Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 8 grudnia 2025 10:43
  • Data zakończenia: 8 grudnia 2025 10:55

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaki protokół służy komputerom do informowania rutera o przynależności do konkretnej grupy multicastowej?

A. UDP
B. RIP
C. OSPF
D. IGMP
OSP, czyli Open Shortest Path First, to protokół routingu, który nie ma związku z zarządzaniem członkostwem w grupach rozgłoszeniowych. Jego podstawowym zadaniem jest wymiana informacji o trasach między routerami w obrębie tej samej sieci autonomicznej. Z kolei UDP, czyli User Datagram Protocol, jest protokołem transportowym, który nie zarządza grupami multicastowymi, lecz służy do przesyłania datagramów bez nawiązywania połączenia, co powoduje, że jest bardziej podatny na utratę pakietów. RIP, czyli Routing Information Protocol, to również protokół routingu, który koncentruje się na wyznaczaniu najkrótszych ścieżek w sieci, ale nie ma zdolności do zarządzania członkostwem w grupach multicastowych. Często błędne odpowiedzi wynikają z mylnego rozumienia roli różnych protokołów w komunikacji sieciowej. Użytkownicy mogą myśleć, że protokoły takie jak OSPF, UDP czy RIP są w stanie obsługiwać funkcje multicastowe, co prowadzi do nieporozumień. Ważne jest zrozumienie, że IGMP jest jedynym protokołem zaprojektowanym specjalnie w celu zarządzania członkostwem w grupach rozgłoszeniowych, co czyni go niezbędnym do skutecznego przesyłania danych multicastowych.

Pytanie 2

Symbol przedstawiony na ilustracji oznacza rodzaj złącza

Ilustracja do pytania
A. DVI
B. HDMI
C. COM
D. FIRE WIRE
Symbol pokazany na rysunku przedstawia złącze FireWire które jest znane również jako IEEE 1394. FireWire jest standardem komunikacyjnym opracowanym przez firmę Apple w latach 90. XX wieku. Służy do szybkiego przesyłania danych między urządzeniami multimedialnymi takimi jak kamery cyfrowe komputery czy dyski zewnętrzne. W porównaniu do innych standardów takich jak USB FireWire oferuje wyższą przepustowość i bardziej zaawansowane funkcje zarządzania danymi co czyni go idealnym wyborem do zastosowań wymagających dużej przepustowości. FireWire był popularny w branży wideo zwłaszcza przy profesjonalnym montażu wideo i transmisji danych w czasie rzeczywistym. Standard ten obsługuje tzw. hot swapping co oznacza że urządzenia mogą być podłączane i odłączane bez wyłączania komputera. W praktyce złącza FireWire można spotkać w dwóch wersjach: 4-pinowej i 6-pinowej przy czym ta druga oferuje zasilanie dla podłączonych urządzeń. Mimo że technologia ta została w dużej mierze zastąpiona przez nowsze standardy takie jak Thunderbolt czy USB 3.0 FireWire wciąż znajduje zastosowanie w niektórych niszowych aplikacjach dzięki swojej niezawodności i szybkości.

Pytanie 3

Jakie zastosowanie ma oprogramowanie Microsoft Hyper-V?

A. znajdowania zasobów w sieci
B. łączenia się z innym hostem zdalnie
C. wirtualizacji rzeczywistych komputerów
D. rozpoznawania komputera w sieci
Microsoft Hyper-V to naprawdę fajna platforma do wirtualizacji. Dzięki niej można na jednym fizycznym komputerze uruchomić kilka systemów operacyjnych, co jest super przydatne. To pozwala na lepsze wykorzystanie zasobów sprzętowych, co przekłada się na mniejsze koszty i większą elastyczność w IT. Na przykład, deweloperzy mogą stworzyć środowisko testowe, gdzie bawią się różnymi systemami i aplikacjami, nie martwiąc się o dodatkowy sprzęt. Hyper-V wspiera standardy jak Open Virtualization Format (OVF), co ułatwia przenoszenie wirtualnych maszyn między różnymi platformami. Co więcej, Hyper-V ma też świetne funkcje, jak live migration, co oznacza, że można przenieść maszyny wirtualne między serwerami bez żadnych przestojów. To jest naprawdę ważne w miejscach, gdzie liczy się ciągłość działania. Moim zdaniem, Hyper-V wprowadza wiele dobrego w zarządzaniu infrastrukturą, ułatwiając m.in. konsolidację serwerów, co z kolei pozwala na mniejsze zużycie energii.

Pytanie 4

Jaki akronim odnosi się do przepustowości sieci oraz usług, które mają między innymi na celu nadawanie priorytetów przesyłanym pakietom?

A. STP
B. PoE
C. QoS
D. ARP
Wybór innego akronimu zamiast QoS sugeruje pewne nieporozumienia dotyczące funkcji i zastosowań różnych technologii sieciowych. STP, czyli Spanning Tree Protocol, jest protokołem stosowanym do zapobiegania zapętlaniu się danych w sieciach Ethernet, a jego głównym celem jest utrzymanie stabilności struktury sieci, a nie zarządzanie przepustowością lub jakością usług. ARP, czyli Address Resolution Protocol, jest używany do mapowania adresów IP na adresy MAC, co jest podstawowym działaniem w procesie komunikacji w sieci, ale również nie ma związku z priorytetyzowaniem pakietów. PoE, czyli Power over Ethernet, pozwala na zasilanie urządzeń sieciowych przez kabel Ethernet, co jest przydatne, ale nie dotyczy bezpośrednio zarządzania przepustowością czy jakością przesyłanych danych. Wybierając błędne odpowiedzi, można popełnić błąd myślowy związany z myleniem funkcji poszczególnych technologii w sieciach. Kluczowe jest zrozumienie, że QoS jest niezbędne w środowiskach, gdzie różne typy ruchu mają różne wymagania dotyczące jakości, a inne akronimy nie są w stanie spełnić tej roli. Zrozumienie roli QoS w kontekście zarządzania ruchem jest fundamentalne dla projektowania i utrzymania wydajnych sieci.

Pytanie 5

Urządzeniem peryferyjnym pokazanym na ilustracji jest skaner biometryczny, który wykorzystuje do identyfikacji

Ilustracja do pytania
A. kształt dłoni
B. rysunek twarzy
C. linie papilarne
D. brzmienie głosu
Skanery biometryczne oparte na liniach papilarnych są jednymi z najczęściej stosowanych urządzeń do autoryzacji użytkowników. Wykorzystują unikalne wzory linii papilarnych, które są niepowtarzalne dla każdej osoby. Proces autoryzacji polega na skanowaniu odcisku palca, a następnie porównaniu uzyskanego obrazu z zapisanym wzorcem w bazie danych. Ich popularność wynika z wysokiego poziomu bezpieczeństwa oraz łatwości użycia. W wielu firmach i instytucjach stosuje się te urządzenia do zabezpieczania dostępu do pomieszczeń lub systemów komputerowych. Skanery linii papilarnych są również powszechnie używane w smartfonach, co pokazuje ich skuteczność i wygodę w codziennym użytkowaniu. W standardach biometrycznych, takich jak ISO/IEC 19794, określa się wymagania dotyczące rejestrowania, przechowywania i przesyłania danych biometrycznych. Warto podkreślić, że skuteczność tych urządzeń zależy od jakości skanowanego obrazu oraz odporności na próby oszustw. Dlatego nowoczesne systemy często korzystają z dodatkowych technik, takich jak analiza żył czy temperatura odcisku palca, aby zwiększyć poziom bezpieczeństwa.

Pytanie 6

Podstawowy rekord uruchamiający na dysku twardym to

A. BOOT
B. NTLDR
C. FDISK
D. MBR
FDISK to narzędzie do partycjonowania dysków, ale to nie jest główny rekord rozruchowy. Jego zadaniem jest robienie partycji - tworzenie, usuwanie czy modyfikowanie ich, ale nie ma to bezpośrednio związku z rozruchem. NTLDR, czyli NT Loader, to program, który odpowiada za ładowanie systemu Windows NT i jego pochodnych. Chociaż jest ważny w procesie rozruchu Windows, to nie jest samym rekordem rozruchowym dysku. NTLDR jest uruchamiany przez MBR, więc w rzeczywistości to MBR uruchamia cały proces. Boot to ogólny termin dotyczący rozruchu, ale nie mówi ci o konkretnym elemencie jak MBR. Często ludzie mylą narzędzia i terminologię związaną z rozruchem systemu i zarządzaniem partycjami. Zrozumienie, co to jest MBR i jak działa z innymi elementami systemu rozruchowego, jest kluczowe dla każdej osoby, która ma do czynienia z komputerami. Umiejętność ogarniania tych wszystkich rzeczy jest podstawą administracji systemów i wsparcia technicznego, co pomaga w rozwiązywaniu problemów związanych z uruchamianiem systemu i zarządzaniem danymi.

Pytanie 7

Aby uzyskać wyświetlenie podanych informacji o systemie Linux w terminalu, należy skorzystać z komendy

Linux atom 3.16.0-5-amd64 #1 SMP Debian 3.16.51-3+deb8u1 (2018-01-08) x86_64 GNU/Linux
A. uptime
B. uname -a
C. factor 22
D. hostname
Polecenie uname -a jest używane w systemach Linux i Unix do wyświetlania szczegółowych informacji o systemie operacyjnym. Parametr -a powoduje, że polecenie zwraca kompletny zestaw danych dotyczących systemu, w tym nazwę kernela, nazwę hosta, wersję kernela, datę kompilacji oraz architekturę sprzętową. Takie informacje są kluczowe dla administratorów systemowych i programistów, którzy potrzebują pełnego obrazu środowiska, w którym pracują. Wiedza o wersji kernela czy architekturze sprzętowej może determinować wybór oprogramowania, które będzie działać optymalnie na danym systemie. Ponadto uname -a jest standardowym narzędziem dostępnym w większości dystrybucji Linuxa, co czyni je uniwersalnym rozwiązaniem w diagnostyce systemu. Przykładowo, przy rozwiązywaniu problemów z kompatybilnością oprogramowania, te informacje mogą pomóc w identyfikacji, czy dany problem jest specyficzny dla konkretnej wersji kernela lub architektury. Zrozumienie wyniku tego polecenia jest zatem istotną umiejętnością w kontekście zarządzania i utrzymania systemów Linuxowych.

Pytanie 8

Rysunek ilustruje rezultaty sprawdzania działania sieci komputerowej przy użyciu polecenia

Ilustracja do pytania
A. netstat
B. ping
C. ipconfig
D. tracert
Polecenie ping jest używane do testowania połączeń w sieciach komputerowych. Działa na zasadzie wysyłania pakietów ICMP (Internet Control Message Protocol) do wybranego hosta sieciowego oraz oczekiwania na odpowiedzi. W praktyce ping pozwala określić, czy dany host jest osiągalny oraz mierzyć czas odpowiedzi, co jest kluczowe dla diagnostyki opóźnień w sieci. Wyniki zawierają informacje o liczbie wysłanych bajtów, czasie potrzebnym na przesłanie pakietu oraz wartość TTL (Time To Live), która wskazuje, ile routerów może jeszcze przenosić dany pakiet. Ping jest powszechnie stosowany podczas rozwiązywania problemów z siecią oraz przy monitorowaniu dostępności serwerów i wydajności łączy. Na przykład administratorzy często używają polecenia ping do sprawdzenia, czy serwery są online przed przeprowadzeniem aktualizacji systemowych. Poprawne zrozumienie i interpretacja wyników ping jest umiejętnością kluczową dla specjalistów IT, ponieważ pozwala na szybką identyfikację potencjalnych problemów z połączeniami sieciowymi i podejmowanie odpowiednich działań naprawczych zgodnie z najlepszymi praktykami branżowymi.

Pytanie 9

Aby przeprowadzić rezerwację adresów IP w systemie Windows Server na podstawie fizycznych adresów MAC urządzeń, konieczne jest skonfigurowanie usługi

A. NAT
B. RRAS
C. DHCP
D. DNS
Wybór odpowiedzi DNS, NAT, czy RRAS nie jest poprawny w kontekście zadania dotyczącego rezerwacji adresów IP na podstawie adresów MAC. DNS (Domain Name System) jest systemem, który tłumaczy nazwę domeny na adres IP, umożliwiając urządzeniom komunikację w sieci. Chociaż DNS jest istotny dla rozwiązywania nazw w sieci, nie zajmuje się przypisywaniem ani rezerwacją adresów IP. NAT (Network Address Translation) jest techniką, która pozwala wielu urządzeniom w sieci lokalnej na korzystanie z jednego publicznego adresu IP. Choć NAT jest kluczowy w kontekście zachowania prywatności i oszczędności adresów IP, nie ma on możliwości rezerwacji adresów IP na podstawie MAC. RRAS (Routing and Remote Access Service) to funkcjonalność systemu Windows Server, która umożliwia udostępnianie usług routingu oraz zdalnego dostępu. RRAS nie ma również związku z rezerwacją adresów IP na poziomie MAC. Błędy myślowe związane z tymi odpowiedziami wynikają z mylenia funkcji tych technologii sieciowych. Można obserwować tendencję do przypisywania różnym protokołom funkcji, które są charakterystyczne dla DHCP. Niezrozumienie podstawowych ról poszczególnych komponentów sieciowych prowadzi do niepoprawnych wniosków oraz wyboru niewłaściwych rozwiązań w zakresie zarządzania adresacją IP.

Pytanie 10

Pierwsze trzy bity adresu IP w formacie binarnym mają wartość 010. Jaką klasę reprezentuje ten adres?

A. klasy A
B. klasy D
C. klasy C
D. klasy B
Przy analizie klasyfikacji adresów IP warto zacząć od zrozumienia, jak są one podzielone na różne klasy na podstawie najstarszych bitów. Klasa B charakteryzuje się tym, że pierwsze dwa bity mają wartość 10, co oznacza, że adresy tej klasy mieszczą się w zakresie od 128.0.0.0 do 191.255.255.255. Wybierając adres z ustawieniem najstarszych trzech bitów jako 010, nie uzyskujemy klasy B, ponieważ nie spełnia on kryteriów dotyczących ustalonych bitów. Klasa C, która ma pierwsze trzy bity ustawione na 110, obejmuje adresy od 192.0.0.0 do 223.255.255.255, więc również nie znajduje zastosowania w tym przypadku. Klasa D, z kolei, jest przeznaczona do multicastingu i ma ustawiony najstarszy bit na 1110, co również nie pasuje do przedstawionej wartości binarnej. Typowym błędem jest mylenie klas adresowych z ich przeznaczeniem, co prowadzi do nieporozumień w projektowaniu sieci. Zrozumienie, że klasa A ma największy zakres adresów i jest przeznaczona dla bardzo dużych sieci, pozwala uniknąć nieporozumień dotyczących przydzielania IP. Kluczowe jest, aby pamiętać, że każda klasa ma swoje specyficzne zastosowania i że błędna interpretacja bitów może prowadzić do niewłaściwej alokacji zasobów w sieci.

Pytanie 11

Aby utworzyć programową macierz RAID-1, potrzebne jest minimum

A. 4 dysków
B. 2 dysków
C. 1 dysku podzielonego na dwie partycje
D. 3 dysków
Odpowiedź wskazująca na konieczność użycia minimum dwóch dysków do zbudowania macierzy RAID-1 jest prawidłowa, ponieważ RAID-1, znany również jako mirroring, polega na tworzeniu dokładnej kopii danych na dwóch dyskach. W tej konfiguracji, dane zapisywane na jednym dysku są jednocześnie zapisywane na drugim, co zapewnia wysoką dostępność i bezpieczeństwo danych. Jeśli jeden z dysków ulegnie awarii, system może kontynuować działanie dzięki drugiemu dyskowi, co minimalizuje ryzyko utraty danych. W praktyce, RAID-1 jest często stosowany w systemach serwerowych oraz w desktopach, gdzie wysoka niezawodność danych jest kluczowa. Standardy i dobre praktyki branżowe, takie jak porady od organizacji takich jak Storage Networking Industry Association (SNIA), podkreślają znaczenie RAID-1 w kontekście redundancji i ochrony danych. Wybór tej konfiguracji jest często preferowany w środowiskach, gdzie dostępność danych i ich integralność są priorytetem.

Pytanie 12

Składnikiem systemu Windows 10, który zapewnia ochronę użytkownikom przed zagrożeniami ze strony złośliwego oprogramowania, jest program

A. Windows PowerShell
B. Microsoft Security Essentials
C. Microsoft Hyper-V
D. Windows Defender
Windows Defender to taki wbudowany program antywirusowy w Windows 10. Jego główną rolą jest ochrona w czasie rzeczywistym, co oznacza, że ciągle sprawdza system i pliki, żeby wykrywać jakieś zagrożenia jak wirusy czy trojany. Używa fajnych technologii, takich jak analiza heurystyczna i chmura, żeby szybko rozpoznać nowe zagrożenia. Na przykład, Windows Defender automatycznie skanuje system, gdy uruchamiamy komputer, a także regularnie aktualizuje definicje wirusów, co zapewnia stałą ochronę. Można też dostosować ustawienia skanowania, żeby przeprowadzać pełne skanowania wybranych folderów czy dysków. To całkiem w porządku, bo pomaga w bezpieczeństwie, a takie aktywne rozwiązania to najlepsza obrona przed zagrożeniami. Dodatkowo, Windows Defender współpracuje z innymi funkcjami w systemie, jak kontrola aplikacji czy zapora sieciowa, tworząc spójną ochronę.

Pytanie 13

Jakie funkcje pełni protokół ARP (Address Resolution Protocol)?

A. Nadzoruje ruch pakietów w ramach systemów autonomicznych
B. Przekazuje informacje zwrotne o awariach w sieci
C. Koordynuje grupy multikastowe w sieciach działających na protokole IP
D. Określa adres MAC na podstawie adresu IP
W kontekście sieci komputerowych, ważne jest zrozumienie, że protokół ARP ma ściśle określoną funkcję, której nie należy mylić z innymi protokołami czy zadaniami w sieciach. Twierdzenie, że ARP przesyła informacje zwrotne o problemach z siecią, jest nieprawidłowe, ponieważ ARP nie jest zaprojektowany do diagnostyki, lecz do rozwiązywania adresów. W przypadku problemów sieciowych stosuje się inne narzędzia i protokoły, takie jak ICMP, które umożliwiają monitorowanie stanu połączeń oraz zgłaszanie błędów. Kontrolowanie przepływu pakietów wewnątrz systemów autonomicznych również nie należy do zadań ARP; tym zajmują się protokoły routingu, takie jak BGP czy OSPF, które optymalizują ścieżki przesyłu danych w szerszych sieciach. Co więcej, zarządzanie grupami multikastowymi w sieciach opartych na protokole IP jest funkcją protokołu IGMP (Internet Group Management Protocol), który umożliwia urządzeniom dołączanie i opuszczanie grup multikastowych, co jest zupełnie innym zadaniem niż ustalanie adresów MAC. Takie błędne rozumienie funkcji protokołu ARP może prowadzić do poważnych pomyłek w projektowaniu i zarządzaniu sieciami, co w efekcie może prowadzić do nieefektywności oraz trudności w rozwiązywaniu problemów.

Pytanie 14

W jakim systemie występuje jądro hybrydowe (kernel)?

A. QNX
B. Windows
C. MorphOS
D. Linux
Odpowiedzi wskazujące na Linux, MorphOS i QNX, mimo że są to interesujące systemy operacyjne, są niepoprawne w kontekście pytania o jądro hybrydowe. Linux wykorzystuje jądro monolityczne, co oznacza, że wszystkie funkcje jądra są zintegrowane w jednej dużej jednostce. Ta architektura, mimo że oferuje wysoką wydajność, może powodować problemy z zarządzaniem zasobami oraz stabilnością systemu. W przypadku MorphOS, jest to system operacyjny, który skupia się na mikrojądrach i nie posiada hybrydowego podejścia, co również czyni tę odpowiedź nieprawidłową. Z kolei QNX, będący systemem operacyjnym czasu rzeczywistego, bazuje na mikrojądrze, co sprawia, że nie spełnia kryteriów hybrydowego jądra. Typowym błędem myślowym prowadzącym do takich odpowiedzi jest mylenie różnych architektur jądra i ich zastosowań. Użytkownicy często nie zdają sobie sprawy, że jądra monolityczne i mikrojądra mają odmienne cele i są zoptymalizowane pod różne scenariusze. W praktyce, wybór architektury jądra ma istotny wpływ na wydajność i stabilność systemu operacyjnego.

Pytanie 15

Jakie polecenie trzeba wydać w systemie Windows, aby zweryfikować tabelę mapowania adresów IP na adresy MAC wykorzystywane przez protokół ARP?

A. arp -a
B. ipconfig
C. route print
D. netstat -r
Odpowiedzi 'ipconfig', 'netstat -r' oraz 'route print' są często mylone z poleceniem 'arp -a', jednak każde z nich ma swoje specyficzne zastosowanie i nie służy do sprawdzenia tabeli ARP. 'Ipconfig' jest narzędziem, które pozwala na wyświetlenie konfiguracji interfejsów sieciowych w systemie Windows, w tym adresu IP, maski podsieci oraz bramy domyślnej. Choć 'ipconfig' dostarcza istotnych informacji o połączeniach sieciowych, nie pokazuje mapowania adresów IP na adresy MAC. Z kolei 'netstat -r' wyświetla tablicę routingu, która zawiera informacje o trasach, jakie pakiety mogą zająć w sieci, ale również nie dostarcza danych o adresach fizycznych. 'Route print' z kolei jest podobne do 'netstat -r' i służy do analizy tras routingu w systemie, co jest przydatne w diagnostyce problemów z łącznością, ale nie ma związku z ARP. Powszechnym błędem jest zakładanie, że te polecenia mają podobny zakres działania, co 'arp -a', przez co można popełnić pomyłkę w diagnostyce problemów w sieci. Kluczowe jest zrozumienie, które narzędzia powinny być używane w konkretnych sytuacjach, aby efektywnie zarządzać siecią i diagnozować problemy.

Pytanie 16

Magistrala PCI-Express do przesyłania danych stosuje metodę komunikacyjną

A. synchroniczną Half duplex
B. asynchroniczną Simplex
C. synchroniczną Full duplex
D. asynchroniczną Full duplex
Odpowiedzi, które wskazują na metodę komunikacji synchronicznej lub półdupleksowej, są nieprawidłowe, ponieważ nie oddają rzeczywistej specyfiki magistrali PCI-Express. Synchroniczna komunikacja wymaga, aby zarówno nadajnik, jak i odbiornik były zsynchronizowane co do czasu, co w praktyce może prowadzić do opóźnień w transmisji, szczególnie w środowisku z wieloma urządzeniami. W przypadku magistrali PCIe, asynchroniczny sposób działania pozwala na większą elastyczność i lepsze wykorzystanie dostępnej przepustowości. Dodatkowo, odpowiedzi sugerujące sposób półdupleksowy, który zezwala na komunikację tylko w jednym kierunku w danym czasie, są nieaktualne i niezgodne z architekturą PCIe. Tego typu podejście ograniczałoby wydajność, co byłoby nieadekwatne do współczesnych potrzeb technologicznych. Również koncepcja simplex, która umożliwia przesył danych tylko w jednym kierunku, jest w kontekście PCIe całkowicie nieadekwatna. Współczesne aplikacje wymagają nieprzerwanego przepływu informacji, co czyni asynchroniczną komunikację Full duplex kluczowym elementem w architekturze PCIe. Typowe błędy myślowe związane z wyborem odpowiedzi mogą wynikać z nieuzupełnionej wiedzy na temat różnicy pomiędzy różnymi metodami komunikacji oraz ich wpływu na wydajność systemów komputerowych. Użytkownicy powinni być świadomi, że zrozumienie tych podstawowych pojęć jest niezbędne do skutecznej oceny nowoczesnych technologii oraz ich odpowiednich zastosowań.

Pytanie 17

Zarządzanie partycjami w systemach operacyjnych Windows

A. przydzielają etykietę (np. C) dla konkretnej partycji
B. umożliwiają określenie maksymalnej wielkości przestrzeni dyskowej dla kont użytkowników
C. przydzielają partycje na nośnikach
D. oferują podstawowe funkcje diagnostyczne, defragmentację oraz checkdisk
Analizując pozostałe odpowiedzi, można zauważyć, że niektóre z nich wprowadzają w błąd, dotyczące funkcji przydziałów dyskowych. Na przykład, stwierdzenie, że przydziały dyskowe przydzielają etykietę dla danej partycji, jest nieścisłe. Etykieta partycji to nazwa nadawana dyskom i partycjom w celu identyfikacji, ale nie jest to funkcja przydziałów dyskowych. Przydziały są bardziej związane z kontrolą zasobów niż z etykietowaniem. Inna koncepcja dotycząca przydzielania partycji na dyskach jest również myląca. Przydziały dyskowe nie są odpowiedzialne za tworzenie czy zarządzanie partycjami, co jest zadaniem administratora systemu operacyjnego oraz narzędzi do partycjonowania dysków. Funkcjonalności takie jak diagnostyka, defragmentacja i checkdisk dotyczą utrzymania i konserwacji systemu plików, ale nie są związane bezpośrednio z przydziałami dyskowymi. Wprowadzanie w błąd i mylenie tych pojęć może prowadzić do nieefektywnego zarządzania zasobami dyskowymi, co w dłuższym okresie może wpływać na wydajność systemu i zadowolenie użytkowników. Dlatego zrozumienie różnicy między tymi konceptami jest kluczowe dla prawidłowego zarządzania systemami Windows.

Pytanie 18

Na schemacie procesora rejestry mają za zadanie przechowywać adres do

Ilustracja do pytania
A. kolejnej instrukcji programu
B. zarządzania wykonywanym programem
C. przechowywania argumentów obliczeń
D. wykonywania operacji arytmetycznych
W kontekście architektury procesora rejestry pełnią określone funkcje, które nie obejmują wykonywania działań arytmetycznych lecz przygotowanie do nich poprzez przechowywanie danych. Samo wykonywanie operacji arytmetycznych odbywa się w jednostce arytmetyczno-logicznej (ALU), która korzysta z danych zapisanych w rejestrach. Rejestry są także mylone z pamięcią operacyjną, co może prowadzić do błędnego przekonania, że służą do przechowywania adresu następnej instrukcji programu. W rzeczywistości za to zadanie odpowiada licznik rozkazów, który wskazuje na kolejną instrukcję do wykonania. Sterowanie wykonywanym programem natomiast jest rolą jednostki sterującej, która interpretuje instrukcje i kieruje przepływem danych między różnymi komponentami procesora. Typowe błędy myślowe wynikają z nieświadomości specyficznych ról poszczególnych elementów CPU. Zrozumienie, że rejestry są używane do przechowywania tymczasowych danych do obliczeń, jest kluczowe dla poprawnej interpretacji działania procesorów i ich efektywnego programowania. Rozróżnienie tych funkcji jest istotne nie tylko dla teoretycznego zrozumienia, ale także praktycznych zastosowań w optymalizacji kodu i projektowaniu sprzętu komputerowego.

Pytanie 19

Jaką topologię fizyczną charakteryzuje zapewnienie nadmiarowych połączeń między urządzeniami sieciowymi?

A. Pierścieniową
B. Siatkową
C. Magistralną
D. Gwiazdkową
Topologia siatki jest uznawana za jedną z najbardziej niezawodnych struktur w sieciach komputerowych, ponieważ zapewnia nadmiarowe połączenia między urządzeniami. W tej topologii każde urządzenie jest zazwyczaj połączone z wieloma innymi, co pozwala na alternatywne trasy przesyłania danych. Taki układ minimalizuje ryzyko awarii, ponieważ nawet jeśli jedno połączenie przestanie działać, dane mogą być przesyłane inną trasą. Przykłady zastosowań topologii siatki obejmują sieci rozległe (WAN) w dużych organizacjach, gdzie niezawodność i możliwość szybkiego przywrócenia łączności są kluczowe. W praktyce, wdrażając tę topologię, należy przestrzegać standardów takich jak IEEE 802.3 dla Ethernetu, co zapewnia kompatybilność i wydajność. Dobrze zaprojektowana sieć siatkowa zwiększa także wydajność dzięki równoległemu przesyłaniu danych, co jest istotne w aplikacjach wymagających dużej przepustowości. W związku z tym, stosowanie topologii siatki w projektach sieciowych jest zgodne z najlepszymi praktykami w branży, co czyni ją preferowanym wyborem dla krytycznych zastosowań.

Pytanie 20

Jakie urządzenie umożliwia połączenie sieci lokalnej z siecią rozległą?

A. Most
B. Router
C. Przełącznik
D. Koncentrator
Router to urządzenie sieciowe, które pełni kluczową rolę w łączeniu różnych sieci, w tym sieci lokalnej (LAN) z siecią rozległą (WAN). Jego podstawową funkcją jest kierowanie ruchem danych między tymi sieciami, co osiąga poprzez analizę adresów IP i stosowanie odpowiednich protokołów routingu. Przykładem zastosowania routera jest konfiguracja domowej sieci, gdzie router łączy lokalne urządzenia, takie jak komputery, smartfony czy drukarki, z Internetem. W środowisku korporacyjnym routery są często wykorzystywane do łączenia oddziałów firmy z centralnym biurem za pośrednictwem sieci WAN, co umożliwia bezpieczną komunikację i wymianę danych. Standardy, takie jak RFC 791 dotyczący protokołu IP, definiują zasady działania routerów, co jest zgodne z najlepszymi praktykami w zakresie projektowania sieci. Warto również zwrócić uwagę na funkcje dodatkowe routerów, takie jak NAT (Network Address Translation) czy firewall, które zwiększają bezpieczeństwo sieci, co jest szczególnie istotne w kontekście ochrony danych w sieciach rozległych.

Pytanie 21

Kontrola pasma (ang. bandwidth control) w switchu to funkcjonalność

A. pozwalająca na ograniczenie przepustowości na określonym porcie
B. umożliwiająca zdalne połączenie z urządzeniem
C. umożliwiająca jednoczesne łączenie switchy przy użyciu wielu interfejsów
D. pozwalająca na równoczesne przesyłanie danych z danego portu do innego portu
Zarządzanie pasmem, czyli tak zwane bandwidth control, to takie sprytne techniki stosowane w przełącznikach sieciowych. Dzięki nim można kontrolować, a nawet ograniczać przepustowość na różnych portach. No i to, że podałeś odpowiedź mówiącą o możliwości ograniczenia na wybranym porcie, to naprawdę świetny wybór. W praktyce to działa tak, że administratorzy sieci mogą ustalać limity dla różnych typów ruchu. To jest ważne, zwłaszcza tam, gdzie trzeba mądrze zarządzać zasobami albo gdzie różne aplikacje potrzebują różnej jakości usług (QoS). Weźmy na przykład port, do którego podłączone są urządzenia IoT – ten często wymaga mniej przepustowości niż port, który obsługuje ruch wideo. Fajnie jest wdrażać zasady zarządzania pasmem, żeby krytyczne aplikacje nie miały problemów przez duży ruch z innych urządzeń. Zgodnie z tym, co mówi standard IEEE 802.1Q, takie zarządzanie może pomóc w zwiększeniu efektywności sieci, co z kolei przekłada się na lepsze doświadczenia użytkowników i ogólną wydajność całej sieci.

Pytanie 22

Jaką rolę pełni komponent wskazany strzałką na schemacie chipsetu płyty głównej?

Ilustracja do pytania
A. Pozwala na podłączenie i używanie pamięci DDR 400 w trybie DUAL Channel w celu zapewnienia kompatybilności z DUAL Channel DDR2 800
B. Pozwala na wykorzystanie standardowych pamięci DDR SDRAM
C. Umożliwia korzystanie z pamięci DDR3-800 oraz DDR2-800 w trybie DUAL Channel
D. Umożliwia wykorzystanie magistrali o szerokości 128 bitów do transferu danych między pamięcią RAM a kontrolerem pamięci
Nieprawidłowe odpowiedzi wynikają z różnych nieporozumień dotyczących specyfikacji i funkcji chipsetów płyty głównej. W pierwszej kolejności ważne jest zrozumienie roli dual channel w kontekście pamięci RAM. Technologia ta polega na jednoczesnym użyciu dwóch kanałów pamięci co pozwala na podwojenie szerokości magistrali z 64 do 128 bitów. Tym samym błędne jest przekonanie że pozwala ona na zgodność z innymi standardami jak DDR2 800 i DDR3 800 gdyż te standardy różnią się specyfikacją techniczną napięciem i architekturą. Kolejny błąd to przypuszczenie że chipset umożliwia korzystanie z pamięci DDR3 wraz z DDR2 co jest technicznie niemożliwe z powodu różnych wymagań tych pamięci w kontekście kontrolerów i gniazd na płycie głównej. Ostatecznie mylne jest twierdzenie że chipset pozwala na wykorzystanie typowych pamięci DDR SDRAM. Ten standard pamięci jest znacznie starszy i niekompatybilny z nowoczesnymi chipsetami które obsługują DDR2 i DDR3. Typowym błędem myślowym jest tu ogólne założenie że nowsze płyty główne są w stanie obsłużyć wszystkie starsze standardy co jest często fizycznie niemożliwe bez dedykowanych kontrolerów pamięci. Edukacja w zakresie specyfikacji technicznych i ich zgodności jest kluczowa dla zrozumienia funkcjonowania nowoczesnych systemów komputerowych.

Pytanie 23

Usługa w systemie Windows Server, która umożliwia zdalną instalację systemów operacyjnych na komputerach zarządzanych przez serwer, to

A. GPO
B. FTP
C. WDS
D. DFS
FTP (File Transfer Protocol) to protokół sieciowy używany do przesyłania plików pomiędzy komputerami, ale nie jest to narzędzie do zdalnej instalacji systemów operacyjnych. Jego głównym zastosowaniem jest transfer danych, co czyni go nieodpowiednim rozwiązaniem do złożonych procesów instalacji. DFS (Distributed File System) z kolei jest technologią, która umożliwia zarządzanie danymi rozproszonymi w różnych lokalizacjach, ale nie ma funkcji zdalnego uruchamiania instalacji systemów operacyjnych. GPO (Group Policy Object) to mechanizm, który pozwala na centralne zarządzanie ustawieniami konfiguracji systemu i aplikacji w środowisku Active Directory, jednak również nie umożliwia instalacji systemu operacyjnego. Problem z tymi odpowiedziami wynika z nieporozumienia dotyczącego funkcji tych technologii. Użytkownicy mogą błędnie przypuszczać, że FTP, DFS lub GPO mają zastosowanie w kontekście zdalnej instalacji systemów, podczas gdy są to narzędzia przeznaczone do innych celów. Kluczowe przy określaniu odpowiedniego rozwiązania jest zrozumienie, które technologie są zaprojektowane do specyficznych zadań, takich jak WDS do zdalnej instalacji systemów operacyjnych. Dlatego ważne jest dokładne zapoznanie się z funkcjami poszczególnych narzędzi, aby uniknąć mylnych wyborów w zarządzaniu infrastrukturą IT.

Pytanie 24

Na ilustracji przedstawiony jest tylny panel jednostki komputerowej. Jakie jest nazewnictwo dla złącza oznaczonego strzałką?

Ilustracja do pytania
A. FireWire
B. COM
C. LPT
D. USB
Złącze oznaczone strzałką to port FireWire znany również jako IEEE 1394 lub i.LINK w zależności od producenta. FireWire został zaprojektowany do szybkiego przesyłania danych co czyni go idealnym do zastosowań takich jak edycja wideo gdzie duże pliki muszą być przesyłane między kamerą a komputerem. W porównaniu z innymi standardami jak na przykład USB 2.0 FireWire oferuje wyższą przepustowość która w wersji 800 może osiągnąć do 800 Mbps. Złącze to było popularne w profesjonalnych urządzeniach audio-wideo i często stosowane w komputerach Apple. FireWire pozwala na bezpośrednie połączenie urządzeń bez potrzeby używania komputera jako pośrednika czyli peer-to-peer co jest dużą zaletą w niektórych zastosowaniach. Standard FireWire wspiera również zasilanie urządzeń bezpośrednio przez kabel co eliminuje konieczność używania dodatkowych zasilaczy. W kontekście dobrych praktyk warto zauważyć że FireWire umożliwia hot swapping czyli podłączanie i odłączanie urządzeń bez konieczności wyłączania zasilania systemu. Chociaż jego popularność spadła z upływem lat z powodu rozwoju nowszych standardów jak USB 3.0 FireWire pozostaje ważnym elementem w historii rozwoju interfejsów komputerowych.

Pytanie 25

Schemat ilustruje zasadę funkcjonowania sieci VPN o nazwie

Ilustracja do pytania
A. Client – to – Site
B. Gateway
C. Site – to – Site
D. L2TP
Client-to-Site VPN różni się od Site-to-Site VPN tym że jest używana do bezpiecznego połączenia pojedynczego klienta z siecią prywatną. Oznacza to że użytkownik zdalny może uzyskać dostęp do zasobów sieci tak jakby był fizycznie obecny w lokalizacji sieciowej. Chociaż jest to korzystne rozwiązanie dla pracowników zdalnych nie spełnia funkcji łączenia całych sieci co jest kluczowe dla Site-to-Site VPN. Gateway nie jest typem połączenia VPN ale raczej urządzeniem lub punktem dostępowym w sieci który umożliwia przesyłanie danych między różnymi sieciami. Chociaż bramki mogą być częścią infrastruktury VPN nie definiują one samego rodzaju sieci VPN. L2TP czyli Layer 2 Tunneling Protocol to protokół tunelowania używany w wielu sieciach VPN ale sam w sobie nie definiuje typu połączenia VPN. Jest często łączony z protokołem IPsec w celu zwiększenia bezpieczeństwa ale nie determinuje czy połączenie jest typu Client-to-Site czy Site-to-Site. Zrozumienie różnic między tymi rozwiązaniami jest kluczowe dla świadomego projektowania i wdrażania rozwiązań sieciowych w organizacjach co pomaga uniknąć typowych błędów związanych z niewłaściwym wyborem technologii sieciowej. Podstawowym błędem myślowym jest mylenie funkcji i zastosowań poszczególnych technologii co prowadzi do nieoptymalnych decyzji projektowych i może zagrażać bezpieczeństwu oraz wydajności sieci firmowej. Kluczowe jest aby pamiętać o specyficznych potrzebach organizacyjnych i dopasowywać rozwiązania VPN do tych wymagań co jest zgodne z najlepszymi praktykami branżowymi i standardami zarządzania IT które promują zrozumienie oraz umiejętność adaptacji różnych technologii w odpowiednich kontekstach.

Pytanie 26

Po podłączeniu działającej klawiatury do jednego z portów USB nie ma możliwości wyboru awaryjnego trybu uruchamiania systemu Windows. Klawiatura działa prawidłowo dopiero po wystartowaniu systemu w trybie standardowym. Co to sugeruje?

A. uszkodzony zasilacz
B. uszkodzony kontroler klawiatury
C. nieprawidłowe ustawienia BIOS-u
D. uszkodzone porty USB
Niepoprawne ustawienia BIOS-u mogą powodować problemy z rozpoznawaniem klawiatury w trakcie uruchamiania systemu operacyjnego, co jest szczególnie widoczne w przypadku wyboru awaryjnego trybu uruchamiania. BIOS, czyli podstawowy system wejścia/wyjścia, jest odpowiedzialny za inicjalizację sprzętu przed załadowaniem systemu operacyjnego. Klawiatura musi być aktywna w tym etapie, aby umożliwić użytkownikowi interakcję z menu startowym. W przypadku, gdy klawiatura działa normalnie po załadowaniu systemu, to wskazuje, że sprzęt jest sprawny, a problem leży w konfiguracji BIOS-u. Użytkownicy mogą rozwiązać ten problem poprzez wejście do ustawień BIOS-u (zwykle przy starcie systemu można to zrobić przez naciśnięcie klawisza F2, Delete lub innego wskazanego klawisza). Następnie należy sprawdzić sekcję dotyczącą USB oraz ustawienia odpowiedzialne za rozruch, aby upewnić się, że wsparcie dla klawiatur USB jest aktywne. Praktyczne podejście do tej kwestii wymaga również, aby użytkownicy regularnie aktualizowali BIOS do najnowszej wersji, co może poprawić kompatybilność sprzętu oraz funkcjonalność systemu.

Pytanie 27

W lokalnej sieci uruchomiono serwer odpowiedzialny za przydzielanie dynamicznych adresów IP. Jaką usługę należy aktywować na tym serwerze?

A. DNS
B. ISA
C. DHCP
D. DCHP
Odpowiedź o DHCP jest jak najbardziej na miejscu. DHCP, czyli Dynamic Host Configuration Protocol, to całkiem sprytny wynalazek, bo automatycznie przypisuje adresy IP w sieciach. Dzięki temu, każde urządzenie w lokalnej sieci dostaje swój adres i inne potrzebne info, jak maska podsieci czy serwery DNS. W praktyce, w biurach czy w domach, gdzie mamy sporo sprzętu podłączonego do netu, DHCP naprawdę ułatwia życie. Nie musimy biegać i ręcznie ustawiać adresy na każdym z urządzeń. To super rozwiązanie, które można znaleźć w różnych standardach, jak na przykład RFC 2131 i RFC 2132. Działa to na routerach, serwerach czy nawet w chmurze, co jeszcze bardziej upraszcza zarządzanie siecią. Z tego, co widziałem, to w wielu miejscach jest to teraz standard.

Pytanie 28

W systemach Windows XP Pro/Windows Vista Business/Windows 7 Pro/Windows 8 Pro, funkcją zapewniającą ochronę danych dla użytkowników dzielących ten sam komputer, których informacje mogą być wykorzystywane wyłącznie przez nich, jest

A. przypisywanie plikom atrybutu: ukryty na własną rękę
B. korzystanie z osobistych kont z ograniczonymi uprawnieniami
C. używanie indywidualnych kont z uprawnieniami administratora
D. przypisywanie plikom atrybutu: zaszyfrowany osobiście
Korzystanie z własnych kont z uprawnieniami administratora nie jest skuteczną metodą zapewnienia poufności danych w sytuacji, gdy z jednego komputera korzystają różni użytkownicy. Konta administratora umożliwiają pełny dostęp do systemu, co stwarza ryzyko nieautoryzowanego dostępu do danych innych użytkowników. Choć administracja kontem może ułatwiać zarządzanie uprawnieniami, nie zapewnia ona wystarczającego bezpieczeństwa dla wrażliwych plików. W przypadku przypisywania plikom atrybutu 'ukryty', użytkownicy nadal mogą uzyskać dostęp do tych danych, o ile wiedzą, gdzie ich szukać lub jak zmienić ustawienia widoczności. To podejście nie zabezpiecza plików przed dostępem osób, które znają lokalizację i mogą zmienić atrybuty plików. Z kolei korzystanie z kont z ograniczeniami ma swoje ograniczenia, ponieważ nie pozwala użytkownikom na pełne szyfrowanie danych, co ogranicza ich zdolność do ochrony osobistych informacji. W praktyce, jeśli jeden użytkownik z ograniczonymi uprawnieniami uzyska dostęp do konta z administratorami lub innych użytkowników, zostanie naruszona poufność danych. Dlatego, aby skutecznie chronić informacje, należy stosować szyfrowanie jako standardową praktykę bezpieczeństwa, zamiast polegać na samych uprawnieniach dostępu, co jest niewystarczające w obliczu dzisiejszych zagrożeń dla danych.

Pytanie 29

Komputery K1 i K2 nie są w stanie nawiązać komunikacji. Adresy urządzeń zostały przedstawione w tabeli. Co należy zmienić, aby przywrócić połączenie w sieci?

Ilustracja do pytania
A. Adres bramy dla K1
B. Adres bramy dla K2
C. Maskę w adresie dla K2
D. Maskę w adresie dla K1
Nieprawidłowa konfiguracja maski podsieci lub bramy może prowadzić do problemów z łącznością. W przypadku K1 zmiana maski na inną niż 255.255.255.128 mogłaby wywołać błąd w komunikacji, zwłaszcza jeśli sieć została zaprojektowana z myślą o konkretnej topologii. Maska definiuje, które bity adresu IP są częścią adresu sieciowego, a które identyfikują urządzenie w tej sieci. Zła maska uniemożliwia poprawne adresowanie, co w konsekwencji blokuje komunikację. Z kolei zmiana adresu bramy dla K1, gdy ten adres już pasuje do podsieci z maską 255.255.255.128, nie miałaby wpływu na K2. Brama musi być w tej samej podsieci co urządzenie, aby mogła efektywnie przekazywać pakiety poza segment lokalny. Częsty błąd to myślenie, że zmiana na dowolny inny adres rozwiąże problem; jednak brama musi odpowiadać topologii sieci. Z kolei zmiana maski dla K2 nie rozwiąże problemu, jeśli brama pozostanie nieprawidłowa. Adres bramy musi być częścią tej samej podsieci, co urządzenie chcące z niej korzystać, co oznacza, że zmiana tylko maski bez dostosowania bramy jest niewystarczająca. Kluczem jest zrozumienie, jak działają podsieci i jak konfiguracja każdego elementu wpływa na całą sieć, co wymaga wiedzy i staranności w planowaniu.

Pytanie 30

W systemie Windows powiązanie rozszerzeń plików z odpowiednimi programami realizuje się za pomocą polecenia

A. bcdedit
B. assoc
C. path
D. label
Przypisanie rozszerzeń plików do aplikacji w systemie Windows nie jest realizowane przez polecenia takie jak 'path', 'bcdedit' czy 'label'. Każde z tych poleceń ma inne, specyficzne zastosowanie, co może prowadzić do nieporozumień. Polecenie 'path' służy do wyświetlania lub ustawiania ścieżek wyszukiwania dla plików wykonywalnych. Umożliwia to systemowi operacyjnemu odnajdywanie programów w różnych lokalizacjach, ale nie wpływa na to, jak pliki są otwierane na podstawie ich rozszerzeń. 'bcdedit' z kolei jest stosowane do modyfikowania danych dotyczących rozruchu systemu i konfiguracji, co jest zupełnie innym kontekstem technicznym i nie ma nic wspólnego z otwieraniem plików. Natomiast 'label' jest używane do zmiany etykiety wolumenu dysku, co dotyczy zarządzania danymi na nośnikach pamięci, ale nie przypisuje aplikacji do rozszerzeń plików. Zrozumienie tych różnic jest kluczowe, ponieważ wykorzystanie niewłaściwych poleceń prowadzi do nieefektywnego zarządzania systemem i potencjalnych problemów z dostępem do plików. Dlatego ważne jest, aby dokładnie zapoznawać się z dokumentacją i praktykami zarządzania systemem, by skutecznie wykorzystać możliwości, jakie oferuje Windows.

Pytanie 31

Jakie oprogramowanie zabezpieczające przed nieautoryzowanym dostępem do sieci powinno być zainstalowane na serwerze, który udostępnia dostęp do internetu?

A. FireWall
B. DHCP
C. Active Directory
D. DNS
FireWall, czyli zapora sieciowa, jest kluczowym elementem bezpieczeństwa w sieciach komputerowych, pełniąc rolę filtra, który kontroluje ruch przychodzący i wychodzący na serwerze udostępniającym połączenie z internetem. Jego głównym zadaniem jest ochrona przed nieautoryzowanym dostępem oraz atakami z sieci, takimi jak DDoS czy próby włamań. Działanie Firewalla opiera się na regułach, które określają, jakie połączenia są dozwolone, a jakie zablokowane. Dzięki temu można skutecznie minimalizować ryzyko ataków. Przykładem zastosowania Firewalla może być konfiguracja reguł blokujących dostęp do portów, które nie są używane przez aplikacje działające na serwerze, co znacząco zwiększa jego bezpieczeństwo. W kontekście standardów branżowych, wiele organizacji stosuje najlepsze praktyki, takie jak regularne aktualizacje oprogramowania zapory oraz audyty bezpieczeństwa, aby zapewnić, że FireWall skutecznie chroni przed nowymi zagrożeniami.

Pytanie 32

Jak określana jest transmisja w obie strony w sieci Ethernet?

A. Half duplex
B. Simplex
C. Full duplex
D. Duosimplex
Transmisja dwukierunkowa w sieci Ethernet nazywana jest full duplex. Oznacza to, że urządzenia mogą jednocześnie wysyłać i odbierać dane, co znacząco zwiększa efektywność komunikacji w sieci. W przypadku pełnego dupleksu, zastosowanie technologii takich jak przełączniki Ethernet pozwala na jednoczesne przesyłanie informacji w obydwu kierunkach, co jest szczególnie istotne w aplikacjach wymagających dużej przepustowości, takich jak strumieniowanie wideo, rozmowy VoIP czy gry online. W praktyce pełny dupleks jest standardem w nowoczesnych sieciach komputerowych, wspieranym przez protokoły IEEE 802.3, co zapewnia lepsze wykorzystanie dostępnych zasobów sieciowych oraz minimalizację opóźnień.

Pytanie 33

Protokół SNMP (Simple Network Management Protocol) jest wykorzystywany do

A. szyfrowania połączeń terminalowych z odległymi komputerami
B. odbierania wiadomości e-mail
C. przydzielania adresów IP oraz ustawień bramy i DNS
D. konfiguracji sprzętu sieciowego i zbierania danych na jego temat
Protokół SNMP (Simple Network Management Protocol) jest kluczowym narzędziem w zarządzaniu sieciami komputerowymi. Umożliwia administratorom monitorowanie i zarządzanie różnorodnymi urządzeniami, takimi jak routery, przełączniki, serwery czy punkty dostępu. Dzięki SNMP możliwe jest zbieranie danych o stanie tych urządzeń, ich wydajności oraz konfiguracji. Protokół ten operuje na zasadzie modeli klient-serwer, gdzie urządzenia zarządzane (agent) komunikują się z systemem zarządzającym (menedżer). Przykładem zastosowania jest monitorowanie obciążenia procesora na serwerze – SNMP może dostarczać informacje o bieżącej wydajności CPU, co pozwala na podejmowanie decyzji o optymalizacji zasobów. Standardy te są szeroko stosowane w branży i zgodne z najlepszymi praktykami, co sprawia, że SNMP jest fundamentem nowoczesnych rozwiązań w zakresie zarządzania infrastrukturą IT. Warto również zauważyć, że SNMP wspiera wiele wersji, z których każda wnosi dodatkowe funkcjonalności związane z bezpieczeństwem oraz wydajnością.

Pytanie 34

Jakiego rodzaju adresację stosuje protokół IPv6?

A. 32-bitową
B. 256-bitową
C. 64-bitową
D. 128-bitową
Protokół IPv6 stosuje adresację 128-bitową, co jest znaczącym ulepszeniem w porównaniu do 32-bitowej adresacji IPv4. Dzięki temu możliwe jest przydzielenie ogromnej liczby unikalnych adresów IP, co jest niezbędne przy rosnącej liczbie urządzeń podłączonych do Internetu. W praktyce oznacza to, że IPv6 może obsłużyć około 340 undecylionów (3.4 x 10³⁸) adresów, co praktycznie eliminuje ryzyko wyczerpania się dostępnej przestrzeni adresowej. Wprowadzenie 128-bitowej adresacji pozwala także na lepsze wsparcie dla mobilności, autokonfiguracji i bezpieczeństwa sieciowego dzięki wbudowanym funkcjom, takim jak IPSec. W kontekście administracji i eksploatacji systemów komputerowych, znajomość i umiejętność zarządzania IPv6 jest kluczowa, ponieważ coraz więcej sieci przechodzi na ten protokół, aby sprostać wymaganiom nowoczesnych technologii i liczby urządzeń IoT.

Pytanie 35

Jeśli rozdzielczość myszki wynosi 200 dpi, a rozdzielczość monitora to Full HD, to aby przesunąć kursor w poziomie po ekranie, należy przemieścić mysz o

A. 1080 px
B. około 35 cm
C. 480 i
D. około 25 cm
Rozdzielczość 200 dpi oznacza, że myszka przesuwa kursor o 200 pikseli na każdy cal. To jakbyśmy mieli wskazówkę – przesuwasz myszkę o 1 cal, a kursor leci o 200 pikseli. Monitor Full HD? Ma 1920x1080 pikseli, więc jego wysokość to 1080 pikseli. Jeśli chcesz przesunąć kursor w poziomie na ekranie, trzeba wiedzieć, ile pikseli masz na szerokość. Można to ładnie policzyć: bierzemy szerokość ekranu (1920 px) i dzielimy przez rozdzielczość myszy (200 dpi). Wychodzi nam, że musimy przesunąć myszkę o 9.6 cala. A jak to na centymetry? 9.6 cali to około 24.4 cm, czyli zaokrąglając mamy 25 cm. To są ważne rzecz dla tych, którzy pracują z komputerami, bo w projektowaniu UI/UX czy w grach precyzyjny ruch myszy ma znaczenie.

Pytanie 36

Jakie urządzenie pozwoli na podłączenie drukarki, która nie jest wyposażona w kartę sieciową, do lokalnej sieci komputerowej?

A. Regenerator
B. Hhub
C. Punkt dostępu
D. Serwer wydruku
Koncentrator, regenerator i punkt dostępu to urządzenia, które pełnią różne funkcje w sieciach komputerowych, ale nie są odpowiednie do podłączania drukarek bez karty sieciowej. Koncentrator, będący prostym urządzeniem sieciowym, działa jako punkt zbiegu dla wielu połączeń, ale nie ma zdolności do zarządzania danymi ani do komunikacji z urządzeniami peryferyjnymi, takimi jak drukarki. Regenerator, z kolei, służy do wzmacniania sygnału w sieciach, wydłużając zasięg, ale nie oferuje funkcji, które pozwalałyby na łączenie urządzeń bezpośrednio z lokalną siecią. Punkt dostępu to urządzenie, które umożliwia urządzeniom bezprzewodowym dostęp do sieci przewodowej, ale nie jest w stanie zarządzać zadaniami drukowania ani komunikować się z drukarką, która nie jest przystosowana do pracy w sieci. Te błędne koncepcje mogą wynikać z mylenia funkcji różnych urządzeń w sieci. W praktyce, aby umożliwić drukowanie z wielu komputerów do drukarki bez karty sieciowej, niezbędny jest serwer wydruku, który dostarcza odpowiednią funkcjonalność i elastyczność w zarządzaniu drukowaniem.

Pytanie 37

Główną metodą ochrony sieci komputerowej przed zewnętrznymi atakami jest wykorzystanie

A. zapory sieciowej
B. blokady portu 80
C. serwera Proxy
D. programu antywirusowego
Choć serwery proxy, blokady portu 80 i programy antywirusowe mogą pełnić ważne role w ekosystemie zabezpieczeń, nie są one podstawowymi metodami ochrony sieci przed atakami z zewnątrz. Serwer proxy działa jako pośrednik w komunikacji między użytkownikami a Internetem, co może poprawić prywatność i kontrolę dostępu, jednak sam w sobie nie zabezpiecza sieci. W przypadku ataków z zewnątrz, serwer proxy nie może skutecznie zablokować nieautoryzowanego dostępu, co czyni go niewystarczającym rozwiązaniem w kontekście zagrożeń zewnętrznych. Blokada portu 80, która jest standardowym portem dla protokołu HTTP, to technika, która może ograniczyć dostęp do usług webowych, ale nie zapewnia kompleksowej ochrony. Tego rodzaju działanie może prowadzić do fałszywego poczucia bezpieczeństwa, gdyż wiele ataków nie wykorzystuje portu 80, a dodatkowo blokowanie portów może zakłócać legalny ruch sieciowy. Programy antywirusowe, z kolei, koncentrują się na ochronie przed złośliwym oprogramowaniem, ale nie stanowią barier w aspekcie ochrony przed atakami hakerskimi, które mogą wykorzystywać luki w zabezpieczeniach sieci. Współczesne scenariusze zagrożeń wymagają zastosowania wielowarstwowego podejścia do zabezpieczeń, w którym zapory sieciowe zajmują centralne miejsce w ochronie przed atakami z zewnątrz, podczas gdy inne metody, takie jak programy antywirusowe i serwery proxy, mogą pełnić funkcje uzupełniające.

Pytanie 38

Jaki błąd w okablowaniu można dostrzec na ekranie testera, który pokazuje mapę połączeń żył kabla typu "skrętka"?

Ilustracja do pytania
A. Pary odwrócone
B. Rozwarcie
C. Zwarcie
D. Pary skrzyżowane
Zwarcie w okablowaniu sieciowym występuje gdy dwie żyły które nie powinny być połączone mają kontakt elektryczny powodując przepływ prądu tam gdzie nie jest to pożądane. Choć zwarcie jest poważnym błędem który może prowadzić do uszkodzenia sprzętu w tym scenariuszu nie jest odpowiednim opisem problemu przedstawionego na wyświetlaczu. Pary odwrócone to sytuacja gdzie końce jednej pary są zamienione co powoduje problemy z transmisją sygnału z powodu błędnego mapowania skrętek. Tester kabli może wykazać odwrócone pary jako błędne przypisanie pinów ale nie jako brak połączenia. Pary skrzyżowane odnoszą się do sytuacji w której pary są zamienione na jednym końcu kabla co często ma miejsce w przypadku kabli typu crossover używanych do bezpośredniego łączenia urządzeń tego samego typu. Skrzyżowanie par jest celowym zabiegiem w przypadku specyficznych konfiguracji sieciowych i nie powinno być traktowane jako błąd w kontekście standardowego połączenia sieciowego zgodnie z normą T568A/B. W tym przypadku przedstawiony problem wskazuje na rozwarcie gdzie sygnał nie może być przesłany z powodu brakującego ciągłości obwodu co jest charakterystycznie ilustrowane przez przerwane połączenia w mapie połączeń testera. Takie błędy są często wynikiem niepoprawnego zaciskania wtyków RJ-45 lub uszkodzenia fizycznego kabla co należy uwzględnić podczas konserwacji i instalacji sieci. By uniknąć tego rodzaju problemów należy stosować się do wytycznych zawartych w normach takich jak TIA/EIA-568 które określają sposób poprawnego zakończenia i testowania kabli sieciowych aby zapewnić ich pełną funkcjonalność i niezawodność w środowiskach produkcyjnych.

Pytanie 39

Jak skrót wskazuje na rozległą sieć komputerową, która obejmuje swoim zasięgiem miasto?

A. WAN
B. LAN
C. PAN
D. MAN
MAN (Metropolitan Area Network) to termin odnoszący się do dużej sieci komputerowej, która obejmuje zasięgiem całe miasto lub jego znaczną część. MAN łączy w sobie cechy zarówno lokalnych sieci komputerowych (LAN), jak i rozległych sieci (WAN), oferując połączenia o wyższej prędkości i większej przepustowości w porównaniu do WAN. Przykładowe zastosowania MAN obejmują sieci wykorzystywane przez uczelnie lub instytucje rządowe, które muszą połączyć różne budynki w obrębie jednego miasta. Standardy takie jak IEEE 802.3 oraz technologie takie jak Ethernet są często wykorzystywane w MAN, co pozwala na korzystanie z wysokiej jakości połączeń optycznych oraz kablowych. Dodatkowo, MAN może integrować różne usługi, takie jak VoIP, video conferencing oraz dostęp do internetu, co czyni go kluczowym elementem infrastruktury miejskiej. W miastach inteligentnych MAN może wspierać różne aplikacje, takie jak zarządzanie ruchem, monitorowanie jakości powietrza czy systemy bezpieczeństwa miejskiego.

Pytanie 40

Martwy piksel, będący defektem monitorów LCD, to punkt, który trwa niezmiennie w kolorze

A. żółtym
B. czarnym
C. fioletowym
D. szarym
Martwy piksel to problem, który dotyczy wyświetlaczy LCD i oznacza punkt na ekranie, który nie reaguje na sygnały z karty graficznej. W przypadku martwego piksela, najczęściej pozostaje on w jednym, niezmiennym kolorze, a najczęściej jest to kolor czarny. Oznacza to, że piksel nie emituje światła, co sprawia, że jest widoczny jako ciemny punkt na tle jaśniejszego obrazu. Martwe piksele mogą występować z różnych przyczyn, w tym uszkodzeń mechanicznych, błędów w produkcji lub problemów z oprogramowaniem. W branży standardem jest, że producenci monitorów klasyfikują martwe piksele jako defekty, jeżeli ich liczba przekracza określony próg, który zazwyczaj wynosi kilka pikseli na milion. Użytkownicy mogą spotkać się z tym problemem podczas codziennego użytku, np. w grach komputerowych czy podczas pracy z grafiką, gdzie jakość obrazu ma kluczowe znaczenie. Dobrą praktyką jest regularne sprawdzanie monitorów pod kątem martwych pikseli, aby zminimalizować wpływ takich defektów na doświadczenia użytkowników.