Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 14 lutego 2026 04:17
  • Data zakończenia: 14 lutego 2026 04:32

Egzamin niezdany

Wynik: 15/40 punktów (37,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W systemie Windows użycie prezentowanego polecenia spowoduje tymczasową zmianę koloru

Microsoft Windows [Version 10.0.14393]
(c) 2016 Microsoft Corporation. Wszelkie prawa zastrzeżone.
 
C:\Users\ak>color 1
A. tła i czcionki okna Windows.
B. tła okna wiersza poleceń, które było uruchomione z ustawieniami domyślnymi.
C. paska nazwy okna Windows.
D. czcionki wiersza poleceń, która była uruchomiona z ustawieniami domyślnymi.
Dość łatwo pomylić działanie polecenia 'color' w Windows z ogólnymi ustawieniami wyglądu systemu, bo samo polecenie brzmi bardzo ogólnie. Jednak jego efekt ogranicza się tylko do aktywnego okna wiersza poleceń uruchomionego w trybie domyślnym i nie wpływa ani na całe środowisko graficzne, ani na pasek tytułu czy tło okna. Klasycznym nieporozumieniem jest sądzić, że komenda 'color' zmieni coś poza konsolą — np. wygląd pulpitu, kolory okien czy czcionki w Eksploratorze Windows. Takie zmiany wymagają głębokiej ingerencji w ustawienia systemowe, a nie pojedynczego polecenia z konsoli. Podobnie, niektórzy myślą, że 'color 1' odmienia tylko tło okna — to błąd, bo parametr użyty w tej postaci zawsze odnosi się do koloru tekstu, nie tła (gdy pierwszy znak to zero, tło zostaje czarne, a drugi znak określa kolor czcionki). Warto pamiętać, że jeśli chcielibyśmy zmienić tło, należałoby wskazać odpowiednią wartość w pierwszym parametrze, ale w tym przypadku wpisanie tylko 'color 1' skutkuje niebieską czcionką na czarnym tle. Spotkałem się też z opinią, że polecenie 'color' wpływa na pasek tytułu okna — niestety, to też nieporozumienie, bo taki efekt można uzyskać jedynie poprzez zmiany w ustawieniach wyglądu Windows, nie poleceniem w konsoli. Często powielanym błędem jest też przekonanie, że zmiana dotyczy całego systemu albo wszystkich użytkowników. W rzeczywistości dotyczy tylko aktualnie otwartego okna cmd.exe, a po jego zamknięciu wszystko wraca do normy. Dobre praktyki wskazują, by korzystać ze zmiany koloru czcionki w konsoli właśnie dla lepszej organizacji pracy w kilku równoległych sesjach, a nie do personalizacji środowiska systemowego.

Pytanie 2

Który z wymienionych protokołów jest szyfrowanym protokołem do zdalnego dostępu?

A. telnet
B. POP3
C. TFTP
D. SSH
SSH, czyli Secure Shell, to taki fajny protokół, który daje nam możliwość bezpiecznej komunikacji między klientem a serwerem. Głównie wykorzystujemy go do zdalnego logowania i wydawania poleceń, ale co najważniejsze – robi to w sposób, który chroni nas przed różnymi atakami. Szyfruje dane, używając takich technik jak AES, co naprawdę pomaga utrzymać nasze informacje w tajemnicy. Z mojego doświadczenia, admini systemów często sięgają po SSH, by ogarniać serwery, czy to w chmurze, czy w lokalnych sieciach, co pozwala im działać bez obaw o wyciek danych. Również warto pamiętać o kluczach publicznych i prywatnych, bo to dodatkowo podnosi bezpieczeństwo. Tak więc, dzięki wszystkim tym właściwościom, SSH stał się takim standardem, jeśli chodzi o bezpieczny dostęp do systemów operacyjnych i różnych urządzeń sieciowych.

Pytanie 3

Która z usług na serwerze Windows umożliwi użytkownikom końcowym sieci zaprezentowanej na ilustracji dostęp do Internetu?

Ilustracja do pytania
A. Usługa udostępniania
B. Usługa rutingu
C. Usługa LDS
D. Usługa drukowania
Usługa rutingu jest kluczowym elementem umożliwiającym urządzeniom w sieci lokalnej dostęp do Internetu poprzez przekierowywanie pakietów sieciowych pomiędzy różnymi segmentami sieci. Na serwerach Windows funkcja rutingu jest realizowana poprzez rolę Routing and Remote Access Services (RRAS). Umożliwia ona nie tylko tradycyjny routing, ale także implementację funkcji takich jak NAT (Network Address Translation), co jest niezbędne w przypadku, gdy sieć lokalna korzysta z adresów IP prywatnych. Dzięki NAT, adresy IP prywatne mogą być translokowane na publiczne, co umożliwia komunikację z Internetem. W praktyce, aby skonfigurować serwer do pełnienia roli routera, należy zainstalować usługę RRAS i odpowiednio skonfigurować tablice routingu oraz reguły NAT. Dobrym przykładem zastosowania jest mała firma, gdzie serwer z zainstalowanym RRAS pozwala wszystkim komputerom w sieci lokalnej na dostęp do Internetu, jednocześnie zabezpieczając sieć poprzez kontrolowanie przepływu pakietów i filtrowanie ruchu, zgodnie z najlepszymi praktykami bezpieczeństwa sieciowego.

Pytanie 4

Na podstawie specyfikacji płyty głównej przedstawionej w tabeli, wskaż największą liczbę kart rozszerzeń, które mogą być podłączone do magistrali Peripheral Component Interconnect?

BIOS TypeAWARD
BIOS Version1.8
Memory Sockets3
Expansion Slots1 AGP/5 PCI
AGP 8XYes
AGP ProNo
NorthbridgeCooling FanYes
NorthbridgenForce2 SPP
SouthbridgenForce2 MCP-T
FSB Speeds100-300 1 MHz
MultiplierSelectionYes – BIOS
CoreVoltages1.1V-2.3V
DDR Voltages2.5V-2.9V
AGP Voltages1.5V-1.8V
Chipset Voltages1.4V-1.7V
AGP/PCI Divider in BIOSYes (AGP)
A. jedna
B. pięć
C. dwie
D. trzy
Wybór niepoprawnej liczby kart rozszerzeń które można podłączyć do magistrali PCI często wynika z braku zrozumienia specyfikacji technicznej płyty głównej w tym przypadku specyfikacja wyraźnie wskazuje że dostępnych jest pięć slotów PCI które są przeznaczone do podłączania różnych kart rozszerzeń takich jak karty dźwiękowe sieciowe czy kontrolery pamięci masowej Odpowiedź wskazująca na 2 lub 3 sloty mogła wynikać z pomylenia liczby fizycznych slotów z liczbą urządzeń wspieranych przez daną wersję BIOS-u lub architekturę systemową Często zdarza się że użytkownicy błędnie interpretują różne rodzaje slotów na płycie głównej szczególnie jeśli chodzi o różnice między PCI a AGP wskazane w specyfikacji jako osobny slot AGP służący głównie do kart graficznych Dla dokładnego zrozumienia specyfikacji kluczowe jest zrozumienie że magistrala PCI choć starsza wciąż jest szeroko stosowana w wielu zastosowaniach z powodu swojej wszechstronności i zgodności wstecznej Dzięki temu inżynierowie i technicy mogą projektować elastyczne systemy które łatwo można dostosować do zmieniających się potrzeb rozbudowując je o nowe funkcjonalności bez konieczności wymiany całej płyty głównej lub innych kluczowych komponentów

Pytanie 5

Bęben światłoczuły stanowi kluczowy element w funkcjonowaniu drukarki

A. laserowej
B. atramentowej
C. sublimacyjnej
D. igłowej
Widzę, że wybrałeś odpowiedź na temat drukarek igłowych, atramentowych lub sublimacyjnych, ale to raczej nie jest to, czego szukałeś. Drukarki igłowe działają zupełnie inaczej, bo mają igły, które uderzają w taśmę, więc nie ma mowy o bębnie światłoczułym. Drukarki atramentowe to z kolei inna bajka - one nanoszą atrament na papier za pomocą specjalnych głowic. A jeśli chodzi o drukarki sublimacyjne, to one przechodzą atrament w stan gazowy, co też nie wymaga bębna. Chyba warto by było lepiej poznać różnice między tymi technologiami druku. Znajomość podstaw może pomóc w wyborze odpowiedniej drukarki do twoich potrzeb.

Pytanie 6

Jaki element sieci SIP określamy jako telefon IP?

A. Serwerem rejestracji SIP
B. Terminalem końcowym
C. Serwerem przekierowań
D. Serwerem Proxy SIP
W kontekście architektury SIP, serwer rejestracji SIP, serwer proxy SIP oraz serwer przekierowań pełnią kluczowe funkcje, ale nie są terminalami końcowymi. Serwer rejestracji SIP jest odpowiedzialny za zarządzanie rejestracją terminali końcowych w sieci, co oznacza, że umożliwia im zgłaszanie swojej dostępności i lokalizacji. Użytkownicy mogą mieć tendencję do mylenia serwera rejestracji z terminalem końcowym, ponieważ oba elementy są kluczowe dla nawiązywania połączeń, lecz pełnią różne role w infrastrukturze. Serwer proxy SIP działa jako pośrednik w komunikacji, kierując sygnały między terminalami końcowymi, co może prowadzić do pomyłek w zrozumieniu, że jest to bezpośredni interfejs dla użytkownika, co nie jest prawdą. Z kolei serwer przekierowań może zmieniać ścieżki połączeń, ale również nie jest bezpośrednim urządzeniem, z którym użytkownik się komunikuje. Te wszystkie elementy współpracują ze sobą, aby zapewnić efektywną komunikację w sieci SIP, ale to telefon IP, jako terminal końcowy, jest urządzeniem, które ostatecznie umożliwia rozmowę i interakcję użytkownika. Niezrozumienie tych ról może prowadzić do błędnych wniosków dotyczących funkcjonowania całej sieci SIP i jej architektury.

Pytanie 7

W hierarchicznym modelu sieci komputery użytkowników stanowią część warstwy

A. rdzenia
B. szkieletowej
C. dystrybucji
D. dostępu
W modelu hierarchicznym sieci komputerowej, warstwa dostępu jest kluczowym elementem odpowiedzialnym za bezpośrednie połączenie z urządzeniami końcowymi, takimi jak komputery użytkowników, drukarki i inne urządzenia peryferyjne. To właśnie w tej warstwie dochodzi do fizycznego podłączenia oraz zarządzania dostępem do zasobów sieciowych. Przykładem zastosowania warstwy dostępu są technologie Ethernet, Wi-Fi oraz różnorodne przełączniki sieciowe, które pełnią rolę punktów dostępowych. W praktyce, warstwa dostępu implementuje różne mechanizmy zabezpieczeń, takie jak kontrola dostępu do sieci (NAC), co pozwala na zarządzanie, które urządzenia mogą korzystać z zasobów sieciowych. Dobrą praktyką w projektowaniu sieci jest segmentacja ruchu w warstwie dostępu, co zwiększa bezpieczeństwo i wydajność całej sieci. Zastosowanie standardów, takich jak IEEE 802.11 dla bezprzewodowych sieci lokalnych, zapewnia większą interoperacyjność i efektywność działań w tej warstwie.

Pytanie 8

Shareware to typ licencji, która polega na

A. nieodpłatnym dystrybucji aplikacji bez ujawniania kodu źródłowego
B. użytkowaniu programu przez ustalony czas, po którym program przestaje działać
C. korzystaniu z programu bez żadnych opłat i ograniczeń
D. nieodpłatnym rozpowszechnianiu programu na czas próbny przed zakupem
Wiele osób myli pojęcie shareware z innymi modelami licencjonowania, co prowadzi do nieporozumień. Przykładowo, stwierdzenie, że shareware to korzystanie z programu przez określony czas, po którym program przestaje działać, jest mylące. Ten opis bardziej pasuje do modeli trial, gdzie użytkownik korzysta z pełnej funkcjonalności, ale z ograniczonym czasem. Z kolei twierdzenie, że shareware pozwala na używanie programu bezpłatnie i bez żadnych ograniczeń, jest nieprecyzyjne, ponieważ shareware oferuje jedynie ograniczoną wersję programu z zamiarem skłonienia użytkowników do zakupu. Opis jako bezpłatne rozprowadzanie aplikacji bez ujawniania kodu źródłowego również jest błędny, ponieważ shareware niekoniecznie dotyczy publikacji kodu źródłowego, a raczej możliwości przetestowania oprogramowania przed zakupem. Typowe błędy myślowe, które prowadzą do takich wniosków, to nieporozumienia dotyczące różnic między modelami licencyjnymi, a także mylenie koncepcji freeware z shareware. Freeware odnosi się do oprogramowania, które jest całkowicie darmowe, bez ograniczeń czasowych, podczas gdy shareware zawsze nastawia się na możliwość zakupu, co jest kluczowe w jego definicji. W związku z tym, zrozumienie tych różnic jest istotne dla właściwego korzystania z oprogramowania i przestrzegania zasad licencjonowania.

Pytanie 9

Zjawiskiem typowym, które może świadczyć o nadchodzącej awarii twardego dysku, jest wystąpienie

A. trzech krótkich sygnałów dźwiękowych
B. błędów przy zapisie i odczycie danych z dysku
C. komunikatu Diskette drive A error
D. komunikatu CMOS checksum error
Pojawienie się błędów zapisu i odczytu dysku jest jednym z najczęstszych i najważniejszych objawów, które mogą wskazywać na zbliżającą się awarię dysku twardego. Tego rodzaju błędy zazwyczaj oznaczają, że mechaniczne lub elektroniczne komponenty dysku zaczynają zawodzić, co prowadzi do problemów z dostępem do danych. W praktyce, gdy użytkownik zauważa takie błędy, ważne jest, aby natychmiast wykonać kopię zapasową danych, aby zminimalizować ryzyko ich utraty. Standardy dobrych praktyk w zarządzaniu danymi sugerują regularne tworzenie kopii zapasowych oraz monitorowanie stanu dysków za pomocą narzędzi diagnostycznych, które mogą wykrywać problemy, zanim staną się krytyczne. Dodatkowo, wiele nowoczesnych dysków twardych jest wyposażonych w technologie S.M.A.R.T. (Self-Monitoring, Analysis and Reporting Technology), które umożliwiają wczesne wykrywanie potencjalnych problemów. Takie podejście proaktywne jest kluczowe w zarządzaniu danymi w dzisiejszym środowisku technologicznym.

Pytanie 10

Element elektroniczny przedstawiony na ilustracji to

Ilustracja do pytania
A. rezystor
B. cewka
C. kondensator
D. tranzystor
Cewka jest elementem pasywnym używanym w elektronice przede wszystkim do magazynowania energii w polu magnetycznym. Składa się z przewodu nawiniętego na rdzeniu i charakteryzuje się indukcyjnością. Jej zastosowanie obejmuje filtry obwody rezonansowe oraz transformatory. Nie jest jednak odpowiednia jako odpowiedź ponieważ prezentowany element ma trzy końcówki charakterystyczne dla tranzystora a nie dla cewki. Rezystor to kolejny element pasywny który służy do ograniczania prądu i dzielenia napięcia. Jest to element o dwóch końcówkach i stałej wartości oporu elektrycznego. W przypadku przedstawionego obrazka obecność trzech końcówek wyklucza możliwość by był to rezystor. Kondensator jest używany do przechowywania energii w polu elektrycznym i jest kluczowy w obwodach filtrujących oraz układach czasowych. Kondensator również posiada zazwyczaj dwie końcówki co odróżnia go od tranzystora. Tranzystor to półprzewodnikowy element aktywny wykorzystywany do wzmacniania i przełączania sygnałów który posiada trzy końcówki: emiter bazę i kolektor. Zrozumienie różnic w budowie i funkcji tych elementów jest kluczowe w elektronice i pozwala unikać typowych błędów w identyfikacji komponentów na podstawie ich wyglądu i struktury. Właściwa identyfikacja elementów elektronicznych wymaga znajomości ich charakterystycznych cech i zastosowań w praktyce co jest istotne w kontekście projektowania i analizy obwodów elektrycznych.

Pytanie 11

Karta rozszerzeń przedstawiona na zdjęciu dysponuje systemem chłodzenia

Ilustracja do pytania
A. aktywne
B. wymuszone
C. symetryczne
D. pasywne
Chłodzenie aktywne często odnosi się do systemów, które wykorzystują wentylatory lub inne mechaniczne urządzenia do wspomagania procesu rozpraszania ciepła, co w przypadku przedstawionej karty nie jest prawdą. Takie rozwiązanie jest głośniejsze i bardziej narażone na awarie z powodu ruchomych elementów. Chłodzenie wymuszone to termin czasem używany zamiennie z aktywnym, choć bardziej odnosi się do systemów, gdzie przepływ powietrza jest w sposób mechaniczny kierowany na elementy generujące ciepło, co również nie występuje na zdjęciu. Symetryczne chłodzenie odnosi się do układów, gdzie systemy chłodzące są równomiernie rozłożone wokół chłodzonego elementu. W praktyce, takie rozwiązanie można spotkać w niektórych zaawansowanych konstrukcjach, ale nie ma zastosowania w przedstawionym przypadku. Chłodzenie pasywne, jak to pokazane na zdjęciu, jest wybierane przede wszystkim z powodu swojej niezawodności i cichej pracy w środowiskach, gdzie ograniczenie hałasu jest kluczowe. Typowym błędem jest mylenie braku wentylatora z niższą efektywnością, podczas gdy w rzeczywistości pasywne chłodzenie jest wysoce wydajne, gdy zostanie poprawnie zastosowane w odpowiednim kontekście.

Pytanie 12

Jakiego rodzaju złącze powinna mieć płyta główna, aby użytkownik był w stanie zainstalować kartę graficzną przedstawioną na rysunku?

Ilustracja do pytania
A. AGP
B. PCI
C. PCIe x1
D. PCIe x16
AGP (Accelerated Graphics Port) był poprzednim standardem złącz stosowanym do podłączania kart graficznych, który obecnie jest już przestarzały i nie stosuje się go w nowoczesnych płytach głównych. AGP oferował niższą przepustowość w porównaniu do PCIe, co ograniczało możliwości obsługi nowoczesnych gier i aplikacji graficznych. Z kolei PCI (Peripheral Component Interconnect) jest również starszym standardem, który nie jest wystarczająco szybki dla współczesnych kart graficznych, ponieważ oferuje znacznie niższą przepustowość danych. PCI był stosowany do różnych kart rozszerzeń, ale jego możliwości są ograniczone w porównaniu do PCIe. PCIe x1, choć jest wariantem interfejsu PCIe, oferuje tylko jedną linię danych, co oznacza, że nie jest wystarczający do obsługi kart graficznych, które wymagają większej przepustowości i wielu linii danych do przesyłania informacji. Typowym błędem jest zakładanie, że każda karta graficzna może działać na dowolnym złączu PCIe, jednak w rzeczywistości karty graficzne potrzebują większej liczby linii PCIe, zazwyczaj dostępnych w złączu PCIe x16. Prawidłowe zrozumienie różnic między tymi standardami jest kluczowe dla poprawnego doboru komponentów komputerowych i zapewnienia maksymalnej wydajności systemu. Wybór złącza niewłaściwego dla danej karty może prowadzić do jej niewłaściwej pracy lub wręcz do niemożności jej zainstalowania, co może wpłynąć na stabilność i funkcjonalność całego systemu komputerowego.

Pytanie 13

W celu ochrony lokalnej sieci komputerowej przed atakami typu Smurf pochodzącymi z Internetu, należy zainstalować oraz właściwie skonfigurować

A. bezpieczną przeglądarkę stron WWW
B. oprogramowanie antyspamowe
C. skaner antywirusowy
D. zaporę ogniową
Skaner antywirusowy, oprogramowanie antyspamowe oraz bezpieczne przeglądarki stron WWW są ważnymi elementami w ochronie systemu komputerowego, jednak nie są wystarczające do zabezpieczenia przed atakami DDoS, takimi jak Smurf. Skanery antywirusowe mają na celu identyfikację i eliminację złośliwego oprogramowania, ale nie chronią bezpośrednio przed atakami sieciowymi. Ich skuteczność polega głównie na analizie plików i aplikacji, a nie na zarządzaniu ruchem sieciowym. Oprogramowanie antyspamowe koncentruje się na filtracji wiadomości e-mail, co może poprawić bezpieczeństwo użytkowników, ale nie ma wpływu na bezpieczeństwo lokalnej sieci przed zewnętrznymi atakami. Bezpieczne przeglądarki mogą chronić użytkowników przed złośliwymi stronami internetowymi, ale nie mają nic wspólnego z ochroną przed atakami sieciowymi, takimi jak Smurf. Typowym błędem myślowym jest zakładanie, że problemy z bezpieczeństwem sieci można rozwiązać poprzez zainstalowanie oprogramowania zapobiegającego złośliwemu oprogramowaniu lub phishingowi, podczas gdy ataki DDoS wymagają zupełnie innego podejścia. Skuteczne zabezpieczenie sieci przed atakami tego rodzaju powinno być oparte na kompleksowym podejściu do bezpieczeństwa, w tym na zastosowaniu zapór ogniowych oraz monitorowaniu ruchu sieciowego, co jest zgodne z najlepszymi praktykami w dziedzinie bezpieczeństwa.

Pytanie 14

Dwie stacje robocze w tej samej sieci nie są w stanie się skomunikować. Która z poniższych okoliczności może być przyczyną opisanego problemu?

A. Tożsame nazwy użytkowników
B. tożsame adresy IP stacji roboczych
C. Inne bramy domyślne stacji roboczych
D. Różne systemy operacyjne stacji roboczych
Stacje robocze w sieci komputerowej muszą mieć unikalne adresy IP, aby mogły ze sobą skutecznie komunikować. Gdy dwie stacje robocze posiadają ten sam adres IP, dochodzi do konfliktu adresów, co uniemożliwia ich wzajemną komunikację. Adres IP jest unikalnym identyfikatorem, który umożliwia przesyłanie danych w sieci, dlatego każdy host w sieci powinien mieć swój własny, niepowtarzalny adres. W praktyce, w przypadku wystąpienia konfliktu adresów IP, administratorzy sieci powinni przeanalizować konfigurację DHCP (Dynamic Host Configuration Protocol) oraz ręczne przydzielanie adresów, aby upewnić się, że nie dochodzi do powielania adresów. Warto również zwrócić uwagę na standardy RFC (Request for Comments), które definiują zasady przydzielania adresów IP oraz zasady działania protokołów sieciowych. Przykładem może być sytuacja, w której dwa komputery w tej samej podsieci otrzymują ten sam adres IP z serwera DHCP, co skutkuje problemami z dostępem do zasobów sieciowych.

Pytanie 15

Która z kart graficznych nie będzie kompatybilna z monitorem, posiadającym złącza pokazane na ilustracji (zakładając, że nie można użyć adaptera do jego podłączenia)?

Ilustracja do pytania
A. Sapphire Fire Pro W9000 6GB GDDR5 (384 bit) 6x mini DisplayPort
B. Asus Radeon RX 550 4GB GDDR5 (128 bit), DVI-D, HDMI, DisplayPort
C. HIS R7 240 2GB GDDR3 (128 bit) HDMI, DVI, D-Sub
D. Fujitsu NVIDIA Quadro M2000 4GB GDDR5 (128 Bit) 4xDisplayPort
Zauważyłem, że odpowiedź jest niepoprawna. Złe pasowanie wyjść kart graficznych do złączy w monitorze to problem. Karta Sapphire Fire Pro W9000 ma wyjścia mini DisplayPort, które są w porządku, ale w tym przypadku nie możesz użyć adaptera. Fujitsu NVIDIA Quadro M2000 ma DisplayPort, co zasadniczo powinno działać z odpowiednim monitorem, ale w tym pytaniu nie można go użyć. Asus Radeon RX 550 też ma wyjścia, które powinny działać z większością monitorów, ale trzeba uważać na konkretne złącza. Myślenie, że każda karta z wieloma złączami pasuje do każdego monitora, to pułapka. Ważne jest, żeby zawsze zwracać uwagę na to, jakie złącza ma monitor i karta, żeby wszystko działało bez problemu. Adaptery nie zawsze są najlepszym rozwiązaniem, bo mogą pogorszyć jakość obrazu.

Pytanie 16

Jak nazywa się pamięć podręczną procesora?

A. EPROM
B. ROM
C. CACHE
D. NVRAM
Poprawna odpowiedź to CACHE, bo właśnie tak nazywa się pamięć podręczna procesora. Pamięć cache to bardzo szybka pamięć półprzewodnikowa, zbudowana zazwyczaj z komórek SRAM, umieszczona bezpośrednio w procesorze lub bardzo blisko niego. Jej głównym zadaniem jest przechowywanie najczęściej używanych danych i instrukcji, żeby procesor nie musiał za każdym razem odwoływać się do dużo wolniejszej pamięci RAM. W praktyce różnica w czasie dostępu między rejestrem CPU, cache, RAM a dyskiem jest ogromna, dlatego wszystkie współczesne procesory x86, ARM i inne mają wielopoziomową pamięć cache: L1, L2, a często także L3. L1 jest najszybsza i najmniejsza, L2 i L3 są trochę wolniejsze, ale pojemniejsze. Z mojego doświadczenia, przy analizie wydajności aplikacji systemowych i gier, bardzo często widać, że to właśnie efektywne wykorzystanie cache decyduje o realnej szybkości, a nie sama częstotliwość taktowania. Dobre praktyki programistyczne, takie jak lokalność odwołań do pamięci (sekwencyjny dostęp do danych, trzymanie struktur danych „obok siebie”), są projektowane właśnie pod działanie cache. W technice komputerowej przyjmuje się model pamięci hierarchicznej, gdzie cache jest kluczowym elementem między rejestrami procesora a pamięcią operacyjną RAM. W diagnostyce sprzętu i przy doborze procesora do konkretnego zastosowania (np. serwery, stacje robocze, komputery do gier) zwraca się uwagę nie tylko na liczbę rdzeni, ale też na wielkość i organizację pamięci cache. W skrócie: cache to taki „sprytny bufor” blisko CPU, który minimalizuje opóźnienia i pozwala maksymalnie wykorzystać możliwości procesora.

Pytanie 17

Na którym standardowym porcie funkcjonuje serwer WWW wykorzystujący domyślny protokół HTTPS w typowym ustawieniu?

A. 110
B. 20
C. 443
D. 80
Serwer WWW działający na protokole HTTPS używa domyślnie portu 443. Protokół HTTPS, będący rozszerzeniem protokołu HTTP, zapewnia szyfrowanie danych przesyłanych pomiędzy klientem a serwerem, co jest kluczowe dla bezpieczeństwa komunikacji w sieci. W praktyce oznacza to, że gdy użytkownik wpisuje adres URL zaczynający się od 'https://', przeglądarka automatycznie nawiązuje połączenie z serwerem na porcie 443. Użycie tego portu jako domyślnego dla HTTPS jest zgodne z normą IANA (Internet Assigned Numbers Authority), która dokumentuje przypisania portów w Internecie. Warto zauważyć, że korzystanie z HTTPS jest obecnie standardem w branży, a witryny internetowe implementujące ten protokół zyskują na zaufaniu użytkowników oraz lepsze pozycje w wynikach wyszukiwania, zgodnie z wytycznymi Google. Warto także pamiętać, że w miarę jak Internet staje się coraz bardziej narażony na ataki, bezpieczeństwo przesyłanych danych staje się priorytetem, co czyni znajomość portu 443 niezwykle istotnym elementem wiedzy o sieciach.

Pytanie 18

Który typ standardu zakończenia kabla w systemie okablowania strukturalnego ilustruje przedstawiony rysunek?

Ilustracja do pytania
A. T568A
B. T568B
C. EIA/TIA 607
D. EIA/TIA 569
Standard T568A jest jednym z dwóch głównych standardów zakończenia przewodów w okablowaniu strukturalnym, obok T568B. Oba te standardy określają sekwencję kolorów przewodów, które należy podłączyć do złącza RJ-45, używanego przede wszystkim w sieciach Ethernet. W standardzie T568A, kolejność przewodów jest następująca: biało-zielony, zielony, biało-pomarańczowy, niebieski, biało-niebieski, pomarańczowy, biało-brązowy, brązowy. Ten standard jest powszechnie stosowany w instalacjach sieciowych w Ameryce Północnej i jest preferowany w nowych instalacjach, ponieważ lepiej wspiera funkcje sieciowe takie jak Power over Ethernet (PoE). Warto również zwrócić uwagę, że zgodność z tym standardem zapewnia właściwe działanie urządzeń sieciowych, minimalizując zakłócenia i straty sygnału. Używanie ustanowionych standardów jest kluczowe dla zapewnienia interoperacyjności i niezawodności sieci, co jest istotne szczególnie w dużych instalacjach biurowych czy przemysłowych. Praktyczne zastosowanie wiedzy o standardzie T568A obejmuje nie tylko prawidłowe wykonanie instalacji sieciowej, ale także rozwiązywanie problemów, gdy pojawia się potrzeba diagnozy i naprawy błędów w okablowaniu.

Pytanie 19

Wskaż złącze, które należy wykorzystać do podłączenia wentylatora, którego parametry przedstawiono w tabeli.

Wymiar radiatora123 x 133 x 163 mm
Wentylator120 mm + 135 mm
Złącze4-pin PWM
Napięcie zasilające12V
Żywotność300 000h
A. Złącze 1
Ilustracja do odpowiedzi A
B. Złącze 4
Ilustracja do odpowiedzi B
C. Złącze 2
Ilustracja do odpowiedzi C
D. Złącze 3
Ilustracja do odpowiedzi D
Wybór złącza 2, czyli 4-pinowego PWM, to absolutnie trafne rozwiązanie dla wentylatora opisanego w tabeli. Złącze 4-pin PWM jest dziś standardem w nowoczesnych płytach głównych i chłodzeniach. Pozwala ono nie tylko na zasilanie wentylatora napięciem 12V, ale przede wszystkim umożliwia sterowanie jego obrotami sygnałem PWM (Pulse Width Modulation). Dzięki temu można precyzyjnie kontrolować prędkość obrotową wentylatora w zależności od temperatury CPU czy innych podzespołów. To nie tylko wygodne, ale i bardzo praktyczne – wentylator działa cicho, kiedy nie jest potrzebna pełna wydajność, a pod obciążeniem automatycznie przyspiesza. W wielu płytach programowanie krzywej obrotów przez BIOS czy dedykowane oprogramowanie daje naprawdę dużą swobodę. Warto dodać, że większość renomowanych producentów sprzętu komputerowego zaleca właśnie taki sposób podłączania wentylatorów, bo zapewnia to najdłuższą żywotność i największą elastyczność pracy. Moim zdaniem, jeśli chcesz mieć pełną kontrolę i nowoczesne rozwiązania, to 4-pin PWM jest właściwie jedyną słuszną opcją. W praktyce bardzo rzadko spotyka się teraz profesjonalne chłodzenia CPU bez 4-pinowego złącza, a starsze, 3-pinowe czy Molex, powoli odchodzą do lamusa. Po prostu – technologia idzie naprzód i warto z tego korzystać!

Pytanie 20

W załączonej ramce przedstawiono opis technologii

Technologia ta to rewolucyjna i nowatorska platforma, która pozwala na inteligentne skalowanie wydajności podsystemu graficznego poprzez łączenie mocy kilku kart graficznych NVIDIA pracujących na płycie głównej. Dzięki wykorzystaniu zastrzeżonych algorytmów oraz wbudowanej w każdy z procesorów graficznych NVIDIA dedykowanej logiki sterującej, która odpowiada za skalowanie wydajności, technologia ta zapewnia do 2 razy (w przypadku dwóch kart) lub 2,8 razy (w przypadku trzech kart) wyższą wydajność niż w przypadku korzystania z pojedynczej karty graficznej.
A. 3DVision
B. SLI
C. HyperTransport
D. CUDA
SLI czyli Scalable Link Interface to technologia opracowana przez firmę NVIDIA umożliwiająca łączenie dwóch lub więcej kart graficznych w jednym komputerze w celu zwiększenia wydajności graficznej Jest to szczególnie przydatne w zastosowaniach wymagających dużej mocy obliczeniowej takich jak gry komputerowe czy obróbka grafiki 3D SLI działa poprzez równoczesne renderowanie jednej sceny przez wiele kart co pozwala na znaczne zwiększenie liczby klatek na sekundę oraz poprawę jakości grafiki W praktyce wymaga to kompatybilnej płyty głównej oraz odpowiednich interfejsów sprzętowych i sterowników NVIDIA zapewnia dedykowane oprogramowanie które zarządza pracą kart w trybie SLI SLI jest szeroko stosowane w środowiskach profesjonalnych gdzie wymagana jest wysoka wydajność graficzna jak również w systemach gamingowych Dzięki SLI użytkownicy mogą skalować swoje systemy graficzne w zależności od potrzeb co jest zgodne z obecnymi trendami w branży polegającymi na zwiększaniu wydajności przez łączenie wielu jednostek obliczeniowych

Pytanie 21

Podstawowym zadaniem mechanizmu Plug and Play jest

A. automatyczne tworzenie kopii zapasowych danych na świeżo podłączonym nośniku pamięci
B. automatyczne usuwanie sterowników, które nie były używane przez dłuższy czas
C. rozpoznanie nowo podłączonego urządzenia oraz automatyczne przydzielenie mu zasobów
D. automatyczne uruchamianie ostatnio zagranej gry
Odpowiedzi, które wskazują na automatyczne uruchamianie gier, tworzenie kopii danych lub deinstalację nieużywanych sterowników, są niepoprawne, ponieważ nie odzwierciedlają kluczowej funkcji mechanizmu Plug and Play. Automatyczne uruchamianie ostatnio otwartej gry nie ma nic wspólnego z mechanizmem PnP, który koncentruje się na sprzęcie, a nie oprogramowaniu. W kontekście PnP, urządzenia po podłączeniu do systemu muszą być rozpoznawane i konfigurowane, co jest zupełnie innym procesem niż uruchamianie programów. Tworzenie automatycznych kopii danych na nowo podłączonym nośniku pamięci również nie jest funkcjonalnością PnP, lecz dotyczy zarządzania danymi, które nie jest związane z samym mechanizmem wykrywania sprzętu. Co więcej, deinstalacja sterowników to proces zarządzania oprogramowaniem, który nie ma związku z automatycznym przypisywaniem zasobów przez PnP; w rzeczywistości, PnP ma na celu uproszczenie instalacji, a nie usuwanie oprogramowania. Typowe błędy w myśleniu polegają na myleniu funkcji związanych z zarządzaniem sprzętem oraz oprogramowaniem, co prowadzi do niepoprawnych wniosków o możliwości PnP. W rzeczywistości, PnP to złożony system, który ułatwia użytkownikom obsługę różnorodnych urządzeń, eliminując potrzebę ręcznej interwencji, co jest kluczowe w kontekście współczesnych zastosowań technologicznych.

Pytanie 22

W przypadku dłuższego nieużytkowania drukarki atramentowej, pojemniki z tuszem powinny

A. pozostać w drukarce, bez podejmowania dodatkowych działań
B. pozostać w drukarce, którą należy zabezpieczyć folią
C. zostać umieszczone w specjalnych pudełkach, które zapobiegną zasychaniu dysz
D. zostać wyjęte z drukarki i przechowane w szafie, bez dodatkowych zabezpieczeń
Umieszczanie pojemników z tuszem w szafie bez dodatkowych zabezpieczeń jest nieodpowiednie, ponieważ naraża tusz na działanie niekorzystnych warunków atmosferycznych, takich jak zmiany temperatury i wilgotności. Pojemniki mogą ulec wysychaniu, co prowadzi do zatykania dysz, a w konsekwencji do poważnych problemów z jakością druku. Nieodpowiednie przechowywanie tuszu może również powodować jego degradację, co negatywnie wpływa na jego właściwości i wydajność. Pozostawienie pojemników w drukarce bez dodatkowych działań również nie jest zalecane, ponieważ brak ochrony przed wysychaniem spowoduje, że tusz w dyszach może zasychać, co skutkuje zablokowaniem systemu. Zabezpieczenie drukarki folią, choć może chronić ją przed kurzem, nie rozwiązuje problemu, gdy tusz w pojemnikach jest narażony na zasychanie. Kluczowe jest, aby stosować rozwiązania oparte na standardach branżowych i dobrych praktykach, które minimalizują ryzyko uszkodzenia tuszu, a tym samym zapewniają dłuższą i wydajniejszą eksploatację urządzenia.

Pytanie 23

/dev/sda: Czas odczytu z pamięci podręcznej: 18100 MB w 2.00 sekundy = 9056.95 MB/sek. Przedstawiony wynik wykonania polecenia systemu Linux jest używany do diagnostyki

A. układu graficznego
B. pamięci operacyjnej
C. dysku twardego
D. karty sieciowej
Odpowiedź dotycząca diagnostyki dysku twardego jest prawidłowa, ponieważ wynik polecenia '/dev/sda: Timing cached reads' odnosi się do wydajności operacji odczytu na poziomie systemu plików. Wartość 18100 MB w 2 sekundy, co odpowiada 9056.95 MB/s, jest wskaźnikiem szybkości, z jaką system operacyjny może odczytać dane z pamięci podręcznej dysku twardego. Tego typu informacje są istotne dla administratorów systemów, którzy chcą monitorować i optymalizować wydajność pamięci masowej. W kontekście praktycznym, można wykorzystać tę diagnozę do identyfikacji problemów z wolnym dostępem do danych, co może wpływać na ogólną wydajność serwerów czy komputerów. Warto również zauważyć, że regularne monitorowanie tych parametrów oraz ich analiza w kontekście obciążenia systemu są zgodne z dobrą praktyką w zarządzaniu infrastrukturą IT.

Pytanie 24

Który z podanych programów pozwoli na stworzenie technicznego rysunku ilustrującego plan instalacji logicznej sieci lokalnej w budynku?

A. WireShark
B. CommView
C. AutoCad
D. Packet Tracer
WireShark to narzędzie do analizy ruchu sieciowego, które umożliwia monitorowanie i diagnostykę sieci, jednak nie jest to program przeznaczony do tworzenia rysunków technicznych. Jego głównym celem jest analiza pakietów danych w czasie rzeczywistym, co nie ma związku z projektowaniem schematów instalacji. CommView natomiast także służy do monitorowania ruchu w sieci i nie posiada funkcji pozwalających na wizualizację planów instalacji logicznej. Z kolei Packet Tracer to symulator sieci opracowany przez Cisco, który pozwala na modelowanie i symulację działania sieci, ale nie jest narzędziem do tworzenia rysunków technicznych. Użytkownicy mogą pomylić te programy z AutoCad ze względu na ich zastosowanie w kontekście sieci, jednak kluczowym błędem jest brak zrozumienia, że każde z wymienionych narzędzi posiada specyficzne funkcjonalności, które nie są kompatybilne z wymaganiami do tworzenia rysunków technicznych. Oprogramowanie CAD, takie jak AutoCad, jest dedykowane do precyzyjnego projektowania, co jest podstawowym wymogiem w inżynierii, podczas gdy inne narzędzia są skoncentrowane na analizie lub symulacji działania sieci. W związku z tym, wybór odpowiedniego oprogramowania jest kluczowy w procesie projektowania, a stosowanie niewłaściwych narzędzi prowadzi do pomyłek i nieefektywności w pracy. Niezrozumienie różnic pomiędzy tymi programami może prowadzić do nieprawidłowych projektów, co z kolei może wpłynąć na jakość i bezpieczeństwo instalacji.

Pytanie 25

Proporcja ładunku zgromadzonego na przewodniku do potencjału tego przewodnika definiuje jego

A. indukcyjność
B. rezystancję
C. pojemność elektryczną
D. moc
Moc, rezystancja oraz indukcyjność to wielkości, które mają różne definicje i zastosowania w elektromagnetyzmie, ale nie są one związane ze stosunkiem ładunku zgromadzonego na przewodniku do jego potencjału. Moc elektryczna odnosi się do szybkości, z jaką energia jest konsumowana lub przekazywana w obwodzie elektrycznym i mierzy się ją w watach (W). W kontekście obwodów, moc nie ma bezpośredniego związku z ładunkiem i potencjałem, lecz z napięciem i natężeniem prądu. Rezystancja, mierząca opór elektryczny, również nie odnosi się do pojemności elektrycznej. Jest to wielkość, która opisuje, jak bardzo dany materiał utrudnia przepływ prądu i jest wyrażana w omach (Ω). Wyższa rezystancja oznacza mniejszy przepływ prądu dla danej wartości napięcia. Inaczej wygląda to w przypadku indukcyjności, która dotyczy zdolności elementu do generowania siły elektromotorycznej w odpowiedzi na zmieniające się prądy w swoim otoczeniu. Indukcyjność, wyrażana w henrach (H), ma znaczenie głównie w obwodach zmiennoprądowych i nie ma zastosowania w kontekście pojemności elektrycznej. Kluczowym błędem myślowym jest mylenie tych różnych pojęć, co często prowadzi do nieporozumień w elektrotechnice oraz w analizie obwodów. Zrozumienie różnic między tymi parametrami jest fundamentalne dla efektywnego projektowania i diagnostyki systemów elektrycznych.

Pytanie 26

Część programu antywirusowego działająca w tle jako kluczowy element zabezpieczeń, mająca na celu nieustanne monitorowanie ochrony systemu komputerowego, to

A. moduł przeciwspywaczowy
B. skaner skryptów
C. firewall
D. monitor antywirusowy
Wybór innej opcji zamiast monitora antywirusowego może wynikać z tego, że nie do końca rozumiesz, co rola różnych części zabezpieczeń komputerowych. Moduł antyspywarowy jest ważny, ale on głównie zajmuje się szpiegowskim oprogramowaniem, więc nie monitoruje systemu non-stop. Zapora sieciowa, czyli firewall, kontroluje ruch w sieci i jest kluczowa w obronie przed zewnętrznymi atakami, jednak nie nadzoruje programów na komputerze. Ludzie często mylą te funkcje, myśląc, że dobra zapora wystarczy, co jest błędne. Skaner skryptowy koncentruje się na skryptach, ale to też nie ma nic wspólnego z stałym monitorowaniem systemu. To pokazuje, jak istotne jest mieć świadomość różnych aspektów bezpieczeństwa informatycznego i jak one na siebie wpływają. Właściwe zabezpieczenia powinny obejmować monitoring, kontrolę dostępu i analizę zagrożeń, żeby dobrze chronić przed różnymi atakami. Jeśli zignorujesz rolę monitora antywirusowego, możesz narazić się na poważne luki w bezpieczeństwie, dlatego warto wdrażać kompleksowe strategie ochrony, które są zgodne z uznawanymi standardami w branży.

Pytanie 27

W której warstwie modelu ISO/OSI odbywa się segmentacja danych, komunikacja w trybie połączeniowym z użyciem protokołu TCP oraz komunikacja w trybie bezpołączeniowym z zastosowaniem UDP?

A. Fizycznej
B. Łącza danych
C. Transportowej
D. Sieciowej
Warstwa transportowa modelu ISO/OSI odpowiada za segmentowanie danych oraz zapewnienie komunikacji między aplikacjami działającymi na różnych urządzeniach w sieci. W ramach tej warstwy mamy do czynienia z protokołami TCP (Transmission Control Protocol) oraz UDP (User Datagram Protocol). TCP to protokół, który zapewnia połączenie, co oznacza, że dostarcza gwarancję dostarczenia danych oraz ich kolejności. Jest to przydatne w aplikacjach, gdzie integralność danych jest kluczowa, na przykład w przesyłaniu plików czy komunikacji z bazami danych. Przykładem wykorzystania TCP może być protokół HTTP, który używany jest do przesyłania stron internetowych. Z kolei UDP działa w trybie bezpołączeniowym, co skutkuje mniejszym opóźnieniem, ale nie gwarantuje dostarczenia pakietów ani ich kolejności. To sprawia, że jest idealny do aplikacji wymagających szybkości, jak transmisje wideo na żywo czy gry online. Wiedza o tym, jak działają te protokoły w kontekście modelu OSI, jest kluczowa dla każdego specjalisty zajmującego się sieciami, ponieważ pozwala na dobór odpowiednich rozwiązań w zależności od potrzeb aplikacji.

Pytanie 28

W filmie przedstawiono konfigurację ustawień maszyny wirtualnej. Wykonywana czynność jest związana z

A. konfigurowaniem adresu karty sieciowej.
B. wybraniem pliku z obrazem dysku.
C. ustawieniem rozmiaru pamięci wirtualnej karty graficznej.
D. dodaniem drugiego dysku twardego.
W konfiguracji maszyny wirtualnej bardzo łatwo pomylić różne opcje, bo wszystko jest w jednym oknie i wygląda na pierwszy rzut oka dość podobnie. Ustawienia pamięci wideo, dodawanie dysków, obrazy ISO, karty sieciowe – to wszystko siedzi zwykle w kilku zakładkach i początkujący użytkownicy mieszają te pojęcia. Ustawienie rozmiaru pamięci wirtualnej karty graficznej dotyczy tylko tego, ile pamięci RAM zostanie przydzielone emulatorowi GPU. Ta opcja znajduje się zazwyczaj w sekcji „Display” lub „Ekran” i pozwala poprawić płynność pracy środowiska graficznego, ale nie ma nic wspólnego z wybieraniem pliku obrazu dysku czy instalacją systemu operacyjnego. To jest po prostu parametr wydajnościowy. Z kolei dodanie drugiego dysku twardego polega na utworzeniu nowego wirtualnego dysku (np. nowy plik VDI, VHDX) lub podpięciu już istniejącego i przypisaniu go do kontrolera dyskowego w maszynie. Ta operacja rozszerza przestrzeń magazynową VM, ale nie wskazuje konkretnego obrazu instalacyjnego – zwykle nowy dysk jest pusty i dopiero system w maszynie musi go sformatować. Kolejne częste nieporozumienie dotyczy sieci: konfigurowanie adresu karty sieciowej w maszynie wirtualnej to zupełnie inna para kaloszy. W ustawieniach hypervisora wybieramy tryb pracy interfejsu (NAT, bridge, host‑only, internal network itd.), a adres IP najczęściej i tak ustawia się już wewnątrz systemu operacyjnego, tak samo jak na zwykłym komputerze. To nie ma żadnego związku z plikami obrazów dysków – sieć służy do komunikacji, a nie do uruchamiania czy montowania nośników. Typowy błąd myślowy polega na tym, że użytkownik widząc „dysk”, „pamięć” albo „kontroler”, zakłada, że każda z tych opcji musi dotyczyć tego samego obszaru konfiguracji. W rzeczywistości standardowe podejście w wirtualizacji jest takie, że wybór pliku obrazu dysku odbywa się w sekcji pamięci masowej: tam dodaje się wirtualny napęd (HDD lub CD/DVD) i dopiero przy nim wskazuje konkretny plik obrazu. Oddzielenie tych funkcji – grafiki, dysków, sieci – jest kluczowe, żeby świadomie konfigurować maszyny i unikać później dziwnych problemów z uruchamianiem systemu czy brakiem instalatora.

Pytanie 29

Jakim interfejsem można uzyskać transmisję danych o maksymalnej przepustowości 6 Gb/s?

A. USB 2.0
B. SATA 2
C. USB 3.0
D. SATA 3
USB 2.0, USB 3.0 oraz SATA 2 oferują różne prędkości transmisji danych, które są znacznie niższe niż te, które zapewnia SATA 3. USB 2.0 ma maksymalną prędkość do 480 Mb/s, co jest zdecydowanie niewystarczające w porównaniu z wymaganiami nowoczesnych aplikacji, które potrzebują szybkiego transferu danych. Z kolei USB 3.0, mimo że zapewnia znacznie lepszą wydajność z prędkościami do 5 Gb/s, nadal nie osiąga 6 Gb/s, co czyni go mniej wydajnym rozwiązaniem w kontekście intensywnego użytkowania. SATA 2 jako standard oferuje maksymalną przepustowość 3 Gb/s, co również eliminuje go z możliwości uzyskania wymaganej wydajności. Typowe błędy myślowe związane z wyborem tych interfejsów często wynikają z niepełnej znajomości specyfikacji oraz różnic w zastosowaniach. Użytkownicy mogą zakładać, że nowsze wersje USB zastąpią SATA w zastosowaniach pamięci masowej, lecz w praktyce SATA 3 pozostaje preferowanym rozwiązaniem do podłączania dysków twardych i SSD, zwłaszcza w komputerach stacjonarnych i serwerach. Zrozumienie różnic między tymi interfejsami oraz ich zastosowaniem jest kluczowe dla właściwego doboru komponentów w systemach komputerowych oraz ich wydajności.

Pytanie 30

Aby możliwe było przekierowanie drukowanego dokumentu na dysk twardy, należy w opcjach konfiguracyjnych drukarki wybrać drukowanie do portu

A. LPT
B. COM
C. FILE
D. USB001
Wiele osób naturalnie zakłada, że jeśli chcemy przekierować coś do pliku, wystarczy wykorzystać któryś z klasycznych portów sprzętowych, jak LPT, COM czy nawet USB001, bo przecież tam trafiają dane z wielu urządzeń. Jednak to dość powszechne nieporozumienie wynika z mylenia fizycznej ścieżki przesyłu danych z logicznym miejscem ich przechowania. Porty LPT oraz COM to stare, fizyczne interfejsy komunikacji – LPT dla drukarek równoległych, COM dla urządzeń szeregowych, takich jak modemy czy stare myszki. Owszem, kiedyś drukarki podłączano głównie przez LPT, ale dane wysyłane tą drogą trafiały bezpośrednio do urządzenia, nie na dysk. USB001 to z kolei logiczny port przypisany do drukarki podłączonej przez USB, bardzo popularny w nowszych komputerach, ale znów – celem jest fizyczne urządzenie, nie plik. Typowym błędem jest myślenie, że skoro na komputerze są zdefiniowane różne porty komunikacyjne, to któryś z nich odpowiada za zapisywanie wydruku na dysku. W rzeczywistości, tylko port FILE jest powiązany z operacją utworzenia pliku na twardym dysku i daje użytkownikowi kontrolę, gdzie ten plik zostanie zapisany i w jakim formacie (w zależności od sterownika drukarki). Ten mechanizm jest szeroko opisany w dokumentacji Microsoftu i innych systemów operacyjnych. Warto zapamiętać, że porty fizyczne i logiczne odzwierciedlają połączenia z urządzeniami, a nie funkcje związane z archiwizacją czy konwersją wydruków. Mylenie tych pojęć to jeden z najczęstszych błędów podczas konfigurowania nietypowych drukarek czy w środowiskach testowych. W praktyce, jeśli celem jest uzyskanie cyfrowego zapisu wydruku na dysku twardym, wybór jakiegokolwiek innego portu niż FILE po prostu nie zadziała, niezależnie od ustawień sprzętowych czy systemowych. To taka trochę pułapka, na którą łapią się nawet doświadczeni użytkownicy, jeśli nie poznali dokładnie mechanizmów działania systemowych sterowników drukarek.

Pytanie 31

Jakie urządzenie należy zastosować, aby połączyć sieć lokalną wykorzystującą adresy prywatne z Internetem?

A. router
B. hub
C. repeater
D. switch
Chociaż koncentratory, przełączniki i regeneratory są ważnymi elementami infrastruktury sieciowej, nie są one odpowiednie do podłączania lokalnej sieci działającej w oparciu o adresy prywatne do Internetu. Koncentrator, będący prostym urządzeniem, nie ma zdolności do podejmowania decyzji o kierowaniu ruchu – działa w trybie 'broadcast', co oznacza, że wszystkie dane przesyła do wszystkich podłączonych urządzeń. Taki sposób działania jest mało efektywny i nie zapewnia koniecznej separacji ruchu, co może prowadzić do zatorów w sieci. Przełącznik, w odróżnieniu od koncentratora, efektywnie zarządza ruchem danych, przesyłając pakiety tylko do odpowiednich urządzeń, jednak nadal nie ma możliwości zarządzania połączeniami z Internetem ani translacji adresów IP. Regenerator jest używany do przedłużania zasięgu sygnału w sieciach, ale nie ma zdolności do interakcji z adresami IP ani do łączenia z Internetem. Stąd, wybór routera jako urządzenia do podłączenia lokalnej sieci do Internetu jest niezbędny, ponieważ tylko router oferuje pełną funkcjonalność, w tym NAT, co jest kluczowe dla komunikacji z zewnętrznymi sieciami.

Pytanie 32

Jaką liczbę komórek pamięci można bezpośrednio zaadresować w 64-bitowym procesorze z 32-bitową szyną adresową?

A. 64 do potęgi 2
B. 2 do potęgi 32
C. 2 do potęgi 64
D. 32 do potęgi 2
Odpowiedź 2 do potęgi 32 jest prawidłowa, ponieważ odnosi się do ilości adresów pamięci, które można zaadresować przy użyciu 32-bitowej szyny adresowej. Szyna adresowa określa maksymalną ilość pamięci, do której procesor może uzyskać dostęp. W przypadku 32-bitowej szyny adresowej oznacza to, że można zaadresować 2^32 różnych lokalizacji pamięci, co odpowiada 4 GB pamięci. Przykład praktyczny to komputery z systemem operacyjnym 32-bitowym, które mogą wykorzystać maksymalnie 4 GB pamięci RAM. W kontekście standardów technologicznych, takie limity są kluczowe dla projektowania systemów operacyjnych i aplikacji, które muszą być zgodne z architekturą sprzętu. Warto również zauważyć, że w systemach 64-bitowych, mimo że procesor ma większe możliwości, wciąż obowiązują ograniczenia wynikające z wykorzystanej szyny adresowej.

Pytanie 33

Jak wygląda liczba 356 w systemie binarnym?

A. 101100100
B. 110011010
C. 100001100
D. 110011000
Przekształcanie liczb z systemu dziesiętnego na system binarny może być mylące, zwłaszcza gdy nie stosujemy właściwego podejścia do obliczeń. W przypadku liczby 356, istotne jest zrozumienie, że każda z podanych opcji to wyniki konwersji, które nie odpowiadają rzeczywistej liczbie. Na przykład, odpowiedź 110011000 sugeruje, że liczba byłaby w przedziale 384-511, co jest niewłaściwe w kontekście liczby 356. Podobnie, 110011010 odpowiadałoby liczbie 410, a 100001100 oznaczałoby 268. Te pomyłki często wynikają z błędów w dzieleniu bywa, że niektórzy nie zapisują reszt w odpowiedniej kolejności lub źle interpretują wyniki dzielenia. Aby uniknąć takich błędów, ważne jest, aby dokładnie przeglądać każdy krok procesu konwersji, a także praktykować z różnymi liczbami, aby zyskać pewność w tej umiejętności. Rekomendowane jest również korzystanie z kalkulatorów binarnych, które mogą szybko i efektywnie przekształcić liczby bez ryzyka błędu ludzkiego. Warto również zaznaczyć, że w systemie binarnym każda cyfra reprezentuje potęgę liczby 2, co jest kluczowym elementem w zrozumieniu konwersji między systemami.

Pytanie 34

Po podłączeniu działającej klawiatury do któregokolwiek z portów USB nie ma możliwości wyboru awaryjnego trybu uruchamiania systemu Windows. Jednakże, klawiatura funkcjonuje prawidłowo po uruchomieniu systemu w standardowym trybie. Co to sugeruje?

A. niepoprawne ustawienia BIOS-u
B. uszkodzony zasilacz
C. uszkodzony kontroler klawiatury
D. uszkodzone porty USB
Niepoprawne ustawienia BIOS-u mogą być przyczyną problemów z rozpoznawaniem urządzeń peryferyjnych, takich jak klawiatura, w trybie awaryjnym systemu Windows. Ustawienia BIOS-u odpowiadają za inicjalizację sprzętu przed załadowaniem systemu operacyjnego. Jeśli opcje dotyczące USB lub klawiatury są nieprawidłowo skonfigurowane, to system nie będzie w stanie zidentyfikować klawiatury w trybie awaryjnym. Przykładowo, opcja związana z włączeniem wsparcia dla USB może być wyłączona, co skutkuje brakiem możliwości używania klawiatury w trakcie uruchamiania. W praktyce, aby rozwiązać ten problem, użytkownik powinien wejść do BIOS-u (zazwyczaj przy pomocy klawisza DEL, F2 lub F10 tuż po włączeniu komputera) i sprawdzić, czy ustawienia dotyczące USB są aktywne. W zależności od płyty głównej, może być również konieczne włączenie opcji „Legacy USB Support”, która umożliwia wykrycie starszych urządzeń USB. Dbanie o poprawne ustawienia BIOS-u jest kluczowe, aby zapewnić prawidłowe działanie systemu operacyjnego w różnych trybach.

Pytanie 35

W których nośnikach pamięci masowej jedną z najczęstszych przyczyn uszkodzeń jest uszkodzenie powierzchni?

A. W pamięciach zewnętrznych Flash
B. W dyskach SSD
C. W kartach pamięci SD
D. W dyskach twardych HDD
Każdy z wymienionych nośników ma swoją specyfikę, jeśli chodzi o awaryjność i typowe przyczyny uszkodzeń. SSD oraz pamięci flash, jak np. karty SD, nie mają ruchomych części ani powierzchni, po których porusza się głowica (tak jak w HDD). Ich awarie najczęściej wynikają z zużycia komórek pamięci, problemów z kontrolerem lub uszkodzeń elektroniki, a nie fizycznego zarysowania czy uszkodzenia powierzchni. To jest bardzo częsty mit, że każdy nośnik da się „porysować” – w rzeczywistości SSD i flash działają na zasadzie zapisu elektronicznego, więc mechaniczne uszkodzenie powierzchni praktycznie nie występuje. Pamięci typu SD są dość odporne na wstrząsy i upadki, a jeśli już się psują, to głównie przez przepięcia, złe warunki pracy albo zwyczajne zużycie cykli zapisu/odczytu. Z mojego doświadczenia, to dość częsty błąd myślowy: wiele osób wrzuca wszystkie nośniki do jednego worka i traktuje jak delikatne płyty CD, a przecież konstrukcja SSD czy kart SD to zupełnie inna technologia niż stare, mechaniczne HDD. W branży uznaje się, że typowe uszkodzenia dla SSD i flash to błędy logiczne, np. bad blocki czy awarie kontrolera, a nie uszkodzenia powierzchni. Dlatego odpowiedź wskazująca na SSD, karty SD czy pamięci flash jako podatne na uszkodzenia powierzchni nie znajduje potwierdzenia ani w praktyce serwisowej, ani w dokumentacji technicznej producentów. Warto oddzielać technologie mechaniczne od elektronicznych – to klucz do zrozumienia, jak i dlaczego psują się różne typy nośników.

Pytanie 36

Aktualizacja systemów operacyjnych to proces, którego głównym zadaniem jest

A. instalacja nowych aplikacji użytkowych.
B. obniżenie bezpieczeństwa danych użytkownika.
C. zmniejszenie fragmentacji danych.
D. naprawa luk systemowych, które zmniejszają poziom bezpieczeństwa systemu.
Często można zauważyć, że ludzie błędnie rozumieją sens aktualizacji systemów operacyjnych, myląc ich cel z innymi funkcjami systemu. W praktyce aktualizacje nie służą do obniżania bezpieczeństwa danych użytkownika – wręcz przeciwnie, mają je podnosić poprzez eliminowanie luk i błędów, które mogą zostać wykorzystane przez atakujących. Ten mit często bierze się z przypadków, gdy po aktualizacji pojawiają się nieoczekiwane problemy lub zmiany w działaniu systemu, co bywa mylące, ale nie ma żadnego związku z celowym pogarszaniem bezpieczeństwa. Instalacja nowych aplikacji użytkowych to zupełnie osobny temat – system aktualizuje przede wszystkim swoje własne komponenty, sterowniki czy zabezpieczenia, a nie dostarcza dodatkowych programów użytkownikowi (chyba że mówimy o pakiecie typu Service Pack, ale nawet tam to jest coś zupełnie innego niż typowa aktualizacja bezpieczeństwa). Odpowiedź dotycząca zmniejszania fragmentacji danych to częsty błąd logiczny – defragmentacja i aktualizacje to dwa różne procesy, działające na innych płaszczyznach. Fragmentacja dotyczy organizacji plików na dysku i jest związana z wydajnością, a nie bezpieczeństwem czy podatnościami systemu. Warto pamiętać, że z punktu widzenia standardów branżowych (np. ISO/IEC 27001) aktualizacje są jednym z podstawowych mechanizmów ochrony przed zagrożeniami i powinny być realizowane regularnie, niezależnie od innych czynności administracyjnych. Z mojego doświadczenia wynika, że największym problemem jest bagatelizowanie tych spraw przez użytkowników, którzy czasem mylą różne pojęcia techniczne i nie dostrzegają praktycznych konsekwencji zaniedbań w aktualizacjach. Finalnie to właśnie brak poprawnego zrozumienia celu aktualizacji prowadzi do niebezpiecznych sytuacji w praktyce – dlatego warto rozróżniać mechanizmy zabezpieczeń, procesy konserwacyjne i instalację aplikacji.

Pytanie 37

W systemie Linux istnieją takie prawa dostępu do konkretnego pliku rwxr--r--. Jakie polecenie użyjemy, aby zmienić je na rwxrwx---?

A. chmod 755 nazwapliku
B. chmod 221 nazwapliku
C. chmod 544 nazwapliku
D. chmod 770 nazwapliku
Odpowiedź 'chmod 770 nazwapliku' jest poprawna, ponieważ zmienia prawa dostępu do pliku zgodnie z zamierzonymi ustawieniami. Początkowe prawa dostępu 'rwxr--r--' oznaczają, że właściciel pliku ma pełne prawa (czytanie, pisanie, wykonywanie), grupa użytkowników ma prawo tylko do odczytu, a pozostali użytkownicy nie mają żadnych praw. Nowe prawa 'rwxrwx---' przydzielają pełne prawa również dla grupy użytkowników, co jest istotne w kontekście współdzielenia plików w zespołach. W praktyce, aby przyznać członkom grupy możliwość zarówno odczytu, jak i zapisu do pliku, należy zastosować polecenie chmod w odpowiedniej formie. Standardowe praktyki w zarządzaniu uprawnieniami w systemie Linux polegają na minimalizacji przydzielanych uprawnień, co zwiększa bezpieczeństwo systemu. Rekomenduje się również regularne audyty ustawień uprawnień w celu zapewnienia, że pliki są chronione przed nieautoryzowanym dostępem.

Pytanie 38

Podczas skanowania reprodukcji obrazu z czasopisma, na skanie obrazu pojawiły się regularne wzory, tak zwana mora. Z jakiej funkcji skanera należy skorzystać, aby usunąć morę?

A. Rozdzielczości interpolowanej.
B. Korekcji Gamma.
C. Skanowania według krzywej tonalnej.
D. Odrastrowywania.
Pojawienie się mory na skanie reprodukcji z czasopisma to bardzo częsty problem, który wynika z interakcji rastrowania druku i siatki sensora skanera. Często pojawia się myślenie, że jakakolwiek ogólna korekcja obrazu, taka jak gamma, rozdzielczość interpolowana czy manipulacja krzywą tonalną, może pomóc – ale to niestety nie działa w tym przypadku. Korekcja Gamma służy do zmiany jasności i kontrastu całego obrazu, co oczywiście wpływa na tonalność, ale nie eliminuje regularnych wzorów powstałych przez nakładanie się rastrów. Rozdzielczość interpolowana to w zasadzie sztuczne „nadmuchanie” liczby pikseli w obrazie, które nie wnosi nowych szczegółów – raczej rozmywa lub powiela artefakty, w tym również morę, przez co może to wręcz pogorszyć sprawę. Skanowanie według krzywej tonalnej polega na dostosowaniu rozkładu jasności i kontrastu w różnych zakresach tonalnych, co ponownie jest przydatne przy korekcji wyglądu zdjęcia, ale nie wpływa na usunięcie mechanicznych, powtarzalnych wzorów. Typowym błędem jest mylenie narzędzi do korekcji obrazu z narzędziami do eliminacji artefaktów technicznych – tu właśnie kryje się pułapka, bo mora to efekt czysto techniczny, wynikający z fizyki i matematyki rastrowania, a nie z ustawień ekspozycji czy kontrastu. W branży poligraficznej i fotograficznej od dawna standardem jest korzystanie z funkcji odrastrowywania, ponieważ tylko takie algorytmy potrafią analizować i niwelować rytmiczne wzory powstałe na styku dwóch siatek rastrowych. Inne metody mogą czasami nieco zamaskować problem, ale nigdy go nie eliminują. Z mojego doświadczenia wynika, że próby „naprawiania” mory innymi ustawieniami prowadzą zwykle do pogorszenia ogólnej jakości obrazu, zamiast rozwiązania problemu u źródła.

Pytanie 39

Sprzęt używany w sieciach komputerowych, posiadający dedykowane oprogramowanie do blokowania nieautoryzowanego dostępu do sieci, to

A. gateway
B. repeater
C. firewall
D. bridge
Wybór odpowiedzi innych niż firewall wskazuje na pewne zrozumienie roli różnych urządzeń w sieciach komputerowych, jednak każda z tych odpowiedzi ma inne funkcje, które nie są związane z zabezpieczaniem dostępu do sieci. Repeater jest urządzeniem stosowanym do wzmacniania sygnału i powiększania zasięgu sieci lokalnej. Jego głównym zadaniem jest regeneracja i przesyłanie sygnału, co ma na celu utrzymanie jakości komunikacji między urządzeniami, ale nie ma wbudowanych mechanizmów bezpieczeństwa, co czyni go nieodpowiednim do ochrony przed atakami. Bridge działa na warstwie 2 modelu OSI, łącząc różne segmenty sieci lokalnej i umożliwiając im komunikację. Jego rola polega na przesyłaniu danych między różnymi sieciami, ale również nie oferuje funkcji zabezpieczeń. Gateway to urządzenie, które łączy różne protokoły i umożliwia komunikację między różnymi sieciami, ale również nie pełni funkcji zabezpieczających. Wykorzystanie tych urządzeń w kontekście ochrony przed niepowołanym dostępem może prowadzić do nieporozumień i błędów w projektowaniu architektury sieci, ponieważ nie są one zaprojektowane z myślą o ochronie, a raczej o komunikacji i rozszerzeniu zasięgu. Zrozumienie różnic pomiędzy tymi urządzeniami jest kluczowe dla skutecznego projektowania i zabezpieczania infrastruktury sieciowej.

Pytanie 40

Wysyłanie żetonu (ang. token) występuje w sieci o fizycznej strukturze

A. pierścienia
B. gwiazdy
C. siatki
D. magistrali
Sieci w różnych topologiach, jak siatka, gwiazda czy magistrala, naprawdę różnią się w sposobie działania. W siatce, gdzie jest dużo połączeń, węzły mogą się komunikować bezpośrednio, ale to może stworzyć chaos w zarządzaniu ruchem i kolizje. Jest bardziej złożona i wymaga więcej zasobów, ale za to jest bardziej odporna na awarie. Topologia gwiazdy ma centralny węzeł, co ułatwia diagnozowanie problemów, ale jak ten centralny padnie, to cały system się sypie. Z kolei magistrala podłącza wszystko do jednego medium, co jest super, ale może też prowadzić do kolizji, jak wszyscy próbują nadawać naraz. Ważne jest, żeby nie mylić tych struktur z topologią pierścienia, gdzie żeton sprawia, że komunikacja jest dużo bardziej uporządkowana i efektywna. Zrozumienie tych różnic jest kluczowe przy projektowaniu efektywnych rozwiązań sieciowych.