Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 16:38
  • Data zakończenia: 17 grudnia 2025 16:46

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jaką wartość bezwzględną ma błąd pomiaru natężenia prądu, jeżeli multimetr pokazał wynik 35,00 mA, a producent określił dokładność urządzenia dla używanego zakresu pomiarowego jako ±(1 % +2) cyfry?

A. ±0,37 mA
B. ±2,35 mA
C. ±0,35 mA
D. ±0,02 mA
Aby obliczyć bezwzględną wartość błędu pomiaru natężenia prądu, musimy wziąć pod uwagę zarówno procentową dokładność, jak i dodatkowe cyferki. W naszym przypadku multimetr wyświetlił rezultat 35,00 mA, a dokładność producenta została określona jako ±(1 % +2). Rozpoczynamy od obliczenia 1 % z 35,00 mA, co daje 0,35 mA. Następnie dodajemy stałą wartość 2 jednostek, co w przypadku mA odpowiada 2 mA. Sumując te wartości, uzyskujemy 0,35 mA + 2 mA = 2,35 mA, co wskazuje, że przy takiej dokładności błąd może być dość istotny. Jednak dla pomiarów w praktyce do obliczeń najczęściej stosuje się wartości w granicach typowych pomiarów. Wartość ±0,37 mA, która została uznana za poprawną, uwzględnia precyzyjne zaokrąglenie i daje bardziej realistyczny obraz błędu, gdyż błąd nie powinien przekraczać jednostek pomiarowych, co w praktyce oznacza, że nawet niewielkie różnice mogą wpływać na dalsze analizy. Tego rodzaju wiedza jest kluczowa w wielu dziedzinach, zwłaszcza w inżynierii i elektrotechnice, gdzie precyzyjne pomiary są niezbędne do prawidłowego funkcjonowania systemów elektrycznych i elektronicznych.

Pytanie 2

Na której ilustracji przedstawiono pomiar rezystancji izolacji między przewodami czynnymi w układzie TN-C?

Ilustracja do pytania
A. Na ilustracji 2.
B. Na ilustracji 3.
C. Na ilustracji 4.
D. Na ilustracji 1.
Ilustracja 1 przedstawia prawidłowy sposób pomiaru rezystancji izolacji między przewodami czynnymi w układzie TN-C, co jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych. W przypadku tego układu przewód PEN pełni funkcję zarówno przewodu ochronnego, jak i neutralnego. Miernik został podłączony między przewody L1, L2, L3 a przewód PEN, co jest zgodne z normami, które zalecają sprawdzanie izolacji w taki sposób, aby uniknąć potencjalnych zagrożeń związanych z porażeniem prądem elektrycznym. W praktyce, pomiar rezystancji izolacji powinien być przeprowadzany regularnie, szczególnie w instalacjach starszego typu, aby wykryć ewentualne uszkodzenia izolacji, które mogą prowadzić do niebezpiecznych sytuacji. Standardy takie jak PN-IEC 60364-6 oraz PN-EN 61557-2 wyraźnie definiują metody przeprowadzania takich pomiarów, a ich przestrzeganie jest niezbędne dla zapewnienia bezpieczeństwa użytkowników oraz sprawności systemu. Wykonywanie pomiarów izolacji na etapie odbioru oraz w trakcie eksploatacji jest najlepszą praktyką, która pozwala na wczesne wykrycie problemów i ich usunięcie, co z kolei przekłada się na dłuższą żywotność instalacji.

Pytanie 3

W układzie przedstawionym na rysunku, po podłączeniu odbiornika, zadziałał wyłącznik różnicowoprądowy. Przyczyną tego jest

Ilustracja do pytania
A. pojawienie się napięcia na części metalowej normalnie nieprzewodzącej.
B. zwarcie między przewodem fazowym i ochronnym
C. nieprawidłowe połączenie przewodu neutralnego i ochronnego.
D. zwarcie między przewodem neutralnym i ochronnym.
Prawidłowa odpowiedź wskazuje na kluczową rolę wyłącznika różnicowoprądowego, który jest zaprojektowany do monitorowania różnicy prądów płynących przez przewody fazowy i neutralny. Jego działanie opiera się na zasadzie wykrywania upływu prądu do ziemi, co może wystąpić, gdy napięcie pojawia się na metalowych częściach urządzenia, które normalnie powinny być nieprzewodzące. Przykładowo, w przypadku uszkodzenia izolacji przewodu, prąd może przepływać do obudowy urządzenia, co stwarza realne zagrożenie porażeniem prądem. Wyłącznik różnicowoprądowy, reagując na różnicę prądów, odcina zasilanie, co jest zgodne ze standardami bezpieczeństwa, takimi jak IEC 61008, które podkreślają znaczenie zabezpieczeń różnicowoprądowych w instalacjach elektrycznych. Tego typu zabezpieczenia są niezbędne w dobie wzrastającej liczby urządzeń elektrycznych, które mogą stwarzać zagrożenie dla użytkowników. Dlatego wdrożenie wyłączników różnicowoprądowych jest standardem w nowoczesnym budownictwie, co również poprawia ogólne bezpieczeństwo użytkowników.

Pytanie 4

Która zależność musi być spełniona podczas wymiany uszkodzonych przewodów instalacji elektrycznej i ewentualnej zmiany ich zabezpieczeń nadprądowych?

Iz – prąd obciążalności długotrwałej przewodu
Ib – prąd znamionowy zabezpieczenia przeciążeniowego
IB – prąd wynikający z przewidywanej mocy przesyłanej przewodem
A. IB ≤ IN ≤ IZ
B. IB ≤ IZ ≤ IN
C. IZ ≤ IN ≤ IB
D. IN ≤ IB ≤ IZ
Odpowiedź IB ≤ IN ≤ IZ jest prawidłowa, ponieważ odzwierciedla fundamentalne zasady projektowania instalacji elektrycznych. Prąd znamionowy obciążenia (IB) powinien być zawsze mniejszy lub równy prądowi znamionowemu zabezpieczenia przeciążeniowego (IN), aby zabezpieczenie mogło poprawnie zadziałać w przypadku nadmiernego obciążenia. Z kolei IN musi być mniejsze lub równe prądowi obciążalności długotrwałej przewodu (IZ), co zapewnia, że przewód nie ulegnie przegrzaniu ani uszkodzeniu w trakcie normalnej pracy. Takie podejście zgodne jest z normami, takimi jak PN-IEC 60364, które podkreślają znaczenie odpowiedniego doboru zabezpieczeń i przewodów. Przykładowo, w przypadku instalacji oświetleniowej, jeśli przewody mają maksymalną obciążalność 10 A (IZ), a przewidywane obciążenie to 8 A (IB), to zabezpieczenie powinno mieć wartość 10 A (IN). Taki dobór zabezpieczenia pozwala na ochronę zarówno przewodów, jak i urządzeń podłączonych do instalacji.

Pytanie 5

Który osprzęt przedstawiono na ilustracji?

Ilustracja do pytania
A. Dławiki izolacyjne.
B. Mufy przelotowe.
C. Kapturki termokurczliwe.
D. Złączki skrętne.
Mufy przelotowe, kapturki termokurczliwe oraz złączki skrętne, choć są popularnymi elementami w instalacjach elektrycznych, pełnią zupełnie inne funkcje niż dławiki izolacyjne. Mufy przelotowe są zazwyczaj używane do łączenia dwóch przewodów, zapewniając jednocześnie ich izolację oraz ochronę przed wilgocią. Nie mają one jednak funkcji zabezpieczania wprowadzanych przewodów do obudowy, co jest kluczowym zadaniem dławików izolacyjnych. Kapturki termokurczliwe, z kolei, są stosowane do izolacji połączeń elektrycznych, ale nie są przeznaczone do ochrony samego przewodu w miejscu wprowadzenia do obudowy. Złączki skrętne to z kolei elementy montażowe, które łączą przewody w sposób mechaniczny, ale nie oferują zabezpieczeń przed uszkodzeniami mechanicznymi ani środowiskowymi. Warto zauważyć, że mylenie tych elementów może prowadzić do poważnych błędów w projektowaniu i wykonaniu instalacji elektrycznych, co z kolei może wpłynąć na trwałość i bezpieczeństwo systemów elektrycznych. Właściwe rozpoznanie i zastosowanie tych komponentów jest kluczowe dla zapewnienia ich skuteczności i zgodności z obowiązującymi standardami branżowymi.

Pytanie 6

Jaką kategorię urządzeń elektrycznych reprezentują przekładniki prądowe?

A. Do indukcyjnych sprzęgieł dwukierunkowych
B. Do wzmacniaczy maszynowych
C. Do transformatorów
D. Do prądnic tachometrycznych
Wybór odpowiedzi spośród wzmacniaczy maszynowych, indukcyjnych sprzęgieł dwukierunkowych czy prądnic tachometrycznych wprowadza w błąd, gdyż te urządzenia pełnią zupełnie inne funkcje i mają odmienną budowę oraz zastosowanie. Wzmacniacze maszynowe są urządzeniami służącymi do wzmacniania sygnałów, co jest kluczowe w procesach automatyzacji i kontroli, ale nie mają bezpośredniego związku z pomiarami prądu. Indukcyjne sprzęgła dwukierunkowe z kolei są stosowane do transmisji momentu obrotowego między dwoma elementami, co również jest oddalone od funkcji przekładników prądowych. Prądnice tachometryczne natomiast są wykorzystywane do pomiaru prędkości obrotowej i koncentrują się na generowaniu sygnałów proporcjonalnych do prędkości obrotowej, co nie ma nic wspólnego z pomiarem prądu elektrycznego. Wybór nieodpowiednich odpowiedzi wynika często z mylnego skojarzenia funkcji tych urządzeń z ich zastosowaniami. Aby zrozumieć różnice, warto zwrócić uwagę na specyfikę działania każdego z tych urządzeń oraz ich zastosowanie w różnych dziedzinach, co jest istotne dla prawidłowego rozumienia i wykorzystania technologii elektrycznej.

Pytanie 7

Jaką liczbę klawiszy oraz zacisków ma tradycyjny jeden łącznik świecznikowy?

A. Dwa klawisze i trzy niezależne zaciski
B. Dwa klawisze i cztery niezależne zaciski
C. Jeden klawisz i cztery niezależne zaciski
D. Jeden klawisz i trzy niezależne zaciski
Wybierając inne odpowiedzi, można natknąć się na powszechne nieporozumienia dotyczące budowy i funkcji łączników świecznikowych. Na przykład, odpowiedzi sugerujące jeden klawisz i cztery zaciski mogą prowadzić do mylnego przekonania, że łącznik może obsługiwać więcej niż jedno źródło światła w niezależny sposób, co jest technicznie niemożliwe bez dodatkowych komponentów. Takie rozwiązanie nie tylko nie spełnia podstawowych założeń konstrukcyjnych, ale także może generować niebezpieczeństwo związane z przeciążeniem obwodu. Ponadto, odpowiedzi zawierające dwa klawisze i cztery zaciski wydają się logiczne na pierwszy rzut oka, jednak w rzeczywistości, w kontekście klasycznego pojedynczego łącznika, technologia wymaga tylko trzech zacisków dla właściwego podłączenia. W praktyce, mylenie liczby zacisków oraz klawiszy może skutkować błędnym doborem komponentów w instalacji elektrycznej, co może prowadzić do problemów z bezpieczeństwem oraz funkcjonalnością oświetlenia. Wiedza na temat standardowych rozwiązań w instalacjach elektrycznych jest kluczowa, aby uniknąć takich pułapek i zapewnić odpowiednią wydajność oraz bezpieczeństwo w użytkowaniu.

Pytanie 8

Jak nazywa się element stosowany w instalacjach mieszkaniowych przedstawiony na rysunku?

Ilustracja do pytania
A. Regulator temperatury.
B. Przekaźnik priorytetowy.
C. Przekaźnik bistabilny.
D. Regulator oświetlenia.
Przekaźnik bistabilny, przedstawiony na rysunku, to element stosowany w instalacjach automatyki i sterowania, który zmienia swój stan na przeciwny po przyłożeniu napięcia i utrzymuje ten stan nawet po zaniku zasilania. Oznaczenie "BIS-403" potwierdza, że jest to rzeczywiście przekaźnik bistabilny. Przekaźniki bistabilne są powszechnie wykorzystywane w systemach oświetleniowych, gdzie można je stosować do sterowania światłem w pomieszczeniach. Dzięki ich właściwościom, mogą być używane do zdalnego włączania i wyłączania urządzeń, co zwiększa efektywność energetyczną i komfort użytkowania. W standardach automatyki budynkowej, takich jak KNX czy LON, przekaźniki bistabilne odgrywają kluczową rolę w inteligentnych systemach zarządzania budynkiem, a ich zastosowanie pozwala na eliminację zbędnych przełączników oraz ułatwienie integracji z innymi elementami systemu.

Pytanie 9

Do realizacji układu przedstawionego na schemacie należy zastosować stycznik Q19 z następującą liczbą i rodzajem zestyków:

Ilustracja do pytania
A. 3NC + 1NO + 2NC
B. 3NO + 1NO + 2NC
C. 3NC + 2NO + 1NC
D. 3NO + 2NO + 1NC
Wybór niewłaściwej odpowiedzi często wynika z braku dokładnej analizy schematu elektrycznego oraz niepełnego zrozumienia funkcji zestyków w układzie. Istnieje kilka kluczowych błędów, które mogą prowadzić do nieprawidłowych wniosków. Po pierwsze, zestyk normalnie zamknięty (NC) nie powinien być nadużywany w układach, w których wymagane jest równoczesne włączenie kilku urządzeń; ich zadaniem jest raczej zapewnienie bezpieczeństwa poprzez odcięcie zasilania w przypadku awarii. W sytuacjach, gdzie pojawia się konieczność aktywacji kilku elementów, zestyk normalnie otwarty (NO) jest bardziej odpowiedni, ponieważ zapewnia ciągłość obwodu przy włączonym styczniku. Ponadto, niektóre odpowiedzi mogą sugerować nadmiar zestyków NC w układzie, co prowadzi do skomplikowania działania i może powodować problemy przy uruchamianiu urządzeń. Regularna analiza schematów i stosowanie się do dobrych praktyk, takich jak, na przykład, dobór elementów zgodnie z ich specyfikacją techniczną oraz normami bezpieczeństwa, jest niezbędne dla zapewnienia prawidłowego działania wszystkich komponentów układu. W każdym przypadku, kluczowe jest przemyślane podejście do projektowania i realizacji układów elektrycznych, które powinno łączyć teorię z praktyką, pozwalając na osiągnięcie optymalnych rezultatów.

Pytanie 10

Naciśnięcie przycisku TEST na wyłączniku różnicowoprądowym, imituje

A. przeciążenie
B. upływ prądu
C. uszkodzenie przewodu
D. przepięcie
Wciśnięcie przycisku TEST na wyłączniku różnicowoprądowym (RCD) ma na celu symulację upływu prądu, co jest kluczowym elementem działania tego urządzenia. Wyłączniki różnicowoprądowe są zaprojektowane w celu ochrony przed porażeniem prądem elektrycznym oraz pożarami spowodowanymi przez upływ prądu, dlatego ich regularne testowanie jest niezwykle istotne. Kiedy użytkownik naciska przycisk TEST, wewnętrzny mechanizm wyłącznika wytwarza sztuczny upływ prądu, co powinno spowodować natychmiastowe wyłączenie obwodu. To działanie pozwala użytkownikom na weryfikację, czy urządzenie działa prawidłowo i jest w stanie wykryć rzeczywisty upływ prądu. Zgodnie z normami branżowymi, takie testowanie powinno być przeprowadzane co najmniej raz w miesiącu, aby zapewnić bezpieczeństwo instalacji elektrycznej. Przykładowo, w przypadku zużycia izolacji przewodów lub uszkodzeń urządzeń elektrycznych, wyłącznik różnicowoprądowy powinien zareagować, wyłączając zasilanie, co zapobiega potencjalnym wypadkom i uszkodzeniom mienia. Regularne testowanie RCD przyczynia się do wyższej ochrony użytkowników oraz zgodności z przepisami bezpieczeństwa elektrycznego, jak normy PN-EN 61008-1.

Pytanie 11

Gdzie powinny być umieszczone liczniki zużycia energii elektrycznej w budynkach wielorodzinnych?

A. poza lokalami mieszkalnymi w miejscach o łatwym dostępie
B. w lokalach mieszkalnych tylko w zamkniętych szafkach
C. poza lokalami mieszkalnymi jedynie w zamkniętych szafkach
D. w lokalach mieszkalnych w miejscach o łatwym dostępie
Umieszczanie liczników zużycia energii elektrycznej w lokalach mieszkalnych, w tym w zamkniętych szafkach lub w miejscach łatwo dostępnych, nie jest zgodne z aktualnymi standardami i dobrymi praktykami w zakresie zarządzania infrastrukturą budowlaną. Istnieje kilka kluczowych powodów, które tłumaczą, dlaczego takie rozwiązanie może być niewłaściwe. Po pierwsze, lokalizacja liczników w mieszkaniach może prowadzić do naruszenia prywatności mieszkańców, co jest nieakceptowalne z punktu widzenia ochrony danych osobowych. Liczniki są urządzeniami technicznymi, a ich obecność w lokalach mieszkalnych może generować dodatkowe problemy, takie jak hałas czy ograniczenie przestrzeni. Ponadto, umieszczanie ich w łatwo dostępnych miejscach w lokalach może stwarzać ryzyko przypadkowego uszkodzenia lub manipulacji przez osoby trzecie, co jest szczególnie niebezpieczne. W kontekście wymogów dotyczących bezpieczeństwa, przechowywanie liczników w wydzielonych pomieszczeniach technicznych, zamykanych szafkach, pozwala na skuteczną kontrolę i ograniczenie dostępu do nich. Warto pamiętać, że zgodnie z przepisami prawa budowlanego oraz normami branżowymi, liczniki powinny być umiejscowione tak, aby mogły być łatwo dostępne dla wykwalifikowanego personelu, ale jednocześnie maksymalnie chronione przed dostępem osób nieuprawnionych. Tego typu podejścia zapewniają lepszą kontrolę nad systemem dystrybucji energii oraz zwiększają bezpieczeństwo zarówno użytkowników, jak i samej infrastruktury.

Pytanie 12

Oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym należy do klasy oświetlenia

Ilustracja do pytania
A. pośredniego.
B. przeważnie bezpośredniego.
C. przeważnie pośredniego.
D. bezpośredniego.
Zrozumienie klasyfikacji oświetlenia jest kluczowe dla prawidłowego zastosowania w praktyce, a błędna interpretacja może prowadzić do niewłaściwego doboru opraw oświetleniowych. Odpowiedzi sugerujące, że oprawa ta należy do kategorii oświetlenia bezpośredniego są mylące, ponieważ oświetlenie bezpośrednie charakteryzuje się tym, że światło jest emitowane bezpośrednio na powierzchnię użytkową, co zazwyczaj prowadzi do silnego kontrastu i może powodować olśnienia. W praktyce, takie podejście może być korzystne w sytuacjach wymagających intensywnego oświetlenia, jak w przypadku precyzyjnych prac ręcznych, jednak w wielu środowiskach, gdzie komfort i estetyka są równie ważne, może być niewłaściwe. Ponadto, odpowiedzi wskazujące na przeważnie bezpośrednie oświetlenie nie uwzględniają faktu, że oświetlenie pośrednie zapewnia bardziej równomierne rozproszenie światła, co minimalizuje cienie i poprawia ogólną widoczność. Typowe błędne myślenie dotyczy także klasyfikacji w kontekście zastosowania — oprawy, które kierują światło głównie w dół, często wzbogacają przestrzeń o efekt estetyczny, co jest istotne w architekturze wnętrz. Dlatego kluczowe jest, aby przy doborze opraw oświetleniowych uwzględniać nie tylko ich funkcjonalność, ale także wpływ na atmosferę i użytkowanie przestrzeni.

Pytanie 13

Którą wielkość fizyczną można zmierzyć przyrządem pokazanym na rysunku?

Ilustracja do pytania
A. Luminancję.
B. Temperaturę barwową światła.
C. Natężenie oświetlenia.
D. Światłość.
Poprawna odpowiedź to natężenie oświetlenia, które jest mierzonym parametrem przez luksomierz, przyrząd specjalistyczny zaprojektowany do oceny ilości światła padającego na określoną powierzchnię. Natężenie oświetlenia wyrażane jest w luksach (lx), co odnosi się do strumienia świetlnego padającego na powierzchnię jednego metra kwadratowego. W praktyce, luksomierze są używane w wielu dziedzinach, takich jak architektura, fotografia czy ergonomia, aby zapewnić odpowiednie warunki oświetleniowe, które wpływają na komfort oraz efektywność pracy. Na przykład, w biurach często normy dotyczące natężenia oświetlenia wynoszą od 300 do 500 luksów, co jest wystarczające do prowadzenia typowych prac biurowych. Użycie luksomierzy pozwala na optymalizację warunków oświetleniowych, co jest istotne dla zdrowia i wydajności pracowników. To narzędzie jest również kluczowe w budownictwie ekologicznym, gdzie odpowiednie oświetlenie wpływa na oszczędność energii.

Pytanie 14

Którą oprawę oświetleniową należy zastosować w piwnicy o zwiększonej wilgotności powietrza?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Oprawa oświetleniowa oznaczona jako D. jest odpowiednia do zastosowania w piwnicy o zwiększonej wilgotności powietrza, ponieważ spełnia normy dotyczące szczelności i odporności na działanie wilgoci. W takich warunkach, zastosowanie oprawy z wyższym stopniem ochrony, jak IP65 lub IP67, jest kluczowe, aby uniknąć ryzyka uszkodzenia instalacji elektrycznej oraz zapewnić bezpieczeństwo użytkowników. Dobrą praktyką jest wybór opraw wyekwipowanych w zatrzaski, co zwiększa ich szczelność i zapobiega przedostawaniu się pary wodnej oraz zanieczyszczeń. W piwnicach, gdzie może występować wilgoć, szczególnie istotne jest regularne sprawdzanie stanu technicznego oświetlenia, a także stosowanie źródeł światła odpornych na wahania temperatury oraz wilgotności, takich jak diody LED. Przykładem mogą być instalacje oświetleniowe w magazynach lub piwnicach, które wymagają nie tylko właściwego doboru opraw, ale także odpowiedniego montażu, aby zapewnić ich długotrwałą i bezpieczną eksploatację.

Pytanie 15

Wkładka topikowa przedstawiona na ilustracji przeznaczona jest do zabezpieczenia chronionego przewodu przed skutkami

Ilustracja do pytania
A. zwarć i przeciążeń jedynie w obwodach prądu przemiennego.
B. wyłącznie zwarć w obwodach prądu stałego i przemiennego.
C. wyłącznie zwarć jedynie w obwodach prądu przemiennego.
D. zwarć i przeciążeń w obwodach prądu stałego i przemiennego.
Wkładka topikowa, której użycie pokazano na ilustracji, jest kluczowym elementem zabezpieczenia obwodów elektrycznych przed niebezpiecznymi sytuacjami, takimi jak zwarcia i przeciążenia. Odpowiedź wskazująca na jej zdolność do pracy zarówno w obwodach prądu stałego, jak i przemiennego jest prawidłowa, ponieważ wkładki te są projektowane z myślą o szerokim zastosowaniu w różnych systemach elektrycznych. W praktyce oznacza to, że wkładki mogą być stosowane w instalacjach domowych, przemysłowych oraz w urządzeniach elektronicznych, gdzie ochrona przed nadmiernym prądem jest kluczowa. W przypadku wykrycia zbyt wysokiego natężenia prądu, wkładka topikowa przerywa obwód, co zapobiega uszkodzeniom urządzeń i pożarom. Zgodnie z normami dotyczącymi ochrony obwodów, takimi jak IEC 60269, wkładki topikowe powinny być dobierane odpowiednio do charakterystyki zabezpieczanego obwodu, co podkreśla znaczenie ich właściwego doboru i zastosowania w praktyce.

Pytanie 16

Wystąpienie prądu doziemienia o wartości 2,5 A w fazie L3 obwodu jednofazowych gniazd wtyczkowych przedstawionej instalacji spowoduje zadziałanie wyłącznika oznaczonego symbolem

Ilustracja do pytania
A. S301 B16
B. S304 C25
C. P301 40A
D. P301 25A
Odpowiedź P301 40A jest poprawna, ponieważ dotyczy wyłącznika różnicowoprądowego, który jest kluczowym elementem ochrony instalacji elektrycznych. W przypadku wykrycia prądu różnicowego, który przekracza 30 mA, wyłącznik ten natychmiast odłącza zasilanie, minimalizując ryzyko porażenia prądem elektrycznym. W sytuacji wystąpienia prądu doziemienia o wartości 2,5 A, znacznie przekraczającego wartość progową 30 mA, wyłącznik zadziała, co potwierdza jego skuteczność w ochronie użytkowników. Zastosowanie wyłączników różnicowoprądowych jest standardem w nowoczesnych instalacjach elektrycznych, zgodnym z normami PN-EN 61008 oraz PN-EN 60947. Dzięki nim możemy znacznie zwiększyć bezpieczeństwo w obiektach mieszkalnych i przemysłowych, chroniąc przed skutkami niewłaściwego działania urządzeń elektrycznych oraz wad w instalacji. W praktyce, regularne testowanie wyłączników różnicowoprądowych powinno być praktykowane, aby zapewnić ich niezawodność i skuteczność w sytuacjach awaryjnych.

Pytanie 17

W jakim z podanych układów sieciowych pojawia się przewód PEN?

A. TT
B. IT
C. TN-S
D. TN-C
Odpowiedź TN-C jest poprawna, ponieważ w tym układzie sieciowym przewód PEN (przewód ochronny-neutralny) pełni podwójną funkcję, łącząc funkcję uziemiającą z funkcją neutralną. Oznacza to, że jeden przewód jest odpowiedzialny zarówno za ochronę przed porażeniem elektrycznym, jak i za przewodzenie prądu neutralnego. Układ TN-C jest często stosowany w nowoczesnych instalacjach elektrycznych w budynkach mieszkalnych oraz przemysłowych, gdzie zapewnia wysoki poziom bezpieczeństwa oraz efektywności energetycznej. Zgodnie z normami PN-IEC 60364, stosowanie przewodu PEN w układzie TN-C umożliwia uproszczenie instalacji poprzez redukcję liczby przewodów oraz zmniejszenie ryzyka błędów podłączeniowych. Przykładem zastosowania układu TN-C mogą być instalacje w dużych budynkach biurowych, gdzie przewód PEN efektywnie łączy punkt neutralny transformatora z systemem uziemiającym budynku, co zwiększa bezpieczeństwo i stabilność zasilania elektrycznego.

Pytanie 18

Na podstawie tabeli dobierz dopuszczalny prąd znamionowy zabezpieczenia nadprądowego w instalacji jednofazowej dla przewodu YDY 3x1,5 mm2 przy sposobie ułożenia A2?

Ilustracja do pytania
A. 13 A
B. 20 A
C. 25 A
D. 16 A
Wybór niewłaściwego prądu znamionowego zabezpieczenia nadprądowego może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa i funkcjonowania instalacji elektrycznej. Z odpowiedziami takimi jak 20 A, 13 A czy 25 A wiąże się kilka kluczowych błędów myślowych. W przypadku prądu 20 A, użytkownik może sądzić, że wyższy prąd zabezpieczenia jest korzystny, co w rzeczywistości może prowadzić do sytuacji, gdzie przewody będą narażone na przeciążenia, gdyż zabezpieczenie nie zareaguje na wzrost prądu. Z kolei odpowiedź 13 A, mimo że może być uznana za bardziej konserwatywną, nie spełnia wymagań dla tego konkretnego przekroju i metody układania, co skutkuje zbyt dużym ryzykiem uszkodzenia instalacji. Natomiast 25 A, będąc jeszcze bardziej niebezpiecznym wyborem, może całkowicie zignorować prawidłowe normy bezpieczeństwa, prowadząc do przegrzania przewodów i w konsekwencji do zagrożeń pożarowych. Ważne jest, aby zrozumieć, że dobór zabezpieczeń nie powinien opierać się na intuicji czy przybliżeniu, ale na dokładnych danych technicznych, które są dostępne w normach branżowych. Wszystkie te czynniki podkreślają znaczenie przestrzegania przepisów i dobrych praktyk w projektowaniu i eksploatacji instalacji elektrycznych.

Pytanie 19

Elementy którego silnika elektrycznego przedstawiono na rysunku?

Ilustracja do pytania
A. Indukcyjnego klatkowego.
B. Komutatorowego prądu stałego.
C. Jednofazowego z kondensatorem pracy.
D. Indukcyjnego pierścieniowego.
Wybór nieprawidłowych odpowiedzi wskazuje na pewne nieporozumienia dotyczące różnych typów silników elektrycznych i ich konstrukcji. Silnik indukcyjny pierścieniowy to konstrukcja, która wykorzystuje wirnik z pierścieniami, co jest charakterystyczne dla silników o mocy dużej, używanych głównie w aplikacjach przemysłowych, gdzie wymagana jest wysoka moc startowa. Typowe zastosowanie to napędy dużych maszyn, gdzie istotne są parametry takie jak moment obrotowy. Z kolei silnik komutatorowy prądu stałego charakteryzuje się innym sposobem przekształcania energii - wykorzystuje komutatory do zmiany kierunku prądu w uzwojeniach wirnika, co sprawia, że jest bardziej skomplikowany konstrukcyjnie i wymaga więcej konserwacji. Silniki jednofazowe z kondensatorem pracy używane są głównie w domowych zastosowaniach, takich jak małe pompy czy wentylatory, ale ich budowa i zasada działania znacząco różnią się od silników indukcyjnych klatkowych. Typowe błędy myślowe to mylenie zastosowania tych silników oraz nieodpowiednie przypisywanie ich cech do danej konstrukcji. Wiedza o różnicach między tymi typami silników jest kluczowa dla efektywnego doboru odpowiedniego silnika do konkretnej aplikacji w przemyśle czy gospodarstwie domowym.

Pytanie 20

Na podstawie wyników pomiarów rezystancji w przewodzie elektrycznym przedstawionym na ilustracji można stwierdzić, że żyły

Pomiar pomiędzy końcami żyłRezystancja w Ω
L1.1 – L1.20
L2.1 – L2.20
L3.1 – L3.2
N.1 – N.20
PE.1 – PE.20
L1.1 – L2.1
L1.1 – L3.1
L1.1 – N.1
L1.1 – PE.1
N.1 – PE.10
N.1 – L2.1
N.1 – L3.1
Ilustracja do pytania
A. N i L3 są zwarte oraz PE jest przerwana.
B. N i PE są zwarte oraz L3 jest przerwana.
C. L1 i L2 są zwarte.
D. L1 i L2 są przerwane.
Analizując inne odpowiedzi, można zauważyć, że stwierdzenie, iż żyły N i L3 są zwarte, bazuje na błędnym rozumieniu pomiarów rezystancji. W przypadku, gdy L3 byłaby rzeczywiście zwarte, rezystancja między N a L3 musiałaby wynosić 0 Ω. Kolejne podejście, które sugeruje, że L1 i L2 są przerwane, pomija kluczową informację, że ich rezystancja również wynosi 0 Ω, co oznacza, że są sprawne. Warto zwrócić uwagę na to, że mylenie pojęć związanych z pomiarami rezystancji prowadzi do fałszywych wniosków. Rezystancja nieskończona, jak w przypadku L3, nie może być interpretowana jako stan zwarty. Ostatecznie, błędne odpowiedzi pokazują, że zrozumienie, jak powinny działać różne żyły w instalacji elektrycznej, jest niezbędne dla prawidłowego diagnozowania problemów. Kluczowym aspektem jest znajomość funkcji żył neutralnych, ochronnych oraz fazowych w instalacji, co jest fundamentem dla zapewnienia bezpieczeństwa oraz efektywności systemów elektrycznych.

Pytanie 21

Zgodnie z polskim prawem budowlanym, instalacje elektryczne oraz piorunochronne w obiektach mieszkalnych powinny być poddawane okresowym badaniom

A. co najmniej raz na 10 lat
B. co najmniej raz na 5 lat
C. raz na rok
D. raz na pół roku
Instalacja elektryczna oraz piorunochronna w budynkach mieszkalnych jest kluczowym elementem zapewniającym bezpieczeństwo użytkowników oraz ochronę mienia. Zgodnie z obowiązującymi przepisami prawa budowlanego, takie instalacje powinny być poddawane okresowym badaniom co najmniej raz na 5 lat. Taki harmonogram przeglądów ma na celu wczesne wykrywanie potencjalnych usterek, które mogą prowadzić do poważnych zagrożeń, takich jak pożary czy porażenia prądowe. Regularne kontrole pozwalają na ocenę stanu technicznego instalacji, w tym ich zgodności z aktualnymi normami oraz skutecznością w ochronie przed skutkami wyładowań atmosferycznych. Przykładem praktycznego zastosowania tej wiedzy może być sytuacja, w której w wyniku regularnych przeglądów wykryto zużycie izolacji, co mogłoby prowadzić do niebezpiecznych warunków. W przypadku instalacji piorunochronnych, ich skuteczność w odprowadzaniu prądów piorunowych również wymaga regularnych ocen, aby zapewnić maksymalną ochronę budynku. Warto zaznaczyć, że zgodność z normami PN-IEC 62305 oraz PN-EN 61439 jest kluczowa dla bezpieczeństwa obiektów.

Pytanie 22

Jakie oznaczenia oraz jaka minimalna wartość prądu znamionowego powinna mieć wkładka topikowa, aby chronić przewody przed skutkami zwarć i przeciążeń w obwodzie jednofazowego bojlera elektrycznego o parametrach znamionowych: PN = 3 kW, UN = 230 V?

A. aM 20 A
B. aR 16 A
C. gG 16 A
D. gB 20 A
Wkładka topikowa oznaczona jako gG 16 A jest odpowiednia do ochrony obwodów elektrycznych, w tym przypadku obwodu jednofazowego bojlera elektrycznego o mocy znamionowej 3 kW i napięciu 230 V. Oznaczenie gG (ogólne zabezpieczenie, przystosowane do ochrony obwodów przed przeciążeniami oraz zwarciami) wskazuje, że wkładka ta ma zdolność do przerwania obwodu zarówno w przypadku zwarcia, jak i przeciążenia. Analizując parametry bojlera, obliczamy prąd znamionowy przy pomocy wzoru: I = P / U, co daje I = 3000 W / 230 V ≈ 13 A. Wkładka gG 16 A będzie odpowiednia, ponieważ jej nominalny prąd przewyższa obliczony prąd znamionowy bojlera, a jednocześnie zapewnia odpowiednie zabezpieczenie przed skutkami zwarć. W praktyce wkładki gG są powszechnie stosowane w instalacjach domowych oraz przemysłowych, co gwarantuje ich niezawodność oraz efektywność w odpowiednich zastosowaniach. Dla bezpieczeństwa zaleca się również regularne kontrolowanie stanu wkładek oraz ich wymianę, aby zapewnić optymalne funkcjonowanie systemu elektrycznego.

Pytanie 23

Przedstawiony na rysunku przełącznik funkcji przyrządu do pomiaru parametrów instalacji elektrycznych ustawiono na pomiar

Ilustracja do pytania
A. impedancji pętli zwarcia.
B. ciągłości przewodów.
C. rezystancji izolacji.
D. rezystancji uziemienia.
Wybierając jedną z pozostałych opcji, można natknąć się na szereg nieporozumień związanych z funkcją przełącznika oraz zasadami pomiarów elektrycznych. Impedancja pętli zwarcia to parametr istotny, jednak nie jest to pomiar, który wykonuje się przy ustawieniu oznaczonym jako "RE". Impedancja pętli zwarcia odnosi się do całkowitej impedancji w obwodzie, co jest istotne dla oceny ochrony przeciwporażeniowej, ale wymaga innego ustawienia w urządzeniu pomiarowym. Podobnie, ciągłość przewodów, oznaczająca sprawdzenie, czy nie ma przerwy w obwodzie, również nie jest tożsame z pomiarem rezystancji uziemienia. Wartość rezystancji izolacji, z kolei, dotyczy stanu izolacji przewodów i nie odnosi się do funkcji uziemiającej. Użycie nieodpowiedniej opcji może skutkować błędną oceną stanu instalacji elektrycznej, co może prowadzić do poważnych konsekwencji dla bezpieczeństwa. Rozumienie różnicy między tymi pojęciami jest kluczowe dla każdego specjalisty zajmującego się instalacjami elektrycznymi, a ich mylne zrozumienie może prowadzić do nieprawidłowych wniosków i decyzji w zakresie bezpieczeństwa elektrycznego.

Pytanie 24

Którym symbolem graficznym oznacza się prowadzenie przewodów elektrycznych na drabinkach kablowych?

Ilustracja do pytania
A. Symbolem 2.
B. Symbolem 3.
C. Symbolem 4.
D. Symbolem 1.
Gdy wybierzesz błędny symbol, warto się zastanowić, czemu to oznaczenie jest nieodpowiednie. Zdarza się, że symbole są mylone, bo wyglądają podobnie, ale różnice są naprawdę ważne. Wiele osób ma problem z odczytaniem rysunków technicznych, a to może prowadzić do dużych kłopotów. Często nie zdajemy sobie sprawy, że istnieją różne symbole dla różnych elementów, jak prowadnice czy kanały kablowe. Z braku wiedzy o standardowych symbolach mogą wyjść poważne błędy, które mogą wpłynąć na bezpieczeństwo i efektywność instalacji. Dlatego dobrze jest znać normy, takie jak PN-EN 60617, które pomagają w tworzeniu diagramów. Bycie na czasie z tymi zasadami to podstawa dla każdego, kto zajmuje się instalacjami elektrycznymi.

Pytanie 25

Oznaczenie YDYn 4x2,5 mm2 znajdujące się na izolacji dotyczy przewodu

A. natynkowego
B. samonośnego
C. oponowego
D. podtynkowego
Wybór innych odpowiedzi może wynikać z nieporozumień dotyczących klasyfikacji przewodów elektrycznych. Przewody natynkowe są zazwyczaj instalowane w sposób widoczny, na powierzchni ścian, co nie odpowiada charakterystyce przewodów samonośnych, które są przeznaczone do wieszania bez dodatkowego wsparcia. Z kolei przewody oponowe, które są elastyczne i strukturalnie dostosowane do ciężkich warunków, nie są przeznaczone do instalacji na zewnątrz bez dodatkowych osłon, co czyni je nieodpowiednimi do zastosowań samonośnych. Przewody podtynkowe, jak sama nazwa wskazuje, muszą być montowane w murach, co również odróżnia je od przewodów samonośnych. Kluczową różnicą jest to, że przewody samonośne muszą być przystosowane do pracy w warunkach atmosferycznych, co jest potwierdzone odpowiednimi atestami i normami. W rozumieniu tych kategorii, można zauważyć, że mylenie ich zastosowań prowadzi do praktycznych problemów w instalacjach elektrycznych, takich jak uszkodzenia mechaniczne czy niewłaściwe zasilanie urządzeń. Właściwy dobór przewodu jest kluczowy dla zapewnienia bezpieczeństwa i efektywności systemów elektrycznych.

Pytanie 26

Którym symbolem graficznym oznacza się instalację prowadzoną na drabinkach kablowych?

Ilustracja do pytania
A. Symbolem 4.
B. Symbolem 1.
C. Symbolem 2.
D. Symbolem 3.
Zrozumienie symboliki używanej w dokumentacji technicznej jest kluczowe dla zapewnienia właściwej komunikacji między inżynierami i technikami. Oznaczenie instalacji prowadzonej na drabinkach kablowych symbolami innymi niż Symbol 2 prowadzi do błędnej interpretacji schematów. Na przykład, wybór symbolu 1, 3 lub 4 może wynikać z mylenia drabinek kablowych z innymi rodzajami instalacji, co jest powszechnym błędem. Symbol 1 może przedstawiać inny typ prowadzenia kabli, taki jak korytka kablowe, które są używane w innych kontekstach, a nie na drabinkach, co może prowadzić do nieprawidłowego montażu. Dodatkowo, symbol 3 może być zarezerwowany dla instalacji o zupełnie innym zastosowaniu, co powoduje dodatkowe zamieszanie. Z kolei symbol 4, jeśli jest używany w niewłaściwym kontekście, może prowadzić do poważnych błędów w projektowaniu i realizacji instalacji. Typowe błędy myślowe, takie jak pomijanie różnic między symbolami a ich kontekstem zastosowania, mogą skutkować nieefektywnym zarządzaniem projektami oraz zwiększonym ryzykiem w trakcie realizacji zadań. Kluczowe jest, aby znać nie tylko konkretne symbole, ale również ich zastosowanie i kontekst, co pozwala na uniknięcie poważnych nieporozumień w pracy z dokumentacją techniczną.

Pytanie 27

Na rysunku przedstawiono graficzne oznaczenie przewodu

Ilustracja do pytania
A. ochronnego.
B. ochronno-neutralnego.
C. uziemiającego.
D. czynnego pod napięciem.
Poprawna odpowiedź to przewód ochronno-neutralny (PEN), który pełni kluczową rolę w systemach elektrycznych, szczególnie w układach TN-C. Przewód ten łączy funkcje przewodu neutralnego (N) oraz ochronnego (PE), co umożliwia zarówno bezpieczne odprowadzanie prądu w przypadku awarii, jak i zapewnienie powrotu prądu do źródła zasilania. W praktyce oznacza to, że w przypadku uszkodzenia przewodu, prąd może zostać odprowadzony do ziemi, co zapobiega porażeniom elektrycznym. Stosowanie przewodu PEN jest zgodne z normami PN-IEC 60364 oraz PN-EN 50174, które określają zasady budowy instalacji elektrycznych, zapewniając bezpieczeństwo użytkowników. Właściwe zrozumienie funkcji przewodu PEN jest niezbędne dla projektantów i wykonawców instalacji elektrycznych, aby zapewnić ich zgodność z obowiązującymi przepisami oraz skuteczną ochronę przed zagrożeniami elektrycznymi.

Pytanie 28

Zgodnie z normą PN-IEC 664-1 dotyczącą klasyfikacji instalacji, minimalna wytrzymałość udarowa urządzeń 230/400 V w I kategorii powinna wynosić

A. 2,5 kV
B. 1,5 kV
C. 6,0 kV
D. 4,0 kV
Wybór wytrzymałości udarowej 2,5 kV, 4,0 kV czy 6,0 kV może wynikać z błędnych założeń co do tego, jakie normy powinny być stosowane w instalacjach elektrycznych. Może się wydawać, że wyższa wytrzymałość oznacza lepszą ochronę przed przepięciami, ale norma PN-IEC 664-1 jasno określa konkretne wartości dla różnych kategorii urządzeń. Jeśli wybierzesz zbyt wysoką wytrzymałość w I kategorii, to tak naprawdę może generować niepotrzebne koszty, które nie przekładają się na większe bezpieczeństwo. Dodatkowo, nadmierne wymagania mogą ograniczać dostępność i wybór sprzętu na rynku, co w efekcie wpływa na innowacyjność. Często też zdarza się, że nie odróżnia się kategorii urządzeń i ich rzeczywistych zastosowań, co jest naprawdę istotne. W praktyce wyższe wartości udarowe są używane w trudniejszych warunkach, jak II kategoria, gdzie ryzyko większych przepięć jest realne. Dlatego ważne, żeby spojrzeć na wymagania dotyczące wytrzymałości udarowej w kontekście konkretnych sytuacji i zagrożeń, żeby podejmować lepsze decyzje projektowe.

Pytanie 29

Warunkiem automatycznego odłączenia zasilania w systemach typu TN jest relacja (UO - napięcie nominalne w V; Ia - wartość prądu w A, zapewniająca natychmiastowe, automatyczne zadziałanie urządzenia ochronnego; Zs - impedancja pętli zwarciowej w Ω)

A. UO > Zs ∙ 2Ia
B. UO > Zs ∙ Ia
C. UO < Zs ∙ 2Ia
D. UO < Zs ∙ Ia
Niewłaściwe odpowiedzi mogą wynikać z niepełnego zrozumienia zasad działania układów zabezpieczeń elektrycznych. W przypadku odpowiedzi, gdzie UO jest mniejsze od Zs ∙ Ia, zakłada się, że napięcie nie jest wystarczające do wyzwolenia ochrony, co jest błędne. W rzeczywistości, aby zapewnić skuteczną reakcję urządzenia ochronnego, napięcie musi przekraczać wartość wynikającą z iloczynu impedancji pętli zwarciowej i prądu zadziałania. Odpowiedzi sugerujące, że UO powinno być mniejsze od tego iloczynu, wskazują na błędne założenia dotyczące warunków pracy zabezpieczeń. Również odpowiedzi, w których UO jest większe od Zs ∙ 2Ia, nie uwzględniają, że wartość prądu zadziałania powinna być odpowiednio dobrana do rzeczywistych warunków obciążeniowych. Należy pamiętać, że w projektowaniu instalacji elektrycznych kluczowe jest zachowanie właściwych relacji między napięciem, prądem i impedancją, co jest regulowane przez normy i standardy branżowe, takie jak PN-IEC 60364 dotyczące instalacji elektrycznych. Brak takiej wiedzy może prowadzić do poważnych konsekwencji, takich jak uszkodzenia urządzeń, a nawet zagrożenie dla życia ludzi. Dlatego ważne jest, aby dobrze rozumieć te relacje i ich praktyczne zastosowanie w projektowaniu i eksploatacji instalacji elektrycznych.

Pytanie 30

Zamiast starego bezpiecznika trójfazowego 25 A, należy zastosować wysokoczuły wyłącznik różnicowoprądowy. Który z przedstawionych w katalogu, należy wybrać?

WyłącznikOznaczenie
A.BPC 425/030 4P AC
B.BDC 225/030 2P AC
C.BPC 425/100 4P AC
D.BDC 440/030 4P AC
A. B.
B. A.
C. D.
D. C.
Wybór niepoprawnej opcji może wynikać z kilku nieporozumień dotyczących specyfikacji wyłączników różnicowoprądowych. Niezrozumienie norm dotyczących prądu znamionowego może prowadzić do nieodpowiedniego doboru urządzenia. Na przykład, niektóre opcje mogą oferować zbyt wysokie prądy znamionowe, co skutkowałoby brakiem odpowiedniego zabezpieczenia dla obciążenia 25 A. W takich przypadkach, wybór urządzenia o niższym prądzie znamionowym może prowadzić do zadziałania wyłącznika w sytuacjach, które nie są krytyczne, co obniża jego skuteczność w ochronie. Ponadto, niewłaściwe zrozumienie liczby biegunów może doprowadzić do zastosowania wyłączników jednofazowych w instalacjach trójfazowych, co jest absolutnie niezalecane, ponieważ nie zapewnia to pełnej ochrony przed porażeniem prądem. Czułość wyłącznika różnicowoprądowego jest kluczowym parametrem, który powinien być dostosowany do specyfiki instalacji. Wybór urządzenia o zbyt dużej czułości, na przykład 100 mA, może nie zapewnić odpowiedniego zabezpieczenia, podczas gdy zbyt mała czułość może prowadzić do niepotrzebnych zadziałań. Takie błędy w doborze wyłączników mogą prowadzić do poważnych konsekwencji, w tym ryzyka wystąpienia pożaru czy porażenia prądem, co jest wysoce niepożądane w każdej instalacji elektrycznej. Dlatego kluczowe jest dobrać wyłącznik, który nie tylko spełnia normy, ale również jest odpowiednio dostosowany do charakterystyki używanych urządzeń i wymagań instalacji.

Pytanie 31

Jaką klasę mają oprawy stosowane do oświetlenia miejscowego?

A. III
B. IV
C. II
D. I
Wybór opraw klasy II, III lub IV wskazuje na nieporozumienie dotyczące standardów bezpieczeństwa i funkcji oświetlenia miejscowego. Klasa II opisuje oprawy, które są podwójnie izolowane, co sprawia, że nie wymagają uziemienia, ale nie są one rekomendowane do zastosowań, gdzie istnieje ryzyko kontaktu z wodą lub innymi cieczyami, co często ma miejsce w miejscach pracy. Wybierając te oprawy na stanowiska robocze, narażamy użytkowników na potencjalne zagrożenia elektryczne. Klasa III z kolei odnosi się do urządzeń zasilanych z niskonapięciowych źródeł, co może być stosowane w niektórych aplikacjach, ale nie jest odpowiednie do typowego oświetlenia miejscowego, które wymaga wyższego napięcia dla efektywnego działania. Klasa IV dotyczy produktów przeznaczonych do zastosowań specjalnych, które są często chronione przed czynnikami zewnętrznymi, ale nie mają zastosowania w standardowych warunkach biurowych czy przemysłowych. Wybór niewłaściwej klasy oprawy może prowadzić do poważnych konsekwencji zdrowotnych i bezpieczeństwa, dlatego zrozumienie tych różnic jest kluczowe w procesie projektowania efektywnego oświetlenia miejscowego. Podstawowym błędem myślowym jest zakładanie, że wszystkie oprawy mogą być stosowane zamiennie, co ignoruje różnice w wymaganiach bezpieczeństwa i funkcjonalności. W kontekście standardów branżowych, stosowanie opraw klasy I jest najlepszą praktyką, ponieważ minimalizuje ryzyko porażenia prądem i zapewnia bezpieczeństwo pracy.

Pytanie 32

Do jakiej kategorii urządzeń elektrycznych należą linie napowietrzne i kablowe?

A. Pomocniczych
B. Wytwórczych
C. Przesyłowych
D. Odbiorczych
Linie napowietrzne i kablowe zaliczają się do grupy urządzeń przesyłowych, ponieważ ich główną funkcją jest transport energii elektrycznej na znaczną odległość, co jest kluczowe dla zasilania odbiorców końcowych oraz dla stabilności systemu energetycznego. Przesył energii elektrycznej odbywa się z wykorzystaniem linii napowietrznych, które są powszechnie stosowane w terenach wiejskich oraz w obszarach, gdzie nie ma potrzeby zakupu droższych kabli. Dobre praktyki w zakresie przesyłu energii elektrycznej zakładają minimalizację strat, które mogą występować w trakcie transportu, co jest istotne dla efektywności energetycznej. Przykładowo, zastosowanie linii wysokiego napięcia pozwala na przesyłanie dużych mocy przy mniejszych stratach. W kontekście standardów, linie przesyłowe powinny spełniać normy określone przez Międzynarodową Komisję Elektrotechniczną (IEC) oraz krajowe regulacje dotyczące jakości i bezpieczeństwa. W praktyce oznacza to, że projektując systemy przesyłowe, inżynierowie muszą uwzględniać nie tylko parametry techniczne, ale również aspekt ochrony środowiska oraz wpływ na otoczenie.

Pytanie 33

Który układ połączeń watomierza jest zgodny ze schematem pomiarowym pokazanym na rysunku?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Wybór innej opcji niż C wynika z nieporozumienia dotyczącego zasad prawidłowego pomiaru mocy czynnej przy użyciu watomierza. W wielu przypadkach, osoby uczące się mylnie zakładają, że cewka prądowa powinna być połączona równolegle z obciążeniem, co jest błędne. Równoległe połączenie cewki prądowej wprowadzałoby do pomiaru dodatkowe zmiany, prowadząc do błędnych wyników. Cewka prądowa ma za zadanie mierzyć prąd płynący przez obciążenie, a jej poprawne połączenie szeregowe zapewnia, że cały prąd, który jest mierzony przez watomierz, jest tym, który rzeczywiście przepływa przez obciążenie. Ponadto, błędne połączenie cewki napięciowej również wprowadzałoby istotne zniekształcenia w pomiarze, ponieważ nie mierzyłaby ona napięcia na obciążeniu, co jest kluczowe dla obliczenia mocy czynnej. W praktyce, każdy z tych błędów może prowadzić do nieprawidłowych obliczeń i nieefektywnego zarządzania energią elektryczną. Zrozumienie podstawowych zasad związanych z pomiarem mocy czynnej oraz zastosowanie ich w praktyce jest kluczowe dla uzyskania dokładnych wyników oraz zapewnienia odpowiedniego zarządzania systemami elektrycznymi.

Pytanie 34

Jaki zakres pomiarowy oraz rodzaj napięcia trzeba ustawić na woltomierzu, aby zmierzyć napięcie zasilające obwód gniazd wtyczkowych w budynku mieszkalnym?

A. 500 V AC
B. 500 V DC
C. 200 V DC
D. 200 V AC
Odpowiedź 500 V AC jest prawidłowa, ponieważ w budynkach mieszkalnych napięcie zasilające gniazdka wtyczkowe wynosi zazwyczaj 230 V w systemie prądu przemiennego (AC). Ustawienie woltomierza na zakres 500 V AC umożliwia pomiar napięcia z dużym marginesem bezpieczeństwa, co jest zgodne z dobrymi praktykami pomiarowymi. Użycie takiego zakresu zapewnia dokładne i bezpieczne pomiary bez ryzyka uszkodzenia urządzenia. Warto zauważyć, że pomiar napięcia AC jest istotny, gdyż instalacje elektryczne w budynkach mieszkalnych są projektowane na prąd przemienny, a nie stały (DC). W praktyce, przed rozpoczęciem pomiarów, zawsze należy upewnić się, że woltomierz jest odpowiednio skalibrowany i spełnia normy bezpieczeństwa, takie jak IEC 61010, które dotyczą sprzętu pomiarowego w obszarze niskiego napięcia.

Pytanie 35

Jakie oznaczenie powinno być umieszczone na puszce instalacyjnej, która ma być użyta do połączenia uszkodzonego przewodu YDYo 5x4 mm2 w obszarze myjni samochodowej?

A. IP56 5x4 mm2
B. IP54 4x4 mm2
C. IP45 5x6 mm2
D. IP43 5x4 mm2
Wybór puszki instalacyjnej z oznaczeniami, które nie spełniają odpowiednich norm ochrony, może prowadzić do kilku poważnych problemów. Na przykład, oznaczenie IP43 nie zapewnia wystarczającej ochrony przed wodą i pyłem, co jest kluczowe w warunkach myjni samochodowej, gdzie występuje intensywna eksploatacja związana z wodą i detergentami. Z kolei IP45, mimo że oferuje lepszą ochronę przed pyłem, nie zapewnia odpowiedniego zabezpieczenia przed silnymi strumieniami wody, co może prowadzić do uszkodzeń instalacji elektrycznej. W przypadku IP54, chociaż przewód o przekroju 4x4 mm2 ma swoje zastosowanie, nie jest on odpowiedni dla wymagań związanych z obciążeniem prądowym oraz odpornością na warunki panujące w myjniach. Kluczowym błędem myślowym jest założenie, że jakiekolwiek oznaczenie IP będzie wystarczające, bez uwzględnienia konkretnego środowiska pracy. W rzeczywistości, dobór odpowiednich komponentów do instalacji elektrycznych powinien być oparty na analizie warunków, w jakich będą one eksploatowane. Dlatego ważne jest, aby przy podejmowaniu decyzji kierować się nie tylko wartościami liczbowymi, ale także ich praktycznym zastosowaniem oraz specyfiką miejsca pracy.

Pytanie 36

Którym symbolem graficznym oznacza się prowadzenie przewodów w tynku na schemacie ideowym projektowanej instalacji elektrycznej?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Wybierając inną odpowiedź, można było wpaść w pułapkę typowych nieporozumień dotyczących symboliki w projektowaniu instalacji elektrycznych. Wiele osób myli symbole graficzne związane z instalacjami elektrycznymi, co często prowadzi do nieprawidłowej interpretacji dokumentów projektowych. Niezrozumienie różnicy między różnymi symbolami może spowodować, że nieprawidłowo zaprojektowane lub wykonane instalacje nie będą spełniały norm bezpieczeństwa i funkcjonalności. Należy pamiętać, że każdy symbol na schemacie ma swoje konkretne znaczenie. Na przykład, niektóre symbole mogą wskazywać na przewody prowadzone pod tynkiem lub w innych rodzajach osłon, co ma bezpośredni wpływ na bezpieczeństwo instalacji. Używanie niewłaściwych symboli może prowadzić do błędów w wykonaniu instalacji, a w konsekwencji do kosztownych poprawek. Właściwe rozumienie symboliki jest kluczowe dla inżynierów i techników zajmujących się projektowaniem i wykonawstwem instalacji elektrycznych, a także dla zapewnienia, że projekty spełniają wymagania norm europejskich i krajowych. Dlatego ważne jest, aby dokładnie zapoznawać się z dokumentacją techniczną oraz stosować się do uznawanych standardów, takich jak PN-IEC 60617, aby uniknąć nieporozumień i błędów w projektach. To zarówno kwestia praktyki, jak i odpowiedzialności zawodowej.

Pytanie 37

Który z symboli oznacza możliwość bezpośredniego montażu oprawy oświetleniowej wyłącznie na podłożu niepalnym?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Wybór symbolu A., C. lub D. może prowadzić do nieprawidłowych wniosków na temat możliwości montażu opraw oświetleniowych. Na przykład, symbol A. może sugerować, że oprawy oświetleniowe są odpowiednie do montażu na podłożach palnych, co jest sprzeczne z podstawowymi zasadami bezpieczeństwa pożarowego. Montowanie oprawy na powierzchniach palnych zwiększa ryzyko wystąpienia pożaru, zwłaszcza w sytuacji, gdy oprawa generuje wysoką temperaturę. W praktyce, wiele osób może mylnie uważać, że wszystkie oprawy oświetleniowe są uniwersalne i mogą być instalowane w dowolnych warunkach. To podejście jest błędne, ponieważ wiele norm branżowych, takich jak PN-EN 60598, wyraźnie wskazuje, że instalacje powinny być dostosowane do specyfiki pomieszczeń oraz ich przeznaczenia. Wybór błędnego symbolu może wynikać z niedostatecznej wiedzy na temat klasyfikacji materiałów palnych oraz właściwego montażu opraw. Ponadto, niektóre oprawy mogą być zaprojektowane do pracy w trudnych warunkach, co wymaga dodatkowych zabezpieczeń. Dlatego przed dokonaniem wyboru, zawsze warto zapoznać się z dokumentacją techniczną oraz konsultować się z wykwalifikowanym specjalistą w dziedzinie instalacji elektrycznych.

Pytanie 38

Na izolatorach wsporczych instaluje się przewody

A. szynowe
B. uzbrojone
C. rdzeniowe
D. kabelkowe
Odpowiedź szynowe jest prawidłowa, ponieważ przewody szynowe są wykorzystywane w systemach elektroenergetycznych do przesyłania energii elektrycznej pomiędzy różnymi elementami instalacji. Izolatory wsporcze są kluczowym elementem, który podtrzymuje przewody szynowe, zapewniając ich stabilność i bezpieczeństwo w różnych warunkach atmosferycznych. Przewody szynowe charakteryzują się dużą zdolnością do prowadzenia prądu oraz odpornością na obciążenia mechaniczne, co czyni je odpowiednimi do zastosowań w stacjach transformacyjnych i rozdzielniach. Przykładem ich zastosowania są instalacje w elektrowniach, gdzie przewody szynowe łączą transformatory z systemem dystrybucji energii. Zgodnie z normami branżowymi, stosowanie przewodów szynowych w połączeniu z odpowiednimi izolatorami jest uznawane za jedną z najlepszych praktyk w projektowaniu sieci elektroenergetycznych.

Pytanie 39

Pomiar impedancji pętli zwarciowych wykonuje się w przypadku

A. wyłączonej sieci, co uwzględnia impedancje transformatorów zasilających
B. wyłączonej sieci, co nie uwzględnia impedancji transformatorów zasilających
C. aktywnie działającej sieci, co nie uwzględnia impedancji transformatorów zasilających
D. aktywnie działającej sieci, co uwzględnia impedancje transformatorów zasilających
Pomiar impedancji pętli zwarciowej w momencie, gdy sieć jest odłączona, prowadzi do znacznych zniekształceń wyników. W takim przypadku nie uwzględniamy rzeczywistej interakcji między elementami systemu, co skutkuje pomiarami, które nie odzwierciedlają rzeczywistych warunków pracy. Odpowiedzi, które zakładają odłączenie sieci i pomijają impedancję transformatorów, zapominają o fundamentalnej roli, jaką te urządzenia odgrywają w systemach zasilania. W przypadku zwarcia, transformatorzy przyczyniają się do zmiany impedancji, poprzez swoją własną impedancję zwarciową, co może znacząco wpłynąć na prąd zwarciowy i czas reakcji zabezpieczeń. Pomiar przeprowadzony w tej konfiguracji może prowadzić do zbyt niskich lub zbyt wysokich wartości impedancji, co w praktyce może skutkować nieadekwatnym dobraniem zabezpieczeń. Typowym błędem myślowym jest przekonanie, że pomiar w czasie odłączenia jest wystarczający i dostarcza pełnego obrazu zachowania systemu. Należy pamiętać, że odpowiednie wytyczne, takie jak normy IEC, zalecają przeprowadzanie tych pomiarów w warunkach operacyjnych, aby zapewnić rzetelność i bezpieczeństwo instalacji elektrycznych.

Pytanie 40

Do pomiaru której wielkości jest przeznaczony miernik przedstawiony na ilustracji?

Ilustracja do pytania
A. Odkształceń przebiegu napięcia.
B. Częstotliwości.
C. Spadku napięcia.
D. Współczynnika mocy.
Miernik przedstawiony na ilustracji jest przeznaczony do pomiaru współczynnika mocy, co jest kluczowe w analizie pracy układów elektrycznych. Współczynnik mocy, oznaczany jako cos φ, określa, jak efektywnie energia elektryczna jest przekształcana w pracę. W praktyce, wartości współczynnika mocy mogą sięgać od 0 do 1, gdzie 1 oznacza, że cała moc jest efektywnie wykorzystana. W przypadku obciążeń indukcyjnych, takich jak silniki, współczynnik mocy jest zazwyczaj mniejszy niż 1, co oznacza straty energii. Poprawne zarządzanie współczynnikiem mocy jest istotne w przemyśle, ponieważ niski współczynnik mocy może prowadzić do zwiększonych kosztów energii oraz kar nałożonych przez dostawców energii. Przykłady zastosowań obejmują monitorowanie i poprawę wydajności energetycznej w zakładach produkcyjnych, a także optymalizację systemów oświetleniowych i grzewczych. Zgodność z normami, takimi jak IEC 61000, jest również istotna w ocenie jakości energii elektrycznej i minimalizacji zakłóceń w systemach zasilania.