Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 31 stycznia 2026 07:51
  • Data zakończenia: 31 stycznia 2026 08:29

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakiego pomiaru w instalacji należy dokonać, aby zweryfikować podstawową ochronę przed porażeniem prądem?

A. Czasu działania wyłącznika RCD
B. Rezystancji uziemienia
C. Prądu zadziałania wyłącznika RCD
D. Rezystancji izolacji
Mierzenie prądu zadziałania wyłącznika RCD oraz czasu jego zadziałania są istotnymi czynnikami w kontekście ochrony przeciwporażeniowej, ale nie są bezpośrednio związane z pomiarem izolacji. RCD, czyli wyłącznik różnicowoprądowy, ma na celu wykrywanie prądów upływowych, które mogą prowadzić do porażenia prądem, jednak jego skuteczność nie zastępuje pomiaru rezystancji izolacji. Mierzenie rezystancji uziemienia jest również ważne, ponieważ zapewnia dobrą drogę powrotną dla prądu w sytuacji awaryjnej, ale nie dostarcza informacji o stanie izolacji przewodów. Typowym błędem myślowym jest mylenie różnych aspektów ochrony elektrycznej i skupienie się wyłącznie na funkcjonowaniu RCD, co może prowadzić do niepełnego zrozumienia zagadnienia ochrony przeciwporażeniowej. Aby zapewnić pełne bezpieczeństwo, konieczne jest jednoczesne uwzględnienie różnych parametrów instalacji, a nie ograniczanie się tylko do jednego z nich. Dlatego kluczowe jest, aby nie tylko polegać na pomiarach RCD, ale również regularnie kontrolować rezystancję izolacji, co jest zgodne z najlepszymi praktykami w branży elektrycznej.

Pytanie 2

Ile wynosi częstotliwość przebiegu przedstawionego wzorem?
$$ u(t) = 50 \sin\left(628t - \frac{\pi}{2}\right) V $$

A. 628 Hz
B. 314 Hz
C. 50 Hz
D. 100 Hz
Analizując ten przebieg sinusoidalny, łatwo potknąć się na tym, co w równaniu za co odpowiada. Wzór u(t) = 50·sin(628t − π/2) V zawiera kilka parametrów i część osób intuicyjnie łapie się nie za ten, co trzeba. Amplituda 50 V bywa błędnie brana za częstotliwość, bo liczba jest znajoma z sieci 50 Hz. To jednak tylko maksymalna wartość napięcia, czyli wysokość wierzchołków sinusoidy, a nie liczba cykli na sekundę. Częstotliwość decyduje o tym, jak gęsto te wierzchołki są upakowane w czasie, a nie jak są wysokie. Z kolei liczby 314 Hz czy 628 Hz wyglądają pozornie sensownie, bo pojawia się w równaniu 628 i ktoś może po prostu „przepisać” tę liczbę jako częstotliwość. To typowy błąd: utożsamianie pulsacji ω [w rad/s] z częstotliwością f [w Hz]. Między nimi jest konkretna zależność: ω = 2πf, więc zawsze trzeba tę relację uwzględnić. Jeżeli ktoś bez zastanowienia weźmie 628 jako f, pominie czynnik 2π, co merytorycznie jest po prostu niepoprawne. Gdyby wziąć 314 Hz, to sugeruje to, że ktoś podzielił 628 przez 2, ale nadal bez użycia π. To też dość częsty skrót myślowy: „coś tam z dwójką”, ale już bez solidnego oparcia w wzorze. Tymczasem poprawne przekształcenie wygląda tak: 628 = 2πf, więc f = 628 / (2π). Dopiero wtedy dostajemy 100 Hz. Przesunięcie fazowe −π/2 również bywa mylące. Niektórzy próbują z niego wyczytać zmianę częstotliwości, a faza tylko przesuwa przebieg w czasie, nie zmieniając liczby okresów w ciągu sekundy. W praktyce, przy analizie obwodów prądu przemiennego, przy doborze zabezpieczeń, przy ocenie nagrzewania się elementów, zawsze pracujemy na poprawnie wyliczonej częstotliwości f, a nie na samej pulsacji. Normy i dobre praktyki (choćby w klasycznej elektroenergetyce 50 Hz albo przy prostownikach, gdzie pojawia się 100 Hz po wyprostowaniu dwupołówkowym) opierają się na rozróżnieniu tych wielkości. Dlatego tak ważne jest, żeby przy każdym sinusie od razu pamiętać: częstotliwość liczymy z ω = 2πf, a nie zgadujemy po „ładnych” liczbach w równaniu.

Pytanie 3

Które urządzenie przedstawiono na rysunku?

Ilustracja do pytania
A. Wyłącznik zmierzchowy.
B. Ogranicznik przepięć.
C. Prostownik dwupołówkowy.
D. Przekaźnik bistabilny.
Wybór odpowiedzi innej niż ogranicznik przepięć może wynikać z kilku błędów w analizie charakterystyki przedstawionego urządzenia. Na przykład, wyłącznik zmierzchowy jest urządzeniem, które reaguje na zmiany natężenia światła, co nie ma zastosowania w kontekście przedstawionym na rysunku. Przekaźnik bistabilny, z kolei, służy do utrzymania stanu obwodu elektrycznego w jednym z dwóch stanów, co również nie odpowiada funkcji ogranicznika przepięć. Ograniczniki przepięć i prostowniki dwupołówkowe różnią się znacznie w budowie i zastosowaniu – prostowniki są używane do konwersji prądu zmiennego na stały, co jest zupełnie inną funkcjonalnością. Typowe myślenie prowadzące do błędnych wyborów opiera się na nieznajomości zastosowania poszczególnych urządzeń w praktyce. W kontekście ochrony przed przepięciami, jednym z kluczowych aspektów jest dobra znajomość oznaczeń i specyfikacji technicznych, które wskazują na przeznaczenie urządzenia. Niezrozumienie podstawowych różnic pomiędzy tymi urządzeniami oraz ich właściwego zastosowania w systemach elektrycznych może prowadzić do nieodpowiednich decyzji, co w konsekwencji zwiększa ryzyko uszkodzeń sprzętu oraz naruszenia norm bezpieczeństwa. Warto zainwestować czas w zapoznanie się z dokumentacją techniczną i normami branżowymi, aby uniknąć takich sytuacji w przyszłości.

Pytanie 4

Określ typ usterki, która blokuje załączenie prawidłowego wyłącznika różnicowoprądowego zainstalowanego w systemie elektrycznym?

A. Przerwa w przewodzie ochronnym
B. Uszkodzenie izolacji przewodu ochronnego
C. Zwarcie doziemne przewodu neutralnego
D. Przerwa w przewodzie neutralnym
Uszkodzenie izolacji przewodu ochronnego, przerwa w przewodzie neutralnym oraz przerwa w przewodzie ochronnym to zjawiska, które mogą wpływać na bezpieczeństwo instalacji elektrycznej, lecz nie są bezpośrednio związane z niemożnością załączenia wyłącznika różnicowoprądowego. Przede wszystkim, uszkodzenie izolacji przewodu ochronnego oznacza, że przewód ten może przewodzić prąd do uziemienia, co z kolei może prowadzić do niebezpiecznych sytuacji, ale nie uniemożliwia załączenia RCD. Podobnie, przerwa w przewodzie neutralnym może wpłynąć na stabilność pracy urządzeń, jednak RCD może funkcjonować, jeżeli prąd wpływający i wypływający są zgodne, nawet gdy przewód neutralny jest przerwany przy końcach obwodu. Przerwa w przewodzie ochronnym jest niebezpieczna i może być powodem zagrożenia, ale nie działa bezpośrednio na zasadzie RCD. Typowe błędy myślowe prowadzące do takich nieprawidłowych wniosków mogą obejmować mylenie funkcji przewodów neutralnych i ochronnych oraz niezrozumienie zasady działania wyłączników różnicowoprądowych. Wiedza na temat tych zjawisk jest kluczowa dla bezpiecznego projektowania i eksploatacji instalacji elektrycznych, a ich nieznajomość może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa użytkowników oraz całych systemów elektrycznych.

Pytanie 5

Na podstawie ilustracji przedstawiającej fragment instalacji elektrycznej, określ technikę wykonania instalacji.

Ilustracja do pytania
A. Natynkowa na uchwytach.
B. Wtynkowa.
C. Natynkowa prowadzona w rurkach.
D. Podtynkowa.
Na fotografii łatwo się pomylić, bo widać przewody na wierzchu muru, więc część osób od razu myśli o instalacji natynkowej. Tymczasem kluczowe jest to, na jakim etapie budowy jesteśmy i co się stanie dalej. Przewody są ułożone na surowej ścianie z cegły i wyraźnie przygotowane do przykrycia tynkiem – to jest właśnie klasyczna instalacja wtynkowa. Błąd polega często na utożsamianiu każdego widocznego przewodu z instalacją natynkową, a to nie do końca tak działa. Instalacja natynkowa na uchwytach to rozwiązanie docelowe: przewody lub przewody w izolacji są prowadzone po gotowej powierzchni ściany, mocowane klipsami, listwami lub korytami i pozostają widoczne po zakończeniu robót wykończeniowych. Stosuje się ją np. w piwnicach, garażach, warsztatach, gdzie nikt nie planuje tynkowania ścian albo priorytetem jest łatwy dostęp do przewodów. Na zdjęciu widać mury w stanie surowym i brak jakiegokolwiek wykończenia, więc trudno mówić o docelowej instalacji natynkowej. Z kolei instalacja natynkowa prowadzona w rurkach polega na układaniu przewodów wewnątrz rur sztywnych lub peszli po powierzchni ściany; rury są dobrze widoczne i tworzą osobną, mechaniczną osłonę. Tu czegoś takiego nie widać – przewody biegną swobodnie, jedynie przytwierdzone do cegły. Częsty błąd myślowy polega też na myleniu pojęć „podtynkowa” i „wtynkowa”. W języku potocznym bywa to mieszane, ale w technice instalacyjnej podtynkowa oznacza zwykle prowadzenie przewodów w rurkach lub peszlach zatopionych w tynku lub w konstrukcji ściany. W pokazanym przypadku przewód leży bezpośrednio na murze i dopiero zostanie zatopiony w tynku, bez ciągłej rury ochronnej – czyli jest to typowa wtynkowa. Żeby dobrze rozpoznawać takie sytuacje, warto zawsze zadać sobie pytanie: czy to jest stan końcowy instalacji, czy dopiero przygotowanie pod tynk? I czy przewód ma własną osłonę mechaniczną w postaci rury, czy jego ochroną będzie później warstwa tynku. Odpowiedź na te dwie kwestie zwykle rozwiewa wątpliwości.

Pytanie 6

Które z podanych narzędzi nie jest potrzebne do zamontowania listew elektroinstalacyjnych na ścianach z użyciem kołków rozporowych?

A. Piła do metalu
B. Poziomnica
C. Ściągacz izolacji
D. Młotek
Ściągacz izolacji to narzędzie, które głównie służy do ściągania izolacji z przewodów elektrycznych, ale do montażu listew elektroinstalacyjnych nie będzie potrzebny. Podczas montażu najważniejsze jest, żeby dobrze umiejscowić listwy na ścianie i upewnić się, że są równo przyczepione. Do tego wystarczą podstawowe narzędzia, jak poziomnica, młotek czy kołki rozporowe. ściągacz nie jest tu konieczny, bo nie pracujemy bezpośrednio z przewodami. Warto korzystać z odpowiednich narzędzi do danego zadania, bo to poprawia efektywność pracy i zmniejsza ryzyko uszkodzeń. Dlatego przy montażu listew najważniejsze są poziomica i młotek do wbijania kołków, żeby wszystko było stabilne i na poziomie.

Pytanie 7

W układzie przedstawionym na rysunku zmierzono rezystancję pomiędzy poszczególnymi żyłami kabla, otrzymując następujące wyniki: RA-B = 0; RB-C = ∞; RC-D = ∞; RD-A= 0. Z wyników pomiarów wynika, że przerwana jest

Ilustracja do pytania
A. żyła A
B. żyła B
C. żyła D
D. żyła C
Odpowiedź dotycząca żyły C jako przerwanej jest prawidłowa z powodu wyników pomiarów rezystancji, które wskazują na istotną przerwę w obwodzie. Rezystancje R_A-B i R_D-A wynoszą 0, co oznacza, że obydwie żyły są w pełni przewodzące, co jest zgodne z teorią obwodów elektrycznych. Z kolei nieskończona rezystancja pomiędzy żyłami B-C i C-D sugeruje, że prąd nie ma możliwości przemieszczenia się przez te żyły, co jest klasycznym objawem uszkodzenia. W praktyce, identyfikacja przerwy w obwodzie jest kluczowa dla diagnostyki systemów elektrycznych, zwłaszcza w instalacjach przemysłowych. Przykład zastosowania tej wiedzy można znaleźć w systemach monitorujących, które regularnie sprawdzają integralność obwodów, co przyczynia się do minimalizacji ryzyka awarii. W kontekście norm, stosuje się procedury testowania rezystancji zgodnie z normami IEC 60364, co pozwala na systematyczne podejście do diagnozowania i utrzymania instalacji elektrycznych.

Pytanie 8

Który schemat montażowy instalacji oświetleniowej przedstawionej na zamieszczonym planie jest prawidłowy?

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.
Schemat C. przedstawia prawidłowe podłączenie instalacji oświetleniowej, co jest kluczowe dla bezpieczeństwa i funkcjonalności systemu. W tym schemacie przewody fazowe (L) są właściwie podłączone do przełącznika bistabilnego, co umożliwia sterowanie oświetleniem z jednego miejsca. Przewody neutralne (N) są bezpośrednio podłączone do lamp, co jest zgodne z normami bezpieczeństwa. Taki układ zapewnia, że w momencie wyłączenia przełącznika, nie ma napięcia na lampach, co minimalizuje ryzyko porażenia prądem. Ponadto, stosowanie przełączników bistabilnych jest zgodne z dobrymi praktykami w projektowaniu instalacji oświetleniowych, co podnosi komfort użytkowania. Warto również zaznaczyć, że zgodnie z normami PN-IEC 60364, odpowiednie podłączenie przewodów jest fundamentalne dla prawidłowego funkcjonowania instalacji oraz jej bezpieczeństwa.

Pytanie 9

W instalacjach elektrycznych w budynkach mieszkalnych o napięciu 230 V nie wolno używać opraw oświetleniowych zrealizowanych w klasie ochrony

A. 0
B. I
C. II
D. III
Odpowiedź 0 jest prawidłowa, ponieważ oprawy oświetleniowe w klasie ochronności 0 nie mają żadnego zabezpieczenia przed porażeniem elektrycznym. W instalacjach elektrycznych o napięciu 230 V, które są powszechnie stosowane w mieszkaniach, użycie opraw klasy 0 stwarza poważne ryzyko dla użytkowników. Oprawy te nie są wyposażone w żadne izolacje ani mechanizmy, które mogłyby zapobiec kontaktowi z częściami naładowanymi prądem. Przykładem zastosowania standardów bezpieczeństwa jest norma PN-HD 60364, która określa wymagania dotyczące ochrony przed porażeniem elektrycznym oraz klasyfikację urządzeń. W codziennym użytkowaniu, stosowanie opraw oświetleniowych klasy II, które posiadają dodatkowe źródła izolacji, jest kluczowe, aby zapewnić bezpieczeństwo w przypadku awarii. Właściwe dobieranie opraw oświetleniowych zgodnie z ich klasą ochronności ma na celu minimalizację ryzyka porażenia elektrycznego oraz poprawę ogólnego bezpieczeństwa instalacji elektrycznej w budynkach mieszkalnych.

Pytanie 10

Wyzwalacz elektromagnetyczny wyłącznika toru prądowego, przedstawiamy na schemacie blokowym jak na rysunku, oznacza się na schemacie elektrycznym symbolem graficznym

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Wybór innej odpowiedzi, niż oznaczenie "B", może prowadzić do nieporozumień w zakresie identyfikacji wyzwalaczy elektromagnetycznych. Odpowiedzi, które nie są zgodne z definicją i standardami schematów elektrycznych, mogą wywołać szereg problemów związanych z interpretacją projektów elektronicznych. Na przykład, nieprawidłowe symbole mogą prowadzić do błędów w instalacji i eksploatacji urządzeń. W schematach elektrycznych każdy symbol ma swoje unikalne znaczenie, a ich niewłaściwe zrozumienie może skutkować nieefektywnymi rozwiązaniami oraz stwarzaniem zagrożeń dla bezpieczeństwa. Przy projektowaniu obwodów zabezpieczeń, istotne jest, aby każdy komponent był jednoznacznie zidentyfikowany, ponieważ nawet małe błędy mogą prowadzić do poważnych konsekwencji. Ponadto, korzystanie z nieautoryzowanych lub mylnych symboli może być sprzeczne z obowiązującymi normami branżowymi, co może skutkować problemami prawnymi w przypadku awarii. Dlatego kluczowe jest, aby na każdym etapie projektowania oraz realizacji prac korzystać z poprawnych symboli i wytycznych, które odpowiadają rzeczywistym funkcjom urządzeń w obwodzie elektrycznym.

Pytanie 11

Na rysunku przedstawiono sposób przeprowadzenia pomiaru

Ilustracja do pytania
A. napięcia dotykowego.
B. prądu udarowego zwarciowego.
C. rezystancji uziemienia.
D. impedancji pętli zwarcia.
Pomiar rezystancji uziemienia, jak przedstawiono na zdjęciu, jest kluczowym aspektem zapewnienia bezpieczeństwa w instalacjach elektrycznych. Uziemienie ma na celu ochronę ludzi oraz sprzętu przed skutkami awarii, a jego skuteczność można ocenić jedynie poprzez dokładne pomiary. Wykorzystanie miernika do pomiaru rezystancji uziemienia pozwala na stwierdzenie, czy wartości rezystancji mieszczą się w granicach określonych norm, takich jak PN-EN 50522, która wskazuje, że rezystancja uziemienia powinna być niższa niż 10 Ω dla obiektów użyteczności publicznej. Prawidłowe uziemienie minimalizuje ryzyko porażenia prądem elektrycznym oraz poprawia stabilność systemu zasilania. W praktyce, pomiar ten jest szczególnie istotny podczas instalacji nowych systemów elektrycznych, ich modernizacji, a także w okresowych inspekcjach, które powinny być przeprowadzane zgodnie z wymaganiami prawa budowlanego oraz normami ochrony przeciwporażeniowej. Ważne jest, aby każdy instalator posiadał wiedzę o technikach pomiarowych oraz umiał interpretować wyniki w kontekście zapewnienia bezpieczeństwa operacji elektrycznych.

Pytanie 12

Który zestaw oznaczeń literowych barw izolacji żył jest właściwy dla przewodu przedstawionego na ilustracji?

Ilustracja do pytania
A. BK, BU, GY
B. BN, BK, GNYE
C. BU, GY, GNYE
D. BN, BK, GY
Wybranie odpowiedzi "BN, BK, GY" jest poprawne, ponieważ zgodnie z polskimi normami dotyczącymi oznaczeń kolorystycznych przewodów elektrycznych, brązowy (BN) jest kolorem przewodu fazowego, czarny (BK) to przewód neutralny, a żółto-zielony (GY) identyfikuje przewód ochronny. Ta kolorystyka ma kluczowe znaczenie dla bezpieczeństwa i poprawnego działania instalacji elektrycznych. Praktyczne przykłady zastosowania tych zasad można znaleźć w projektach instalacji w budynkach mieszkalnych i przemysłowych, gdzie właściwe oznaczenie przewodów pomoże uniknąć błędów podczas montażu oraz konserwacji. Użycie odpowiednich kolorów pozwala na szybką identyfikację funkcji każdego przewodu, co jest niezbędne w przypadku awarii czy modernizacji. Współczesne standardy, takie jak PN-IEC 60446, podkreślają wagę przestrzegania tych norm w celu zapewnienia bezpieczeństwa osób pracujących z instalacjami elektrycznymi oraz zapobiegania ryzyku porażenia prądem.

Pytanie 13

Na którym rysunku przedstawiono oprawę oświetleniową rastrową?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Oprawa oświetleniowa rastrowa, jak wskazuje poprawna odpowiedź, odgrywa kluczową rolę w zapewnieniu efektywnego oświetlenia w różnych przestrzeniach, takich jak biura, hale produkcyjne czy sale wykładowe. Charakteryzuje się ona specyficzną konstrukcją rastrową, której celem jest równomierne rozprowadzanie światła oraz zmniejszenie efektu olśnienia. W oprawie oznaczonej jako B dostrzegamy zastosowanie takiej osłony, co jest zgodne z normami oświetleniowymi, np. PN-EN 12464-1, które podkreślają znaczenie komfortu użytkowników w środowisku pracy. Praktycznym zastosowaniem oświetlenia rastrowego jest jego umiejscowienie w przestrzeniach biurowych, gdzie odpowiednie rozproszenie światła zmniejsza zmęczenie wzroku oraz poprawia efektywność pracy. Warto również zaznaczyć, że tego typu oprawy są dostępne w różnych wariantach, co pozwala na ich dopasowanie do specyficznych potrzeb architektonicznych i użytkowych, przy jednoczesnym zachowaniu estetyki wnętrza.

Pytanie 14

Jaką funkcję w wyłączniku nadprądowym pełni element wskazany na rysunku czerwoną strzałką?

Ilustracja do pytania
A. Styku ruchomego.
B. Wyzwalacza zwarciowego.
C. Wyzwalacza przeciążeniowego.
D. Komory łukowej.
Pojęcia związane ze stykami ruchomymi, komorami łukowymi oraz wyzwalaczami przeciążeniowymi często mylone są z funkcją wyzwalacza zwarciowego, co prowadzi do nieporozumień w zrozumieniu działania wyłączników nadprądowych. Styki ruchome są elementami, które w momencie zadziałania wyłącznika fizycznie przerywają obwód, jednak same w sobie nie mają zdolności do detekcji zwarcia. Ich rola jest czysto mechaniczna i nie obejmuje analizy prądu. Komory łukowe natomiast służą do gaszenia łuku elektrycznego, który powstaje w momencie przerywania obwodu, ale również nie mają zdolności wykrywania zwarć. Wyzwalacze przeciążeniowe, z drugiej strony, odpowiadają za zadziałanie w sytuacji długotrwałego nadmiaru prądu, co różni się od nagłego zwarcia. Często występujące nieporozumienia dotyczące tych elementów mogą wynikać z błędnej interpretacji ich funkcji. Kluczowe jest zrozumienie, że wyzwalacz zwarciowy jest wyspecjalizowanym elementem odpowiedzialnym za natychmiastowe przerwanie obwodu w przypadku niebezpiecznego wzrostu prądu, co ma fundamentalne znaczenie dla ochrony instalacji elektrycznej. Zatem, znajomość działania tych elementów oraz ich roli w systemie ochrony elektrycznej jest niezbędna dla zapewnienia bezpieczeństwa w instalacjach i umożliwienia prawidłowego doboru komponentów w zgodzie z normami branżowymi.

Pytanie 15

Jakie z wymienionych usterek w obwodzie odbiorczym instalacji elektrycznej powinno spowodować automatyczne odcięcie napięcia przez wyłącznik różnicowoprądowy?

A. Skok napięcia
B. Zwarcie międzyfazowe
C. Przeciążenie obwodu
D. Upływ prądu
Przepięcie, przeciążenie i zwarcie międzyfazowe to takie awaryjne sytuacje, które się zdarzają w instalacjach elektrycznych, ale RCD wcale się na to nie aktywuje. Przepięcie, to nic innego jak nagły wzrost napięcia, który może złamać urządzenia, ale nie zmienia różnicy prądów, a to jest kluczowe dla działania RCD. RCD nie służy do ochrony przed przepięciami, w takich sytuacjach są ograniczniki przepięć. Przeciążenie natomiast, to co się dzieje, gdy podłączamy zbyt dużo sprzętu do obwodu, co zwiększa prąd powyżej normy, ale RCD nie reaguje, bo nie wykrywa różnicy prądów w takim przypadku. Wtedy na szczęście mamy wyłączniki nadprądowe, które odcinają zasilanie przy za dużym prądzie. A jeśli chodzi o zwarcie międzyfazowe, to jest to, gdy przewody fazowe się stykają i prąd leci jak szalony, ale znów, RCD na to nie działa, bo nie ma żadnej różnicy prądów do wykrycia. Więc ważne jest, by zrozumieć, jak te wszystkie zabezpieczenia w elektryce współpracują, żeby zapewnić bezpieczeństwo, co jest zgodne z najlepszymi praktykami w tej branży.

Pytanie 16

Do którego rodzaju ochrony przeciwporażeniowej zaliczane są środki ochrony opisane w ramce?

1.Urządzenia ochronne różnicowoprądowe o znamionowym prądzie różnicowym nieprzekraczającym 30 mA.
2.Dodatkowe połączenia wyrównawcze ochronne.
A. Ochrony przy uszkodzeniu (dodatkowej).
B. Ochrony uzupełniającej.
C. Ochrony przez zastosowanie bardzo niskiego napięcia.
D. Ochrony podstawowej.
Wybór ochrony podstawowej, ochrony przy uszkodzeniu (dodatkowej) lub ochrony przez zastosowanie bardzo niskiego napięcia jako odpowiedzi na to pytanie jest błędny, ponieważ te kategorie ochrony nie obejmują środków opisanych w ramce. Ochrona podstawowa opiera się na właściwej konstrukcji instalacji i jej komponentów, a nie na dodatkowych urządzeniach zabezpieczających. Kluczowym elementem ochrony podstawowej jest odpowiednie uziemienie oraz izolacja przewodów, co nie jest wystarczające w przypadku, gdy pojawia się ryzyko porażenia prądem. Ochrona przy uszkodzeniu, często utożsamiana z dodatkowymi metodami zabezpieczeń, również nie ma zastosowania do urządzeń różnicowoprądowych, które są zaprojektowane z myślą o działaniu w sytuacjach awaryjnych. Z kolei ochrona przez zastosowanie bardzo niskiego napięcia nie odnosi się do standardowych metod ochrony w instalacjach zasilających, lecz dotyczy specyficznych zastosowań, na przykład w systemach automatyki lub w przypadku zasilania LED. Wybór nieodpowiednich kategorii ochrony świadczy o niepełnym zrozumieniu mechanizmów, które stoją za funkcjonowaniem systemów zabezpieczeń w instalacjach elektrycznych. Kluczowe jest zrozumienie, że ochrona uzupełniająca ma na celu zapewnienie dodatkowego poziomu bezpieczeństwa, który jest niezbędny, gdy inne metody ochrony zawiodą. Dlatego wybór ochrony uzupełniającej powinien być preferowany w każdej nowoczesnej instalacji elektrycznej.

Pytanie 17

Na którym rysunku przedstawiono schemat połączeń umożliwiający pomiar energii elektrycznej pobranej przez użytkownika?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Schemat C pokazuje, jak powinny być połączone przewody fazowe (L) i neutralne (N). To jest ważne, bo tylko w ten sposób można dobrze zmierzyć, ile energii elektrycznej zużywa użytkownik. Licznik musi być odpowiednio podłączony, żeby dokładnie naliczał zużycie energii. Liczniki działają na zasadzie pomiaru prądu, który płynie przez obciążenie, a także napięcia między przewodami. Jeśli coś jest źle podłączone, to mogą być błędy w odczycie, a to nie jest zgodne z normami, które mówią o pomiarach energii elektrycznej, jak PN-EN 62053. Regularne kalibrowanie liczników też jest dobrym pomysłem, bo wtedy są bardziej dokładne i lepiej działają. Wiedza o tym, jak właściwie podłączać wszystko, jest naprawdę kluczowa dla elektryków i inżynierów zajmujących się pomiarami energii. Dzięki temu można lepiej zarządzać energią i unikać niepotrzebnych kosztów.

Pytanie 18

Jakie dane powinny być zawarte w protokole po przeprowadzeniu badań po modernizacji sieci?

A. Nazwa przedsiębiorstwa energetycznego, do którego podłączono sieć, nazwisko zleceniodawcy.
B. Rodzaje mierników, nazwisko i uprawnienia osoby wykonującej prace.
C. Nazwisko zleceniodawcy, nazwisko wykonawcy, czas przeprowadzania pomiarów.
D. Nazwa przedsiębiorstwa energetycznego, do którego podłączono sieć, nazwisko wykonawcy.
Protokół z badań po modernizacji sieci musi zawierać kluczowe informacje, takie jak nazwisko zleceniodawcy, nazwisko wykonawcy oraz czas wykonywania pomiarów. Te elementy są niezbędne, aby zapewnić pełną przejrzystość i odpowiedzialność w procesie pomiarów. Zleceniodawca, jako osoba zlecająca prace, powinien być wymieniony, aby można było w razie potrzeby zidentyfikować odpowiednie osoby odpowiedzialne za projekt. Nazwisko wykonawcy jest istotne, ponieważ odpowiada on za prawidłowe wykonanie badań, co jest kluczowe dla zapewnienia bezpieczeństwa i jakości sieci. Czas wykonywania pomiarów także ma znaczenie, ponieważ umożliwia śledzenie postępu prac oraz weryfikację, czy pomiary zostały przeprowadzone zgodnie z harmonogramem. Wszystkie te dane są zgodne z najlepszymi praktykami w branży oraz standardami, które zalecają dokumentowanie szczegółowych informacji o przebiegu prac oraz wynikach badań.

Pytanie 19

W instalacji elektrycznej wykorzystującej przekaźnik priorytetowy, po osiągnięciu ustawionej w tym przekaźniku wartości natężenia prądu w obwodzie

A. niepriorytetowym, zostaje wyłączony obwód niepriorytetowy
B. priorytetowym, zostaje wyłączony obwód niepriorytetowy
C. priorytetowym, zostaje wyłączony obwód priorytetowy
D. niepriorytetowym, zostaje wyłączony obwód priorytetowy
Wyjątkowo istotne jest zrozumienie, jak działają przekaźniki priorytetowe i jakie mają zastosowanie w instalacjach elektrycznych. Nieprawidłowe odpowiedzi sugerują, że obwód priorytetowy może być wyłączany lub że obwód niepriorytetowy nie jest wyłączany w odpowiedzi na przekroczenie natężenia prądu. Te koncepcje są mylne, ponieważ przekaźniki priorytetowe zostały zaprojektowane właśnie po to, aby chronić obwody priorytetowe przed opróżnieniem z energii lub przeciążeniem, co mogłoby prowadzić do poważnych awarii. Zamiast tego, w momencie, gdy prąd w obwodzie priorytetowym wzrasta, przekaźnik powinien odciąć zasilanie z obwodu, który nie jest kluczowy dla działania systemu. Wiele osób myli tę funkcję, zakładając, że priorytetowe obwody są te, które zawsze muszą być zasilane, co nie jest zgodne z rzeczywistością. Typowy błąd myślowy polega na nazywaniu obwodu priorytetowego jako tego, który w każdej sytuacji powinien mieć dostęp do energii, co jest niezgodne z zasadami zarządzania energią. W rzeczywistości, kluczowym celem przekaźników priorytetowych jest ochrona zasobów i ich racjonalne zarządzanie, co oznacza, że w sytuacji zagrożenia ważniejsze staje się odłączenie obwodu niepriorytetowego. W instalacjach elektrycznych, szczególnie w kontekście norm branżowych i dobrych praktyk, zrozumienie hierarchii obwodów jest kluczowe dla zapewnienia efektywności energetycznej i bezpieczeństwa systemów.

Pytanie 20

Który układ połączeń sond pomiarowych miernika rezystancji IMU względem badanego uziomu Rx jest zgodny z zasadami pomiaru rezystancji uziemienia?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
W przypadku niepoprawnych odpowiedzi, takich jak A, C i D, można zauważyć, że nie spełniają one wymogów dotyczących układu sond pomiarowych. W odpowiedzi A, potencjalna sonda znajduje się zbyt blisko badanego uziomu, co prowadzi do zniekształcenia wyników, ponieważ nie uwzględnia się rzeczywistego spadku napięcia w gruncie. W odpowiedzi C, nieprawidłowe rozmieszczenie sond skutkuje brakiem możliwości precyzyjnego pomiaru rezystancji, co może prowadzić do błędnych wniosków na temat stanu uziomu. W odpowiedzi D, konieczność zrozumienia, jak prąd wpływa na pomiary rezystancji, nie została spełniona, co jest kluczowe dla obliczeń związanych z bezpieczeństwem instalacji elektrycznych. Typowe błędy myślowe to ignorowanie zasad dotyczących odległości sond, co może prowadzić do błędnych wniosków o efektywności uziemienia. W praktyce, brak znajomości zasad pomiarowych może mieć poważne konsekwencje, takie jak uszkodzenie sprzętu lub zagrożenie dla bezpieczeństwa użytkowników. Dlatego ważne jest, aby przed przystąpieniem do pomiarów zrozumieć podstawowe zasady dotyczące rozmieszczenia sond oraz ich wpływu na dokładność wyniku, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 21

Przedstawiony na rysunku przyrząd służy do

Ilustracja do pytania
A. lokalizacji przewodów w instalacji elektrycznej.
B. sprawdzania ciągłości połączeń w instalacji.
C. pomiaru parametrów oświetlenia.
D. bezdotykowego pomiaru rezystancji przewodów.
Przedstawiony przyrząd to detektor przewodów elektrycznych, który jest istotnym narzędziem w branży elektrycznej. Jego głównym celem jest lokalizacja przewodów w instalacjach elektrycznych, co stanowi kluczowy etap w różnych pracach remontowych i instalacyjnych. Dzięki precyzyjnym funkcjom detekcji, możliwe jest zlokalizowanie przewodów schowanych w ścianach, co pozwala uniknąć ich uszkodzenia podczas wiercenia czy innych prac budowlanych. Zastosowanie tego urządzenia jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa i efektywności pracy, ponieważ minimalizuje ryzyko uszkodzenia instalacji oraz potencjalnych zagrożeń związanych z porażeniem prądem. Warto dodać, że tego typu detektory mogą również pomóc w identyfikacji źle wykonanych instalacji elektrycznych, co może być kluczowe dla zapewnienia bezpieczeństwa użytkowników. Oprócz tego, dobrze jest znać zasady i normy dotyczące instalacji elektrycznych, takie jak PN-IEC 60364, które podkreślają znaczenie lokalizacji przewodów w zapewnieniu skutecznych i bezpiecznych prac budowlanych.

Pytanie 22

Na rysunku przedstawiono symbol graficzny

Ilustracja do pytania
A. odgromnika zaworowego.
B. warystora.
C. odgromnika wydmuchowego.
D. iskiernika.
Wybór odpowiedzi 'wary stora' jest poprawny, ponieważ symbol graficzny przedstawiony na rysunku rzeczywiście reprezentuje warystor, który jest kluczowym elementem w systemach ochrony przed przepięciami. Warystor działa na zasadzie zmiany rezystancji w odpowiedzi na przyłożone napięcie, co pozwala na skuteczne odprowadzanie nadmiaru energii w sytuacjach awaryjnych. Jest on często stosowany w obwodach zasilających, aby chronić urządzenia elektroniczne przed uszkodzeniami spowodowanymi nagłymi wzrostami napięcia. Standardy takie jak IEC 61643-1 określają wymagania dla urządzeń ochronnych, w tym warystorów, co czyni je niezbędnymi w projektowaniu systemów zabezpieczeń. Warto również zauważyć, że warystory są często łączone z innymi elementami ochrony, takimi jak odgromniki czy bezpieczniki, aby zapewnić kompleksową ochronę. Zastosowanie warystorów w urządzeniach domowych oraz przemysłowych pomaga w zwiększeniu ich żywotności i niezawodności.

Pytanie 23

Na tynku wykonanym na ścianie działowej z cegły pełnej wytyczono miejsce dla rurek PVC. Jakie narzędzia należy zgromadzić, aby zapewnić szybki i precyzyjny montaż rurek?

A. Taśmę mierniczą, wiertarkę, piłę do metalu, młotek
B. Taśmę mierniczą, młotek, wiertarkę udarową, wiertło widiowe dostosowane do średnicy kołka rozporowego, poziomicę, zestaw wkrętaków
C. Punktak, młotek, wiertarka udarowa, wiertło widiowe dostosowane do średnicy kołka rozporowego, piła do metalu, zestaw wkrętaków
D. Wiertarkę, punktak, zestaw wkrętaków
Wybór punktaka, młotka, wiertarki udarowej, wiertła widiowego dopasowanego do rozmiarów kołka rozporowego, piły do metalu oraz kompletu wkrętaków jest odpowiedni do montażu rurek PVC na ścianie działowej z cegły pełnej. Punktak i młotek są niezbędne do precyzyjnego wyznaczania miejsc, w których będą wiercone otwory, co pozwala na uniknięcie uszkodzeń materiału oraz zachowanie dokładności w montażu. Wiertarka udarowa, w połączeniu z wiertłem widiowym, zapewnia skuteczne wiercenie w twardym materiale, jakim jest cegła pełna, a odpowiednie dopasowanie wiertła do rozmiaru kołka gwarantuje stabilne mocowanie rurek. Piła do metalu umożliwia precyzyjne przycinanie elementów instalacji, a komplet wkrętaków jest niezbędny do montażu uchwytów mocujących. Taki zestaw narzędzi wpisuje się w dobre praktyki branżowe, gdzie kluczową rolę odgrywa precyzja i odpowiednie przygotowanie do wykonania zadania, co przekłada się na trwałość i bezpieczeństwo instalacji. Przykładem może być sytuacja, w której nieodpowiednie narzędzia mogą prowadzić do uszkodzenia materiałów lub nietrwałego montażu, co w efekcie wiąże się z dodatkowymi kosztami i czasem potrzebnym na poprawki.

Pytanie 24

W jaki sposób należy ułożyć przewody w instalacji elektrycznej, jeśli na jej planie znajduje się symbol przedstawiony na rysunku?

Ilustracja do pytania
A. Pod tynkiem.
B. Na tynku.
C. W kanałach przypodłogowych.
D. W listwach elektroinstalacyjnych.
Wybór odpowiedzi związanej z układaniem przewodów w listwach elektroinstalacyjnych, na tynku lub w kanałach przypodłogowych jest błędny z kilku powodów. Zastosowanie listw elektroinstalacyjnych, choć zapewnia łatwy dostęp do przewodów, nie jest zgodne z zasadami estetyki oraz bezpieczeństwa w nowoczesnych projektach budowlanych. Listwy są często narażone na uszkodzenia mechaniczne, a ich obecność w pomieszczeniach może prowadzić do nieestetycznego wyglądu oraz problematycznego dostępu do przewodów w przypadku ich awarii. Umieszczanie przewodów na tynku to kolejna nieodpowiednia praktyka, ponieważ przewody są wtedy narażone na działanie czynników zewnętrznych, co może prowadzić do ich szybszego zużycia oraz wzrostu ryzyka zwarcia. Poza tym, układanie przewodów w kanałach przypodłogowych, choć stosowane w niektórych przypadkach, również nie jest zalecane, zwłaszcza w budynkach mieszkalnych, gdzie można zastosować bardziej estetyczne i bezpieczne rozwiązania, takie jak ułożenie przewodów pod tynkiem. Kluczowym błędem jest myślenie, że dostępność przewodów w przypadku ich awarii jest ważniejsza niż ich długoterminowa ochrona i estetyka. Wymogi dotyczące instalacji w budynkach mieszkalnych przewidują, że przewody powinny być ukryte, co nie tylko poprawia wygląd wnętrza, ale także zwiększa bezpieczeństwo użytkowników.

Pytanie 25

Ile wynosi moc całkowita odbiornika zmierzona w układzie przedstawionym na schemacie, jeżeli watomierze wskazują odpowiednio P1 = 1 000 W i P2 = 500 W?

Ilustracja do pytania
A. 500 W
B. 866 W
C. 1 500 W
D. 2 250 W
W tym układzie mamy klasyczny trójfazowy pomiar mocy metodą dwóch watomierzy. Odbiornik jest niesymetryczny, ale rezystancyjny, więc pracuje z cos φ ≈ 1 (prąd w fazie z napięciem). Dla takiego przypadku obowiązuje bardzo prosta zasada: moc całkowita odbiornika trójfazowego równa się sumie algebraicznej wskazań obu watomierzy. Czyli liczymy po prostu: P = P1 + P2 = 1000 W + 500 W = 1500 W. To właśnie 1 500 W jest mocą czynną pobieraną przez odbiornik z sieci. Warto zauważyć, że metoda dwóch watomierzy jest standardowo stosowana w praktyce przy pomiarach mocy w sieciach trójfazowych 3‑przewodowych (bez przewodu neutralnego), co opisują m.in. normy z serii PN‑EN 61557 oraz podręczniki z pomiarów elektrycznych. Jeżeli obciążenie jest rezystancyjne, watomierze zwykle pokazują wartości dodatnie i interpretacja jest bardzo prosta – wystarczy zsumować wskazania. W rzeczywistych instalacjach, np. w rozdzielniach zasilających silniki trójfazowe, grzałki trójfazowe czy piece oporowe, technik po prostu odczytuje P1 i P2, dodaje je i ma od razu moc całkowitą zestawu. Moim zdaniem to jedno z bardziej praktycznych narzędzi, bo pozwala szybko sprawdzić, czy odbiornik nie przekracza mocy znamionowej zabezpieczeń albo transformatora zasilającego. Dobrą praktyką jest też porównanie wyniku z mocą obliczeniową instalacji, żeby ocenić rezerwę mocy i ewentualnie dobrać odpowiednie przekładniki prądowe i napięciowe do stałych pomiarów energii.

Pytanie 26

Jakiej kategorii urządzeń elektrycznych dotyczą przekładniki pomiarowe?

A. Do transformatorów
B. Do prądnic tachometrycznych
C. Do indukcyjnych sprzęgieł dwukierunkowych
D. Do wzmacniaczy maszynowych
Wybór odpowiedzi związanej z wzmacniaczami maszynowymi, prądnicami tachometrycznymi lub indukcyjnymi sprzęgłami dwukierunkowymi jest mylny, ponieważ te urządzenia pełnią zupełnie inne funkcje w systemach elektrycznych. Wzmacniacze maszynowe są wykorzystywane do amplifikacji sygnałów, co oznacza, że zwiększają one moc sygnału elektrycznego, ale nie mają nic wspólnego z pomiarami prądu czy napięcia. Prądnice tachometryczne, z kolei, są zaprojektowane do konwersji prędkości obrotowej na sygnał elektryczny, co jest kluczowe w zastosowaniach związanych z kontrolą ruchu, ale nie dotyczą one transformacji sygnałów do pomiarów. Indukcyjne sprzęgła dwukierunkowe stosowane są w systemach napędowych, gdzie przekazują moment obrotowy między maszynami, jednak nie zajmują się przekształcaniem wartości prądu czy napięcia. Kluczowym błędem w rozumieniu tych urządzeń jest mylenie ich funkcji z funkcją przekładników pomiarowych. Aby uniknąć takich pomyłek, warto dokładnie zapoznać się z definicjami i zastosowaniami różnych grup urządzeń elektrycznych, co pomoże zrozumieć ich rolę w infrastrukturze energetycznej oraz przemysłowej.

Pytanie 27

Którym symbolem graficznym należy oznaczyć łącznik świecznikowy na schemacie ideowym instalacji elektrycznej?

Ilustracja do pytania
A. Symbolem 3.
B. Symbolem 2.
C. Symbolem 4.
D. Symbolem 1.
Odpowiedź z numerem 4 jest trafna, bo w schematach elektrycznych łącznik świecznikowy zazwyczaj oznaczamy właśnie tym symbolem. Zgodnie z różnymi normami, zarówno międzynarodowymi, jak i krajowymi, jak PN-EN 60617, te graficzne znaki muszą być jednolite, żeby każdy mógł łatwo je rozczytać. Łącznik świecznikowy to ważny element, który pozwala na włączanie i wyłączanie świateł, więc jego oznaczenie musi być zgodne z przyjętymi zasadami. Na przykład, przy projektowaniu nowych instalacji elektrycznych w domach, odpowiednie oznaczenie łączników jest kluczowe, żeby później wszystko działało bez problemu i było łatwe w obsłudze. Jak się dobrze znasz na symbolach graficznych, to przyczyniasz się do tego, że praca z instalacjami elektrycznymi jest bezpieczniejsza i bardziej efektywna.

Pytanie 28

Który z wymienionych parametrów można zmierzyć przyrządem przedstawionym na ilustracji?

Ilustracja do pytania
A. Chwilową moc obciążenia.
B. Rezystancję izolacji.
C. Impedancję pętli zwarcia.
D. Prąd upływu.
Rezystancja izolacji jest kluczowym parametrem, który można zmierzyć przy pomocy miernika izolacji, znanego również jako megomierz. Urządzenie to jest wykorzystywane do oceny stanu izolacji elektrycznej w instalacjach i urządzeniach elektrycznych. Pomiar ten jest niezwykle istotny, ponieważ odpowiednia rezystancja izolacji zapewnia bezpieczeństwo użytkowania i zapobiega porażeniom prądem, a także minimalizuje ryzyko awarii. Miernik izolacji generuje wysokie napięcie, które powoduje, że prąd przepływa przez izolację. Na podstawie zmierzonego prądu można obliczyć rezystancję, która jest wyrażana w megaomach (MΩ). W praktyce, normy takie jak PN-EN 61557-2 określają wymagania dotyczące pomiarów rezystancji izolacji. Regularne pomiary rezystancji izolacji są zalecane w ramach działań prewencyjnych, szczególnie w przemyśle, gdzie eksploatacja urządzeń elektrycznych odbywa się w trudnych warunkach. Dbanie o odpowiednie wartości rezystancji izolacyjnej to nie tylko wymóg prawny, ale również dobra praktyka, która przyczynia się do zapewnienia długotrwałej i bezawaryjnej pracy instalacji.

Pytanie 29

Jakie oznaczenie powinno być umieszczone na puszce instalacyjnej, która ma być użyta do połączenia uszkodzonego przewodu YDYo 5x4 mm2 w obszarze myjni samochodowej?

A. IP54 4x4 mm2
B. IP56 5x4 mm2
C. IP45 5x6 mm2
D. IP43 5x4 mm2
Prawidłowa odpowiedź, IP56 5x4 mm2, odnosi się do odpowiednich standardów ochrony przed pyłem i wodą, które są kluczowe w środowisku myjni samochodowych. Oznaczenie IP56 wskazuje na wysoką odporność na kurz oraz możliwość ochrony przed silnymi strumieniami wody, co jest istotne w kontekście pracy w mokrym środowisku. W przypadku połączeń elektrycznych w takich miejscach, szczególnie przy przewodach o przekroju 5x4 mm2, ważne jest, aby wybrać elementy spełniające normy bezpieczeństwa. W praktyce, zastosowanie puszki z oznaczeniem IP56 zapewnia, że instalacja będzie chroniona przed niekorzystnymi warunkami zewnętrznymi, co przekłada się na dłuższą żywotność komponentów oraz mniejsze ryzyko awarii. Standardy takie jak IEC 60529 definiują klasyfikację ochrony, co pozwala na dobór odpowiednich materiałów w zależności od specyfiki danego miejsca. W przypadku myjni, wytrzymałość na działanie wody oraz odporność na pył są niezbędne dla zapewnienia niezawodności i bezpieczeństwa eksploatacji urządzeń elektrycznych.

Pytanie 30

Kontrolując warunek automatycznego wyłączenia zasilania jako element ochrony przed porażeniem w systemach TN-S, realizowanego przez nadprądowy wyłącznik instalacyjny, oprócz pomiaru impedancji pętli zwarcia konieczne jest określenie dla zastosowanego wyłącznika

A. wartości prądu wyłączającego
B. progu zadziałania wyzwalacza przeciążeniowego
C. maksymalnej wielkości prądu zwarciowego
D. czasu działania wyzwalacza zwarciowego
Analizując inne dostępne odpowiedzi, dostrzegamy pewne nieprawidłowości w podejściu do tematu sprawdzania warunków samoczynnego wyłączenia zasilania. Maksymalna wartość prądu zwarciowego jest istotnym parametrem, lecz nie jest bezpośrednio związana z prawidłowym funkcjonowaniem wyłącznika w kontekście ochrony przeciwporażeniowej. O ile znajomość wartości zwarciowych jest przydatna w doborze wyłącznika, sama maksymalna wartość nie określa, czy dany wyłącznik zadziała w odpowiednim czasie. Próg zadziałania wyzwalacza przeciążeniowego również nie ma zastosowania w przypadku wyłącznika, którego główną funkcją jest ochrona przed zwarciem, a nie przeciążeniem. W kontekście warunków samoczynnego wyłączenia zasilania kluczowym parametrem pozostaje wartość prądu wyłączającego, który musi być niższy niż wartość prądu zwarciowego, aby zrealizować efektywne odcięcie zasilania. Ostatnia z propozycji, dotycząca czasu zadziałania wyzwalacza zwarciowego, również nie odnosi się bezpośrednio do wymaganego pomiaru. Choć czas reakcji wyzwalacza jest istotny dla bezpieczeństwa, to jednak w kontekście samoczynnego wyłączenia zasilania bardziej kluczowe jest przynajmniej zrozumienie i pomiar wartości prądu wyłączającego, aby zapewnić odpowiednią reakcję w przypadku awarii. Ignorowanie tych zasad i niezrozumienie funkcji poszczególnych parametrów może prowadzić do błędów w doborze urządzenia ochronnego oraz, co gorsza, do sytuacji narażających użytkowników na ryzyko porażenia elektrycznego.

Pytanie 31

Jakie kroki oraz w jakiej kolejności należy wykonać przy wymianie uszkodzonego łącznika?

A. Wymontować uszkodzony łącznik, odłączyć zasilanie, sprawdzić ciągłość połączeń
B. Odłączyć zasilanie, wymontować uszkodzony łącznik, sprawdzić ciągłość połączeń
C. Odłączyć zasilanie, sprawdzić brak zasilania, wymontować uszkodzony łącznik
D. Załączyć zasilanie, sprawdzić ciągłość połączeń, wymontować uszkodzony łącznik
Wybór odpowiedzi "Odłączyć napięcie, sprawdzić brak napięcia, wymontować uszkodzony łącznik" jest poprawny, ponieważ stanowi zgodne z najlepszymi praktykami podejście do wymiany uszkodzonego łącznika. Zawsze należy najpierw odłączyć zasilanie elektryczne, co minimalizuje ryzyko porażenia prądem oraz zapobiega dalszym uszkodzeniom instalacji. Po odłączeniu zasilania powinno się użyć odpowiednich narzędzi, takich jak miernik napięcia, aby upewnić się, że w obwodzie nie ma napięcia. To jest kluczowy krok, który zapewnia bezpieczeństwo technika. Dopiero po potwierdzeniu braku napięcia można przystąpić do wymontowania uszkodzonego łącznika. W praktyce, te czynności mogą być stosowane w różnorodnych warunkach, od domowych instalacji elektrycznych po złożone systemy przemysłowe. Przestrzeganie tych zasad jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 50110-1, które podkreślają znaczenie zapewnienia bezpieczeństwa podczas prac elektrycznych.

Pytanie 32

Na wyłączniku różnicowoprądowym są następujące oznaczenia:

CIF-6 30/4/003
IΔn= 0,03 A
In=30 A
~230/400 V
Prąd różnicowy i znamionowy tego wyłącznika wynoszą odpowiednio
A. 30 A i 0,03 A
B. 3 A i 0,03 A
C. 0,003 A i 30 A
D. 0,03 A i 30 A
Wybór nieprawidłowej odpowiedzi może wynikać z nieporozumień dotyczących podstawowych pojęć związanych z wyłącznikami różnicowoprądowymi. Odpowiedzi, które sugerują wartości prądu różnicowego większe od 0,03 A, mogą prowadzić do fałszywego przekonania, że wyłączniki o wyższych prądach różnicowych zapewniają lepszą ochronę, co jest błędne. Prąd różnicowy 0,03 A jest standardem dla ochrony ludzi, a jego wyższe wartości, takie jak 3 A czy 30 A, są stosowane w innych kontekstach, na przykład w obwodach zabezpieczających przed pożarami, nie zaś w kontekście ochrony ludzi przed porażeniem. Wartości prądu znamionowego również mogą być mylące; na przykład sugerowanie, że 30 A to prąd różnicowy, może prowadzić do nieprawidłowego zrozumienia zasady działania wyłącznika. Wyłącznik różnicowoprądowy ma za zadanie przede wszystkim detekcję upływu prądu, a nie regulację jego wartości w obwodzie. Dodatkowo, mylenie prądów różnicowych i znamionowych może prowadzić do niewłaściwego doboru wyłącznika w instalacjach, co z kolei może stwarzać zagrożenie dla użytkowników. Kluczowe jest zrozumienie, że poprawny dobór parametrów wyłącznika różnicowoprądowego ma fundamentalne znaczenie dla bezpieczeństwa elektrycznego w budynkach.

Pytanie 33

Do pomiaru której wielkości jest przeznaczony miernik przedstawiony na ilustracji?

Ilustracja do pytania
A. Odkształceń przebiegu napięcia.
B. Częstotliwości.
C. Spadku napięcia.
D. Współczynnika mocy.
Miernik przedstawiony na ilustracji jest przeznaczony do pomiaru współczynnika mocy, co jest kluczowe w analizie pracy układów elektrycznych. Współczynnik mocy, oznaczany jako cos φ, określa, jak efektywnie energia elektryczna jest przekształcana w pracę. W praktyce, wartości współczynnika mocy mogą sięgać od 0 do 1, gdzie 1 oznacza, że cała moc jest efektywnie wykorzystana. W przypadku obciążeń indukcyjnych, takich jak silniki, współczynnik mocy jest zazwyczaj mniejszy niż 1, co oznacza straty energii. Poprawne zarządzanie współczynnikiem mocy jest istotne w przemyśle, ponieważ niski współczynnik mocy może prowadzić do zwiększonych kosztów energii oraz kar nałożonych przez dostawców energii. Przykłady zastosowań obejmują monitorowanie i poprawę wydajności energetycznej w zakładach produkcyjnych, a także optymalizację systemów oświetleniowych i grzewczych. Zgodność z normami, takimi jak IEC 61000, jest również istotna w ocenie jakości energii elektrycznej i minimalizacji zakłóceń w systemach zasilania.

Pytanie 34

Która z przedstawionych opraw oświetleniowych najlepiej nadaje się do oświetlenia ogólnego?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Odpowiedź C jest poprawna, ponieważ reprezentuje oprawę oświetleniową typu żyrandola, która jest idealna do zastosowania w oświetleniu ogólnym. Żyrandole montowane na suficie emitują światło w sposób równomierny, co pozwala na oświetlenie całego pomieszczenia, eliminując cienie i ciemne kąty. Tego typu oprawy są często stosowane w przestrzeniach takich jak salony, jadalnie czy biura, gdzie kluczowe jest zapewnienie odpowiedniego poziomu oświetlenia dla komfortu użytkowników. Żyrandole mogą również pełnić funkcję dekoracyjną, a ich design często wzbogaca estetykę wnętrza. W standardach oświetleniowych, takich jak normy EN 12464-1, określa się zalecane poziomy oświetlenia dla różnych typów pomieszczeń, co podkreśla znaczenie zastosowania odpowiednich opraw do osiągnięcia wymaganej wydajności świetlnej. W praktyce, wybór żyrandola do oświetlenia ogólnego powinien opierać się na wielkości pomieszczenia oraz jego przeznaczeniu, co pozwoli na optymalizację zarówno funkcjonalności, jak i stylu.

Pytanie 35

Jaką metodę należy zastosować do bezpośredniego pomiaru rezystancji przewodów?

A. watomierz oraz amperomierz
B. cyfrowy watomierz
C. analogowy omomierz
D. amperomierz oraz woltomierz
Wykorzystanie watomierza cyfrowego do pomiaru rezystancji przewodów jest nieodpowiednie, ponieważ watomierz służy do pomiaru mocy elektrycznej, a nie do oceny rezystancji. Watomierz mierzy moc czynną, wyrażoną w watach, na podstawie pomiaru napięcia i natężenia prądu oraz współczynnika mocy. Użycie tego narzędzia w kontekście pomiaru rezystancji prowadzi do mylnych rezultatów, ponieważ nie uwzględnia ono specyfiki rezystancji, która jest niezależna od mocy. Podobnie, połączenie amperomierza i woltomierza również nie jest właściwe, gdyż te urządzenia mierzą natężenie prądu i napięcie, a do obliczenia rezystancji potrzebne jest odniesienie do wartości mierzonej bezpośrednio, co wymaga zastosowania omomierza. W przypadku watomierza i amperomierza, pomiar rezystancji wymagałby dodatkowego przeliczenia, co wprowadza niepotrzebne komplikacje i możliwość błędów. Coraz częściej w praktyce inżynierskiej wykorzystuje się zalecenia dotyczące stosowania omomierzy, które zapewniają dokładność i prostotę pomiarów. Zrozumienie tego, że każdy instrument ma swoje specyficzne zastosowanie, jest kluczowe dla przeprowadzania efektywnych i dokładnych pomiarów w elektrotechnice.

Pytanie 36

Na podstawie przedstawionego schematu oraz przedstawionych wyników pomiarów zlokalizuj usterkę typowego stycznika w układzie 1-fazowym, 230V.

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Zestyk 3-4 w układzie stycznika 1-fazowego powinien być otwarty, gdy cewka nie jest zasilana, a zamknięty, gdy cewka jest aktywna, co pozwala na przepływ prądu do odbiornika. W przedstawionym przypadku wynik pomiaru wykazał nieskończoność, co jednoznacznie wskazuje na uszkodzenie zestyków. W praktyce, uszkodzone zestyki mogą prowadzić do poważnych problemów w układzie, takich jak niemożność załączenia odbiornika lub jego przypadkowe wyłączenie. Dobrą praktyką w diagnostyce awarii jest regularne przeprowadzanie testów rezystancji zestyków, co pozwala na wczesne wykrywanie potencjalnych usterków. Warto również pamiętać, że zgodność z normami takimi jak IEC 60947-4-1 dotycząca urządzeń rozdzielczych zwiększa bezpieczeństwo i niezawodność instalacji elektrycznych. Używanie odpowiednich narzędzi pomiarowych oraz przestrzeganie procedur diagnostycznych jest kluczowe w utrzymaniu sprawności systemów elektrycznych.

Pytanie 37

Jakie typy przewodów instaluje się na izolatorach wspornikowych?

A. Szynowe
B. Rdzeniowe
C. Uzbrojone
D. Kabelkowe
Odpowiedź 'szynowe' jest poprawna, ponieważ szyny montowane są na izolatorach wsporczych w systemach elektroenergetycznych. Izolatory wsporcze pełnią kluczową rolę w podtrzymywaniu szyn, zapewniając jednocześnie ich izolację od otoczenia. Szyny są elementami wykorzystywanymi do przesyłania energii elektrycznej na dużą skalę, a ich zastosowanie w instalacjach wysokiego napięcia jest standardem w branży. Przykładem mogą być linie przesyłowe oraz rozdzielnie, gdzie szyny są stosowane do efektownego i bezpiecznego przekazywania prądu. Dobrą praktyką jest również korzystanie z szyn w instalacjach przemysłowych, gdzie ich zastosowanie zwiększa niezawodność oraz zmniejsza opory elektryczne. W instalacjach szynowych należy przestrzegać standardów dotyczących materiałów i konstrukcji, co zapewnia długotrwałość i bezpieczeństwo operacyjne tych systemów.

Pytanie 38

Którego z przedstawionych narzędzi należy użyć przy wymianie uszkodzonej wkładki bezpiecznika mocy typu NH?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Wybór narzędzia C jest jak najbardziej trafiony. Uchwyt bezpiecznikowy, czy jak niektórzy mówią, klucz bezpiecznikowy, został stworzony z myślą o bezpiecznej wymianie wkładek bezpiecznikowych typu NH. To narzędzie daje możliwość precyzyjnego zamocowania wkładki, co zmniejsza ryzyko jakichś nieprzyjemnych sytuacji, gdybyśmy przypadkiem dotknęli czegoś pod napięciem. W elektryce naprawdę ważne są standardy bezpieczeństwa, jak chociażby normy IEC i krajowe przepisy BHP, które mówią, że musimy korzystać z odpowiednich narzędzi podczas pracy z energią. Używając uchwytu bezpiecznikowego, zachowujemy wszystkie procedury, co jest kluczowe, by nie narazić się na porażenie prądem. To narzędzie przydaje się zwłaszcza w instalacjach elektrycznych w budynkach, zarówno mieszkalnych, jak i przemysłowych, przy wymianie bezpieczników, co jest taką rutynową robotą. Dlatego ważne jest, by każdy elektryk znał się na tym narzędziu i umiał je używać.

Pytanie 39

Jakie akcesoria, oprócz szczypiec, trzeba pobrać z magazynu, aby zasilić zamontowany plafon sufitowy, kiedy instalacja została wykonana przewodami YDYp?

A. Ściągacz izolacji, nóż monterski, wkrętak
B. Wiertarkę, lutownicę, wkrętak
C. Lutownicę, wiertarkę, ściągacz izolacji
D. Nóż monterski, wiertarkę, ściągacz izolacji
Odpowiedź, która wskazuje na konieczność użycia ściągacza izolacji, noża monterskiego i wkrętaka, jest prawidłowa, ponieważ te narzędzia są kluczowe w procesie podłączania plafonu sufitowego do instalacji elektrycznej. Ściągacz izolacji pozwala na dokładne usunięcie izolacji z końców przewodów YDYp, co jest niezbędne do ich prawidłowego połączenia. Nóż monterski jest przydatny do precyzyjnego cięcia przewodów oraz do ogólnych prac związanych z instalacją. Wkrętak natomiast jest podstawowym narzędziem do mocowania plafonu do sufitu, co wymaga użycia odpowiednich śrub. W kontekście praktyki instalacyjnej, ważne jest, aby przestrzegać standardów BHP oraz zasad dotyczących instalacji elektrycznych, co zwiększa bezpieczeństwo i funkcjonalność wykonanej pracy. Dobre praktyki obejmują również upewnienie się, że zasilanie jest wyłączone przed przystąpieniem do jakichkolwiek prac elektrycznych, co minimalizuje ryzyko porażenia prądem.

Pytanie 40

Jakiego przyrządu należy użyć, aby zmierzyć moc bierną w obwodzie?

A. Waromierza
B. Reflektometru
C. Watomierza
D. Woltomierza
Pomiar mocy w układach elektrycznych można przeprowadzać za pomocą różnych mierników, jednak nie wszystkie z nich są odpowiednie do pomiaru mocy biernej. Reflektometr jest urządzeniem, które służy do analizy odbicia sygnału w liniach transmisyjnych, a jego zastosowanie ogranicza się do problematyki związanej z impedancją i stratami sygnału, co nie ma związku z pomiarem mocy biernej. Watomierz, z drugiej strony, mierzy moc czynną, a jego działanie opiera się na pomiarze napięcia i prądu, a następnie obliczaniu mocy czynnej, co oznacza, że nie jest w stanie dostarczyć informacji na temat mocy biernej, która jest miarą energii niezużywanej. Woltomierz jest urządzeniem do pomiaru napięcia, a jedynie mierząc napięcie nie można określić mocy biernej, gdyż nie uwzględnia on parametrów prądu oraz fazy między nimi. Typowym błędem myślowym jest zatem utożsamianie różnych rodzajów mocy i mylenie ich pomiaru, co prowadzi do nieprawidłowych wniosków i decyzji w zakresie projektowania oraz eksploatacji systemów elektrycznych. Zrozumienie różnic pomiędzy mocą czynną, bierną i pozorną oraz umiejętność zastosowania odpowiednich narzędzi pomiarowych jest kluczowe dla efektywności energetycznej.