Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 8 grudnia 2025 08:59
  • Data zakończenia: 8 grudnia 2025 09:09

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który z podanych czujników nie nadaje się do detekcji położenia stanowiska napełniania butelek przedstawionego na ilustracji?

Ilustracja do pytania
A. Indukcyjny.
B. Magnetyczny.
C. Pojemnościowy.
D. Optyczny.
Czujniki indukcyjne, pojemnościowe i optyczne są często stosowane w automatyzacji procesów, ale ich zastosowanie w kontekście detekcji położenia butelek na stanowisku napełniania może prowadzić do nieporozumień. Czujnik indukcyjny, który jest zaprojektowany do wykrywania obiektów metalowych, może okazać się efektywny w sytuacjach, gdy metalowe elementy są obecne, jednak w przypadku butelek wykonanych z plastiku lub szkła, jego użycie będzie nieadekwatne. Z kolei czujnik pojemnościowy, choć skuteczny w detekcji materiałów nieprzewodzących, może w niektórych sytuacjach być niewłaściwie skonfigurowany, co prowadzi do fałszywych alarmów lub braku reakcji. Optyczne czujniki, które wykorzystują technologię fotonową, mogą być również ograniczone przez warunki środowiskowe, takie jak zanieczyszczenia na obiekcie lub zmiana oświetlenia, co wpływa na ich zdolność do prawidłowego działania. Typowym błędem myślowym jest zakładanie, że każdy czujnik może być użyty w dowolnej aplikacji bez uwzględnienia specyfiki materiałów i warunków operacyjnych. W praktyce, skuteczność czujnika zależy od jego technologii oraz parametrów środowiskowych, w których jest zainstalowany, co jest kluczowe dla zapewnienia efektywności procesów przemysłowych.

Pytanie 2

Na schemacie symbolem 1A oznaczono

Ilustracja do pytania
A. element wykonawczy.
B. stację zasilania olejem.
C. zawór rozdzielający.
D. czujniki położenia.
Symbol 1A na schemacie oznacza element wykonawczy, którym jest siłownik pneumatyczny. Siłowniki odgrywają kluczową rolę w automatyzacji procesów przemysłowych, zamieniając energię sprężonego powietrza na ruch mechaniczny. Dzięki temu, siłowniki są szeroko stosowane w różnych aplikacjach, takich jak transport materiałów, montaż, czy pakowanie. Przykładem zastosowania siłownika może być linia montażowa, gdzie siłownik wykonawczy przemieszcza elementy w odpowiednich sekwencjach, co zwiększa efektywność produkcji. W kontekście standardów branżowych, siłowniki pneumatyczne często zgodne są z normami ISO, co zapewnia ich niezawodność i kompatybilność w różnorodnych systemach. Warto również zwrócić uwagę na wybór odpowiednich siłowników w zależności od aplikacji, co może obejmować ich rozmiar, siłę oraz rodzaj napędu, co w praktyce przekłada się na optymalizację procesu i redukcję kosztów operacyjnych.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Do pracy związanej z lutowaniem elementów dyskretnych na płytce drukowanej powinno się założyć

A. okulary ochronne
B. obuwie ochronne z gumową podeszwą
C. rękawice odporne na wysoką temperaturę
D. fartuch ochronny
Fartuch ochronny jest niezbędnym elementem odzieży roboczej w pracy związanej z lutowaniem elementów dyskretnych na płytkach drukowanych. Jego główną funkcją jest ochrona pracownika przed rozpryskami cyny oraz innymi niebezpiecznymi substancjami, które mogą wydobywać się podczas procesu lutowania. Fartuch wykonany z odpowiednich materiałów odpornych na wysokie temperatury i chemikalia minimalizuje ryzyko poparzeń oraz kontaktu z substancjami szkodliwymi. W praktyce, dobrym przykładem zastosowania fartucha ochronnego mogą być stanowiska pracy w laboratoriach elektronicznych czy zakładach produkcyjnych, gdzie precyzyjne lutowanie komponentów jest kluczowe. Ponadto, fartuchy ochronne powinny być zgodne z normami bezpieczeństwa, takimi jak EN 13034, które regulują wymagania dotyczące odzieży, chroniącej przed czynnikami chemicznymi. Wybierając fartuch, warto zwrócić uwagę na jego wygodę i funkcjonalność, co wpływa na komfort pracy oraz efektywność.

Pytanie 5

Narzędzie przedstawione na rysunku służy do

Ilustracja do pytania
A. dozowania oleju.
B. odsysania spoiwa.
C. przedmuchiwania sprężonym powietrzem.
D. nitowania.
Pompa do odsysania spoiwa, znana również jako odsysacz lutowniczy, jest kluczowym narzędziem w elektronice, zwłaszcza podczas lutowania i naprawy układów elektronicznych. Jej podstawowym zadaniem jest skuteczne usuwanie nadmiaru spoiwa z połączeń lutowniczych, co pozwala na uzyskanie czystszych i bardziej trwałych lutów. Przeprowadzając proces lutowania, szczególnie w przypadku małych elementów, może zdarzyć się, że spoiwo rozleje się lub złączy kilka padów, co prowadzi do zwarć. Odsysacz lutowniczy pozwala na szybkie i efektywne usunięcie nadmiaru materiału, co zwiększa jakość połączenia oraz minimalizuje ryzyko uszkodzenia komponentów. W praktyce, aby użyć odsysacza, wystarczy podgrzać spoiwo lutownicze, a następnie w odpowiednim momencie przyłożyć końcówkę odsysacza, która wciągnie płynne spoiwo. Narzędzie to jest zgodne z najlepszymi praktykami w branży, gdzie precyzja i czystość lutowania są kluczowe dla długoterminowej niezawodności urządzeń elektronicznych.

Pytanie 6

Jakim urządzeniem można zmierzyć siłę nacisku tłoka w siłowniku hydraulicznym?

A. tensometrem
B. termistorem
C. hallotronem
D. pirometrem
Tensometr to urządzenie pomiarowe, które wykorzystuje zjawisko zmiany oporu elektrycznego w wyniku odkształcenia materiału. W kontekście siłowników hydraulicznych, tensometry mogą być używane do precyzyjnego pomiaru siły nacisku tłoka, ponieważ siła ta powoduje odkształcenie elementu pomiarowego, co bezpośrednio wpływa na zmianę jego oporu. Dzięki temu, tensometry pozwalają na uzyskanie dokładnych i wiarygodnych wyników pomiarów, które są kluczowe w wielu zastosowaniach inżynieryjnych, takich jak automatyka przemysłowa, systemy hydrauliczne oraz testowanie materiałów. Przykładem zastosowania tensometrów w praktyce może być monitorowanie siły nacisku w maszynach do formowania, gdzie precyzyjna kontrola siły jest niezbędna do zapewnienia jakości produkcji. W branży inżynieryjnej stosuje się różne normy, takie jak ISO 376, które dotyczą metod pomiarowych przy użyciu tensometrów, co podkreśla ich znaczenie oraz zastosowanie w profesjonalnych pomiarach.

Pytanie 7

Przedstawiony element to

Ilustracja do pytania
A. szybkozłączka optyczna.
B. szybkozłączka pneumatyczna.
C. szybkozłączka elektryczna.
D. złącze grzybkowe.
Szybkozłączka pneumatyczna to element układów pneumatycznych, który umożliwia szybkie i beznarzędziowe łączenie oraz rozłączanie węży i narzędzi pneumatycznych. Jej metalowa konstrukcja oraz obecność gwintów pozwalają na solidne i trwałe połączenie, co jest kluczowe w aplikacjach przemysłowych. Ten typ złącza jest powszechnie stosowany w różnych branżach, takich jak przemysł motoryzacyjny czy budowlany, gdzie wykorzystywane są narzędzia pneumatyczne do wykonywania prac. Zastosowanie szybkozłączek pneumatycznych przyczynia się nie tylko do zwiększenia efektywności pracy, ale także do poprawy bezpieczeństwa operacji, ponieważ umożliwiają one łatwe i szybkie odłączenie narzędzi w razie potrzeby. Dobry dobór szybko złączek w systemie pneumatycznym, zgodny z normami branżowymi, zapewnia optymalną wydajność oraz niezawodność pracy urządzeń.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Który z programów przekształca kod napisany w danym języku programowania na kod maszynowy stosowany przez mikrokontroler?

A. Deasembler
B. Kompilator
C. Debugger
D. Emulator
Odpowiedzi, które wybrałeś, nie są związane z procesem tłumaczenia kodu źródłowego na kod maszynowy. Symulator to narzędzie, które imituje działanie mikrokontrolera, pozwalając na testowanie programów bez potrzeby fizycznego wgrania ich do urządzenia. Jego rola polega na umożliwieniu deweloperom analizy działania ich kodu w bezpiecznym środowisku, ale nie wykonuje ono konwersji kodu. Deasembler, z drugiej strony, to narzędzie, które przekształca kod maszynowy z powrotem na formę bardziej zrozumiałą dla ludzi, ale nie generuje kodu maszynowego z kodu źródłowego. Właściwie używa się go w kontekście analizy istniejącego kodu, a nie w procesie tworzenia oprogramowania. Debugger to narzędzie używane do identyfikacji i naprawy błędów w kodzie. Choć jest kluczowe w procesie programowania, jego zadaniem nie jest tłumaczenie kodu, lecz raczej monitorowanie działania programu w czasie rzeczywistym i umożliwienie analizy stanów oraz wartości zmiennych. Zrozumienie różnicy pomiędzy tymi narzędziami jest kluczowe dla każdego programisty, aby stosować odpowiednie podejścia i narzędzia w procesie tworzenia oprogramowania.

Pytanie 10

W aplikacjach sterujących, wykonywanych przy użyciu sterownika PLC, do zapisywania sygnałów impulsowych oraz ich konwersji na sygnały trwałe (włączanie z samopodtrzymaniem) wykorzystuje się moduły

A. filtrów komparatorowych
B. rejestrów licznikowych
C. zegarów czasowych
D. przerzutników
Funkcje czasowe, komparatory i liczniki są ważnymi elementami w automatyce, ale nie pełnią one funkcji związanych z zapamiętywaniem i przetwarzaniem sygnałów impulsowych w sposób, w jaki robią to przerzutniki. Funkcje czasowe, takie jak timery, są wykorzystywane do wprowadzenia opóźnień w działaniu systemów, ale nie mogą same w sobie utrzymywać stanu bez ciągłego sygnału wejściowego. Z kolei komparatory służą do porównywania wartości napięcia lub sygnałów, co jest istotne w kontekście regulacji, ale nie odnoszą się do przechowywania stanów. Liczniki, z drugiej strony, mają zastosowanie głównie do zliczania impulsów, co jest przydatne w zastosowaniach takich jak monitorowanie liczby cykli produkcyjnych, ale również nie mogą same w sobie przechowywać stanu w długim okresie. Typowym błędem myślowym jest mylenie funkcji liczników i przerzutników, ponieważ oba te elementy operują na sygnałach, ale różnią się zasadniczo w sposobie ich działania oraz zastosowania. Zrozumienie tych różnic jest kluczowe dla projektowania efektywnych systemów automatyki i sterowania. Właściwy dobór elementów w zależności od wymagań aplikacji jest niezbędny do osiągnięcia niezawodności i efektywności systemów sterujących.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Jakie jest moment obrotowy na wale silnika synchronicznego o mocy 3,14 kW przy prędkości obrotowej 3000 obr/min?

A. 1 Nm
B. 10 Nm
C. 9 420 Nm
D. 986 Nm
W przypadku momentu obrotowego na wale silnika synchronicznego, istnieje kilka kluczowych koncepcji, które mogą prowadzić do błędnych odpowiedzi. Moment obrotowy jest miarą siły, która powoduje obrót ciała wokół osi. Odpowiedzi takie jak 986 Nm, 1 Nm, czy 9 420 Nm nie uwzględniają prawidłowego przeliczenia mocy na moment obrotowy. Często mylnie przyjmuje się, że moc silnika bezpośrednio przekłada się na moment obrotowy, co jest nieprawidłowe. Prawidłowe obliczenie wymaga uwzględnienia zarówno mocy, jak i prędkości obrotowej. Typowym błędem jest także mylenie jednostek, zwłaszcza przy konwersji mocy z kilowatów na waty, co może prowadzić do znacznych niedoszacowań lub przeszacowań momentu obrotowego. Przykładowo, odpowiedź 986 Nm sugeruje, że silnik jest znacznie bardziej mocny niż to wynika z podanych danych. Z drugiej strony, odpowiedzi takie jak 1 Nm czy 10 Nm również nie oddają rzeczywistej wartości momentu, co może wpłynąć na niewłaściwy dobór napędu w praktycznych zastosowaniach przemysłowych. Dokładne zrozumienie tych zasad jest kluczowe dla inżynierów i techników, aby unikać potencjalnych problemów w projektowaniu układów napędowych.

Pytanie 13

Jaka jest wartość rezystancji rezystora przedstawionego na rysunku?

Ilustracja do pytania
A. 10 kΩ
B. 100 Ω
C. 10 Ω
D. 1 kΩ
Ten rezystor, co go widzisz na rysunku, ma oznaczenie "10kΩ", co oznacza, że jego rezystancja wynosi 10 kiloomów. W elektronice to bardzo ważny element, bo reguluje przepływ prądu w obwodach. Takie rezystory o wartości 10 kΩ często spotyka się w układach analogowych, jak na przykład w filtrach RC. Wiesz, ich wartość wpływa na częstotliwość graniczną obwodu, więc to jest naprawdę istotne. Z doświadczenia wiem, że dobór odpowiedniego rezystora to kluczowy krok, żeby obwód działał jak należy. No i jeszcze warto wiedzieć, że wartości rezystorów są ustandaryzowane według norm E12 lub E24. Dzięki temu łatwiej je dobrać i wykorzystać w praktyce. Dlatego warto znać wartości rezystancji i ich zastosowanie, bo to jest fundamentalne dla każdego inżyniera elektronika.

Pytanie 14

Ile wynosi wartość natężenia prądu znamionowego toru głównego wyłącznika różnicowoprądowego przedstawionego na ilustracji?

Ilustracja do pytania
A. 63 A
B. 400 V
C. 800 A
D. 30 mA
Odpowiedź '63 A' jest poprawna, ponieważ na przedstawionym wyłączniku różnicowoprądowym wyraźnie widnieje oznaczenie, które wskazuje na wartość natężenia prądu znamionowego toru głównego. Wyłączniki różnicowoprądowe są kluczowymi elementami w systemach elektrycznych, które zapewniają ochronę przed porażeniem prądem elektrycznym oraz przeciążeniami. Wartość 63 A oznacza maksymalne natężenie prądu, które urządzenie może bezpiecznie przewodzić bez ryzyka uszkodzenia. W praktyce, wybór odpowiedniego wyłącznika różnicowoprądowego jest kluczowy dla zapewnienia bezpieczeństwa instalacji elektrycznej. Standardy takie jak PN-EN 61008 określają wymagania dotyczące tych urządzeń, w tym klasyfikację według wartości znamionowych. Dlatego ważne jest, aby instalatorzy i inżynierowie dobrze rozumieli oznaczenia na tego typu sprzęcie oraz potrafili je interpretować, co ma bezpośrednie przełożenie na bezpieczeństwo użytkowników oraz trwałość instalacji elektrycznych.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Z czego wykonuje się rdzeń wirnika silnika indukcyjnego?

A. z pakietu blach elektrotechnicznych wzajemnie izolowanych od siebie
B. z litego materiału magnetycznego izotropowego
C. z litego materiału magnetycznego anizotropowego
D. z pakietu blach elektrotechnicznych nie izolowanych od siebie
Sugerowanie, że rdzeń wirnika silnika indukcyjnego można wykonać z litego materiału magnetycznego anizotropowego, jest nieprawidłowe z perspektywy inżynierii elektrycznej. Anizotropowość materiału oznacza, że jego właściwości magnetyczne są różne w różnych kierunkach, co w przypadku rdzenia wirnika byłoby niekorzystne. W silnikach indukcyjnych istotne jest, aby rdzeń miał jednorodne właściwości magnetyczne, co zapewnia optymalne zachowanie się pola magnetycznego. Lite materiały mogą prowadzić do powstawania silnych prądów wirowych, co zwiększa straty mocy i obniża efektywność silnika. Użycie pakietów blach elektrotechnicznych, które są wzajemnie izolowane, z kolei pozwala na ograniczenie tych strat. Zastosowanie litego materiału magnetycznego izotropowego nie rozwiązuje problemu strat prądów wirowych, ponieważ chociaż materiał jest jednorodny, to nadal sprzyja powstawaniu strat energetycznych poprzez generowanie prądów wirowych w strukturze. Wreszcie, wykonanie rdzenia z pakietu blach elektrotechnicznych nieizolowanych od siebie jest również nieprawidłowe. Takie podejście prowadziłoby do znacznych strat energii, a także do przegrzewania się rdzenia, co mogłoby wpłynąć na bezpieczeństwo i trwałość silnika. W przemyśle i inżynierii energetycznej stosuje się blachy elektrotechniczne o odpowiedniej grubości i właściwościach magnetycznych, aby zoptymalizować wydajność i niezawodność urządzeń elektrycznych.

Pytanie 17

Jaką sprężarkę klasyfikuje się jako sprężarkę wyporową?

A. Sprężarkę śrubową
B. Sprężarkę promieniową
C. Sprężarkę osiową
D. Turbosprężarkę
Sprężarka śrubowa to jeden z typów sprężarek wyporowych, które działają na zasadzie mechanicznego zwiększania ciśnienia gazu poprzez jego zmniejszanie objętości w zamkniętej przestrzeni. W sprężarkach śrubowych dwa wirniki, w kształcie śrub, obracają się w przeciwnych kierunkach, co powoduje zasysanie gazu i jego sprężanie. Taki typ sprężarki jest szeroko stosowany w przemyśle, w tym w systemach pneumatycznych, systemach chłodzenia oraz w aplikacjach wymagających ciągłego przepływu sprężonego powietrza. Dzięki swojej konstrukcji, sprężarki śrubowe charakteryzują się wysoką wydajnością, niskim poziomem hałasu oraz długą żywotnością. Standardy branżowe, takie jak ISO 8573-1, określają wymagania dotyczące jakości sprężonego powietrza, co sprawia, że sprężarki śrubowe są często wybierane ze względu na ich zdolność do dostarczania powietrza o wysokiej czystości i niskiej wilgotności, co jest kluczowe w wielu zastosowaniach przemysłowych.

Pytanie 18

Aby dokręcić śrubowe połączenie z momentem obrotowym 6 Nm, należy użyć klucza

A. nasadkowego
B. dynamometrycznego
C. oczkowego
D. imbusowego
Odpowiedź 'dynamometrycznego' jest prawidłowa, ponieważ klucz dynamometryczny jest narzędziem zaprojektowanym do dokręcania śrub z określonym momentem obrotowym. Umożliwia on precyzyjne ustawienie momentu, co jest kluczowe w wielu zastosowaniach inżynieryjnych, aby uniknąć uszkodzeń komponentów, które mogą wyniknąć z nadmiernego dokręcenia. W praktyce klucze dynamometryczne są szeroko stosowane w motoryzacji, budownictwie oraz przy montażu wszelkiego rodzaju maszyn i urządzeń. Przykładowo, w przypadku dokręcania śrub w silniku samochodowym, zastosowanie momentu 6 Nm może być wymagane do zapewnienia odpowiedniej kompresji oraz szczelności, co jest kluczowe dla prawidłowego działania silnika. Ponadto, stosując klucz dynamometryczny, inżynierowie mogą dostosować moment obrotowy do specyfikacji producenta, co jest zgodne z najlepszymi praktykami inżynieryjnymi i standardami branżowymi. W ten sposób, narzędzie to nie tylko zwiększa efektywność pracy, ale również wpływa na bezpieczeństwo i trwałość montowanych elementów.

Pytanie 19

Którego narzędzia należy użyć do demontażu bezpiecznika z urządzenia, którego fragment przedstawiono na rysunku?

Ilustracja do pytania
A. Pęsety.
B. Odsysacza.
C. Klucza imbusowego.
D. Lutownicy transformatorowej.
Prawidłowa odpowiedź to pęseta, ponieważ jest to narzędzie zaprojektowane do pracy z małymi i delikatnymi komponentami elektronicznymi, takimi jak bezpieczniki. Umożliwia precyzyjne chwycenie i wyciągnięcie elementu bez ryzyka uszkodzenia okolicznych części urządzenia. Przykładem zastosowania pęsety jest demontaż bezpiecznika w momencie, gdy konieczna jest jego wymiana z powodu przepalenia. Pęsety są szeroko stosowane w elektronice, zwłaszcza na etapie montażu i demontażu obwodów drukowanych, gdzie przestrzeń robocza jest ograniczona, a elementy są małe. Zgodnie ze standardami inżynieryjnymi, użycie odpowiednich narzędzi, takich jak pęsety, zwiększa dokładność i bezpieczeństwo operacji. Ponadto, pęseta pozwala na uniknięcie kontaktu palców z innymi elementami wrażliwymi na uszkodzenia, co jest istotne w kontekście zachowania integralności urządzenia. Warto też dodać, że stosowanie pęsety jest zgodne z najlepszymi praktykami w zakresie serwisowania urządzeń elektronicznych, co podkreśla znaczenie znajomości odpowiednich narzędzi w tej dziedzinie.

Pytanie 20

System napędowy, który składa się z silnika prądu przemiennego zasilanego przez falownik, działa poprawnie, gdy wzrost częstotliwości napięcia zasilającego prowadzi do

A. spadku obrotów silnika
B. obniżenia wartości napięcia zasilania
C. wzrostu obrotów silnika
D. zmniejszenia reaktancji uzwojeń silnika
Wzrost obrotów silnika w układzie napędowym z silnikiem prądu przemiennego zasilanym z falownika jest zgodny z zasadą, że zmiana częstotliwości napięcia zasilającego wpływa na prędkość obrotową silnika. Zgodnie z równaniem: n = (120 × f) / p, gdzie n to prędkość obrotowa w obrotach na minutę (RPM), f to częstotliwość zasilania, a p to liczba par biegunów silnika, możemy zauważyć, że zgodnie z tym równaniem, zwiększenie częstotliwości f prowadzi do proporcjonalnego wzrostu prędkości obrotowej n. Przykładowo, w zastosowaniach przemysłowych, takich jak napęd wentylatorów, pomp, czy taśmociągów, wykorzystuje się falowniki do precyzyjnego sterowania prędkością obrotową, co pozwala na oszczędność energii oraz zwiększenie efektywności procesów technologicznych. Warto także zwrócić uwagę na standardy takie jak IEC 60034, które definiują normy dla maszyn elektrycznych, w tym dla silników elektrycznych, co jest istotne dla zapewnienia ich prawidłowej pracy i bezpieczeństwa użytkowania. Zrozumienie tej zasady jest kluczowe dla inżynierów automatyków oraz techników zajmujących się systemami napędowymi.

Pytanie 21

Należy przekształcić energię sprężonej cieczy roboczej w ruch obrotowy o bardzo niskiej i stabilnej prędkości obrotowej, jak również znacznym momencie obrotowym. Elementem wykonawczym jest hydrauliczny

A. siłownik nurnikowy
B. silnik tłokowy
C. silnik zębaty
D. siłownik teleskopowy
Wybór silnika zębatego, siłownika nurnikowego lub siłownika teleskopowego jako alternatywy dla silnika tłokowego jest niewłaściwy z kilku powodów. Silnik zębaty, choć efektywny w kontekście prędkości obrotowych, nie jest przystosowany do generowania dużego momentu obrotowego przy niskich prędkościach, co jest kluczowe w wielu zastosowaniach hydraulicznych. Z kolei siłownik nurnikowy, będący elementem o liniowym ruchu, nie przekształca energii cieczy w ruch obrotowy, co wyklucza go z rozważanej funkcji. Siłownik teleskopowy, mimo że może oferować pewne korzyści w zakresie kompaktowości i wydajności, również nie generuje ruchu obrotowego, co czyni go nieodpowiednim w kontekście tego pytania. Typowe błędy myślowe, które mogą prowadzić do wyboru tych elementów, obejmują mylenie zastosowań silników i siłowników oraz nieadekwatne rozumienie ich podstawowych zasad działania. Kluczowe jest zrozumienie, że każdy z tych elementów ma swoje specyficzne zastosowania i ograniczenia, a wybór niewłaściwego komponentu może prowadzić do obniżenia efektywności całego systemu hydraulicznego. W kontekście przemysłowym, normy takie jak ISO 4414 stanowią wytyczne dotyczące stosowania hydrauliki, co podkreśla znaczenie doboru odpowiednich typów napędów w zależności od specyficznych wymagań aplikacji.

Pytanie 22

Wynik pomiaru wskazywany przez manometr wynosi

Ilustracja do pytania
A. 800 bar
B. 850 bar
C. 13 000 bar
D. 12 000 bar
Wybór 850 bar jako odpowiedzi jest poprawny z kilku powodów. Manometry są używane do pomiaru ciśnienia gazów i cieczy, a ich wskazania są kluczowe w wielu zastosowaniach inżynieryjnych oraz przemysłowych. W tym przypadku wskazanie manometru, które znajduje się nieco poniżej 1000 bar, ale powyżej 500 bar, wskazuje na wartość, która najbliżej odpowiada 850 bar. Takie pomiary są niezwykle istotne w aplikacjach, gdzie precyzyjne ciśnienie jest niezbędne dla bezpieczeństwa i efektywności działania systemu. Na przykład, w systemach hydraulicznych i pneumatycznych, zastosowanie odpowiednich ciśnień zapewnia optymalną pracę urządzeń i minimalizuje ryzyko awarii. Dobrą praktyką jest rozumienie i interpretacja wskazań manometrów w kontekście zastosowań sprzętu, aby uniknąć niebezpiecznych sytuacji, które mogą wyniknąć z niewłaściwego ciśnienia.

Pytanie 23

Którym kluczem należy dokręcić śruby podczas montażu elementu przedstawionego na rysunku?

Ilustracja do pytania
A. Nasadowym.
B. Uniwersalnym.
C. Dynamometrycznym.
D. Oczkowym.
Klucz dynamometryczny jest narzędziem niezbędnym w sytuacjach, gdzie precyzyjne określenie momentu dokręcenia śrub jest kluczowe dla bezpieczeństwa i funkcjonalności konstrukcji. Na zdjęciu widoczny jest element z sforsowanymi śrubami, które mają różne wymagane momenty dokręcenia: 24 Nm i 48 Nm. Użycie klucza dynamometrycznego umożliwia ustawienie pożądanego momentu, co zapobiega zarówno niedokreśleniu, które może prowadzić do luzowania się połączeń w czasie eksploatacji, jak i nadmiernemu dokręceniu, mogącemu prowadzić do uszkodzenia materiału lub śruby. Przykładem zastosowania klucza dynamometrycznego jest montaż elementów w silnikach samochodowych, gdzie precyzyjne dokręcenie śrub jest kluczowe dla prawidłowego funkcjonowania jednostki napędowej oraz jej długowieczności. Standardy branżowe, takie jak ISO 6789, podkreślają znaczenie narzędzi pomiarowych w zapewnieniu jakości montażu. Wykorzystanie klucza dynamometrycznego stanowi więc najlepszą praktykę i jest zalecane w wielu gałęziach przemysłu.

Pytanie 24

Którym medium roboczym jest zasilane urządzenie o symbolu graficznym przedstawionym na rysunku?

Ilustracja do pytania
A. Prądem stałym.
B. Prądem przemiennym.
C. Sprężonym powietrzem.
D. Cieczą hydrauliczną.
Cieczą hydrauliczną zasilane są urządzenia, które wykorzystują moc cieczy do generowania siły. W przypadku zaworów hydraulicznych, które widzimy na przedstawionym symbolu, ich głównym zadaniem jest kontrolowanie przepływu cieczy w układach hydraulicznych. Zawory mogą mieć różne funkcje, w tym regulację ciśnienia, kierunku przepływu oraz jego ilości, co jest kluczowe dla prawidłowego funkcjonowania maszyn i urządzeń przemysłowych. Systemy hydrauliczne są powszechnie stosowane w różnych branżach, takich jak budownictwo, przemysł motoryzacyjny i produkcja, gdzie siły generowane przez ciecz są wykorzystywane do napędu narzędzi, podnoszenia ciężarów i sterowania ruchem. Zrozumienie działania zaworów hydraulicznych oraz ich roli w systemach hydraulicznych jest niezwykle istotne, ponieważ prawidłowe ich dobranie i konfiguracja są kluczowe dla efektywności i bezpieczeństwa operacji. Przykładem może być maszyna budowlana, która wykorzystuje hydraulikę do podnoszenia i przemieszczania ciężkich elementów.

Pytanie 25

Wymiana tranzystora wyjściowego w CMOS sterowniku PLC powinna być przeprowadzana z użyciem

A. bawełnianego fartucha ochronnego
B. opaski uziemiającej
C. okularów ochronnych
D. butów z izolowaną podeszwą
Stosowanie okularów ochronnych, butów z izolowaną podeszwą lub bawełnianego fartucha ochronnego w kontekście wymiany tranzystora wyjściowego CMOS sterownika PLC może wydawać się na pierwszy rzut oka odpowiednie, jednak nie adresuje kluczowego zagadnienia ochrony przed elektrostatycznymi wyładowaniami. Okulary ochronne, choć istotne w kontekście ochrony wzroku przed przypadkowymi zanieczyszczeniami czy odpryskami, nie mają wpływu na zapobieganie uszkodzeniom komponentów elektronicznych spowodowanym przez ESD. Z kolei buty z izolowaną podeszwą, mimo że mogą chronić przed porażeniem prądem w niektórych sytuacjach, nie eliminują ryzyka gromadzenia się ładunków elektrostatycznych, co jest kluczowym zagadnieniem podczas pracy z układami CMOS. Bawełniany fartuch ochronny również nie ma zastosowania w kontekście ochrony przed ESD, a jego główną rolą jest ochrona przed zanieczyszczeniami i rozpryskami materiałów chemicznych. W praktyce, błędne podejście do ochrony przed ESD prowadzi do niepotrzebnych uszkodzeń sprzętu, zwiększając koszty napraw i przestojów. Kluczowe jest zrozumienie, że wrażliwość układów CMOS na ESD wymaga stosowania wyspecjalizowanych metod ochrony, a nie standardowych środków ochrony osobistej, które nie odpowiadają na specyfikę zagrożeń związanych z elektrostatycznymi wyładowaniami.

Pytanie 26

Do którego urządzenia odnoszą się przedstawione w ramce informacje?

Stała wydajności (wydatek)
Cechy: objętość robocza 3,29 cm3/obr.,
prędkość obrotowa do 4800 obr./min.,
ciśnienie do 175 bar.
Zastosowanie: w hydraulicznych maszynach mobilnych i przemysłowych.
Zalecany napęd: bezpośredni współosiowy ze sprzęgłem elastycznym.
Wykorzystanie: jako urządzenie pomocnicze lub w instalacjach o niewielkich przepływach.
A. Silnika pneumatycznego.
B. Pompy hydraulicznej.
C. Hydroakumulatora.
D. Chłodnicy oleju hydraulicznego.
Pompa hydrauliczna jest kluczowym elementem w wielu systemach hydraulicznych, a informacje przedstawione w ramce doskonale odzwierciedlają jej charakterystykę. Pompy hydrauliczne charakteryzują się stałą wydajnością oraz możliwością regulacji ciśnienia roboczego, co jest niezbędne w aplikacjach przemysłowych i mobilnych. Zastosowanie pomp hydraulicznych jest szerokie, od układów sterowania w maszynach budowlanych, po systemy hydrauliczne w przemyśle motoryzacyjnym. W przypadku pomp z napędem współosiowym, elastyczne sprzęgła umożliwiają redukcję drgań oraz zwiększają żywotność układów. Zgodnie z najlepszymi praktykami branżowymi, dobór odpowiedniej pompy hydraulicznej powinien być oparty na analizie parametrów, takich jak objętość robocza, prędkość obrotowa oraz wymagane ciśnienie robocze, co pozwala na optymalne funkcjonowanie całego systemu hydraulicznego.

Pytanie 27

Którą technikę łączenia materiałów przedstawiono na rysunku?

Ilustracja do pytania
A. Lutowania miękkiego.
B. Zgrzewania.
C. Lutowania twardego.
D. Klejenia.
Zgrzewanie, lutowanie miękkie oraz klejenie to techniki łączenia materiałów, które różnią się od lutowania twardego zarówno w zakresie procesu, jak i zastosowania. Zgrzewanie polega na połączeniu elementów poprzez ich miejscowe stopienie, co wymaga energii cieplnej generowanej poprzez opór elektryczny lub ultradźwięki. Choć zgrzewanie doskonale sprawdza się w łączeniu blach stalowych, nie osiąga takiej trwałości jak lutowanie twarde, szczególnie w kontekście różnorodności materiałów. Lutowanie miękkie, z kolei, opiera się na spoiwach o niższej temperaturze topnienia, co czyni je bardziej odpowiednim do delikatnych komponentów, jednak nie zapewnia odpowiedniej wytrzymałości w przypadku intensywnych obciążeń mechanicznych. Klejenie to proces łączenia materiałów przy użyciu substancji chemicznych, co w niektórych przypadkach może być korzystne, ale zazwyczaj nie jest wystarczająco mocne dla zastosowań przemysłowych wymagających dużych sił. Użytkownicy często mylą te techniki, co prowadzi do błędnych wniosków o ich zastosowalności. Zrozumienie różnic między tymi metodami jest kluczowe dla prawidłowego wyboru odpowiedniej technologii montażu w zależności od specyfikacji projektu oraz wymagań wytrzymałościowych.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Charakterystykę I = f(U) diody półprzewodnikowej można uzyskać za pomocą oscyloskopu dwukanałowego w trybie

A. DC
B. X/T
C. AC
D. X/Y
Użycie trybu AC do analizy charakterystyki prądowo-napięciowej diody półprzewodnikowej jest niewłaściwe, ponieważ ten tryb oscyloskopu służy przede wszystkim do analizy sygnałów zmiennych. W trybie AC oscyloskop nie wyświetla sygnałów stałych, co ogranicza możliwość monitorowania prądów i napięć w nieliniowych elementach, takich jak diody, które wymagają analizy w pełnym zakresie napięć. Z kolei tryb DC pozwala na obserwację sygnałów stałych, ale nie umożliwia jednoczesnego przedstawienia prądu i napięcia na jednym wykresie, co jest kluczowe do zrozumienia charakterystyki diody. Opcja X/T również nie jest odpowiednia, gdyż ten tryb jest używany do analizy sygnałów czasowych, a nie do porównania dwóch zmiennych, jak w przypadku prądu i napięcia. Typowym błędem przy wyborze trybu oscyloskopu jest założenie, że wystarczy wybrać jakikolwiek tryb do analizy, nie biorąc pod uwagę specyfiki badanego elementu. Aby skutecznie analizować nieliniowe charakterystyki, konieczne jest zrozumienie, że odpowiedni tryb X/Y dostarcza najbardziej wartościowych informacji, które są niezbędne dla właściwej interpretacji wyników oraz projektowania układów elektronicznych.

Pytanie 30

Którą funkcję logiczną realizują przedstawione na rysunku zawory?

Ilustracja do pytania
A. AND
B. NAND
C. OR
D. NOR
Wybór odpowiedzi wskazujących na inne funkcje logiczne, takie jak OR, NAND czy NOR, wynika z nieporozumienia w zrozumieniu działania zaworów i ich połączenia w omawianym układzie. Funkcja OR działa na zasadzie alternatywy, co oznacza, że wystarczy, aby przynajmniej jeden z warunków był spełniony, aby uzyskać sygnał na wyjściu. Przykładowo, w układzie pneumatycznym z zastosowaniem zaworów OR, powietrze mogłoby przepływać, jeśli tylko jeden z zaworów byłby otwarty, co nie ma miejsca w przypadku szeregowego połączenia, które wymaga otwarcia obu zaworów. Analogicznie, funkcje NAND i NOR operują na negacji, co prowadzi do błędnych wniosków przy interpretacji przedstawionego rysunku. Zawory NAND otwierają przepływ powietrza, gdy przynajmniej jeden z zaworów jest zamknięty, a NOR działa na zasadzie, że przepływ jest możliwy tylko wtedy, gdy wszystkie zawory są zamknięte. Te koncepcje są sprzeczne z logiką układów pneumatycznych przedstawionych na rysunku. Powszechnym błędem jest także mylenie zależności i sekwencji w działaniu elementów, co może prowadzić do niewłaściwych projektów w automatyce i problemów w praktyce. Zrozumienie, że zawory połączone szeregowo wymagają jednoczesnego otwarcia dla umożliwienia przepływu, jest kluczowe dla poprawnego projektowania i działania systemów pneumatycznych.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Potrojenie natężenia prądu przepływającego przez rezystor o niezmiennej rezystancji spowoduje, że ilość ciepła wydzielającego się w nim wzrośnie

A. sześciokrotnie
B. trzykrotnie
C. dwukrotnie
D. dziewięciokrotnie
Wybór odpowiedzi, która zakłada trzykrotny, sześciokrotny lub dwukrotny wzrost wydzielającego się ciepła w wyniku trzykrotnego zwiększenia natężenia prądu, opiera się na błędnym zrozumieniu zależności między mocą, natężeniem prądu a rezystancją. Warto pamiętać, że zgodnie z prawem Joule'a, moc wydzielająca się w rezystorze jest proporcjonalna do kwadratu natężenia prądu. Jeśli ktoś uważa, że moc wzrasta tylko trzykrotnie, myli się, ponieważ moc nie jest liniowo związana z natężeniem prądu. Dla natężenia prądu wynoszącego "I", moc wynosi P = I²R, a dla natężenia "3I", moc wynosi P' = (3I)²R = 9I²R. To oznacza, że moc wzrasta dziewięciokrotnie, a nie trzykrotnie, jak sugeruje błędne odpowiedzi. W praktyce, takie nieporozumienia mogą prowadzić do niewłaściwego projektowania obwodów elektrycznych, co z kolei może prowadzić do przegrzewania się komponentów i ich uszkodzeń. Zrozumienie tych kluczowych zasad jest niezbędne dla inżynierów i techników pracujących z urządzeniami elektrycznymi. Warto podkreślić, że ignorowanie takich relacji między parametrami obwodów może skutkować niebezpiecznymi sytuacjami oraz zwiększeniem kosztów eksploatacji związanych z koniecznością naprawy lub wymiany uszkodzonych elementów.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Aby zmierzyć temperaturę, należy podłączyć do wejścia sterownika PLC

A. czujnik indukcyjny
B. przekaźnik elektromagnetyczny
C. czujnik rezystancyjny
D. prądnicę tachometryczną
Czujnik rezystancyjny, znany również jako czujnik RTD (Resistance Temperature Detector), jest najczęściej wykorzystywany do pomiaru temperatury w systemach automatyki. Jego działanie opiera się na zasadzie zmiany oporu elektrycznego materiału w zależności od temperatury. W praktyce, czujniki te oferują wysoką precyzję oraz stabilność pomiaru, co czyni je odpowiednimi do zastosowań w przemyśle chemicznym, petrochemicznym oraz w systemach HVAC. Dodatkowo, czujniki rezystancyjne mogą być stosowane w szerokim zakresie temperatur, co sprawia, że są uniwersalne i elastyczne w zastosowaniach. W kontekście połączenia z PLC, czujnik rezystancyjny może być podłączony bezpośrednio do wejścia analogowego sterownika, umożliwiając dokładny odczyt temperatury oraz kontrolę procesów. Warto również dodać, że dla zapewnienia dokładnych pomiarów, stosuje się standardy takie jak IEC 60751, które określają charakterystyki czujników RTD.

Pytanie 35

Jakie jest zastosowanie przedstawionego na ilustracji elementu?

Ilustracja do pytania
A. Zamiana prądu stałego na prąd przemienny.
B. Zamiana prądu przemiennego na prąd stały.
C. Obniżanie napięcia sieciowego.
D. Filtrowanie zakłóceń napięcia sieciowego.
Element przedstawiony na ilustracji to mostek prostowniczy, który odgrywa kluczową rolę w przetwarzaniu energii elektrycznej. Jego głównym zastosowaniem jest zamiana prądu przemiennego (AC) na prąd stały (DC). Mostek prostowniczy składa się z czterech diod ułożonych w taki sposób, aby umożliwić przepływ prądu w jednym kierunku, co prowadzi do wyprostowania sygnału. W praktyce, mostki prostownicze są szeroko stosowane w zasilaczach, które zasilają różne urządzenia elektroniczne. Na przykład, w komputerach czy telewizorach mostki prostownicze są niezbędne do konwersji napięcia z sieci energetycznej na odpowiednie wartości potrzebne do pracy podzespołów. Dzięki zastosowaniu mostka prostowniczego, można osiągnąć stabilne i niezawodne źródło prądu stałego, co jest zgodne z najlepszymi praktykami projektowania zasilaczy. Warto również wspomnieć, że mostki prostownicze wykorzystuje się w systemach fotowoltaicznych, gdzie energia słoneczna, generująca prąd stały, jest przetwarzana na prąd zmienny do użytku w domach lub wprowadzania do sieci energetycznej.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Którego narzędzia z przedstawionych na ilustracjach należy użyć, aby wlutować elementy tak jak na rysunku?

Ilustracja do pytania
A. Narzędzia 3.
B. Narzędzia 1.
C. Narzędzia 2.
D. Narzędzia 4.
Narzędzie 1 to lutownica kolbowa, która jest powszechnie stosowanym narzędziem w elektronice do precyzyjnego lutowania elementów elektronicznych na płytkach drukowanych. Lutownice kolbowe charakteryzują się stałą temperaturą oraz możliwością precyzyjnego prowadzenia końcówki, co jest kluczowe przy pracy z delikatnymi komponentami, które mogą ulec uszkodzeniu pod wpływem nadmiernego ciepła. Użycie lutownicy kolbowej umożliwia szybkie i efektywne połączenie elementów, zapewniając jednocześnie wysoką jakość lutów, co jest istotne dla niezawodności całego układu. W przypadku lutowania, istotne jest również stosowanie odpowiednich rodzajów lutowia oraz topników, które mogą wpłynąć na jakość połączenia. Lutownice kolbowe są zgodne z najlepszymi praktykami w branży, pozwalając na wykonanie trwalszych i estetycznych lutów, co jest często wymagane w produkcji urządzeń elektronicznych.

Pytanie 38

Znamionowe napięcie międzyfazowe uzwojenia stojana silnika asynchronicznego, trójfazowego, o danych znamionowych podanych w tabelce jest równe

Δ400V5,9A
2,5kWS1cosφ = 0,8
1425obr/min50Hz
Y240V6,6A
Izol. – Kl.B/FIP3335kg
A. 230 V
B. 400 V
C. 380V
D. 240 V
Poprawna odpowiedź to 400 V, co jest zgodne z danymi podanymi na tabliczce znamionowej silnika asynchronicznego. Znamionowe napięcie międzyfazowe dla silników trójfazowych standardowo wynosi 400 V w układzie Δ (delta). To napięcie jest kluczowe przy projektowaniu i użytkowaniu instalacji elektrycznych, ponieważ określa, jakie napięcie będzie występować pomiędzy poszczególnymi fazami. Znajomość tych wartości jest niezbędna dla inżynierów i techników zajmujących się instalacjami oraz konserwacją urządzeń elektrycznych. W praktyce, przy podłączeniu silnika do zasilania, napięcie międzyfazowe musi być zgodne z jego znamionowym napięciem, aby zapewnić prawidłowe działanie i wydajność silnika. Ponadto, znajomość tego napięcia jest istotna przy dobieraniu odpowiednich zabezpieczeń oraz urządzeń kontrolnych, co wpływa na bezpieczeństwo i efektywność systemu.

Pytanie 39

Jakiego klucza należy użyć, aby odkręcić śrubę z walcowym łbem i sześciokątnym gniazdem?

A. Płaskiego
B. Dynamometrycznego
C. Imbusowego
D. Nasadowego
Odpowiedź 'imbusowy' jest poprawna, ponieważ śruby z łbem walcowym i gniazdem sześciokątnym są zaprojektowane do współpracy z kluczami imbusowymi. Klucz imbusowy, znany również jako klucz sześciokątny, ma kształt, który idealnie pasuje do gniazda w takiej śrubie. Umożliwia to łatwe i efektywne wykręcanie i wkręcanie śrub, a także zapewnia mocny chwyt, co jest szczególnie ważne w zastosowaniach wymagających dużego momentu obrotowego. Przykładowo, wiele rowerów, mebli flat-pack i urządzeń mechanicznych wykorzystuje tego rodzaju śruby, co sprawia, że klucz imbusowy jest niezbędnym narzędziem w narzędziowni. Standardy DIN 911 określają wymiary kluczy imbusowych, co gwarantuje ich uniwersalność i dostępność w różnych rozmiarach, co jest kluczowe w pracy z różnymi typami śrub. W związku z tym, używając klucza imbusowego, możemy zapewnić właściwe dopasowanie oraz uniknąć uszkodzenia śruby lub narzędzia.

Pytanie 40

Na przedstawionym rysunku elementem wykonawczym jest

Ilustracja do pytania
A. zawór rozdzielający 1/3.
B. siłownik jednostronnego działania.
C. siłownik dwustronnego działania.
D. zawór rozdzielający 4/2.
Siłownik dwustronnego działania to element wykonawczy, który umożliwia ruch w obu kierunkach dzięki zastosowaniu dwóch przewodów hydraulicznych. W przeciwieństwie do siłownika jednostronnego działania, który jest w stanie generować siłę wyłącznie w jedną stronę, siłownik dwustronny jest bardziej wszechstronny i pozwala na lepszą kontrolę nad ruchem aplikacji. W praktyce znajduje on zastosowanie w wielu systemach hydraulicznych, takich jak maszyny budowlane, prasy hydrauliczne, czy linie montażowe, gdzie wymagane jest precyzyjne pozycjonowanie elementów. Kluczowym aspektem pracy siłownika dwustronnego działania jest zdolność do szybkiej reakcji na zmiany ciśnienia, co jest zgodne z zasadami hydrauliki i normami bezpieczeństwa w branży. Ważne jest również, aby pamiętać o odpowiednim doborze siłownika do charakterystyki pracy oraz wymagań danego układu hydraulicznego, aby zapewnić optymalną wydajność i bezpieczeństwo operacji.