Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 18 grudnia 2025 22:21
  • Data zakończenia: 18 grudnia 2025 23:08

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

We wzmacniaczu przeciwsobnym klasy B doszło do uszkodzenia jednego z elementów. Wskaż uszkodzony element wiedząc, że na wejście wzmacniacza podłączono napięcie sinusoidalnie zmienne.

Ilustracja do pytania
A. C
B. T2
C. R0
D. Ti
Odpowiedź T2 jest poprawna, ponieważ w wzmacniaczu przeciwsobnym klasy B tranzystory pracują w taki sposób, że każdy z nich przewodzi w swojej połówce cyklu. W przypadku, gdy na wyjściu wzmacniacza obserwujemy jedynie dodatnią połówkę sinusoidy, można wnioskować, że tranzystor odpowiedzialny za przewodzenie w negatywnej połówce, czyli T2, jest uszkodzony. W praktyce, tego typu awarie mogą prowadzić do zniekształcenia sygnału wyjściowego, co jest niepożądane w aplikacjach audio i telekomunikacyjnych. Zgodnie z dobrą praktyką, przy projektowaniu wzmacniaczy klasy B, należy stosować odpowiednie dobory komponentów oraz zabezpieczenia, takie jak diody zabezpieczające, aby uniknąć uszkodzeń w przypadku przeciążenia. Znajomość działania wzmacniaczy klasy B oraz przyczyn ich awarii jest kluczowa dla inżynierów zajmujących się elektroniką, umożliwia bowiem skuteczne diagnozowanie problemów oraz optymalizację projektów w zakresie wydajności i niezawodności.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Jakie urządzenie łączy komputer z lokalną siecią komputerową?

A. karta sieciowa
B. firewall
C. most
D. wyposażenie bramowe
Karta sieciowa to taki kluczowy element, który łączy komputer z lokalną siecią, jakby to był most między różnymi urządzeniami. Jej główne zadanie to umożliwienie komunikacji, co jak wiadomo, odbywa się poprzez zamianę danych na sygnały elektryczne i przesyłanie ich przez różne media, jak kable Ethernet czy fale radiowe w sieciach bezprzewodowych. Karty sieciowe występują w różnych wersjach, na przykład jako karty rozszerzeń do montażu w gniazdach PCI albo jako wbudowane urządzenia w laptopach. Każda z nich ma swój unikalny adres MAC, który jest, mówiąc kolokwialnie, takim identyfikatorem w sieci. Standardy, jak IEEE 802.3 dla Ethernet czy IEEE 802.11 dla Wi-Fi, mówią, jak te karty powinny działać, żeby wszystko ze sobą współpracowało. Dzięki nim użytkownicy mogą korzystać z różnych zasobów sieciowych, jak serwery, drukarki czy internet, co jest niezbędne, szczególnie w biurach i domach.

Pytanie 7

Tuner DVB-T pozwala na odbiór sygnałów

A. telewizji satelitarnej cyfrowej
B. telewizji satelitarnej analogowej
C. telewizji naziemnej cyfrowej
D. telewizji naziemnej analogowej
Tuner DVB-T (Digital Video Broadcasting - Terrestrial) jest urządzeniem zaprojektowanym do odbioru sygnałów cyfrowej telewizji naziemnej. W odróżnieniu od analogowej telewizji, która jest stopniowo wycofywana, DVB-T pozwala na odbiór sygnałów w wysokiej jakości, co jest możliwe dzięki kompresji danych oraz cyfrowemu przesyłaniu. W praktyce oznacza to, że użytkownicy mogą korzystać z lepszej jakości obrazu i dźwięku, a także z dodatkowych usług, takich jak napisy czy wiele kanałów w ramach jednego multipleksu. Standard DVB-T jest powszechnie stosowany w wielu krajach, co czyni go rozwiązaniem uniwersalnym. Przykładem zastosowania tunera DVB-T mogą być telewizory i dekodery, które umożliwiają odbiór kanałów telewizyjnych dostępnych w danym regionie bez potrzeby korzystania z kabli czy satelitów. Dodatkowo, tunery te są kompatybilne z różnymi formatami kodowania, co zwiększa ich funkcjonalność i elastyczność w użytkowaniu.

Pytanie 8

Aby zrealizować pomiar efektywności energetycznej zasilacza stabilizowanego pracującego w trybie ciągłym, należy użyć dwóch

A. watomierzy
B. amperomierzy
C. omomierzy
D. woltomierzy
Amperomierze, omomierze i woltomierze, choć są to ważne instrumenty pomiarowe w elektrotechnice, nie są wystarczające do pełnej oceny sprawności energetycznej zasilacza stabilizowanego. Amperomierz mierzy prąd, co jest istotne, ale nie dostarcza informacji o mocy czynnej ani o efektywności energetycznej. Sam pomiar prądu nie pozwoli na ocenę, czy zasilacz pracuje z optymalną efektywnością w danej aplikacji. Omomierz, z drugiej strony, służy do pomiaru oporu elektrycznego i nie ma zastosowania w kontekście pomiaru mocy, która jest kluczowa dla oceny sprawności. Woltomierz mierzy napięcie, co jest również ważne, ale znowu, samo napięcie nie pozwala na oszacowanie mocy, gdyż moc to iloczyn prądu i napięcia. Dlatego, aby uzyskać pełny obraz sprawności zasilacza, niezbędne jest użycie watomierzy, które dostarczają danych o mocy czynnej i umożliwiają dokładne obliczenia. Często błędne podejście do pomiarów wynika z niepełnego zrozumienia różnicy między różnymi parametrami elektrycznymi oraz ich wpływu na efektywność urządzeń, co może prowadzić do wyboru niewłaściwych narzędzi do analizy energetycznej.

Pytanie 9

W układzie prostownika pokazanym na rysunku przeprowadzono pomiary czasowych przebiegów napięcia u1(t) oraz u2(t). Na tej podstawie można stwierdzić uszkodzenie polegające na

Ilustracja do pytania
A. rozwarciu diody D3
B. zwarciu diody D2
C. rozwarciu diody Di
D. zwarciu diody D3
Wybór odpowiedzi dotyczących zwarcia diody D2, zwarcia diody D3 lub rozwarcia diody D1 opiera się na błędnym zrozumieniu zasad działania prostowników oraz roli poszczególnych diod w układzie. W przypadku zwarcia diody D2, napięcie u2(t) nie byłoby w stanie przekroczyć wartości zera dla żadnego z półokresów napięcia u1(t). Natomiast w przypadku zwarcia diody D3, przewodzenie prądu byłoby kontynuowane w obu półokresach, a nie tylko w dodatnich, co stoi w sprzeczności z zaobserwowanym zachowaniem napięcia. Rozwarcie diody D1 również nie tłumaczy sytuacji, w której napięcie u2(t) jest obserwowane tylko w dodatnich półokresach, ponieważ D1 odpowiada za przewodzenie prądu w dodatnich półokresach napięcia. Zrozumienie, że diody w prostowniku mostkowym działają na zasadzie umożliwienia przepływu prądu w jednym kierunku i blokowania go w przeciwnym, jest kluczowe dla prawidłowej analizy stanu układu. Typowe błędy myślowe, które mogą prowadzić do takich niepoprawnych wniosków, to pomylenie funkcji diod oraz ich roli w różnych fazach cyklu napięcia zmiennego. W praktyce ważne jest, aby przed podjęciem decyzji o wymianie lub naprawie, dokładnie przeanalizować wyniki pomiarów i zrozumieć, jakie są przyczyny zaobserwowanych anomalii.

Pytanie 10

Jak nazywa się przedstawione na ilustracji urządzenie?

Ilustracja do pytania
A. Lutownica.
B. Rozlutownica.
C. Grzałka.
D. Odsysacz.
Lutownica to narzędzie, które wykorzystuje ciepło do łączenia metali poprzez spoiwo lutownicze. Na zdjęciu widzimy charakterystyczny kształt lutownicy, która składa się z metalowej końcówki, rękojeści oraz przewodu elektrycznego. Lutownice są powszechnie używane w elektronice do lutowania komponentów na płytkach drukowanych. Standardowe lutownice mają różne moce, co pozwala na dostosowanie ich do specyficznych potrzeb. Przykładowo, lutownice o mocy 20-30W są idealne do delikatnych prac z małymi elementami, podczas gdy mocniejsze urządzenia, powyżej 50W, są przeznaczone do lutowania większych elementów. W praktyce ważne jest, aby stosować odpowiednie techniki, takie jak właściwe nagrzewanie elementów oraz używanie odpowiedniego spoiwa lutowniczego, co zapewnia trwałe połączenia oraz minimalizuje ryzyko uszkodzenia komponentów. Dobrą praktyką jest również stosowanie podstawek do lutownic, co zwiększa bezpieczeństwo pracy. Zrozumienie działania lutownicy oraz jej zastosowań jest kluczowe w pracy każdego elektronika.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Adresy fizyczne MAC w sieciach komputerowych są początkowo przydzielane przez

A. zarządcę sieci lokalnej
B. dostawcę usług internetowych
C. indywidualnego użytkownika sieci
D. producenta karty sieciowej
W kontekście przypisywania adresów MAC kluczowe jest zrozumienie, że nie są one nadawane przez administratorów sieci lokalnej, dostawców usług internetowych ani indywidualnych użytkowników. Administratorzy sieci mają możliwość konfigurowania i zarządzania urządzeniami w sieci, ale nie mają wpływu na przypisanie adresów MAC na poziomie sprzętowym. Taki błąd myślowy wynika z niepełnego zrozumienia roli administratora, który dba o bezpieczeństwo i wydajność sieci, ale nie zmienia fizycznych identyfikatorów sprzętu. Z kolei dostawcy usług internetowych zajmują się zarządzaniem połączeniami internetowymi, ale nie wpływają na adresy MAC urządzeń końcowych. Użytkownicy mogą mieć wpływ na konfigurację sieci Wi-Fi czy ustawienia routerów, jednak adresy MAC są przypisane na etapie produkcji sprzętu. To właśnie z tego powodu adresy MAC są unikalne i niezmienne w danym urządzeniu, co jest zgodne z dobrymi praktykami projektowania sieci. Właściwe zrozumienie tego procesu jest kluczowe dla efektywnego zarządzania siecią i unikania problemów z identyfikacją urządzeń. W konkluzji, nadawanie adresów MAC przez producentów sprzętu jest standardem, który zapewnia spójność i jednoznaczność w identyfikacji urządzeń w sieciach komputerowych.

Pytanie 13

W układzie cyfrowym, którego schemat ideowy pokazano na rysunku przeprowadzono pomiary stanów logicznych na wyjściach poszczególnych bramek. Na podstawie tych wyników można stwierdzić, że uszkodzeniu uległ układ

Ilustracja do pytania
A. U3
B. U1
C. U4
D. U2
Analiza błędnych odpowiedzi ujawnia kluczowe nieporozumienia dotyczące działania bramek logicznych, zwłaszcza w kontekście układów cyfrowych. Na przykład, stwierdzenie, że U1, U2, U3 lub inna bramka mogła być uszkodzona, ignoruje właściwości logicznych operacji wykonanych przez te bramki. U1, będąca bramką AND, przy wejściach 0 i 1, poprawnie generuje stan 0, co jest zgodne z oczekiwaniami. U2, jako bramka OR, przy dwóch wejściach 1, również działa poprawnie, dając 1 na wyjściu. Kluczowym błędem jest założenie, że awaria U3, jako bramki NOT, mogłaby wpływać na wyjście U4. U3, przy wejściu 1, co jest wynikiem działania U2, powinno dawać 0, co się zgadza. Dalsze myślenie o uszkodzeniu U4 jako wyniku działania innych bramek prowadzi do fałszywego osądu, gdyż każda bramka działa niezależnie według określonych reguł. Zrozumienie tych zasad jest niezbędne do skutecznego diagnozowania układów cyfrowych. Ignorowanie logiki działania bramek prowadzi do poważnych błędów w projektowaniu i diagnostyce systemów, co może skutkować niezawodnymi i nieskutecznymi rozwiązaniami. Dlatego też, kluczowe jest, aby podczas analizy układów cyfrowych zawsze kierować się logiką działania oraz zrozumieniem roli poszczególnych bramek w całym systemie.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Jakiego interfejsu, z wymienionych, nie posiada widoczna na rysunku karta graficzna?

Ilustracja do pytania
A. S-Video
B. D-SUB
C. DVI
D. Composit Video
Każda z pozostałych odpowiedzi, czyli D-SUB, Composite Video oraz S-Video, odnosi się do interfejsów, które są obecne na analizowanej karcie graficznej, a ich zrozumienie jest kluczowe dla prawidłowego korzystania z technologii wideo. Interfejs D-SUB, znany również jako VGA, jest jednym z najstarszych standardów przesyłania sygnału wideo, wykorzystywany głównie w monitorach CRT oraz w niektórych nowoczesnych projektorach. Choć jego popularność spada na rzecz nowych technologii, wciąż jest obecny w wielu zastosowaniach. Composite Video to standard przesyłania sygnału wideo w formie analogowej, który łączy wszystkie informacje wideo w jednym sygnale. Jego zastosowanie jest szerokie, lecz jakość obrazu jest znacznie gorsza w porównaniu z sygnałami cyfrowymi. S-Video to nieco nowocześniejszy standard, który dzieli sygnał na dwa osobne kanały, co pozwala na uzyskanie lepszej jakości obrazu niż w przypadku Composite Video, ale wciąż nie dorównuje jakości sygnałom cyfrowym, takim jak DVI. Typowym błędem myślowym przy wyborze odpowiedzi jest mylenie analogowych i cyfrowych standardów przesyłania sygnału, co może prowadzić do niewłaściwego oszacowania możliwości sprzętowych karty graficznej. Zrozumienie różnic między tymi interfejsami i ich zastosowaniami w praktyce jest kluczowe dla każdego, kto chce efektywnie korzystać z technologii wizualnych.

Pytanie 18

Którą wartość pojemności wskazuje miernik przedstawiony na ilustracji?

Ilustracja do pytania
A. 200 pF
B. 200 nF
C. 20 nF
D. 20 pF
Pomiar pojemności wykonany za pomocą miernika wykazuje wartość "20.0" przy ustawieniu zakresu na 20 nF. To oznacza, że zmierzona pojemność wynosi dokładnie 20 nanofaradów (nF), co jest wartością stosowaną w wielu aplikacjach elektronicznych, takich jak układy filtrów, oscylatory czy kondensatory w zasilaczach. Wartości pojemności w nanofaradach są szczególnie ważne w kontekście wysokich częstotliwości, gdzie nawet niewielkie zmiany pojemności mogą wpływać na działanie całego układu. W praktyce, przy projektowaniu i analizie obwodów elektronicznych, umiejętność poprawnego odczytywania wartości pojemności i ich interpretacji w kontekście zastosowania jest kluczowa. Umożliwia to lepsze zrozumienie zachowania układów oraz ich optymalizację w celu uzyskania pożądanych parametrów pracy. Warto również pamiętać o standardach dotyczących tolerancji kondensatorów, co wpływa na wybór odpowiednich komponentów w projektach elektronicznych.

Pytanie 19

Jakie urządzenie pozwala na podłączenie wielu urządzeń sieciowych do jednej sieci LAN?

A. Modulator.
B. Serwer.
C. Przełącznik.
D. Wzmacniak.
Przełącznik, znany również jako switch, to urządzenie sieciowe, które umożliwia połączenie wielu urządzeń w jednej sieci LAN (Local Area Network). Jego główną funkcją jest inteligentne zarządzanie ruchem danych, co pozwala na przesyłanie informacji tylko między urządzeniami, które tego potrzebują, co zwiększa efektywność sieci. Przełączniki operują na warstwie drugiej modelu OSI, co oznacza, że wykorzystują adresy MAC do zidentyfikowania urządzeń w sieci. W praktyce, przełączniki pozwalają na połączenie komputerów, drukarek, serwerów oraz innych urządzeń w biurach czy domach. Dzięki technologii VLAN (Virtual Local Area Network), przełączniki umożliwiają także segmentację sieci, co poprawia bezpieczeństwo i wydajność. Współczesne przełączniki często oferują dodatkowe funkcje, takie jak PoE (Power over Ethernet), co pozwala na zasilanie urządzeń, takich jak kamery IP lub punkty dostępu, za pomocą tego samego kabla, który przesyła dane. W kontekście najlepszych praktyk, korzystanie z przełączników zamiast hubów jest standardem, ponieważ przełączniki znacznie redukują kolizje sieciowe i zwiększają przepustowość.

Pytanie 20

Do zasilania urządzenia, którego dane techniczne podano w ramce, należy zastosować zasilacz o parametrach:

Dane techniczne:
  • zasilanie nominalne: 19 V/DC
  • pobór prądu: 3 A
  • zakres temperatur: od -20°C do +70°C
  • wilgotność względna bez kondensacji 5÷95%
  • wymiary: 160 x 46 x 19 mm
  • obudowa w wersji natynkowej IP55
  • wtyk 1.7/5.5
A. 19 V, 3,42 A
B. 19 V, 2,15 A
C. 24 V, 3,42 A
D. 12 V, 3,00 A
Poprawna odpowiedź "19 V, 3,42 A" jest zgodna z wymaganiami dla większości urządzeń elektronicznych, które muszą być zasilane odpowiednim napięciem i prądem. Napięcie zasilacza musi być równe nominalnemu napięciu urządzenia, w tym przypadku 19 V, aby zapewnić stabilne działanie. Jeśli napięcie byłoby niższe, urządzenie mogłoby nie działać poprawnie lub wcale. Z kolei prąd zasilacza powinien być równy lub wyższy od maksymalnego poboru prądu przez urządzenie, co w tym przypadku wynosi 3 A. Zasilacz o parametrach "19 V, 3,42 A" zapewnia wystarczającą moc, co jest istotne, aby uniknąć przegrzewania się zasilacza oraz chronić urządzenie przed uszkodzeniem. W praktyce, stosując zasilacze w urządzeniach komputerowych, telekomunikacyjnych czy innych systemach elektronicznych, zawsze należy zwracać uwagę na zgodność napięcia i prądu, ponieważ ich niewłaściwy dobór może prowadzić do awarii sprzętu czy utraty danych.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Jakie jednostki są używane do określenia tłumienia jednostkowego linii światłowodowej?

A. dB/km
B. dB/mV
C. mV/dB
D. m/dB
Tłumienie jednostkowe linii światłowodowej mówimy w decybelach na kilometr (dB/km). To jest standard w telekomunikacji. Generalnie, decybel to jednostka logarytmiczna, która pozwala na porównanie poziomów sygnału optycznego. A kilometr to po prostu długość, pozwala to określić, jak mocno sygnał traci na jakości na danej długości światłowodu. Na przykład, jak tłumienie wynosi 0,2 dB/km, to znaczy, że na każdym kilometrze sygnał traci właśnie 0,2 dB. To tłumienie jest mega ważne w projektowaniu systemów optycznych, bo inżynierowie mogą dzięki temu stwierdzić, jak długo można puścić sygnał, żeby był jeszcze w miarę ok. Jak mamy do czynienia z dłuższymi odcinkami, to czasami trzeba wstawić wzmacniacze optyczne, żeby jakość sygnału się nie pogarszała. Używanie właściwych jednostek to niby podstawa, ale to naprawdę pomaga w komunikacji technicznej i w pracy nad projektami.

Pytanie 23

Na podstawie oscylogramów przedstawionych na rysunku można stwierdzić, że w badanym układzie prostowniczym

Ilustracja do pytania
A. nastąpiło zwarcie diody Dl i D3
B. nastąpiła przerwa w obwodzie D2, R, D4
C. nastąpiło zwarcie diody D2 i D4
D. nastąpiła przerwa w obwodzie Dl, R, D3
Zrozumienie działania układów prostowniczych wymaga głębszej analizy podstawowych koncepcji związanych z przewodnictwem diod oraz działania mostków Graetza. W przypadku odpowiedzi wskazujących na przerwy w obwodach D1, D3 lub na zwarcia między diodami D2 i D4, można zauważyć typowe błędy myślowe. W pierwszym przypadku, sugerowanie przerwy w D1 i D3, ignoruje fakt, że ich działanie jest jedynym źródłem przetwarzania napięcia w tym układzie. Bez przewodzenia tych diod, układ w ogóle nie mógłby generować napięcia wyjściowego, co jest sprzeczne z analizą oscylogramu. W odpowiedziach wskazujących na zwarcie diod, błędnie zakłada się, że obie diody mogłyby działać w pełni, podczas gdy w rzeczywistości, jeśli zachodziłoby zwarcie, oscylogram pokazywałby inną charakterystykę napięcia. Przedstawione oscylogramy jasno wskazują, że tylko jedna para diod przewodzi prąd, co nie może być wynikiem zwarcia, ale przerwy. Błędy te mogą wynikać z niepełnego zrozumienia cyklu pracy mostka Graetza i wpływu na to dynamiki prądowej w obwodzie prostowniczym. Zrozumienie poprawnego działania diod i ich interakcji w układach elektronicznych jest kluczowe dla prawidłowego funkcjonowania i diagnostyki takich systemów.

Pytanie 24

Podczas konserwacji systemu sygnalizacji włamania i napadu nie jest konieczne sprawdzenie

A. działania czujek alarmowych
B. wysokości zamontowania manipulatora
C. działania obwodów sabotażowych
D. poziomu naładowania akumulatora
Wysokość zamontowania manipulatora nie jest elementem, który wpływa na funkcjonalność systemu sygnalizacji włamania i napadu, co czyni tę odpowiedź prawidłową. W ramach konserwacji systemu kluczowe jest sprawdzenie działania obwodów sabotażowych, poziomu naładowania akumulatora oraz czujek alarmowych. Obwody sabotażowe mają na celu zabezpieczenie urządzeń przed próbami ich usunięcia lub zniszczenia, co jest kluczowe dla utrzymania integralności systemu. Poziom naładowania akumulatora jest istotny, aby zapewnić ciągłość zasilania w przypadku awarii energetycznej, a czujki alarmowe są pierwszym ogniwem detekcji intruza. Dlatego w praktyce, podejście do konserwacji powinno uwzględniać te elementy w celu zapewnienia sprawności systemu. Zgodnie z normami branżowymi, regularne przeglądy tych komponentów powinny być integralną częścią procedur konserwacyjnych, co zapewnia bezpieczeństwo użytkowników oraz ich mienia.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Sprzęt DVR w technologii 960H pozwala na rejestrację obrazu o maksymalnej rozdzielczości

A. 1280 x 720 px
B. 960 x 582 px
C. 360 x 240 px
D. 720 x 480 px
To prawda, że DVR w technologii 960H pozwala na zapis obrazu w rozdzielczości 960 x 582 px. Jak wiesz, to dzięki szerszemu formatowi obrazu, który jest uznawany za standard w monitoringu. Technologia 960H to coś więcej niż klasyczny D1, co oznacza lepszą jakość obrazu, bo zwiększa liczbę pikseli. Wyobraź sobie, że gdy używasz kamer o wyższej rozdzielczości, jak 960H, to możesz zobaczyć więcej szczegółów, a to jest naprawdę ważne, gdy musisz rozpoznać kogoś lub zobaczyć detale. W praktyce, te urządzenia są słynne w systemach zabezpieczeń, bo jakość nagrania ma ogromne znaczenie, prawda? Dodatkowo, branżowe organizacje, które zajmują się bezpieczeństwem, polecają stosowanie 960H, co świadczy o jego skuteczności.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Ile wejść adresowych posiada multiplekser 8-wejściowy?

A. 5 wejść adresowych
B. 3 wejścia adresowe
C. 2 wejścia adresowe
D. 4 wejścia adresowe
Odpowiedzi sugerujące 2, 4 lub 5 wejść adresowych są błędne, ponieważ nie uwzględniają właściwości binarnych systemu adresowania w kontekście multiplekserów. Multiplekser 8-wejściowy z definicji musi mieć możliwość wyboru spośród ośmiu różnych sygnałów. Aby to osiągnąć, przeprowadzamy analizę binarną, która wskazuje, że potrzebujemy 3 bity adresowe. Dla 2 wejść adresowych moglibyśmy zarządzać tylko 4 sygnałami (2^2), co w pełni nie wykorzystałoby możliwości multipleksera przeznaczonego na 8 sygnałów. Odpowiedź mówiąca o 4 wejściach adresowych sugeruje, że moglibyśmy zarządzać 16 sygnałami (2^4), co również jest niepoprawne, gdyż w przypadku multipleksera 8-wejściowego nie ma możliwości ich dodatkowego rozszerzenia. Wybór 5 wejść adresowych również prowadzi do nadmiaru, ponieważ daje to 32 możliwe sygnały, co znacznie przekracza liczbę 8. Kluczowym błędem myślowym jest tutaj nieuwzględnienie podstawowych zasad logiki binarnej i zrozumienia zadania multipleksera. W praktycznych zastosowaniach w inżynierii elektronicznej, projektanci muszą starannie dobierać liczbę adresów do liczby sygnałów, co jest kluczowe w zapewnieniu optymalnej wydajności systemu. W kontekście standardów przemysłowych, niewłaściwe przypisanie adresów może prowadzić do nieefektywności w przesyłaniu danych oraz zwiększonego ryzyka błędów w komunikacji.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Jakie elementy należy zastosować, aby zapewnić współdziałanie układów TTL oraz CMOS z napięciem zasilania 5 V?

A. kondensatora podciągającego
B. dioda podciągająca
C. diaka podciągającego
D. rezystora podciągającego
Rezystor podciągający jest kluczowym elementem w interfejsach TTL (Transistor-Transistor Logic) oraz CMOS (Complementary Metal-Oxide-Semiconductor), gdyż pozwala na zapewnienie odpowiednich poziomów logicznych oraz stabilności sygnałów. W przypadku współpracy układów TTL i CMOS, które mogą mieć różne poziomy sygnałów oraz różne charakterystyki prądowe, zastosowanie rezystora podciągającego do zasilania sygnałów wejściowych jest szczególnie istotne. Rezystor ten działa jako element podciągający, który podnosi napięcie do wartości logicznej '1' w sytuacjach, kiedy sygnał jest w stanie wysokiej impedancji. Dzięki temu, układy TTL i CMOS mogą współpracować w sposób w pełni niezawodny, minimalizując ryzyko błędów logicznych. Przykładem zastosowania rezystora podciągającego może być obwód z mikrokontrolerem, w którym stan nieokreślony (floating) na pinach może prowadzić do nieprzewidywalnych rezultatów. Standardowe wartości rezystorów podciągających wynoszą od 1 kOhm do 10 kOhm, co zależy od konkretnej aplikacji oraz wymagań dotyczących prądu.

Pytanie 33

Aby przeprowadzić demontaż uszkodzonego regulatora PID zamontowanego na szynie DIN, należy postępować zgodnie z poniższą kolejnością:

A. odłączyć zasilanie, odkręcić przewody, odpiąć regulator z szyny
B. odłączyć zasilanie, odpiąć regulator z szyny, odkręcić przewody
C. odkręcić przewody, odpiąć regulator z szyny, odłączyć zasilanie
D. odpiąć regulator z szyny, odłączyć zasilanie, odkręcić przewody
Poprawna odpowiedź opiera się na zasadach bezpieczeństwa oraz najlepszych praktykach w pracy z urządzeniami elektrycznymi. Pierwszym krokiem jest odłączenie napięcia, co jest kluczowe dla zapewnienia bezpieczeństwa podczas demontażu. W przeciwnym razie istnieje ryzyko porażenia prądem, co może prowadzić do poważnych obrażeń. Następnie, odkręcenie przewodów jest niezbędne, aby uniknąć ich uszkodzenia w trakcie usuwania regulatora PID. W momencie, gdy przewody są odkręcone, można bezpiecznie odpiąć regulator z szyny DIN. Proces ten jest zgodny z normami BHP (Bezpieczeństwa i Higieny Pracy), które stanowią fundament w każdej branży zajmującej się instalacjami elektrycznymi. Zastosowanie odpowiedniej kolejności działań minimalizuje ryzyko awarii sprzętu oraz zwiększa ogólną efektywność pracy. Przykładem praktycznym może być serwisowanie systemów automatyki przemysłowej, gdzie błędne podejście do demontażu może prowadzić do przestojów w produkcji.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Dołączenie obciążenia R do przedstawionego na rysunku dzielnika napięcia

Ilustracja do pytania
A. spowoduje wzrost lub spadek napięcia na rezystorze R2, zależnie od wartości R
B. spowoduje wzrost napięcia na rezystorze R2
C. nie zmieni wartości napięcia na R2
D. spowoduje spadek napięcia na rezystorze R2
Niektóre odpowiedzi na pytanie dotyczące wpływu dołączenia obciążenia R do dzielnika napięcia mogą wydawać się logiczne, ale niestety nie uwzględniają kluczowych zasad dotyczących obwodów elektrycznych. Jedną z najczęstszych pomyłek jest przekonanie, że dołączenie rezystora nie wpłynie na napięcie na R2. W rzeczywistości, każde połączenie równoległe wprowadza zmiany w rezystancji całkowitej, co wpływa na rozkład napięcia. Odpowiedzi sugerujące wzrost napięcia na R2 również są błędne, ponieważ nie uwzględniają faktu, że napięcie na rezystorach w obwodach równoległych dzieli się w zależności od ich rezystancji. Wraz ze wzrostem prądu w obwodzie, napięcie na każdym z rezystorów zmienia się, co prowadzi do obniżenia wartości napięcia na R2. Tego rodzaju błędne rozumienie może prowadzić do poważnych problemów przy projektowaniu obwodów. W praktyce, każdy inżynier powinien być świadomy, jak zmiany w obciążeniu wpływają na działanie całego układu, a wiedza o zasadach dzielników napięcia jest podstawą w obliczeniach stosowanych w projektach elektronicznych. Ignorowanie tych zasad może prowadzić do nieprawidłowego działania urządzeń oraz trudności w ich diagnostyce.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.