządzanie wieloma wątkami dzięki architekturze, która obsługuje do ośmiu rdzeni, co jest szczególnie cenne w zastosowaniach wymagających dużej mocy obliczeniowej, takich jak gry czy edycja wideo. Dodatkowo, procesor ten wspiera technologię Turbo Core, co umożliwia dynamiczne zwiększenie częstotliwości taktowania, co przekłada się na lepszą wydajność w zastosowaniach jednowątkowych. W praktyce oznacza to, że użytkownicy mogą oczekiwać płynniejszej pracy systemu oraz lepszej odpowiedzi w zadaniach, które są intensywne obliczeniowo. Zastosowanie procesora zgodnego z gniazdem AM3+ jest zgodne z najlepszymi praktykami budowy komputera, gdzie kluczowym aspektem jest dobór komponentów zapewniających ich współpracę.

Pytanie 16

Na płycie głównej z chipsetem Intel 865G

A. można zainstalować kartę graficzną z interfejsem ISA
B. można zainstalować kartę graficzną z interfejsem PCI-Express
C. można zainstalować kartę graficzną z interfejsem AGP
D. nie ma możliwości zainstalowania karty graficznej
Zainstalowanie karty graficznej z PCI-Express na płycie głównej z układem Intel 865G to zły pomysł, bo ten chipset nie obsługuje PCI-Express. Różnica między PCI-Express a AGP tkwi w strukturze złącza i tym, jak przesyłane są dane. PCI-Express, które weszło na rynek na początku lat 2000, ma o wiele lepszą przepustowość i elastyczność w porównaniu do AGP, ale płyta Intel 865G nie ma odpowiednich slotów do PCI-Express. Też nie ma co myśleć o złączu ISA, które było popularne w latach 80. i 90., bo nie nadaje się do nowoczesnych kart graficznych. Wiele osób myli te standardy, nie zdając sobie sprawy, że AGP było stworzone tylko dla kart graficznych w starszych systemach. To, że nie rozumie się różnic między nimi, prowadzi do błędnych przekonań, jak to, że nowsze złącza mogą działać na starszych płytach. Więc, jak myślisz o modernizacji sprzętu, pamiętaj, żeby wszystkie podzespoły były kompatybilne, a w przypadku Intel 865G będziesz musiał wybierać karty graficzne z AGP.

Pytanie 17

W przypadku awarii którego urządzenia w sieci lokalnej, cała sieć przestaje działać w topologii magistrali?

A. Dowolny komputer kliencki
B. Serwer DHCP
C. Kabel magistrali
D. Router
W topologii magistrali, uszkodzenie kabla magistrali skutkuje całkowitym zanikiem komunikacji w sieci, ponieważ wszystkie urządzenia korzystają z tego samego medium do przesyłania danych. Uszkodzenie dowolnego komputera klienckiego nie wpłynie na działanie całej sieci, ponieważ inne urządzenia nadal będą mogły komunikować się przez magistralę. Chociaż awaria routera lub serwera DHCP może wpłynąć na funkcjonalność sieci, to nie doprowadzi do całkowitego zaniku komunikacji w topologii magistrali. Router jest zazwyczaj używany do łączenia różnych sieci, a jego awaria może uniemożliwić połączenie z siecią zewnętrzną, ale nie wpłynie na komunikację w ramach samej magistrali. Z kolei serwer DHCP jest odpowiedzialny za dynamiczne przydzielanie adresów IP, a jego awaria mogłaby uniemożliwić nowym urządzeniom dołączenie do sieci, ale nie zablokuje komunikacji między już podłączonymi urządzeniami. W topologii magistrali to właśnie kabel magistrali pełni kluczową rolę i jego uszkodzenie wpływa na całą sieć, podczas gdy inne elementy mogą mieć wpływ jedynie na pewne aspekty funkcjonalności sieci.

Pytanie 18

Która para: protokół – warstwa, w której funkcjonuje protokół, jest prawidłowo zestawiona według modelu TCP/IP?

A. ICMP – warstwa aplikacji
B. DHCP – warstwa dostępu do sieci
C. RIP – warstwa internetu
D. RARP – warstwa transportowa
Pierwsza z niepoprawnych odpowiedzi wskazuje, że RARP (Reverse Address Resolution Protocol) działa na warstwie transportowej. Jest to błędne założenie, ponieważ RARP jest używany do tłumaczenia adresów IP na adresy MAC w sieciach lokalnych, a jego właściwą warstwą jest warstwa dostępu do sieci, nie transportowa. Warstwa transportowa, obejmująca protokoły takie jak TCP i UDP, zajmuje się segmentacją danych oraz zarządzaniem połączeniami i niezawodnością, co jest zupełnie inną funkcjonalnością. Z kolei DHCP (Dynamic Host Configuration Protocol) jest protokołem służącym do dynamicznego przydzielania adresów IP, ale jego właściwą warstwą jest warstwa aplikacji, a nie warstwa dostępu do sieci. W praktyce, DHCP działa na warstwie aplikacji, ponieważ operuje na wyższych poziomach modelu TCP/IP, zapewniając konfigurację urządzeń w sieci z odpowiednimi parametrami. ICMP (Internet Control Message Protocol) pełni funkcję diagnostyczną i zarządza komunikacją błędami w warstwie internetu. Przykładowo, polecenie 'ping' wykorzystuje ICMP do sprawdzania dostępności hostów w sieci. Wreszcie, RIP, który działa na warstwie internetu, został omyłkowo przypisany do warstwy aplikacji. Warto zwrócić uwagę, że zrozumienie hierarchii warstw w modelu TCP/IP oraz prawidłowego przyporządkowania protokołów do tych warstw jest kluczowe dla efektywnego zarządzania siecią oraz rozwiązywania problemów. Często nieporozumienia w tej kwestii prowadzą do błędów podczas projektowania i konfiguracji sieci, co może skutkować przeciążeniem, nieefektywnym trasowaniem, a w konsekwencji także przerwami w łączności.

Pytanie 19

Jaką maksymalną liczbę podstawowych partycji na dysku twardym z tablicą MBR można utworzyć za pomocą narzędzia Zarządzanie dyskami dostępnego w systemie Windows?

A. 1
B. 4
C. 3
D. 2
Odpowiedzi 1, 2 i 3 są niepoprawne, ponieważ opierają się na błędnych założeniach dotyczących struktury tablicy MBR i możliwości zarządzania partycjami. W przypadku opcji pierwszej, twierdzenie, że można utworzyć jedynie jedną partycję podstawową, jest błędne, ponieważ MBR został zaprojektowany z myślą o umożliwieniu tworzenia czterech partycji podstawowych. Dla odpowiedzi drugiej, pomylenie możliwości utworzenia dwóch partycji z rzeczywistością sugeruje, że użytkownik nie rozumie podstawowych zasad działania MBR i jego struktury. Z kolei odpowiedź trzecia, która sugeruje, że można utworzyć trzy partycje podstawowe, również nie uwzględnia maksymalnego limitu czterech partycji. Takie błędne interpretacje często wynikają z niepełnego zrozumienia tematu i nieznajomości specyfiki działania systemów operacyjnych oraz sposobów przydzielania przestrzeni dyskowej. Warto również zauważyć, że w przypadku systemu MBR, partycje mogą być wykorzystywane nie tylko do przechowywania danych, ale także do instalacji różnych systemów operacyjnych, co czyni je kluczowym elementem w zarządzaniu dyskami. Dlatego znajomość limitów i funkcji MBR jest istotna dla osób zajmujących się administracją systemami oraz dbających o efektywność wykorzystania przestrzeni dyskowej.

Pytanie 20

Która z kopii w trakcie archiwizacji plików pozostawia ślad archiwizacji?

A. Całkowita
B. Zwykła
C. Różnicowa
D. Przyrostowa
Kopia różnicowa w procesie archiwizacji plików jest jednym z kluczowych podejść, które zapewniają efektywność w zarządzaniu danymi. Główna cecha kopii różnicowej polega na tym, że archiwizuje ona tylko te pliki, które zmieniły się od ostatniej pełnej kopii zapasowej, co pozwala zaoszczędzić czas i przestrzeń dyskową. W praktyce oznacza to, że po wykonaniu pełnej kopii zapasowej, każda kolejna kopia różnicowa będzie zawierała jedynie te dane, które zostały zmodyfikowane lub dodane po tej pełnej archiwizacji. Umożliwia to szybsze przywracanie danych, ponieważ użytkownik musi przywrócić tylko ostatnią pełną kopię oraz ostatnią kopię różnicową. W branży IT uznaje się, że takie podejście jest zgodne z zasadą 3-2-1, czyli posiadania trzech kopii danych w dwóch różnych miejscach, z jedną kopią przechowywaną w lokalizacji zewnętrznej. To nie tylko minimalizuje ryzyko utraty danych, ale również ułatwia ich ochronę i zarządzanie, co jest zgodne z dobrymi praktykami w zakresie zarządzania danymi.

Pytanie 21

System S.M.A.R.T. jest wykorzystywany do nadzorowania działania oraz identyfikacji usterek

A. płyty głównej
B. napędów płyt CD/DVD
C. dysków twardych
D. kart rozszerzeń
System S.M.A.R.T. (Self-Monitoring, Analysis, and Reporting Technology) jest technologią, która monitoruje stan dysków twardych oraz dysków SSD. Jego głównym celem jest przewidywanie awarii sprzętu poprzez analizę danych dotyczących wydajności oraz potencjalnych błędów. W praktyce, S.M.A.R.T. zbiera różne statystyki, takie jak liczba startów, czas pracy, błędy odczytu/zapisu oraz wiele innych parametrów. Na podstawie tych informacji, system może generować ostrzeżenia, gdy wykryje, że parametry wskazują na możliwe problemy. Dzięki temu użytkownicy mogą podejmować działania prewencyjne, takie jak kopie zapasowe danych, co jest kluczowe w kontekście zarządzania ryzykiem utraty informacji. Warto wspomnieć, że wiele narzędzi do diagnostyki systemów operacyjnych, takich jak CrystalDiskInfo, wykorzystuje dane S.M.A.R.T. do oceny stanu dysku, co jest zgodne z dobrą praktyką w administracji systemami komputerowymi.

Pytanie 22

Jaki port na tylnym panelu płyty głównej jest w dokumentacji określany jako port zgodny z normą RS232C?

A. COM
B. PS/2
C. LPT
D. USB
Wybór portu LPT wskazuje na nieporozumienie dotyczące standardów komunikacyjnych. Port LPT, znany również jako port równoległy, był używany głównie do podłączania drukarek i nie ma związku z standardem RS232C. W przeciwieństwie do komunikacji szeregowej, porty równoległe przesyłają dane jednocześnie na wielu liniach, co umożliwia szybszą transmisję w porównaniu do portów szeregowych w niektórych zastosowaniach. Port PS/2, z kolei, jest używany do podłączania klawiatur i myszy, co również wyklucza go z kategorii portów szeregowych. USB to zmodernizowany standard, który zyskuje na popularności dzięki swojej wszechstronności i możliwości podłączania wielu typów urządzeń, ale nie jest bezpośrednio związany z RS232C. Zrozumienie różnic pomiędzy tymi portami jest kluczowe dla skutecznego projektowania systemów komputerowych, ponieważ błędny wybór złącza może prowadzić do problemów z komunikacją i kompatybilnością urządzeń. Ważne jest, aby przed podjęciem decyzji o wyborze portu, zrozumieć, jakie są jego właściwości i przeznaczenie oraz jak te aspekty wpływają na ogólną architekturę systemu.

Pytanie 23

Jak skonfigurować dziennik w systemie Windows Server, aby rejestrować zarówno udane, jak i nieudane próby logowania użytkowników oraz działania na zasobach dyskowych?

A. aplikacji i usług.
B. ustawień.
C. zabezpieczeń.
D. systemu.
Odpowiedź "zabezpieczeń" jest prawidłowa, ponieważ dziennik zabezpieczeń w systemie Windows Server jest miejscem, w którym rejestrowane są wszelkie zdarzenia związane z bezpieczeństwem, w tym próby logowania użytkowników oraz operacje na zasobach dyskowych. Dziennik ten umożliwia administratorom systemów monitorowanie i analizowanie aktywności użytkowników oraz identyfikowanie potencjalnych zagrożeń. Na przykład, udane i nieudane próby logowania mogą dostarczyć informacji o nieautoryzowanym dostępie, a analiza zmian na poziomie zasobów dyskowych może pomóc w wykryciu nadużyć, takich jak nieautoryzowane modyfikacje plików. Dobre praktyki w zakresie bezpieczeństwa informacji, takie jak te określone w normach ISO/IEC 27001, zalecają regularne przeglądanie dzienników zabezpieczeń w celu oceny skuteczności kontroli zabezpieczeń oraz reagowania na incydenty. Właściwe konfigurowanie i monitorowanie dziennika zabezpieczeń to kluczowy element zarządzania bezpieczeństwem w organizacji.

Pytanie 24

Urządzenie warstwy dystrybucji, które umożliwia komunikację pomiędzy różnymi sieciami, to

A. koncentratorem
B. serwerem
C. routerem
D. przełącznikiem
Serwer, przełącznik i koncentrator to urządzenia, które pełnią różne funkcje w infrastrukturze sieciowej, ale nie są one odpowiednie do realizacji połączeń między oddzielnymi sieciami w taki sposób, jak robi to router. Serwer jest komputerem, który udostępnia usługi lub zasoby w sieci. Może pełnić rolę przechowalni danych, aplikacji czy stron internetowych, ale nie spełnia roli kierownika ruchu między sieciami. Przełącznik operuje na drugiej warstwie modelu OSI i służy do łączenia urządzeń w ramach tej samej sieci lokalnej (LAN). Przełączniki zajmują się przekazywaniem danych wewnątrz tej samej sieci i nie podejmują decyzji dotyczących trasowania między różnymi sieciami. Koncentrator z kolei jest urządzeniem pasywnym, które odbiera sygnały od jednego urządzenia i przekazuje je do wszystkich innych podłączonych do niego urządzeń w sieci. Nie jest w stanie analizować ani kierować ruchu, co czyni go mało efektywnym w porównaniu do współczesnych przełączników. Błędem jest mylenie tych urządzeń z routerem, który pełni kluczową rolę w komunikacji między sieciami, zapewniając odpowiednie zarządzanie ruchem i trasowaniem danych.

Pytanie 25

Jakie polecenie w systemie operacyjnym Windows służy do wyświetlenia konfiguracji interfejsów sieciowych?

A. tracert
B. hold
C. ipconfig
D. ifconfig
Odpowiedź 'ipconfig' jest prawidłowa, ponieważ jest to polecenie używane w systemach operacyjnych Windows do wyświetlania konfiguracji interfejsów sieciowych. Dzięki temu poleceniu użytkownik może uzyskać szczegółowe informacje na temat aktywnych połączeń sieciowych, takich jak adresy IP, maski podsieci oraz bramy domyślne. Jest to kluczowe narzędzie dla administratorów systemów oraz użytkowników, którzy chcą diagnozować problemy z siecią. Na przykład, używając polecenia 'ipconfig /all', można uzyskać szczegółowy widok wszystkich interfejsów sieciowych, w tym informacji o serwerach DNS i adresach MAC. Takie informacje są niezbędne w procesie rozwiązywania problemów oraz w konfiguracji złożonych sieci. W branży IT, znajomość narzędzi do zarządzania konfiguracją sieci jest uznawana za standardową umiejętność, co czyni 'ipconfig' jednym z podstawowych poleceń dla każdego specjalisty zajmującego się sieciami komputerowymi.

Pytanie 26

W adresie IP z klasy A, wartość pierwszego bajtu mieści się w zakresie

A. 224 - 240
B. 128 - 191
C. 0 - 127
D. 192 - 223
Adresy IP klasy A charakteryzują się pierwszym bajtem, który mieści się w przedziale od 0 do 127. Umożliwia to przypisanie dużej liczby adresów dla pojedynczych organizacji, co jest istotne w kontekście rozwoju internetu i dużych sieci. Przykładem może być adres 10.0.0.1, który znajduje się w tym przedziale i jest często wykorzystywany w sieciach lokalnych. Ponadto, adresy klasy A są często używane w dużych przedsiębiorstwach, które potrzebują dużej liczby unikalnych adresów IP. Zgodnie z RFC 791, klasyfikacja adresów IP jest kluczowa dla struktury i routingu w sieci. Wiedza o klasach adresów IP jest niezbędna dla administratorów sieci oraz specjalistów IT, aby móc efektywnie planować i zarządzać adresowaniem w organizacji.

Pytanie 27

Jak określa się technologię stworzoną przez firmę NVIDIA, która pozwala na łączenie kart graficznych?

A. RAMDAC
B. CROSSFIRE
C. ATI
D. SLI
Odpowiedzi takie jak ATI, RAMDAC czy CROSS FIRE są związane z innymi aspektami technologii graficznych, jednak nie odpowiadają na pytanie dotyczące technologii łączenia kart graficznych opracowanej przez NVIDIA. ATI to firma, która produkuje karty graficzne, a jej produkty konkurują z rozwiązaniami NVIDIA, ale sama w sobie nie jest technologią do łączenia kart. RAMDAC odnosi się do przetwornika cyfrowo-analogowego, który tłumaczy sygnały cyfrowe na analogowe dla monitorów. Ta technologia jest kluczowa dla wyświetlania obrazu, ale nie ma nic wspólnego z łączeniem kart graficznych, co może prowadzić do błędnego zrozumienia funkcji różnych komponentów w komputerze. Z kolei CROSS FIRE to technologia opracowana przez AMD, która pełni podobną rolę do SLI, ale jest stosowana w przypadku kart graficznych tej marki. Typowe błędy myślowe wynikają z pomylenia konkurencyjnych technologii oraz nieznajomości ich zastosowań. Zrozumienie, że każda z tych koncepcji odnosi się do różnych aspektów przetwarzania grafiki, pozwala uniknąć nieporozumień i prawidłowo identyfikować rozwiązania dostosowane do indywidualnych potrzeb użytkownika.

Pytanie 28

Zarządzaniem drukarkami w sieci, obsługiwaniem zadań drukowania oraz przyznawaniem uprawnień do drukarek zajmuje się serwer

A. FTP
B. plików
C. DHCP
D. wydruków
Odpowiedź "wydruków" jest prawidłowa, ponieważ serwer wydruków, znany również jako print server, pełni kluczową rolę w zarządzaniu zasobami drukarskimi w sieci. Jego głównym zadaniem jest rozgłaszanie dostępnych drukarek, co pozwala na ich zdalne użycie przez użytkowników w sieci. Serwer ten zarządza kolejkami zadań wydruku, co oznacza, że potrafi zarządzać wieloma zleceniami drukowania, zapewniając, że są one realizowane w odpowiedniej kolejności i bez kolizji. Dodatkowo, serwer wydruków przydziela prawa dostępu do poszczególnych drukarek, co jest istotne w środowiskach biurowych, gdzie nie każdy użytkownik powinien mieć dostęp do wszystkich urządzeń. Przykładem zastosowania serwera wydruków może być mała firma, w której kilka komputerów jest podłączonych do jednej drukarki. Serwer umożliwia zdalne drukowanie z tych komputerów, a także monitorowanie stanu drukarki oraz zbieranie statystyk dotyczących wykorzystania. W branży IT standardem jest wykorzystywanie serwerów wydruków w celu centralizacji zarządzania drukiem, co prowadzi do oszczędności materiałów eksploatacyjnych oraz czasu użytkowników.

Pytanie 29

W jakim systemie występuje jądro hybrydowe (kernel)?

A. Linux
B. MorphOS
C. QNX
D. Windows
Odpowiedzi wskazujące na Linux, MorphOS i QNX, mimo że są to interesujące systemy operacyjne, są niepoprawne w kontekście pytania o jądro hybrydowe. Linux wykorzystuje jądro monolityczne, co oznacza, że wszystkie funkcje jądra są zintegrowane w jednej dużej jednostce. Ta architektura, mimo że oferuje wysoką wydajność, może powodować problemy z zarządzaniem zasobami oraz stabilnością systemu. W przypadku MorphOS, jest to system operacyjny, który skupia się na mikrojądrach i nie posiada hybrydowego podejścia, co również czyni tę odpowiedź nieprawidłową. Z kolei QNX, będący systemem operacyjnym czasu rzeczywistego, bazuje na mikrojądrze, co sprawia, że nie spełnia kryteriów hybrydowego jądra. Typowym błędem myślowym prowadzącym do takich odpowiedzi jest mylenie różnych architektur jądra i ich zastosowań. Użytkownicy często nie zdają sobie sprawy, że jądra monolityczne i mikrojądra mają odmienne cele i są zoptymalizowane pod różne scenariusze. W praktyce, wybór architektury jądra ma istotny wpływ na wydajność i stabilność systemu operacyjnego.

Pytanie 30

Jakim parametrem definiuje się stopień zmniejszenia mocy sygnału w danej parze przewodów po przejściu przez cały tor kablowy?

A. długość
B. przenik zdalny
C. tłumienie
D. przenik zbliżny
Tłumienie jest kluczowym parametrem w telekomunikacji, który określa, o ile moc sygnału maleje podczas jego przejścia przez medium, takie jak przewody czy tor kablowy. W praktyce, tłumienie można opisać jako straty energii sygnału, które mogą wynikać z różnych czynników, takich jak opór, absorpcja materiału oraz zakłócenia elektromagnetyczne. Przykładowo, w instalacjach telekomunikacyjnych, takich jak światłowody lub kable miedziane, odpowiednie pomiary tłumienia są niezbędne do zapewnienia jakości sygnału. W branży telekomunikacyjnej standardy, takie jak ITU-T G.652 dla światłowodów, określają maksymalne poziomy tłumienia, aby gwarantować niezawodność transmisji. Zrozumienie tego parametru jest istotne dla projektowania sieci oraz doboru odpowiednich komponentów, co w efekcie przekłada się na lepszą jakość usług świadczonych użytkownikom.

Pytanie 31

Które urządzenie pomiarowe wykorzystuje się do określenia wartości napięcia w zasilaczu?

A. Watomierz
B. Woltomierz
C. Omomierz
D. Amperomierz
Omomierz, watomierz i amperomierz to przyrządy pomiarowe, które są często mylone z woltomierzem, jednak każdy z nich ma swoją specyfikę i przeznaczenie. Omomierz jest używany do pomiaru rezystancji, co oznacza, że jego zastosowanie koncentruje się na ocenie właściwości materiałów w kontekście ich oporu elektrycznego. Stosując omomierz, można np. sprawdzić, czy połączenia elektryczne są prawidłowe i nie mają niepożądanych oporów, co jest kluczowe dla utrzymania jakości sygnału w obwodach. Watomierz natomiast mierzy moc elektryczną, co jest istotne w kontekście oceny zużycia energii w urządzeniach, ale nie dostarcza informacji o napięciu czy rezystancji. Użycie watomierza w praktyce pozwala na monitorowanie efektywności energetycznej zasilaczy, ale nie pozwala na pomiar napięcia. Amperomierz służy do pomiaru prądu elektrycznego, co jest kluczowe w diagnostyce obwodów, jednak również nie dostarcza bezpośrednich danych o napięciu. Typowym błędem jest założenie, że każdy z tych przyrządów może zastąpić woltomierz, co prowadzi do niepełnej analizy obwodu. Zrozumienie różnic między tymi przyrządami pomiarowymi, ich zastosowań i ograniczeń jest kluczowe dla każdego inżyniera i technika zajmującego się systemami elektrycznymi.

Pytanie 32

Przedstawiona specyfikacja techniczna odnosi się do

Ilustracja do pytania
A. przełącznika.
B. konwertera mediów.
C. modemu ADSL.
D. bramki VOIP.
Specyfikacja sprzętowa wskazuje na modem ADSL, co można zidentyfikować po kilku kluczowych elementach. Po pierwsze, obecność portu RJ11 sugeruje możliwość podłączenia linii telefonicznej, co jest charakterystyczne dla technologii ADSL. ADSL, czyli Asymmetric Digital Subscriber Line, umożliwia szerokopasmowy dostęp do internetu przez zwykłą linię telefoniczną. Standardy takie jak ITU G.992.1 i G.992.3, wymienione w specyfikacji, są również typowe dla ADSL. Zwróć uwagę na dane dotyczące przepustowości: downstream do 24 Mbps i upstream do 3.5 Mbps, co jest zgodne z możliwościami ADSL2+. Na rynku często można spotkać modemy ADSL, które łączą funkcje routera i punktu dostępowego Wi-Fi. Dodatkowo, wymienione protokoły takie jak PPPoA i PPPoE są powszechnie używane w połączeniach szerokopasmowych ADSL do autoryzacji i zarządzania sesjami użytkowników. Praktyczne zastosowanie modemu ADSL obejmuje domowe sieci internetowe, gdzie pozwala to na jednoczesne korzystanie z internetu i usług telefonicznych na tej samej linii. To urządzenie jest zgodne z regulacjami FCC i CE, co zapewnia zgodność z normami bezpieczeństwa i emisji w USA i Europie. Modem ADSL jest zatem kluczowym urządzeniem w wielu gospodarstwach domowych i małych firmach, zapewniając stabilny dostęp do internetu oraz często łącząc funkcje kilku urządzeń sieciowych.

Pytanie 33

RAMDAC konwerter przekształca sygnał

A. stały na zmienny
B. analogowy na cyfrowy
C. zmienny na stały
D. cyfrowy na analogowy
Wszystkie błędne odpowiedzi dotyczące konwertera RAMDAC opierają się na nieporozumieniach związanych z jego funkcją i zastosowaniem. Odpowiedź sugerująca, że RAMDAC przetwarza sygnał analogowy na cyfrowy, jest błędna, ponieważ konwertery działają w przeciwnym kierunku. Proces konwersji z analogowego na cyfrowy wykonuje się z wykorzystaniem analogowo-cyfrowych konwerterów (ADC), które są zaprojektowane do uchwytywania sygnałów analogowych i przekształcania ich na format cyfrowy, co jest niezbędne w sytuacjach, kiedy analogowe dane z czujników muszą być wprowadzone do systemów komputerowych. Przykładami tego są mikrofony, które przetwarzają fale dźwiękowe na sygnały cyfrowe. Odpowiedź wskazująca na konwersję sygnałów stałych na zmienne jest również myląca, ponieważ RAMDAC nie jest odpowiedzialny za tę transformację. Sygnały stałe i zmienne są pojęciami, które odnoszą się do natury sygnałów, a nie do rodzaju konwersji, jaką wykonuje RAMDAC. Konwertery są projektowane z myślą o specyficznych zastosowaniach, a RAMDAC jest ściśle związany z procesem wyświetlania. Sygnał zmienny na stały również nie jest odpowiednią odpowiedzią, ponieważ odnosi się do przetwarzania, które nie jest typowe dla konwerterów stosowanych w systemach graficznych. W rezultacie, zrozumienie, jak działa RAMDAC i jakie są jego rzeczywiste funkcje, jest kluczowe dla prawidłowej interpretacji technologii przetwarzania sygnałów w systemach komputerowych.

Pytanie 34

Protokół TCP (Transmission Control Protocol) funkcjonuje w trybie

A. hybrydowym
B. sekwencyjnym
C. bezpołączeniowym
D. połączeniowym
Wybór trybu hybrydowego jest niewłaściwy, gdyż taki termin nie jest stosowany w kontekście działania protokołów komunikacyjnych. Protokół TCP nie korzysta z modelu hybrydowego, który mógłby sugerować jednoczesne wykorzystanie cech różnych trybów komunikacji, co nie oddaje rzeczywistej logiki jego działania. Z kolei odpowiedź wskazująca na tryb sekwencyjny myli się w interpretacji, ponieważ choć TCP przesyła dane w określonej sekwencji, koncepcja sekwencyjności nie definiuje samego trybu działania, a raczej dotyczy sposobu, w jaki dane są organizowane i przesyłane. Istnieje również błędne założenie, że tryb bezpołączeniowy mógłby być zastosowany w kontekście TCP. Protokół TCP, w przeciwieństwie do UDP, na którym oparty jest tryb bezpołączeniowy, wymaga nawiązywania połączenia, co stanowi fundamentalną różnicę. Warto pamiętać, że TCP jest odpowiedzialny za zarządzanie integralnością i kolejnością przesyłanych danych, co jest kluczowe w wielu zastosowaniach, takich jak streaming wideo czy komunikacja w czasie rzeczywistym. Niezrozumienie tego aspektu może prowadzić do błędnych wniosków na temat działania protokołów sieciowych oraz ich zastosowań.

Pytanie 35

Ile bitów minimum będzie wymaganych w systemie binarnym do zapisania liczby szesnastkowej 110ₕ?

A. 9 bitów.
B. 3 bity.
C. 16 bitów.
D. 4 bity.
Dobra robota, ta odpowiedź idealnie trafia w sedno zagadnienia! Liczba szesnastkowa 110ₕ to w systemie dziesiętnym wartość 272. Teraz, żeby zapisać tę liczbę w systemie binarnym, musimy znaleźć, ile bitów potrzeba, żeby pomieścić tę wartość. Największa liczba, jaką można zapisać na 8 bitach, to 255 (czyli 2⁸ - 1). 272 jest już większe, więc 8 bitów nie wystarczy. Trzeba iść poziom wyżej: 2⁹ = 512, więc 9 bitów pozwala już zapisać liczby od 0 do 511. To właśnie te 9 bitów daje nam odpowiedni zakres. W praktyce, jeśli projektuje się układy cyfrowe czy programuje mikrokontrolery, zawsze warto pamiętać o takim podejściu – nie tylko przy zamianie systemów liczbowych, ale też przy planowaniu rejestrów pamięci czy buforów. W dokumentacji technicznej często spotyka się określenie „minimalna liczba bitów wymagana do przechowania wartości” – to dokładnie to, co właśnie policzyliśmy. Moim zdaniem takie zadania uczą nie tylko logiki, ale też szacowania zasobów sprzętowych, co jest bardzo konkretne w codziennej pracy technika czy programisty. Swoją drogą, niektórzy błędnie myślą, że wystarczy tyle bitów, ile cyfr w systemie szesnastkowym, ale tu wyraźnie widać, że trzeba zawsze przeliczyć wartość na binarną i porównać zakresy.

Pytanie 36

Profil użytkownika systemu Windows, który można wykorzystać do logowania na dowolnym komputerze w sieci, przechowywany na serwerze i mogący być edytowany przez użytkownika, to profil

A. tymczasowy
B. mobilny
C. lokalny
D. obowiązkowy
Wybór niepoprawnych odpowiedzi wynika z pomylenia różnych typów profili użytkownika w systemie Windows. Profil tymczasowy jest tworzony podczas sesji, ale po jej zakończeniu nie zachowuje żadnych zmian ani danych użytkownika. To oznacza, że po zakończeniu pracy na komputerze, wszystkie ustawienia i pliki zostaną utracone, co czyni go niewłaściwym wyborem dla osób potrzebujących dostępu do swoich informacji na różnych urządzeniach. Z kolei profil lokalny jest przypisany do konkretnego komputera i nie może być używany na innych urządzeniach, co ogranicza mobilność użytkownika. Użytkownik może logować się tylko na tym samym komputerze, co również stoi w sprzeczności z ideą profilu mobilnego. Natomiast profil obowiązkowy, choć może być przechowywany na serwerze, ma na celu zapewnienie jednolitości środowiska użytkownika poprzez ograniczenie jego możliwości modyfikacji. Użytkownicy z tym profilem nie mogą dokonywać zmian w swoich ustawieniach, co czyni go nieodpowiednim dla osób, które chcą dostosować swoje środowisko robocze. Typowe błędy myślowe, które prowadzą do niepoprawnych wyborów, to mylenie funkcji i możliwości, jakie oferują poszczególne typy profili. Zrozumienie różnic między tymi profilami jest kluczowe dla efektywnego korzystania z systemów operacyjnych oraz zarządzania użytkownikami w organizacji.

Pytanie 37

Rejestry widoczne na diagramie procesora mają rolę

Ilustracja do pytania
A. realizowania operacji arytmetycznych
B. zarządzania wykonywaniem programu
C. zapisywania adresu do kolejnej funkcji programu
D. przechowywania argumentów obliczeń
Rejestry nie służą do przechowywania adresu do następnej funkcji programu. Tę funkcję pełni licznik programowy PC który przechowuje adres następnej instrukcji do wykonania w ramach aktualnej sekwencji programu. Rejestry również nie są odpowiedzialne za sterowanie wykonywanym programem. Kontrolę nad przepływem programu sprawuje układ sterowania który dekoduje instrukcje i odpowiednio zarządza zasobami procesora. Kolejnym błędnym koncepcyjnie podejściem jest przypisywanie rejestrom funkcji wykonywania działań arytmetycznych. Za faktyczne wykonywanie operacji matematycznych odpowiada jednostka arytmetyczno-logiczna ALU która korzysta z danych przechowywanych w rejestrach w celu wykonania obliczeń. Typowym błędem myślowym jest zakładanie że rejestry i ALU są tożsame podczas gdy rejestry służą jako tymczasowe miejsce przechowywania danych a ALU jest jednostką wykonawczą. Zrozumienie tych różnic jest kluczowe dla prawidłowej interpretacji funkcjonowania procesora i efektywnego programowania niskopoziomowego gdzie zarządzanie rejestrami może wpływać na optymalizację i wydajność kodu. W architekturach nowoczesnych procesorów stosuje się także bardziej zaawansowane techniki zarządzania rejestrami aby sprostać wymaganiom współczesnych aplikacji co dodatkowo podkreśla ich kluczową rolę w systemach komputerowych

Pytanie 38

Znak przedstawiony na ilustracji, zgodny z normą Energy Star, wskazuje na urządzenie

Ilustracja do pytania
A. Energooszczędne
B. O zwiększonym zużyciu energii
C. Wyprodukowane przez firmę EnergyStar Co
D. Będące laureatem plebiscytu EnergyStar
Znak Energy Star oznacza, że urządzenie spełnia określone kryteria efektywności energetycznej. Program Energy Star został stworzony przez Agencję Ochrony Środowiska USA w 1992 roku i ma na celu promowanie produktów, które zużywają mniej energii elektrycznej, a tym samym redukują emisję gazów cieplarnianych. Urządzenia z tym oznaczeniem, takie jak komputery, sprzęt AGD lub oświetlenie, muszą przejść rygorystyczne testy potwierdzające ich oszczędność energetyczną bez uszczerbku dla wydajności. Na przykład telewizory z certyfikatem Energy Star zużywają o około 25% mniej energii niż standardowe modele. W praktyce oznacza to mniejsze rachunki za prąd dla konsumentów i mniejszy wpływ na środowisko. Energy Star nie tylko promuje oszczędność energii, ale także wpływa na projektowanie urządzeń z naciskiem na ekologiczne i ekonomiczne użytkowanie co jest zgodne z dobrą praktyką projektową w branży. Dzięki temu konsumenci mogą świadomie wybierać produkty przyjazne środowisku przyczyniając się do zrównoważonego rozwoju.

Pytanie 39

Na który port rutera należy podłączyć kabel od zewnętrznej sieci, aby uzyskać dostęp pośredni do Internetu?

Ilustracja do pytania
A. WAN
B. USB
C. PWR
D. LAN
Port USB nie jest używany do podłączania zewnętrznych sieci internetowych. Jego funkcja w routerze zwykle obejmuje podłączanie urządzeń peryferyjnych, takich jak drukarki czy pamięci masowe, a także może służyć do aktualizacji oprogramowania routera. Jest to częsty błąd wynikający z założenia, że wszystkie porty w urządzeniach sieciowych mogą pełnić podobne funkcje. Port LAN z kolei jest przeznaczony do łączenia urządzeń w sieci lokalnej (Local Area Network), takich jak komputery, drukarki czy inne urządzenia sieciowe. Błędne jest założenie, że LAN zapewni bezpośredni dostęp do Internetu; jego funkcją jest tylko komunikacja w obrębie lokalnej sieci. Port PWR natomiast to złącze zasilające, którego funkcją jest dostarczanie energii do urządzenia. Używanie go w kontekście połączeń sieciowych jest niemożliwe, a takie myślenie wynika z braku zrozumienia podstawowych funkcji złączy w routerach. Aby zapewnić pośredni dostęp do Internetu, konieczne jest zastosowanie odpowiednich standardów sieciowych i poprawnego podłączania urządzeń zgodnie z ich przeznaczeniem. Złe przyporządkowanie kabli może prowadzić do braku dostępu do Internetu oraz problemów z konfiguracją sieci. Zrozumienie różnic między tymi portami jest kluczowe dla prawidłowego zarządzania siecią i uniknięcia typowych błędów konfiguracyjnych.

Pytanie 40

Na podstawie filmu wskaż z ilu modułów składa się zainstalowana w komputerze pamięć RAM oraz jaką ma pojemność.

A. 1 modułu 32 GB.
B. 2 modułów, każdy po 16 GB.
C. 1 modułu 16 GB.
D. 2 modułów, każdy po 8 GB.
W tym zadaniu kluczowe są dwie rzeczy: liczba fizycznych modułów pamięci RAM oraz pojemność pojedynczej kości. Na filmie można zwykle wyraźnie zobaczyć, ile modułów jest wpiętych w sloty DIMM na płycie głównej. Każdy taki moduł to oddzielna kość RAM, więc jeśli widzimy dwie identyczne kości obok siebie, oznacza to dwa moduły. Typowym błędem jest patrzenie tylko na łączną pojemność podawaną przez system, np. „32 GB”, i automatyczne założenie, że jest to jeden moduł 32 GB. W praktyce w komputerach stacjonarnych i w większości laptopów bardzo często stosuje się konfiguracje wielomodułowe, właśnie po to, żeby wykorzystać tryb dual channel lub nawet quad channel. To jest jedna z podstawowych dobrych praktyk przy montażu pamięci – zamiast jednej dużej kości, używa się dwóch mniejszych o tej samej pojemności, częstotliwości i opóźnieniach. Dzięki temu kontroler pamięci w procesorze może pracować na dwóch kanałach, co znacząco zwiększa przepustowość i zmniejsza wąskie gardła przy pracy procesora. Odpowiedzi zakładające pojedynczy moduł 16 GB lub 32 GB ignorują ten aspekt i nie zgadzają się z tym, co widać fizycznie na płycie głównej. Kolejna typowa pułapka polega na myleniu pojemności całkowitej z pojemnością modułu. Jeśli system raportuje 32 GB RAM, to może to być 1×32 GB, 2×16 GB, a nawet 4×8 GB – sam wynik z systemu nie wystarcza, trzeba jeszcze zweryfikować liczbę zainstalowanych kości. Właśnie dlatego w zadaniu pojawia się odniesienie do filmu: chodzi o wizualne rozpoznanie liczby modułów. Dobrą praktyką w serwisie i diagnostyce jest zawsze sprawdzenie zarówno parametrów logicznych (w BIOS/UEFI, w systemie, w narzędziach diagnostycznych), jak i fizycznej konfiguracji na płycie. Pomija się też czasem fakt, że producenci płyt głównych w dokumentacji wprost rekomendują konfiguracje 2×8 GB, 2×16 GB zamiast pojedynczej kości, z uwagi na wydajność i stabilność. Błędne odpowiedzi wynikają więc zwykle z szybkiego zgadywania pojemności, bez przeanalizowania, jak pamięć jest faktycznie zamontowana i jak działają kanały pamięci w nowoczesnych platformach.