Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 17 grudnia 2025 20:29
  • Data zakończenia: 17 grudnia 2025 20:42

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na którym rysunku przedstawiono oznaczenie graficzne tynku?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Odpowiedź A jest poprawna, ponieważ oznaczenie graficzne tynku w dokumentacji budowlanej zazwyczaj przedstawia się jako obszar wypełniony drobnymi kropkami. Taki symbol jest zgodny z normami i standardami, które regulują wizualizację materiałów budowlanych w rysunkach technicznych. W praktyce, zastosowanie tego oznaczenia jest kluczowe dla prawidłowego odczytania projektu oraz zrozumienia, jakie materiały zostaną użyte w danej części budynku. W przypadku tynków, ich różne rodzaje mogą być oznaczane różnymi wzorami, co pozwala na łatwe rozróżnienie między tynkiem gipsowym, cementowym czy innymi typami. Wiedza ta jest niezbędna dla architektów oraz inżynierów budowlanych, aby zapewnić zgodność z wymaganiami projektowymi oraz standardami wykonania. Ponadto, poprawna identyfikacja materiałów budowlanych w rysunkach może znacząco wpłynąć na efektywność realizacji projektu oraz jego późniejsze utrzymanie.

Pytanie 2

Na rysunku przedstawiono fragment stropu

Ilustracja do pytania
A. DZ.
B. Teriva.
C. Akermana.
D. Fert.
Wybór odpowiedzi związanych z innymi typami stropów, jak Akerman, Teriva czy DZ, wskazuje na pewne błędy w zrozumieniu konstrukcji stropowych. Stropy Akermana wyróżniają się użyciem prefabrykowanych belek teowych oraz pustaków betonowych, które są umieszczane w formie bloków. Taki typ stropu, choć popularny w Polsce, nie jest przedstawiony na rysunku. Problemy z identyfikacją stropu Teriva mogą wynikać z jego charakterystyki, która jest oparta na pustakach ceramicznych, ale różni się od Fert pod względem używanych belek i ogólnej konstrukcji. Stropy DZ, choć użyteczne, są stosowane w zupełnie innych kontekstach, często jako stropy monolityczne, co również nie znajduje odzwierciedlenia na przedstawionym rysunku. Typowe błędy myślowe w wyborze błędnych odpowiedzi dotyczą m.in. utożsamienia pustaków ceramicznych z danym typem stropu bez uwzględnienia, jakie belki są używane w danej konstrukcji. Każdy z wymienionych typów stropów ma swoje specyficzne zastosowania i parametry, które decydują o ich użyteczności w różnych projektach budowlanych. Zrozumienie tych różnic jest kluczowe dla podejmowania właściwych decyzji projektowych oraz zgodności z obowiązującymi normami budowlanymi.

Pytanie 3

Izolacje przeciwwilgociowe lekki typ dla ściany piwnicy powinny być wykonane

A. z folii kubełkowej
B. z papy asfaltowej
C. z dwóch warstw lepiku asfaltowego
D. z pojedynczej warstwy folii PVC
Izolacje przeciwwilgociowe w piwnicach to ważny temat, bo przecież wilgoć potrafi naprawdę zaszkodzić budynkom. Lepik asfaltowy jest naprawdę dobrym wyborem, bo tworzy mocną barierę przed wodą. Jak się zastosuje dwie warstwy tego lepiku, to nawet jak jedna się uszkodzi, to druga wciąż działa. Dzięki temu cała izolacja jest dużo trwalsza. Lepik jest dość łatwy w aplikacji, więc nie dziwi mnie, że jest popularny w budownictwie. Normy budowlane, jak PN-EN 13967, podkreślają, że dobrze dobrane materiały do izolacji są kluczowe dla trwałości konstrukcji. Przy aplikacji lepiku ważne jest też, żeby przygotować podłoże i zabezpieczyć je przed uszkodzeniami mechanicznymi, bo to wpływa na jakość wykonania całej izolacji.

Pytanie 4

Do czego jest używana poziomica wężowa?

A. Do sprawdzania pionowości murowanej ściany
B. Do określania zewnętrznej krawędzi warstw muru
C. Do kontrolowania grubości muru w ścianie
D. Do wyznaczania i przenoszenia poziomu murowanej ściany na odległość
Poziomica wężowa to naprawdę przydatne narzędzie, które pozwala na precyzyjne wyznaczanie poziomu murowanych ścian. Działa na zasadzie hydrostatyki, co oznacza, że woda w rurce ustawia się na równym poziomie, niezależnie od tego, jak trzymamy poziomicę. To mega ważne, zwłaszcza przy dużych budowach, gdzie precyzja ma kluczowe znaczenie. Czasem tradycyjne poziomice nie są wystarczające, szczególnie w trudnym terenie. Dobrze jest wiedzieć, że poziomica wężowa świetnie sprawdzi się przy ustawianiu fundamentów, bo dokładne przeniesienie poziomu z jednego miejsca na drugie zabezpiecza stabilność budowli. W branży budowlanej trzymanie się norm i dobrych praktyk to podstawa, żeby zbudować coś, co posłuży przez lata i będzie bezpieczne.

Pytanie 5

Na podstawie danych zawartych w tabeli oblicz ilość żwiru potrzebnego do wykonania 0,5 m3mieszanki betonowej klasy C 16/20.

Receptury robocze na 1 m3 mieszanki betonowej
klasa betonucementżwirpiasekwoda
C 8/10341 kg661 l367 l216 l
C 12/16362 kg642 l351 l227 l
C 16/20367 kg770 l426 l223 l
A. 213 l
B. 385 l
C. 642 l
D. 770 l
Wybór niepoprawnych odpowiedzi często wynika z błędnego zrozumienia proporcji materiałów w mieszance betonowej. Na przykład, odpowiedzi, takie jak 770 l, 213 l czy 642 l, nie uwzględniają odpowiedniego przeliczenia objętości żwiru z 1 m³. W praktyce, stosując standardowe proporcje dla mieszanki betonowej klasy C 16/20, uzyskujemy właściwy stosunek składników. Typowe błędy, które prowadzą do takich niepoprawnych odpowiedzi, obejmują nieprawidłowe przeliczenie objętości, pominięcie istotnych informacji z tabeli lub niewłaściwe zastosowanie proporcji. Na przykład, obliczając ilość żwiru, nie można zapominać o podstawowych zasadach dotyczących mieszania składników. Zmniejszając objętość mieszanki betonowej, należy proporcjonalnie zmniejszyć ilości wszystkich składników, w tym żwiru, aby uzyskać mieszankę o pożądanych właściwościach. Zrozumienie materiału i jego proporcji jest kluczowe w inżynierii budowlanej, ponieważ nieprawidłowe obliczenia mogą prowadzić do osłabienia konstrukcji, co w konsekwencji może zagrażać bezpieczeństwu. Dlatego, aby uniknąć takich błędów, ważne jest, aby zawsze odnosić się do norm i zaleceń branżowych dotyczących proporcji materiałów w mieszankach betonowych.

Pytanie 6

Izolacja przeciwwilgociowa podłogi na parterze budynku bez piwnicy jest układana

A. na warstwie chudego betonu
B. bezpośrednio na podsypce z piasku
C. bezpośrednio na ziemi
D. na warstwie izolacji cieplnej
Układanie poziomej izolacji przeciwwilgociowej podłogi parteru bezpośrednio na gruncie jest praktyką, która niesie za sobą wiele ryzyk. Bezpośredni kontakt z gruntem naraża izolację na działanie wilgoci gruntowej, co może prowadzić do jej degradacji oraz obniżenia efektywności ochrony budynku przed wilgocią. Z kolei układanie izolacji na warstwie izolacji termicznej, mimo że teoretycznie może wydawać się sensowne, w praktyce stwarza problemy z utrzymaniem odpowiedniej ciągłości izolacji przeciwwilgociowej. Izolacja termiczna, jak styropian czy wełna mineralna, nie jest zaprojektowana do absorbowania wody i może ulegać uszkodzeniu w warunkach nieodpowiedniej izolacji przeciwwilgociowej, co prowadzi do strat energetycznych oraz problemów z wilgocią w budynku. Co więcej, stosowanie podsypki z piasku jako bazy dla izolacji również budzi wątpliwości. Mimo że piasek może wydawać się stabilny, jego właściwości absorpcyjne mogą powodować, że wilgoć z gruntu przenika do konstrukcji. W każdym z przypadków, brak odpowiedniej warstwy chudego betonu prowadzi do sytuacji, w której skuteczność izolacji przeciwwilgociowej jest znacznie obniżona, co może skutkować kosztownymi naprawami i rewitalizacją budynku w przyszłości. Zrozumienie tych zasad jest kluczowe dla właściwego projektowania i budowy budynków, co potwierdzają odpowiednie normy budowlane oraz wytyczne branżowe.

Pytanie 7

Powierzchnia gipsowa, która ma być poddana tynkowaniu, musi być

A. porysowana i nawilżona
B. gładka i nawilżona
C. gładka i sucha
D. porysowana i sucha
Prawidłowe przygotowanie podłoża gipsowego do tynkowania jest kluczowym aspektem, który może zostać zignorowany przy błędnej interpretacji wymagań. Odpowiedzi, które sugerują gładkie i suche podłoże, opierają się na mylnym założeniu, że idealnie gładka powierzchnia zapewnia najlepszą adhezję. W rzeczywistości, brak jakiejkolwiek faktury na podłożu gipsowym skutkuje mniejszą powierzchnią styku, co może prowadzić do łatwego odrywania się tynku. Gdy podłoże jest suche, tynk może wchłonąć wilgoć z gipsu zbyt szybko, co może prowadzić do pęknięć i niestabilności. Porysowanie powierzchni gipsowej jest zatem fundamentalne, ponieważ zwiększa ona powierzchnię styku i poprawia właściwości klejące. Z kolei odpowiedzi sugerujące, że podłoże powinno być porysowane i zwilżone, lecz przy jednoczesnym wskazaniu na jego porysowanie bez nawilżenia, również są błędne. Wysoka wilgotność jest kluczowa w procesie wiązania tynku. Zbyt duże wysuszenie podłoża przez porysowanie bez odpowiedniego nawilżenia może prowadzić do nieodwracalnych uszkodzeń tynku. Dlatego, aby zapewnić estetyczne i trwałe wykończenie, należy przestrzegać standardów budowlanych dotyczących przygotowania podłoża, które zalecają stosowanie nawilżania przed aplikacją tynku, co jest praktyką zgodną z normami branżowymi.

Pytanie 8

Wyrównanie powierzchni tynku w narożach wklęsłych odbywa się poprzez

A. zacieranie powierzchni packą narożnikową w ruchach w 'ósemkę'
B. zacieranie powierzchni pacą styropianową w ruchach okrężnych
C. przesuwanie pacy narożnikowej w ruchach 'góra-dół'
D. przesuwanie pacy w ruchu zygzakowym od dołu ku górze
Przesuwanie pacy narożnikowej ruchem 'góra-dół' w narożach wklęsłych jest uznawane za najlepszą praktykę w procesie wyrównywania powierzchni tynku. Taki ruch pozwala na skuteczne i równomierne rozprowadzenie materiału tynkarskiego, co jest kluczowe dla uzyskania gładkiej i estetycznej powierzchni. Praktyka ta minimalizuje ryzyko powstawania nierówności, co jest szczególnie istotne w przypadku narożników, które mogą być bardziej narażone na uszkodzenia. Standardy branżowe, takie jak normy PN-EN odnośnie prac tynkarskich, wskazują na konieczność zachowania wysokiej jakości wykończenia, co można osiągnąć poprzez odpowiednie techniki zacierania. Zastosowanie ruchu 'góra-dół' pozwala na lepsze przyleganie tynku do podłoża oraz zminimalizowanie powstawania pęknięć, co przyczynia się do trwałości i funkcjonalności wykonanej powierzchni. Na przykład, w przypadku tynków w łazienkach, gdzie wilgotność jest wysoka, odpowiednie wyrównanie narożników jest kluczowe, aby uniknąć problemów z odpadaniem tynku w przyszłości.

Pytanie 9

W przypadku strzępiów zazębionych należy zostawić pustkę o głębokości w co drugiej warstwie muru:

A. 1 cegły
B. 1/2 cegły
C. 2 cegieł
D. 1/4 cegły
Strzępia zazębione to technika budowlana, w której mur wykonany jest w sposób zapewniający lepszą stabilność i wytrzymałość konstrukcji. Pozostawienie pustek o głębokości 1/4 cegły w co drugiej warstwie muru jest zgodne z zasadami projektowania i budowy ścian, które mają na celu zminimalizowanie pęknięć oraz odkształceń w materiale. Pustki te działają jak kanały, które absorbują ruchy termiczne i wilgoci, co jest szczególnie istotne w obszarach o zmiennych warunkach atmosferycznych. Dodatkowo, zastosowanie pustek o takiej głębokości sprzyja lepszemu przewodnictwu cieplnemu, co wpływa na efektywność energetyczną budynku. W praktyce, technika ta jest często stosowana w budownictwie jednorodzinnym oraz w obiektach użyteczności publicznej, gdzie stabilność i trwałość są kluczowe. Wzorce budowlane i normy, takie jak PN-EN 1996, rekomendują zastosowanie strzępi zazębionych jako sprawdzonego rozwiązania w kontekście budowy ścian murowanych, co potwierdza ich skuteczność i ekonomiędność w długoterminowej perspektywie.

Pytanie 10

Która z wymienionych czynności nie jest częścią badań kontrolnych przeprowadzanych podczas odbioru tynków cienkowarstwowych?

A. Sprawdzenie przyczepności tynku do podłoża
B. Weryfikacja prawidłowości przygotowania podłoża
C. Pomiar grubości tynku
D. Badanie nasiąkliwości tynku
Wśród czynności kontrolnych podczas odbioru tynków pocienionych, badanie przyczepności tynku do podłoża oraz badanie grubości tynku są kluczowymi parametrami, które wpływają na jakość i trwałość aplikacji. Często pomija się znaczenie tych testów, co prowadzi do błędnych przekonań o ich nieważności. Przyczepność tynku do podłoża jest niezbędna dla stabilności i długowieczności całej konstrukcji. Niewłaściwa przyczepność może powodować odspajanie się tynku, co skutkuje poważnymi uszkodzeniami i kosztownymi naprawami. Z kolei badanie grubości tynku jest istotne dla zapewnienia, że aplikacja spełnia normy projektowe oraz gwarantuje odpowiednie właściwości izolacyjne i estetyczne. Właściwa grubość tynku bezpośrednio wpływa na jego funkcjonalność, a także na ochronę podłoża przed działaniem czynników atmosferycznych. Mimo że badanie nasiąkliwości tynku może dostarczać informacji o jego właściwościach, w przypadku tynków pocienionych nie jest kluczowe, ponieważ ich formuły są zaprojektowane z myślą o zminimalizowaniu wchłaniania wody. Dlatego wiele osób myli tę kwestię, uznając, że wszystkie powyższe badania są równie istotne dla oceny jakości tynku, co prowadzi do nieprawidłowych wniosków i zaniedbań w procesie kontroli jakości.

Pytanie 11

Tynk III kategorii powszechny to

A. narzut jedno- lub dwu-warstwowy wygładzany pacą
B. tynk trójwarstwowy zatarty packą na gładko
C. narzut o jednej warstwie, wyrównany kielnią
D. tynk trójwarstwowy wygładzony pacą pokrytą filcem
W kontekście tynków, odpowiedzi sugerujące narzuty jedno- lub dwuwarstwowe, jak również tynki zatartym pacą obłożoną filcem, nie są zgodne z definicją tynku pospolitego III kategorii. Tynki jednowarstwowe, które sugerują uproszczony proces aplikacji, mogą nie spełniać wymaganych standardów jakości i trwałości, szczególnie w trudnych warunkach eksploatacyjnych. Przy tynku jednowarstwowym, ryzyko pęknięć i uszkodzeń wzrasta, ponieważ nie ma warstw, które mogłyby absorbowąć różnice w temperaturze czy wilgotności. Narzuty wyrównane kielnią są również nieodpowiednie, gdyż nie zapewniają odpowiedniej estetyki ani trwałości powierzchni. Tynki trójwarstwowe, które są zatarte pacą obłożoną filcem, mogą być mylone z tynkami dekoracyjnymi, które mają zupełnie inną funkcję i zastosowanie, skupiając się na efektach wizualnych, a nie na spełnieniu funkcji ochronnych czy izolacyjnych. Dlatego ważne jest, aby dobrze rozumieć różnice między poszczególnymi rodzajami tynków, co zapobiega wybieraniu niewłaściwych rozwiązań podczas prac budowlanych. Powinno się zawsze kierować się standardami budowlanymi i fachową wiedzą, aby uniknąć niekorzystnych skutków w przyszłości.

Pytanie 12

Na którym rysunku przedstawiono oznaczenie graficzne materiałów do izolacji przeciwwilgociowej?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Odpowiedź 'C.' jest poprawna, ponieważ zawiera właściwe oznaczenie graficzne materiałów do izolacji przeciwwilgociowej, które są zgodne z polskimi normami technicznymi, w tym z normą PN-EN 206-1 dotyczącą betonu oraz PN-B-03430 wskazującą na metody stosowania izolacji przeciwwilgociowej. Materiały te odgrywają kluczową rolę w ochronie budynków przed wilgocią, co jest szczególnie istotne w przypadku konstrukcji podziemnych i fundamentów. Izolacja przeciwwilgociowa jest ważnym elementem zapobiegającym przenikaniu wody gruntowej oraz wilgoci, co może prowadzić do poważnych uszkodzeń strukturalnych. Przykładem takiego zastosowania są folie polyethylene, które są powszechnie używane do zabezpieczania fundamentów przed wilgocią. Oprócz materiałów graficznych, ważne jest także zrozumienie, jak odpowiednie oznaczenie materiałów wpływa na proces budowy i późniejsze czynności konserwacyjne. Stosowanie standardowych oznaczeń ułatwia komunikację między projektantami a wykonawcami, co jest kluczowe dla prawidłowego wykonania prac budowlanych.

Pytanie 13

Jakie są całkowite wydatki (materiałów i robocizny) na przygotowanie 5 m3 betonu, jeśli koszty materiałów do 1 m3 wynoszą 200 zł, a za robociznę należy dodać 20% wartości mieszanki?

A. 1020 zł
B. 2000 zł
C. 2420 zł
D. 1200 zł
Dobra robota z tą odpowiedzią! Jak to obliczyłeś? Koszt materiałów na 1 m3 betonu to 200 zł, więc dla 5 m3 wychodzi 1000 zł. Potem doliczyłeś robociznę, co jest super ważne, bo to 20% od materiałów, czyli dodatkowe 200 zł. Łącznie daje to 1200 zł. W budownictwie takie obliczenia to podstawa, bo bez tego łatwo można wpaść w kłopoty finansowe. Zawsze warto też mieć na uwadze, że ceny materiałów mogą się zmieniać w trakcie pracy, więc dobrze się przygotować na różne sytuacje.

Pytanie 14

Zanim przystąpi się do otynkowania stalowych części konstrukcji budynku, ich powierzchnię należy

A. nawilżyć wodą
B. chronić siatką stalową
C. oszlifować
D. zaimpregnować
Zarówno odpowiedzi "zwilżyć wodą", "zaimpregnować", jak i "oszlifować" nie są adekwatne do przygotowania stalowych elementów konstrukcyjnych przed otynkowaniem, co może prowadzić do wielu problemów w dalszym etapie budowy. Zwilżenie wodą nie tylko nie zapewnia odpowiedniej przyczepności tynku, ale może również spowodować powstawanie rdzy na powierzchni stali. Woda w połączeniu z metalem sprzyja korozji, co w dłuższej perspektywie prowadzi do osłabienia konstrukcji. Z kolei impregnacja stalowych elementów również nie jest właściwym rozwiązaniem, ponieważ impregnaty mają na celu ochronę przed wilgocią, a nie poprawę przyczepności tynku. Tego typu preparaty są bardziej adekwatne dla materiałów porowatych, a nie dla stali, która wymaga innych metod ochrony. Oszlifowanie stalowych elementów może być korzystne w kontekście usuwania rdzy lub zanieczyszczeń, ale nie rozwiązuje problemu związanego z przyczepnością tynku. Przygotowanie stali do otynkowania powinno koncentrować się na zastosowaniu odpowiednich materiałów ochronnych, takich jak siatka stalowa, zgodnie z praktykami budowlanymi, które gwarantują trwałość i stabilność konstrukcji. Ignorowanie tych aspektów może prowadzić do poważnych usterek w budynku i znaczących kosztów naprawczych.

Pytanie 15

Do sporządzenia zaprawy cementowo-wapiennej odmiany E zaplanowano użycie 100 dm3 cementu. Korzystając z informacji zawartych w tabeli określ, ile pozostałych składników należy przygotować do jej wykonania.

Proporcje składników
(mierzone objętościowo)
Symbol
odmiany
Zaprawy cementoweodmiana 1 : 2A
odmiana 1 : 3B
odmiana 1 : 4C
Zaprawy cementowo-wapienneodmiana 1 : 0,25 : 3D
odmiana 1 : 0,5 : 4E
odmiana 1 : 1 : 6F
odmiana 1 : 2 : 9G
Zaprawy wapienneodmiana 1 : 1,5H
odmiana 1 : 2I
odmiana 1 : 4J
A. 50 dm3 wapna i 400 dm3 piasku.
B. 50 dm3 wapna i 200 dm3 piasku.
C. 50 dm3 piasku i 400 dm3 wapna.
D. 50 dm3 piasku i 200 dm3 wapna.
Wybór niewłaściwych proporcji składników do zaprawy cementowo-wapiennej może prowadzić do znacznych problemów związanych z jakością i wytrzymałością gotowego materiału. Propozycje, takie jak użycie 200 dm3 wapna czy 200 dm3 piasku wbrew wskazanym wymaganiom, świadczą o nieporozumieniu w zakresie proporcji, które są kluczowe dla uzyskania odpowiednich parametrów zaprawy. W przypadku nadmiaru wapna, może dojść do obniżenia wytrzymałości mechanicznej, co prowadzi do ryzyka rozwarstwienia się zaprawy oraz powstawania pęknięć. Z kolei zbyt duża ilość piasku w stosunku do innych składników może skutkować niską spójnością mieszanki, co negatywnie wpłynie na jej zdolność do przenoszenia obciążeń. Kluczowym aspektem jest również zrozumienie, że właściwe proporcje są oparte na przepisach i normach branżowych, które definiują wymagania dla poszczególnych typów zapraw. Aby uniknąć błędów, istotne jest zrozumienie, jakie właściwości chcemy uzyskać z zaprawy oraz jak różne składniki wpływają na jej zachowanie w czasie. Zastosowanie niewłaściwych proporcji nie tylko zwiększa ryzyko uszkodzeń strukturalnych, ale także prowadzi do nadmiernych kosztów związanych z poprawkami i przystosowaniem struktury budowlanej do wymagań technicznych.

Pytanie 16

Jaką izolację wykonano na fragmencie ściany przedstawionej na rysunku?

Ilustracja do pytania
A. Paroszczelną.
B. Przeciwdrganiową.
C. Przeciwwilgociową.
D. Termiczną.
Odpowiedź termiczna jest poprawna, ponieważ na przedstawionym rysunku widoczna jest warstwa materiału izolacyjnego, który jest powszechnie stosowany w budownictwie celu redukcji strat ciepła. Izolacja termiczna ma na celu utrzymanie optymalnej temperatury wewnątrz budynku, co przekłada się na komfort użytkowników oraz oszczędności energetyczne. W praktyce, materiał taki jak wełna mineralna, styropian czy pianka poliuretanowa jest umieszczany w ścianach, dachach i podłogach, aby zminimalizować wymianę ciepła z otoczeniem. Standardy, takie jak norma PN-EN 13162, określają wymagania dotyczące materiałów izolacyjnych, a ich odpowiedni dobór wpływa na efektywność energetyczną budynku. Dobrze zaprojektowana izolacja nie tylko poprawia komfort, ale również zmniejsza koszty ogrzewania i chłodzenia, co jest kluczowe w kontekście zrównoważonego budownictwa.

Pytanie 17

Jakie metody należy zastosować, aby zabezpieczyć metalowe elementy przed korozją podczas wznoszenia ścian z bloczków gipsowych?

A. Pokryć lakierem asfaltowym
B. Zastosować pokost lniany
C. Aplikować mleczko cementowe
D. Nałożyć farbę olejną
Pokrycie elementów metalowych lakierem asfaltowym to skuteczny sposób na ich zabezpieczenie przed korozją, szczególnie w kontekście murowania ścian z bloczków gipsowych. Lakier asfaltowy tworzy elastyczną, wodoodporną powłokę, która izoluje metal od wilgoci oraz innych czynników atmosferycznych, co jest kluczowe w zapobieganiu korozji. Przykładem zastosowania tego rozwiązania mogą być zbrojenia w konstrukcjach betonowych, które są często narażone na działanie wody i innych substancji chemicznych. Stosowanie takiego zabezpieczenia jest zgodne z dobrymi praktykami budowlanymi, które zalecają stosowanie odpowiednich powłok ochronnych na metalowych elementach konstrukcyjnych. Powłoka asfaltowa nie tylko chroni przed korozją, ale również przed działaniem substancji chemicznych, co czyni ją odpowiednim wyborem w różnych warunkach budowlanych. Warto również zauważyć, że prawidłowe przygotowanie powierzchni metalu przed nałożeniem lakieru asfaltowego, takie jak odtłuszczenie i oczyszczenie, jest kluczowe dla zapewnienia trwałości ochrony. W kontekście przepisów budowlanych, użycie lakierów asfaltowych jest często zalecane w standardach dotyczących ochrony przed korozją w obiektach budowlanych.

Pytanie 18

Który typ cegieł charakteryzuje się wysoką odpornością na oddziaływanie warunków atmosferycznych?

A. Ceramiczne pełne
B. Poryzowane
C. Klinkierowe
D. Sylikatowe
Cegły poryzowane, ceramiczne pełne oraz sylikatowe nie oferują tak wysokiej odporności na czynniki atmosferyczne jak cegły klinkierowe. Cegły poryzowane, które zawierają wiele porów, mają wyższą nasiąkliwość, co oznacza, że łatwiej wchłaniają wodę. W rezultacie, w warunkach zmiennej pogody, mogą ulegać degradacji, a woda może powodować ich pęknięcia przy cyklach zamrażania i rozmrażania. Cegły ceramiczne pełne, chociaż są trwałe, nie są specjalnie projektowane z myślą o wysokiej odporności na warunki atmosferyczne. Ich wytrzymałość mechaniczna jest wysoka, ale z uwagi na większą nasiąkliwość w porównaniu do klinkierowych, mogą być narażone na uszkodzenia związane z wilgocią. Z kolei cegły sylikatowe, wykonane z piasku i wapna, również nie są tak odporne na działanie wody, a ich właściwości mechaniczne mogą ulegać pogorszeniu w kontakcie z wilgocią oraz szkodliwymi substancjami chemicznymi. W praktyce, wybór cegieł do zastosowań zewnętrznych powinien być podyktowany ich specyfiką techniczną oraz normami budowlanymi, które uwzględniają takie parametry jak nasiąkliwość, mrozoodporność i odporność na działanie soli czy innych agresywnych substancji. Właściwy dobór materiałów budowlanych jest kluczowy dla zapewnienia trwałości i bezpieczeństwa konstrukcji, a ignorowanie tych aspektów może prowadzić do poważnych problemów w przyszłości.

Pytanie 19

Jakiego rodzaju kruszywa należy użyć do stworzenia zaprawy, która będzie przeznaczona do wykonania tynku izolacyjnego?

A. Żużla wielkopiecowego
B. Piasku kwarcowego
C. Piasku rzecznego
D. Miału marmurowego
Piasek kwarcowy, choć często używany w budownictwie, nie jest odpowiedni do produkcji zapraw ciepłochronnych, głównie z powodu swoich właściwości termoizolacyjnych, które są znacznie gorsze niż te oferowane przez żużel wielkopiecowy. Piasek kwarcowy charakteryzuje się dużą gęstością i masą, co może prowadzić do zwiększenia ciężaru tynku, a tym samym do obniżenia jego efektów izolacyjnych. W kontekście tynków ciepłochronnych, kluczowe jest, aby kruszywo miało zdolność do zatrzymywania powietrza w swojej strukturze, co piasek kwarcowy nie jest w stanie zapewnić. Z kolei miał marmurowy, pomimo że ma estetyczne walory, nie spełnia wymogów dotyczących termoizolacyjności i może być zbyt drogi w zastosowaniu w skali budownictwa. Piasek rzeczny, choć z natury ma mniejsze zanieczyszczenia, również nie zapewnia odpowiednich właściwości izolacyjnych i może prowadzić do problemów z wilgocią w tynku. Wybór niewłaściwego kruszywa może skutkować nieefektywnymi rozwiązaniami budowlanymi, co podkreśla znaczenie stosowania materiałów zgodnych z wytycznymi branżowymi oraz normami, takimi jak PN-EN 998-1, które precyzują parametry technologiczne dla zapraw budowlanych. Dlatego też kluczowe jest, aby osoby zajmujące się doborem materiałów budowlanych miały świadomość właściwości technicznych i praktycznych aspektów używanych surowców.

Pytanie 20

W celu skonstruowania jednowarstwowych ścian zewnętrznych, ze względu na potrzebę osiągnięcia właściwej izolacji cieplnej, najczęściej wykorzystuje się

A. bloczki z betonu komórkowego lub pustaki ceramiczne poryzowane
B. cegły ceramiczne pełne lub bloczki wykonane z betonu kruszywowego
C. cegły ceramiczne klinkierowe bądź cegły ceramiczne dziurawki
D. bloczki silikatowe bądź płyty gipsowo-kartonowe
Bloczki z betonu komórkowego oraz pustaki ceramiczne poryzowane są materiałami budowlanymi, które charakteryzują się doskonałymi właściwościami izolacyjnymi, co jest kluczowe w kontekście budowy jednowarstwowych ścian zewnętrznych. Beton komórkowy, znany również jako aerobeton, ma strukturę pełną mikroporów, co znacząco ogranicza przewodzenie ciepła. Dzięki temu, ściany wykonane z tych materiałów mogą skutecznie zapewnić komfort cieplny w budynku, minimalizując straty energii i przyczyniając się do obniżenia kosztów ogrzewania. Pustaki ceramiczne poryzowane, z kolei, posiadają unikalne właściwości akumulacyjne i również dobrze izolują termicznie. W praktyce zastosowanie tych materiałów zyskuje na znaczeniu przy realizacji budynków energooszczędnych i pasywnych, gdzie kluczowe jest uzyskanie jak najlepszych parametrów izolacyjnych. Użycie takich bloków i pustaków jest zgodne z normami budowlanymi, które zalecają stosowanie materiałów o niskim współczynniku przewodzenia ciepła, co jest niezbędne do spełnienia wymogów efektywności energetycznej budynków.

Pytanie 21

Z jakiego materiału można budować przewody dymowe i wentylacyjne?

A. cegły pełnej
B. cegły dziurawki
C. cegły wapienno-piaskowej
D. pustaków żużlobetonowych
Cegła pełna jest materiałem budowlanym o wysokiej odporności na działanie wysokich temperatur oraz agresywnych substancji chemicznych, co czyni ją idealnym wyborem do budowy przewodów dymowych i wentylacyjnych. Dzięki swojej gęstości i jednorodnej strukturze, cegła ta skutecznie izoluje oraz chroni przed rozprzestrzenianiem się ognia. W praktyce, przewody dymowe wykonane z cegły pełnej zapewniają nie tylko bezpieczeństwo, ale także długotrwałość, co jest kluczowe w kontekście przepisów budowlanych i norm bezpieczeństwa. Cegła pełna może być również stosowana w miejscach narażonych na intensywne działanie spalin, zapewniając ich prawidłowe odprowadzanie. W wielu krajach, zastosowanie cegły pełnej w takich konstrukcjach jest zgodne z obowiązującymi normami budowlanymi oraz zaleceniami, co dodatkowo podkreśla jej przydatność w budownictwie.

Pytanie 22

Zaprawę tynkarską produkowaną w zakładzie, oznaczoną symbolem R, wykorzystuje się do realizacji tynków

A. izolujących cieplnie
B. szlachetnych
C. renowacyjnych
D. jednowarstwowych zewnętrznych
Zaprawa tynkarska oznaczona symbolem R jest stosowana przede wszystkim do wykonywania tynków renowacyjnych, co jest ściśle związane z jej właściwościami. Renowacyjne tynki mają na celu przywrócenie estetyki oraz funkcjonalności powierzchni, które mogą być uszkodzone lub w złym stanie. Zaprawy te charakteryzują się wysoką przyczepnością do podłoża, elastycznością oraz odpornością na czynniki atmosferyczne, co czyni je idealnym rozwiązaniem w przypadku starszych budynków, gdzie istnieje ryzyko pęknięć lub kruszenia się tynku. W praktyce, podczas renowacji zabytków, stosuje się zaprawy R, aby zapewnić odpowiednią ochronę i trwałość elewacji, a także aby zachować tradycyjne metody budowlane. W kontekście standardów, zaprawy te powinny spełniać normy PN-EN 998-1 dotyczące zapraw do tynkowania, co gwarantuje ich wysoką jakość i odpowiednie właściwości użytkowe.

Pytanie 23

Gdy na powierzchni tynku występują liczne oznaki po przeprowadzonych naprawach związanych z pęknięciami, co powinno się zrobić?

A. położyć na powierzchni nową gładź
B. pokryć powierzchnię siatką z tworzywa sztucznego i wykonać gładź
C. pomalować całą powierzchnię białą farbą
D. pokryć powierzchnię siatką stalową i wykonać gładź
Pomalowanie całej powierzchni białą farbą może wydawać się prostym rozwiązaniem, jednak nie jest to właściwa metoda w przypadku powierzchni z widocznymi uszkodzeniami. Malowanie nie rozwiązuje problemu pęknięć, a jedynie maskuje je, co prowadzi do pogorszenia stanu technicznego tynku w dłuższym okresie. Podobnie, pokrycie powierzchni siatką stalową jest niewłaściwe, ponieważ stal nie jest odporna na korozję w warunkach wilgotności, co może prowadzić do powstawania rdzy i dalszego uszkodzenia tynku. Siatki stalowe są stosowane w innych kontekstach budowlanych, ale nie w przypadku gładzi, gdzie preferencje kierują się ku siatkom z tworzywa sztucznego z uwagi na ich właściwości elastyczne i odporność na czynniki atmosferyczne. Położenie nowej gładzi na starszej, uszkodzonej powierzchni bez wcześniejszego wzmocnienia nie przyniesie oczekiwanych rezultatów, ponieważ nowa warstwa gładzi przyspieszy degradację istniejącego tynku, a pęknięcia mogą się powtórzyć. Takie podejście często wynika z błędnego przeświadczenia, że wystarczy jedynie odświeżyć wierzchnią warstwę, co jest niezgodne z zasadami trwałej renowacji. Skuteczność naprawy wynika przede wszystkim z właściwego przygotowania podłoża, co jest kluczowym etapem w pracy z tynkami.

Pytanie 24

Przygotowanie kruszywa naturalnego do wytworzenia zaprawy tynkarskiej, która ma być użyta do nałożenia tynku zwykłego, polega na

A. ustaleniu stopnia zagęszczenia kruszywa
B. przesianiu kruszywa przez sito o oczkach 2 mm
C. ustaleniu gęstości pozornej kruszywa
D. przesianiu kruszywa przez sito o oczkach 5 mm
Przesiewanie kruszywa przez sito o oczkach 5 mm nie jest odpowiednie dla produkcji zaprawy tynkarskiej, ponieważ nie eliminuje wystarczająco dużych zanieczyszczeń, które mogą negatywnie wpłynąć na jakość tynku. Odpowiedni rozmiar kruszywa ma kluczowe znaczenie dla uzyskania jednorodnej mieszanki, a zbyt duże cząstki mogą przyczynić się do powstawania pęknięć i nierówności na powierzchni tynku. Ustalanie stopnia zagęszczenia kruszywa, choć istotne w kontekście ogólnych właściwości materiału, nie jest kluczowym krokiem w przypadku tynków, gdzie bardziej istotne jest zapewnienie odpowiedniej granulacji kruszywa. Ustalanie gęstości pozornej kruszywa również nie ma bezpośredniego wpływu na przygotowanie zaprawy tynkarskiej, a bardziej odnosi się do ogólnej charakterystyki materiału budowlanego. W kontekście praktycznym, wiele osób myli te aspekty z przygotowaniem betonu, gdzie zagęszczenie może być bardziej kluczowe. Dlatego niepoprawne podejście do wyboru metody przesiania kruszywa może prowadzić do poważnych błędów w wykonawstwie, które skutkują nie tylko niewłaściwymi parametrami technicznymi, ale także zwiększonymi kosztami napraw w przyszłości.

Pytanie 25

Który etap wykonywania tynku gipsowego przedstawiono na ilustracji?

Ilustracja do pytania
A. Wstępne gładzenie tzw. piórowanie.
B. Wstępne wyrównanie tzw. zaciąganie.
C. Ręczne nakładanie.
D. Ostateczne gładzenie.
Odpowiedź "Wstępne wyrównanie tzw. zaciąganie" jest poprawna, ponieważ na ilustracji widzimy proces, w którym używana jest długa łata tynkarska do wyrównywania świeżo nałożonego tynku. Etap ten, znany jako zaciąganie, ma kluczowe znaczenie w tynkarskich pracach wykończeniowych. Polega on na usunięciu nadmiaru tynku i wstępnym uformowaniu gładkiej powierzchni, co jest niezbędne do uzyskania wysokiej jakości wykończenia. W praktyce, zaciąganie pozwala na przygotowanie podłoża do dalszych etapów, takich jak gładzenie czy nakładanie dekoracyjnych warstw tynku. Warto zwrócić uwagę, że stosowanie odpowiednich narzędzi, takich jak łaty, oraz technik zaciągania jest zgodne z branżowymi standardami, co zapewnia trwałość i estetykę wykonanej powierzchni. Właściwe zaciąganie tynku pozwala na uniknięcie pęknięć i nierówności, które mogą pojawić się w późniejszych fazach prac budowlanych.

Pytanie 26

Jeśli na rysunku w skali 1:50 długość ściany, która ma być otynkowana, wynosi 15 cm, to rzeczywista długość tej ściany to

A. 1,50 m
B. 7,50 m
C. 15,00 m
D. 0,75 m
Aby obliczyć rzeczywistą długość ściany na podstawie rysunku wykonanego w skali 1:50, należy zastosować zasadę proporcji. Skala 1:50 oznacza, że 1 cm na rysunku odpowiada 50 cm w rzeczywistości. W tym przypadku długość ściany wynosi 15 cm, więc rzeczywista długość można obliczyć mnożąc długość na rysunku przez współczynnik skali: 15 cm * 50 = 750 cm, co jest równoznaczne z 7,50 m. Tego typu obliczenia są niezwykle istotne w branży budowlanej oraz architektonicznej, gdzie precyzja jest kluczowa. Używanie odpowiednich skal i umiejętność przeliczania wymiarów to podstawowe umiejętności, które pozwalają na dokładne planowanie oraz realizację projektów budowlanych. W praktyce, znajomość zasad przeliczania skali jest niezbędna do interpretacji rysunków technicznych oraz tworzenia kosztorysów, które są oparte na rzeczywistych wymiarach obiektów. Dodatkowo, znajomość skali umożliwia dokonanie właściwych pomiarów i planów, co jest kluczowe w procesach projektowych oraz budowlanych.

Pytanie 27

Odczytaj z rysunku, jakie są grubości ścian tworzących pomieszczenie warsztatu.

Ilustracja do pytania
A. 84 i 100 cm
B. 25 i 10 cm
C. 36 i 84 cm
D. 25 i 84 cm
Wybór niepoprawnej odpowiedzi może wynikać z mylnego zrozumienia, jak grubości ścian wpływają na konstrukcję budynku. Na przykład, grubość 84 cm jest zbyt duża dla typowych ścian zewnętrznych, które w standardowych projektach nie przekraczają 30-40 cm, co jest zgodne z normami budowlanymi dla konstrukcji jednorodzinnych lub małych obiektów przemysłowych. Ściany o grubości 25 cm są odpowiednie dla ścian zewnętrznych w domach, ale mogą być niewystarczające dla wewnętrznych podziałów, które, jak pokazuje rysunek, mogą wymagać większej grubości dla zachowania odpowiedniej izolacji akustycznej. Odpowiedzi takie jak 36 cm nie znajdują uzasadnienia w kontekście typowych grubości materiałów budowlanych, ponieważ nie są one powszechnie stosowane. W praktyce, błędne odpowiedzi mogą wynikać z nieprawidłowej interpretacji rysunku, zwłaszcza w odniesieniu do wymiarów, które mogą dotyczyć innych aspektów budynku, jak długość czy wysokość. Kluczowe jest zrozumienie, że grubości ścian nie powinny być analizowane w oderwaniu od kontekstu ich funkcji oraz zastosowanych materiałów, co może prowadzić do fałszywych wniosków. Warto również zwrócić uwagę na standardy budowlane, które definiują optymalne grubości w zależności od przeznaczenia pomieszczeń, a także na praktyki projektowe, które pozwalają na efektywne wykorzystanie przestrzeni przy zachowaniu norm bezpieczeństwa.

Pytanie 28

Uszkodzenie tynku przedstawione na rysunku to

Ilustracja do pytania
A. odbarwienie.
B. zabrudzenie.
C. pęknięcie.
D. wysolenie.
Zabrudzenia, pęknięcia i odbarwienia to zjawiska, które mogą występować na tynku, ale nie są one tożsame z wysoleniem i nie wyjaśniają przedstawionego na zdjęciu problemu. Zabrudzenie tynku polega na osadzaniu się na jego powierzchni zanieczyszczeń, takich jak kurz, smog czy plamy, co najczęściej jest efektem eksploatacji budynku. Pęknięcia natomiast są mechanicznymi uszkodzeniami, które mogą być spowodowane ruchem budynku, zmianami temperatury lub niewłaściwą aplikacją tynku, ale nie mają związku z występowaniem wykwitów solnych. Odbarwienie tynku może być wynikiem działania promieni UV, wilgoci czy nieodpowiednich materiałów wykończeniowych, co również nie odpowiada mechanizmowi wysolenia. Błędne przypisanie tych zjawisk do problemu tynku skutkuje brakiem skutecznych rozwiązań i działań naprawczych. Aby uniknąć takich nieporozumień, ważne jest zrozumienie specyfiki każdego z tych zjawisk oraz ich przyczyn, co pozwala na precyzyjne diagnozowanie problemów i skuteczne podejmowanie działań naprawczych. Rozpoznanie i poprawna identyfikacja wysolenia są kluczowe dla zapobiegania dalszym uszkodzeniom budynku oraz zapewnienia jego właściwej konserwacji.

Pytanie 29

Tynk należący do kategorii IV jest tynkiem

A. 1-warstwowym
B. 2-warstwowym
C. 3-warstwowym
D. 4-warstwowym
Wybór tynku jako 4-warstwowego, 2-warstwowego czy 1-warstwowego to czasem nieporozumienie, bo można nie wiedzieć, jak to wszystko działa. Tynki 1-warstwowe są prostą wersją, ale często nie są wystarczająco mocne, szczególnie w trudnych warunkach. Zwykle używa się ich tam, gdzie nie ma dużych wymagań co do estetyki i techniki, co może prowadzić do szybkiego uszkodzenia. Tynk 2-warstwowy także nie spełnia standardów tynków kategorii IV, bo nie ma tych trzech kluczowych warstw, które są potrzebne, żeby tynk był naprawdę trwały. Z kolei tynki 4-warstwowe to rzadkość i wynikają z mylenia cech tynków z ich warstwowością. Tynk trójwarstwowy łączy technologie i materiały zgodne z aktualnymi standardami budowlanymi, przez co jest najlepszym wyborem dla większości nowoczesnych projektów. Zrozumienie różnic między typami tynków to klucz do sukcesu w każdym projekcie, a przestrzeganie norm jest niezbędne, żeby nie mieć problemów z trwałością i wyglądem.

Pytanie 30

Zgodnie z zasadami przedmiarowania robót tynkarskich z powierzchni tynków nie odlicza się powierzchni otworów do 3 m2, jeżeli ich ościeża są tynkowane. Oblicz powierzchnię ściany pokazanej na rysunku, zakładając, że ościeża będą otynkowane.

Ilustracja do pytania
A. 18,8 m2
B. 20,8 m2
C. 24,0 m2
D. 22,0 m2
Wybierając odpowiedź inną niż 20,8 m2, można wpaść w pułapkę błędnych założeń dotyczących obliczeń powierzchni ścian do tynkowania. Wiele osób może zignorować kluczowe zasady dotyczące odliczania powierzchni otworów, co prowadzi do nieprawidłowych wyników. Na przykład, wybierając odpowiedzi 18,8 m2 lub 22,0 m2, można błędnie odliczyć oba otwory okienne, co jest niewłaściwe, ponieważ nie są one większe niż 3 m2 i nie powinny być odliczane. Inny błąd polega na nieodliczeniu otworu drzwiowego, co jest niezgodne z zasadami. Powierzchnie do tynkowania powinny być obliczane zgodnie z obowiązującymi standardami, które jasno definiują zasady dotyczące otworów w ścianach. Niezrozumienie tych wytycznych prowadzi do marnotrawstwa materiałów i zwiększenia kosztów robót budowlanych. Kluczowe jest, aby zawsze analizować każdą powierzchnię w kontekście jej wymagań budowlanych oraz zasady dotyczące tynkowania, co może pomóc uniknąć kosztownych błędów w przyszłości.

Pytanie 31

W murarskich mieszankach, które są narażone na działanie wilgoci, powinno się używać wapna

A. palone
B. hydrauliczne
C. gaszone
D. hydratyzowane
Wapno hydrauliczne jest materiałem budowlanym, który zyskuje swoje właściwości wiążące pod wpływem wody, co czyni je idealnym składnikiem zapraw murarskich narażonych na działanie wilgoci. W przeciwieństwie do wapna palonego i gaszonego, które mogą nie zapewniać odpowiedniej wytrzymałości w warunkach wilgotnych, wapno hydrauliczne reaguje z wodą, tworząc trwałe i mocne wiązania. W praktyce, użycie wapna hydraulicznego w zaprawach murarskich jest zgodne z normami budowlanymi, które wskazują na jego zalety w kontekście ochrony przed wilgocią i poprawy szczelności murów. Zaprawy z wapnem hydraulicznym są stosowane w konstrukcjach narażonych na działanie wilgoci, takich jak fundamenty, piwnice oraz obiekty budowlane w klimacie wilgotnym. Dzięki swojej odporności na działanie wody, zaprawy te poprawiają trwałość i stabilność budowli, co jest kluczowe w kontekście długoterminowego użytkowania.

Pytanie 32

Fragment muru przedstawiony na rysunku wykonany jest w wiązaniu

Ilustracja do pytania
A. amerykańskim.
B. weneckim.
C. polskim.
D. pospolitym.
Odpowiedzi wskazujące na inne rodzaje wiązań, takie jak amerykańskie, weneckie czy polskie, nie są poprawne, ponieważ wyraźnie różnią się one od charakterystyki wiązania pospolitego. Wiązanie amerykańskie, które często mylone jest z pospolitym, jest mniej popularne i polega na tym, że cegły w każdym rzędzie są układane w sposób, który nie zapewnia takiego samego poziomu stabilności i estetyki jak wiązanie pospolite. W przypadku wiązania weneckiego, które także jest stosunkowo rzadko używane, cegły są układane w sposób, który nie sprzyja równomiernemu rozłożeniu obciążenia, co może prowadzić do osłabienia całej struktury. Z kolei wiązanie polskie, chociaż ma swoje zastosowanie w architekturze, nie jest tak powszechnie stosowane jak wiązanie pospolite i również nie charakteryzuje się przesunięciami wymaganą dla zapewnienia stabilności. Typowe błędy myślowe prowadzące do wyboru tych niepoprawnych odpowiedzi często wynikają z pomylenia cech poszczególnych typów wiązań lub z braku zrozumienia ich praktycznych zastosowań w kontekście budownictwa. Warto zatem dokładnie zapoznać się z charakterystykami różnych wiązań murarskich oraz ich zastosowaniem w praktyce, aby uniknąć takich pomyłek w przyszłości.

Pytanie 33

Przedstawione na zdjęciu narzędzie służy m.in. do

Ilustracja do pytania
A. odkręcania śrub.
B. przecinania stali.
C. zacierania tynków.
D. wiercenia otworów.
Odpowiedź 'przecinania stali' jest jak najbardziej trafna. To co widzisz na zdjęciu, to szlifierka kątowa, potocznie zwana 'flexem'. Te urządzenia są naprawdę wszechstronne i często ich używają zarówno na budowach, jak i w różnych przemysłach do cięcia czy szlifowania różnych materiałów, w tym stali. Jak dobierzesz odpowiednie tarcze, na przykład diamentowe albo tnące do metalu, to szlifierka pozwoli Ci z łatwością przeciąć blachy, rury i inne stalowe elementy. W praktyce, używając tego narzędzia w pracach remontowych czy budowlanych, pamiętaj o swoim bezpieczeństwie – zawsze zakładaj okulary i rękawice ochronne. Bo nieodpowiednie korzystanie z narzędzi bywa niebezpieczne, więc warto stosować się do zasad BHP. Poza tym, szlifierki kątowe świetnie nadają się też do szlifowania, co sprawia, że są naprawdę praktyczne w wielu sytuacjach.

Pytanie 34

Przedstawiony na rysunku sprzęt służy do

Ilustracja do pytania
A. zmywania tynków kamyczkowych.
B. nakrapiania tynków.
C. suszenia tynków.
D. odkurzania powierzchni muru przed tynkowaniem.
Ważne jest, żeby dobrze rozumieć, do czego służy agregat tynkarski. Jak ktoś sugeruje inne funkcje tego sprzętu, to może popełnić poważne błędy w pracach budowlanych. Proces suszenia tynków niestety nie ma nic wspólnego z używaniem agregatu, bo to się dzieje dopiero po nałożeniu tynku. Nakrapianie tynków to pierwszy krok zanim tynki będą wysychać. Chociaż zmywanie tynków kamyczkowych może wydawać się na miejscu, to w rzeczywistości potrzebne są do tego inne narzędzia. Odkurzanie ścian przed tynkowaniem ma sens, ale do tego wystarczą podstawowe rzeczy jak odkurzacz budowlany czy szczotka, a nie agregat. Dlatego tak ważne jest zrozumienie, jak działają różne narzędzia budowlane - to pozwoli uniknąć kosztownych błędów i zapewnić lepszą jakość pracy.

Pytanie 35

Na ilustracji przedstawiono fragment stropu

Ilustracja do pytania
A. Kleina.
B. Akermana.
C. Fert.
D. Teriva.
Strop Kleina stanowi jedno z bardziej klasycznych rozwiązań w budownictwie, które zyskało popularność dzięki swojej solidności oraz prostocie konstrukcyjnej. W jego budowie wykorzystuje się stalowe belki, co pozwala na znaczne zmniejszenie ciężaru całej konstrukcji, a jednocześnie zapewnia wysoką nośność. Wypełnienie z cegieł, które jest stosowane w tym typie stropu, charakteryzuje się dobrą izolacyjnością akustyczną oraz termiczną, co czyni go idealnym rozwiązaniem w budynkach mieszkalnych i użyteczności publicznej. Strop Kleina jest również zgodny z normami budowlanymi, co czyni go bezpiecznym i trwałym rozwiązaniem. Z punktu widzenia inżynierii, ważnym aspektem jest możliwość dostosowania tego typu stropu do różnych warunków oraz obciążeń, co czyni go elastycznym rozwiązaniem w projektowaniu budynków. Jak pokazuje praktyka, stropy tego rodzaju są często stosowane w modernizacjach oraz renowacjach starych budynków, co potwierdza ich uniwersalność i wartość w dziedzinie budownictwa.

Pytanie 36

Ile pojemników zawierających 25 kg tynku cienkowarstwowego akrylowego będzie potrzebnych do pokrycia dwóch ścian osłonowych budynku o wymiarach 12 m × 8 m każda, jeżeli zużycie wynosi 3,5 kg na 1 m2 powierzchni ściany?

A. 14 pojemników
B. 28 pojemników
C. 27 pojemników
D. 42 pojemniki
Aby obliczyć liczbę wiader tynku cienkowarstwowego potrzebną do otynkowania dwóch ścian osłonowych o wymiarach 12 m × 8 m każda, najpierw należy obliczyć całkowitą powierzchnię tych ścian. Powierzchnia jednej ściany wynosi 12 m × 8 m = 96 m², więc dla dwóch ścian powierzchnia wynosi 2 × 96 m² = 192 m². Następnie, biorąc pod uwagę zużycie tynku wynoszące 3,5 kg na 1 m², obliczamy całkowite zużycie tynku: 192 m² × 3,5 kg/m² = 672 kg tynku. Tynk dostępny jest w wiaderkach po 25 kg, więc obliczając ilość wiader, dzielimy całkowitą wagę przez wagę jednego wiadra: 672 kg ÷ 25 kg/wiadro = 26,88 wiader. Ponieważ nie możemy mieć ułamkowej ilości wiadra, zaokrąglamy w górę do 27 wiader. W praktyce, przy takich obliczeniach zaleca się zawsze uwzględnić dodatkowy margines na straty materiałowe, które mogą wystąpić podczas pracy, jednak w tym przypadku 27 wiader jest dokładnie obliczoną wartością. Warto również zwrócić uwagę na różne rodzaje tynków i ich właściwości, co może wpłynąć na końcowy efekt estetyczny oraz trwałość powłoki.

Pytanie 37

Jaką ilość kg suchej mieszanki trzeba zakupić do realizacji tynku gipsowego o grubości 10 mm na powierzchni 15 m2, jeżeli zużycie wynosi 1 kg na m2 przy grubości 1 cm?

A. 25,0 kg
B. 15,0 kg
C. 2,5 kg
D. 1,5 kg
W przypadku podawania błędnych odpowiedzi w odniesieniu do zapotrzebowania na suchą mieszankę tynkarską ważne jest, aby zrozumieć, w jaki sposób konstruuje się obliczenia. Wiele osób może błędnie przyjąć, że zużycie materiału jest zależne tylko od powierzchni, a nie od grubości tynku. Na przykład, odpowiedzi takie jak 25,0 kg mogą wynikać z niepoprawnego przeliczenia lub założenia, że grubość tynku jest większa niż 10 mm, co prowadzi do nadmiernego oszacowania potrzebnej ilości materiału. Inna możliwość to mylne obliczenia, w których ktoś może przyjąć, że zużycie wynosi 2 kg/m2 zamiast właściwego 1 kg/m2, co także prowadzi do błędnych wyników. Z kolei odpowiedzi, które sugerują ilości takie jak 2,5 kg czy 1,5 kg, mogą wynikać z pomyłki w obliczeniach lub nieznajomości podstawowych zasad obliczania zapotrzebowania na materiały budowlane. Kluczowym elementem w takich obliczeniach jest zawsze dokładne określenie wszystkich parametrów, takich jak powierzchnia, grubość oraz właściwości samego materiału. Ważne jest, aby dokładnie znać standardowe wartości zużycia materiałów budowlanych, które są określone przez producentów i branżowe wytyczne. Zachęcam do zapoznania się z tymi danymi, co pozwoli uniknąć nieporozumień oraz błędnych oszacowań w przyszłych projektach budowlanych.

Pytanie 38

Rodzaj rusztowania wykorzystywanego w pomieszczeniach, zbudowanego z dwóch podpór oraz pomostu roboczego, to rusztowanie

A. stojakowe
B. modułowe
C. wspornikowe
D. kozłowe
Rusztowanie kozłowe to świetne rozwiązanie, zwłaszcza w zamkniętych przestrzeniach. Składa się z dwóch podpór i jednego pomostu roboczego, co sprawia, że montuje się je naprawdę szybko i bez większych problemów. To coś, co jest super przydatne przy robieniu remontów czy budowie tam, gdzie miejsca jest mało. Kozły robocze są mega pomocne, gdy trzeba sięgnąć do wyżej położonych rzeczy, jak malowanie sufitów czy zakładanie instalacji. Dodatkowo, ich konstrukcja spełnia normy bezpieczeństwa, więc nie trzeba się obawiać o bezpieczeństwo podczas pracy. Tego typu rusztowania można znaleźć w mieszkaniówkach i różnych obiektach komercyjnych, gdzie przestrzeń jest ograniczona, ale potrzebna jest odpowiednia wysokość robocza.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Ile trzeba zapłacić za cegły potrzebne do zbudowania ściany o powierzchni 28 m2, jeżeli 140 cegieł jest wymaganych do wykonania 1 m2 ściany o grubości 38 cm, a cena jednej cegły wynosi 1,50 zł?

A. 3 920,00 zł
B. 5 880,00 zł
C. 1 596,00 zł
D. 7 980,00 zł
Aby obliczyć koszt cegieł potrzebnych do wykonania ściany o powierzchni 28 m², zaczynamy od ustalenia, ile cegieł potrzebujemy. Z danych wynika, że do wykonania 1 m² ściany potrzeba 140 cegieł. Zatem dla 28 m² obliczamy: 28 m² * 140 cegieł/m² = 3 920 cegieł. Następnie, znając cenę jednej cegły, która wynosi 1,50 zł, obliczamy całkowity koszt: 3 920 cegieł * 1,50 zł/cegła = 5 880,00 zł. To podejście jest zgodne z najlepszymi praktykami w budownictwie, gdzie przed rozpoczęciem prac kosztorysowych dokonuje się szczegółowych obliczeń, aby uniknąć niedoszacowania materiałów budowlanych. Dobrze przeprowadzone obliczenia pozwalają na efektywne zarządzanie budżetem i uniknięcie dodatkowych kosztów na etapie realizacji projektu.