Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 18 grudnia 2025 16:11
  • Data zakończenia: 18 grudnia 2025 16:32

Egzamin zdany!

Wynik: 34/40 punktów (85,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W sprężarce pneumatycznej nie ma możliwości regulacji ciśnienia powietrza. Jakie jest najbardziej prawdopodobne źródło awarii?

A. Przerwanie obwodu elektrycznego, który zasila silnik sprężarki.
B. Uszkodzenie membrany w reduktorze sprężarki.
C. Uszkodzenie uszczelki w zaworze zwrotnym łączącym zbiornik z rurą tłoczącą.
D. Zabrudzenie zaworu zasysającego powietrze
Nieprawidłowe wnioski dotyczące problemów z regulacją ciśnienia powietrza w sprężarce pneumatycznej często wynikają z błędnego zrozumienia roli poszczególnych elementów systemu. Przerwanie obwodu elektrycznego zasilającego silnik napędzający sprężarkę nie wpływa na samą regulację ciśnienia, ponieważ silnik, mimo braku zasilania, nie ma wpływu na wewnętrzne funkcje reduktora. Dodatkowo, uszkodzenie uszczelki w zaworze zwrotnym, chociaż może powodować wycieki powietrza, nie jest bezpośrednią przyczyną braku regulacji ciśnienia, a raczej skutkiem ubocznym, który może manifestować się w inny sposób, na przykład w postaci spadku ciśnienia w zbiorniku. Zabrudzenie zaworu zasysającego powietrze również prowadzi do problemów, ale jego wpływ na regulację jest pośredni i zależny od innych czynników. Ważne jest, aby przy analizie awarii sprężarki stosować logiczne podejście, które uwzględnia wszystkie aspekty działania systemu pneumatycznego, w tym rolę reduktora w kontrolowaniu ciśnienia. Zrozumienie mechanizmów działania sprężarki i jej komponentów jest kluczowe dla skutecznego diagnozowania problemów i wdrażania skutecznych rozwiązań w praktyce przemysłowej.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Na podstawie przedstawionych danych katalogowych narzędzia skrawającego wskaż wartość głębokości warstwy skrawanej, którą należy ustawić w obrabiarce CNC dla obróbki zgrubnej.

Rodzaj obróbkiDokładność obróbkiChropowatość powierzchni
(Ra) μm
Zakres posuwów
mm/obr
Zakres
głębokości
mm
Obróbka dokładnaIT6-IT90,32÷1,250,05÷0,30,5÷2
Obróbka średniodokładnaIT9-IT112,5÷50,2÷0,52÷4
Obróbka zgrubnaIT12-IT1410÷40≥0,4≥4
A. 5,0 mm
B. 0,5 mm
C. 0,8 mm
D. 2,0 mm
Wartość głębokości warstwy skrawanej, którą należy ustawić w obrabiarce CNC dla obróbki zgrubnej, wynosi 5,0 mm. Zgodnie z danymi katalogowymi, podczas obróbki zgrubnej zaleca się głębokości skrawania wynoszące co najmniej 4 mm, co czyni tę odpowiedź poprawną. Ustalenie optymalnej głębokości skrawania jest kluczowe dla efektywności procesu obróbczy. Zbyt mała głębokość może prowadzić do wydłużenia czasu obróbki oraz niższej efektywności materiałowej, podczas gdy zbyt duża głębokość może powodować nadmierne obciążenie narzędzia, co w skrajnych przypadkach prowadzi do jego uszkodzenia. W praktyce, głębokość skrawania powinna być dostosowywana do rodzaju materiału oraz rodzaju narzędzia. Przykładowo, w obróbce stali narzędziowej często stosuje się głębokości skrawania w zakresie 5-10 mm, co zwiększa wydajność procesu i zmniejsza ryzyko przegrzania narzędzi. Dla zachowania wysokiej jakości obróbki, warto również monitorować stan narzędzia podczas pracy oraz stosować odpowiednie chłodziwa, co wpływa na jego trwałość i efektywność skrawania.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

W jakim celu stosuje się enkodery w systemach automatyki?

A. Poprawa jakości dźwięku
B. Zwiększanie mocy silnika
C. Pomiar przemieszczenia i prędkości
D. Redukcja zużycia energii
Enkodery są niezbędnym elementem w systemach automatyki, ponieważ pozwalają na precyzyjny pomiar przemieszczenia i prędkości. Te urządzenia przetwarzają ruch mechaniczny na sygnał elektryczny, co umożliwia dokładne śledzenie pozycji i ruchu elementów w maszynach. Na przykład w robotyce, enkodery są używane do precyzyjnej kontroli położenia ramion robotów, co jest kluczowe dla dokładności i powtarzalności operacji. W przemyśle maszynowym, enkodery pomagają monitorować prędkość obrotową silników, co jest istotne dla synchronizacji procesów produkcyjnych. Stosowanie enkoderów to standard w branży automatyki, ponieważ ich zdolność do dostarczania dokładnych danych w czasie rzeczywistym znacząco poprawia efektywność i bezpieczeństwo systemów przemysłowych. Enkodery mogą być inkrementalne lub absolutne, w zależności od potrzeb aplikacji, co dodatkowo zwiększa ich wszechstronność. Dzięki temu, firmy mogą implementować bardziej zaawansowane systemy sterowania, które są w stanie dynamicznie reagować na zmiany w procesie produkcyjnym, optymalizując tym samym działanie całego systemu.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Jaki symbol literowy, zgodny z normą IEC 61131, wykorzystywany jest w oprogramowaniu sterującym dla PLC do identyfikacji jego fizycznych wejść dyskretnych?

A. S
B. R
C. |
D. Q
Symbol literowy "|" jest kluczowym elementem w standardzie IEC 61131, który definiuje sposób programowania sterowników PLC. W kontekście adresowania fizycznych wejść dyskretnych, ten symbol pełni rolę prefiksu przed numerem wejścia, co umożliwia jednoznaczne wskazanie, które z cyfrowych wejść jest używane w danym programie. Przykładowo, zapis "|X0" odnosi się do pierwszego wejścia dyskretnego, co jest zgodne z najlepszymi praktykami w branży automatyki. Taki system adresowania ułatwia programistom pracę, ponieważ pozwala na łatwe rozpoznanie, które urządzenie jest połączone z danym wejściem. Ponadto, posługiwanie się tym standardem sprzyja lepszej organizacji kodu oraz jego późniejszej konserwacji, co jest szczególnie istotne w długoterminowych projektach automatyzacji. Zrozumienie i umiejętność stosowania tego symbolu jest podstawą efektywnego programowania w kontekście automatyki przemysłowej.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Jakie urządzenie napędowe ma następujące parametry: średnica tłoka – 42 mm, średnica tłoczyska – 32 mm, skok tłoka – 150 mm, ciśnienie nominalne – 24 MPa, maksymalna prędkość tłoka – 10 m/s, częstotliwość pracy – 10 Hz?

A. Siłownik hydrauliczny
B. Silnik pneumatyczny
C. Siłownik pneumatyczny
D. Silnik hydrauliczny
Wybór silnika pneumatycznego lub siłownika pneumatycznego byłby niewłaściwy z kilku kluczowych względów. Po pierwsze, pneumatyka opiera się na sprężonym powietrzu jako medium roboczym, co ogranicza siłę generowaną przez urządzenie w porównaniu do hydrauliki, gdzie wykorzystuje się ciecz pod dużym ciśnieniem. W przykładzie podano ciśnienie nominalne 24 MPa, co jest typowe dla systemów hydraulicznych, a nie pneumatycznych, gdzie maksymalne ciśnienia są zazwyczaj znacznie niższe, wynoszące kilka barów. Dodatkowo, siłowniki pneumatyczne mają inną charakterystykę działania, w której skok i prędkość tłoka mogą być znacznie ograniczone z uwagi na naturalne właściwości sprężonego powietrza - jego kompresyjność i podatność na zmiany objętości. Z kolei silnik hydrauliczny, mimo że również korzysta z ciśnienia hydraulicznego, ma na celu przekształcenie energii hydraulicznej na ruch obrotowy, co nie odpowiada właściwościom opisanym w pytaniu, gdyż dotyczy ono ruchu linearnego. Dlatego powszechnym błędem jest mylenie zastosowań i charakterystyk tych urządzeń, co może prowadzić do niewłaściwego doboru sprzętu w praktyce przemysłowej, a tym samym do obniżenia wydajności oraz zwiększenia kosztów eksploatacji.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Który z wymienionych przewodów należy zastosować w celu podłączenia sterownika wyposażonego w moduł komunikacyjny Ethernet do switcha przedstawionego na ilustracji?

Ilustracja do pytania
A. Koncentryczny 75 Ω.
B. Profibus 2-żyłowy w oplocie.
C. UTP kat. 5.
D. Profibus 4-żyłowy w oplocie.
Jak wybierzesz zły kabel do łączenia urządzeń w sieci Ethernet, to możesz narobić sobie problemów. Profibus, niezależnie od tego, czy ma 2 czy 4 żyły, to standard używany głównie w automatyce, ale nie nadaje się do Ethernetu. Te kable są stworzone do fieldbus i nie ogarniają protokołu Ethernet, więc nie jest to dobre rozwiązanie. Kabel koncentryczny 75 Ω był popularny w starszych systemach, jak koaksjalne sieci Ethernet, ale dzisiaj to już trochę archaizm, bo nie spełnia wymagań nowoczesnych aplikacji, które potrzebują większej przepustowości. Wybierając niewłaściwy kabel, możesz narazić się na gorszą jakość sygnału i więcej błędów w przesyłaniu danych, co może spowodować, że sieć zacznie się przeciążać lub urządzenia przestaną ze sobą gadać. A to w automatyce to już w ogóle może zrobić niezły bałagan. Dlatego ważne jest, żeby wybierać odpowiednie kable, jak UTP kat. 5, które są zgodne z Ethernetem i zapewniają dobrą jakość połączeń.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Radiator, który ma zanieczyszczenia z pasty termoprzewodzącej, powinien być oczyszczony przy użyciu

A. alkoholu izopropylowego
B. sprężonego powietrza
C. gazu technicznego
D. wody destylowanej
Alkohol izopropylowy jest idealnym środkiem do czyszczenia radiatorów z pasty termoprzewodzącej. Jego właściwości rozpuszczające pozwalają skutecznie usunąć zanieczyszczenia, nie uszkadzając przy tym delikatnych powierzchni radiatora. W praktyce, stosowanie alkoholu izopropylowego jest powszechną metodą w branży elektroniki, gdzie czystość komponentów jest kluczowa dla ich prawidłowego działania. Przygotowując radiator do ponownego montażu, należy upewnić się, że wszelkie resztki pasty termoprzewodzącej zostały całkowicie usunięte, aby zapewnić efektywne przewodnictwo cieplne. Alkohol izopropylowy, ze względu na swoją szybkość odparowywania, minimalizuje ryzyko pozostawienia wilgoci na czyszczonej powierzchni. Warto również zaznaczyć, że stosowanie alkoholu izopropylowego jest zgodne z najlepszymi praktykami w zakresie konserwacji sprzętu elektronicznego, co potwierdzają liczne standardy branżowe, takie jak IPC-7711/7721 dotyczące naprawy i konserwacji elektronicznych obwodów drukowanych.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Według zasad rysowania schematów układów pneumatycznych, symbolem składającym się z litery A oraz cyfr oznacza się

A. zawory pneumatyczne
B. pompy
C. siłowniki
D. elementy sygnalizacyjne
Odpowiedź "siłowniki" jest poprawna, ponieważ zgodnie z międzynarodowymi standardami rysowania schematów układów pneumatycznych, litera A w symbolach literowo-cyfrowych odnosi się do elementów wykonawczych, jakimi są siłowniki. Siłowniki pneumatyczne przekształcają energię sprężonego powietrza w ruch mechaniczny, co jest kluczowe w automatyzacji procesów przemysłowych. Mogą występować w różnych formach, takich jak siłowniki liniowe, które poruszają się w linii prostej, oraz siłowniki obrotowe, które wykonują ruch obrotowy. W praktyce siłowniki są wykorzystywane w takich zastosowaniach jak podnoszenie, przesuwanie lub obracanie elementów w maszynach przemysłowych. Zrozumienie i umiejętność prawidłowego oznaczania tych komponentów jest niezbędna dla inżynierów i techników pracujących w dziedzinie pneumatyki, aby zapewnić efektywne projektowanie i eksploatację systemów pneumatycznych, zgodnie z normami ISO 1219 oraz PN-EN 982, które określają zasady rysowania schematów oraz oznaczeń dla takich układów.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Kierunek obrotu wirnika silnika indukcyjnego trójfazowego można zmienić poprzez

A. zmianę częstotliwości napięcia zasilającego
B. szeregowe podłączenie dodatkowego rezystora do jednego z uzwojeń
C. zmianę kolejności faz w sieci zasilającej silnik
D. zmianę liczby par biegunów magnetycznych
Zmiana kolejności faz w silniku indukcyjnym trójfazowym jest kluczowym sposobem na zmianę kierunku obrotów wirnika. Każda z trzech faz dostarcza prąd o różnej różnicy faz, co generuje zmieniające się pole magnetyczne w stojanie. Te różnice faz prowadzą do obrotu pola magnetycznego, a tym samym również wirnika. Przykładowo, w zastosowaniach przemysłowych, kiedy silnik musi zmieniać kierunek obrotów w odpowiedzi na zmieniające się warunki pracy, zmiana kolejności zasilania jest najczęściej stosowaną metodą, ponieważ jest efektywna i prosta do zaimplementowania. Standardy branżowe, takie jak IEC 60034, również podkreślają tę metodę jako bezpieczną i efektywną w aplikacjach, gdzie wymagana jest dynamiczna kontrola kierunku obrotów. Dzięki zrozumieniu tej zasady, inżynierowie mogą lepiej projektować systemy napędowe i optymalizować je w zależności od wymagań aplikacji.