Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektroradiolog
  • Kwalifikacja: MED.08 - Świadczenie usług medycznych w zakresie diagnostyki obrazowej, elektromedycznej i radioterapii
  • Data rozpoczęcia: 4 stycznia 2026 11:22
  • Data zakończenia: 4 stycznia 2026 11:30

Egzamin zdany!

Wynik: 37/40 punktów (92,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Do zadań technika elektroradiologa w pracowni hemodynamicznej należy

A. przygotowanie stolika zabiegowego.
B. dokumentowanie obrazów ICUS.
C. podanie operatorowi cewnika.
D. ustalanie ilości kontrastu.
Prawidłowo – do zadań technika elektroradiologa w pracowni hemodynamicznej należy m.in. dokumentowanie obrazów IVUS/ICUS (intravascular ultrasound). W praktyce oznacza to obsługę konsoli aparatu, prawidłowe uruchomienie protokołu badania, rejestrację przebiegu obrazowania w czasie rzeczywistym oraz zapis kluczowych przekrojów naczyń do dokumentacji medycznej. Technik musi umieć przypisać obrazy do właściwego pacjenta w systemie, opisać etykiety serii, zadbać o poprawne parametry akwizycji, a potem przesłać całość do systemu archiwizacji PACS lub innego systemu szpitalnego. To nie jest tylko „naciśnięcie nagrywania”, ale świadome dokumentowanie całego badania zgodnie z procedurą i standardami ośrodka. W dobrze zorganizowanej pracowni hemodynamicznej operator skupia się na prowadzeniu cewnika, ocenie zmian w naczyniach i podejmowaniu decyzji klinicznych, natomiast technik przejmuje dużą część zadań technicznych: kontroluje jakość obrazu, pilnuje, żeby żaden istotny fragment badania nie został pominięty, zapisuje odpowiednie projekcje, dba o poprawne oznaczenia czasu i fazy zabiegu. Moim zdaniem to właśnie tu mocno widać, jak ważna jest rola technika – dobra dokumentacja IVUS/ICUS pozwala później na rzetelną analizę wyniku, porównanie badań przed i po angioplastyce, a także jest podstawą do opisu lekarskiego oraz konsultacji z innymi ośrodkami. W wielu wytycznych i dobrych praktykach kładzie się nacisk na kompletną, czytelną dokumentację obrazową w kardiologii interwencyjnej, a technik elektroradiolog jest kluczową osobą, która odpowiada za jej techniczną stronę i jakość.

Pytanie 2

Którą tętnicę zaznaczono strzałką na obrazie MR?

Ilustracja do pytania
A. Krezkową dolną.
B. Nerkową lewą.
C. Śledzionową.
D. Krezkową górną.
Prawidłowo wskazana tętnica krezkowa górna jest głównym naczyniem zaopatrującym środkowy odcinek przewodu pokarmowego, czyli mniej więcej od części zstępującej dwunastnicy do 2/3 poprzecznicy. Na obrazie MR-angiografii, takim jak w pytaniu, wychodzi ona z przedniej ściany aorty brzusznej, tuż poniżej pnia trzewnego, a wyraźnie powyżej odejścia tętnic nerkowych. Na tym konkretnym obrazie widać obie tętnice nerkowe odchodzące bocznie, mniej więcej na poziomie wnęk nerek, natomiast strzałka pokazuje naczynie biegnące lekko w dół i do przodu z przedniej powierzchni aorty – to typowy obraz tętnicy krezkowej górnej na MR. Z mojego doświadczenia w opisach badań studenci najczęściej mylą ją właśnie z tętnicą nerkową lub śledzionową, bo patrzą bardziej na „okołośrodkowe” położenie niż na kierunek i poziom odejścia. W praktyce klinicznej rozpoznanie tętnicy krezkowej górnej na obrazach MR czy CT jest bardzo ważne np. przy podejrzeniu niedokrwienia jelit, w planowaniu zabiegów wewnątrznaczyniowych (stenty, angioplastyka) czy przed operacjami resekcyjnymi jelita cienkiego. Standardem dobrej praktyki w diagnostyce obrazowej jamy brzusznej jest zawsze ocena osi aorty i kolejno odchodzących z niej pni: pień trzewny, tętnica krezkowa górna, tętnice nerkowe, a niżej tętnica krezkowa dolna. W MR-angiografii, przy prawidłowym pozycjonowaniu pacjenta i odpowiednio dobranym oknie, tętnica krezkowa górna tworzy charakterystyczny łuk skierowany w dół, którego nie da się pomylić z bocznie odchodzącą tętnicą nerkową czy dużo wyżej położoną gałęzią śledzionową pnia trzewnego. Warto sobie to utrwalać, porównując różne projekcje i badania CT/MR, bo potem w praktyce radiologicznej naprawdę przyspiesza to opis i zmniejsza ryzyko pomyłek.

Pytanie 3

W badaniu cystografii wstępującej środek kontrastowy należy podać

A. bezpośrednio do pęcherza moczowego.
B. przez powłoki skórne do miedniczki nerkowej.
C. wstecznie do moczowodu.
D. bezpośrednio do układu kielichowo-miedniczkowego.
W tym zadaniu łatwo pomylić różne typy badań kontrastowych dróg moczowych, bo nazwy są do siebie podobne, a techniki podania kontrastu mocno się różnią. Cystografia wstępująca dotyczy pęcherza moczowego, a nie nerek, więc wszelkie skojarzenia z układem kielichowo‑miedniczkowym prowadzą na manowce. Podanie środka kontrastowego bezpośrednio do układu kielichowo‑miedniczkowego jest charakterystyczne raczej dla pielografii wstępującej albo dla procedur wykonywanych przez nefrostomię. Tam rzeczywiście kontrast trafia do miedniczki nerki, ale celem jest ocena górnych dróg moczowych: miedniczki, kielichów, moczowodów. To zupełnie inna procedura niż cystografia. Podanie kontrastu „przez powłoki skórne do miedniczki nerkowej” sugeruje nakłucie przezskórne, co kojarzy się z przezskórną pielografią lub zabiegami urologicznymi pod kontrolą RTG lub USG. Takie postępowanie jest bardziej inwazyjne, używa się go w szczególnych sytuacjach klinicznych, np. przy niedrożności moczowodu, ale nie ma nic wspólnego ze standardową cystografią wstępującą. Z kolei wsteczne podanie kontrastu do moczowodu to technika stosowana w ureteropielografii wstępującej, często wykonywanej przez urologa z użyciem cystoskopu. Kontrast wprowadza się wtedy do moczowodu, żeby uwidocznić jego przebieg i górne drogi moczowe, np. przy podejrzeniu zwężeń czy kamicy. Typowym błędem myślowym jest założenie, że „wstępująca” zawsze oznacza podawanie kontrastu w górne piętra układu moczowego. Tymczasem przymiotnik „wstępująca” w nazwie cystografii odnosi się tylko do kierunku podania względem naturalnego przepływu moczu – kontrast podawany jest od strony cewki do pęcherza, a nie z krwi do moczu jak w badaniach dożylnych. W prawidłowo wykonanej cystografii wstępującej środkiem kontrastowym wypełniamy wyłącznie pęcherz (a czasem obrazowo również moczowody, gdy występuje odpływ), poprzez cewnik założony do pęcherza, z zachowaniem aseptyki i zgodnie z procedurami radiologicznymi. Rozróżnianie, gdzie dokładnie trafia kontrast i jaką drogą jest podawany, jest kluczowe, bo od tego zależy zarówno bezpieczeństwo pacjenta, jak i poprawna interpretacja obrazu.

Pytanie 4

W jakiej projekcji i pod jakim kątem padania promienia centralnego został wykonany radiogram obojczyka?

Ilustracja do pytania
A. W projekcji AP i prostopadłym kącie padania promienia centralnego.
B. W projekcji AP i skośnym doogonowo kącie padania promienia centralnego.
C. W projekcji PA i prostopadłym kącie padania promienia centralnego.
D. W projekcji AP i skośnym dołgłowowo kącie padania promienia centralnego.
Prawidłowo wskazana odpowiedź „w projekcji AP i skośnym dołgłowowo kącie padania promienia centralnego” odpowiada klasycznemu obrazowi tzw. projekcji osiowej (skośnej) obojczyka stosowanej w radiografii. W standardach opisanych m.in. w podręcznikach do technik obrazowania przy badaniu obojczyka wykonuje się zazwyczaj dwie projekcje: AP w prostopadłym padaniu oraz AP z ukośnym dołgłowowym nachyleniem promienia centralnego (zwykle 15–30° w stronę głowy). Celem tej skośnej projekcji jest „wyciągnięcie” obojczyka ponad cień żeber i łopatki, tak aby jego zarys był dobrze odseparowany od tła kostnego klatki piersiowej. Dzięki temu łatwiej ocenić drobne złamania, przemieszczenia i zniekształcenia, zwłaszcza w części środkowej i przyśrodkowej kości. Na przedstawionym radiogramie obojczyk jest wyraźnie uniesiony względem żeber, co jest typowe właśnie dla skośnego dołgłowowego ustawienia wiązki przy projekcji AP. Pacjent jest skierowany przodem do detektora (projekcja AP – promień biegnie z przodu do tyłu), a nachylenie w kierunku dołgłowowym powoduje, że struktury leżące głębiej nakładają się mniej na obojczyk. W praktyce technik często dobiera kąt indywidualnie: u osób szczupłych wystarczy ok. 15°, u osób z masywną budową klatki lepiej sprawdza się 25–30°. Moim zdaniem warto zapamiętać, że jeśli na zdjęciu obojczyk „odrywa się” od żeber i jest jakby bardziej horyzontalny, to prawie na pewno patrzymy na projekcję AP z kątem dołgłowowym. To jest standardowa dobra praktyka przy podejrzeniu złamań pourazowych, przy kontroli zrostu oraz przy ocenie zmian w okolicy stawu barkowo‑obojczykowego i mostkowo‑obojczykowego.

Pytanie 5

Obrazowanie w sekwencjach STIR, FLAIR, SE wykonywane jest w badaniu

A. MR
B. TK
C. PET
D. USG
Prawidłowo powiązałeś sekwencje STIR, FLAIR i SE z rezonansem magnetycznym, czyli badaniem MR. To są nazwy konkretnych sekwencji obrazowania stosowanych właśnie w MRI. W uproszczeniu sekwencja to sposób „pobierania” sygnału z tkanek przez aparat, z określonymi czasami TR, TE, sposobem tłumienia sygnału, itp. STIR (Short Tau Inversion Recovery) to sekwencja tłumiąca sygnał tłuszczu. Dzięki temu bardzo dobrze widać obrzęk, naciek zapalny czy zmiany pourazowe, np. w układzie kostno‑stawowym, w kręgosłupie, w badaniach onkologicznych. FLAIR (Fluid Attenuated Inversion Recovery) tłumi sygnał płynu mózgowo‑rdzeniowego, przez co świetnie uwidacznia zmiany w istocie białej mózgu, np. w stwardnieniu rozsianym, niedokrwieniu czy zapaleniach. SE (Spin Echo) to klasyczna, podstawowa sekwencja MR, na której opierają się obrazy T1‑ i T2‑zależne, stosowana praktycznie w każdym badaniu MR, od głowy, przez kręgosłup, po jamę brzuszną. W praktyce klinicznej protokół MR głowy prawie zawsze zawiera kombinację sekwencji SE T1, SE/TSE T2 oraz FLAIR; z kolei w badaniach narządu ruchu bardzo często pojawia się STIR do oceny szpiku kostnego i tkanek miękkich. Moim zdaniem warto zapamiętać to skojarzenie: jeśli słyszysz STIR, FLAIR, SE, T1, T2, DWI – myślisz od razu „MR”, bo to jest standard w opisach badań i w zaleceniach towarzystw radiologicznych. W USG, TK czy PET takich nazw sekwencji po prostu się nie używa, tam operuje się innymi parametrami i protokołami.

Pytanie 6

Jednostką indukcji magnetycznej jest

A. kulomb (C)
B. tesla (T)
C. om (Ω)
D. weber (Wb)
Prawidłową jednostką indukcji magnetycznej (nazywanej też gęstością strumienia magnetycznego) w układzie SI jest tesla (T). Indukcja magnetyczna B opisuje „siłę” pola magnetycznego w danym miejscu, czyli jak mocno to pole oddziałuje na ładunki elektryczne w ruchu lub na przewodnik z prądem. Formalnie 1 tesla to taka indukcja magnetyczna, przy której na przewód o długości 1 m, ustawiony prostopadle do linii pola i przewodzący prąd 1 A, działa siła 1 N. Wzór, który to ładnie pokazuje, to F = B · I · l · sinα. W praktyce, w technice medycznej, z indukcją magnetyczną spotykasz się głównie przy rezonansie magnetycznym (MR). Typowe skanery kliniczne mają pola 1,5 T albo 3 T, a w badaniach naukowych używa się nawet 7 T i więcej. Im większa wartość tesli, tym silniejsze pole magnetyczne, lepszy sygnał i potencjalnie wyższa rozdzielczość obrazów, ale też większe wymagania dotyczące ochrony i bezpieczeństwa. W dokumentacji producentów magnesów, cewek gradientowych czy systemów do MR zawsze podaje się natężenie pola właśnie w teslach, zgodnie z normami i standardami (np. IEC dotyczące bezpieczeństwa MR). Dobrą praktyką w pracy z aparaturą jest świadome odróżnianie jednostek: tesla odnosi się do pola magnetycznego, gauss to starsza jednostka spoza SI (1 T = 10 000 G), a weber służy do opisu całkowitego strumienia magnetycznego, a nie jego gęstości. Moim zdaniem warto mieć to w głowie, bo potem łatwiej czytać instrukcje urządzeń, wytyczne BHP i opisy stref bezpieczeństwa w pracowni MR.

Pytanie 7

Jak konwencjonalnie frakcjonuje się dawkę w teleradioterapii?

A. Dwa razy dziennie, przez siedem dni w tygodniu.
B. Dwa razy dziennie, przez pięć dni w tygodniu.
C. Jeden raz dziennie, przez siedem dni w tygodniu.
D. Jeden raz dziennie, przez pięć dni w tygodniu.
Prawidłowo wskazana odpowiedź opisuje tzw. konwencjonalny schemat frakcjonowania w teleradioterapii: jedna frakcja na dobę, pięć dni w tygodniu (zwykle poniedziałek–piątek), z przerwą weekendową. To jest klasyczny standard w większości ośrodków onkologicznych i wynika zarówno z radiobiologii, jak i z organizacji pracy zakładu radioterapii. Komórki nowotworowe i zdrowe tkanki reagują inaczej na napromienianie, a podział dawki całkowitej na wiele małych frakcji (np. 1,8–2,0 Gy dziennie) pozwala zwiększyć szansę zniszczenia guza przy akceptowalnym uszkodzeniu tkanek prawidłowych. Kluczowe są tu zasady tzw. 4R radiobiologii: naprawa, repopulacja, redystrybucja i reoksygenacja. Przerwy między kolejnymi frakcjami, czyli te około 24 godziny, dają czas zdrowym tkankom na naprawę subletalnych uszkodzeń DNA, a jednocześnie nie są na tyle długie, żeby guz zdążył istotnie odrosnąć. Z mojego doświadczenia, w planowaniu leczenia bardzo pilnuje się, żeby pacjent dostawał frakcje regularnie, dzień po dniu, bo przerwy w terapii pogarszają wyniki leczenia. Weekendowa przerwa ma znaczenie praktyczne (organizacja pracy, serwis akceleratora), ale też kliniczne – zmniejsza zmęczenie pacjenta i trochę łagodzi ostre odczyny popromienne, np. rumień skóry czy zapalenie błon śluzowych. Warto pamiętać, że istnieją inne schematy, jak frakcjonowanie przyspieszone, hiperfrakcjonowanie czy hipofrakcjonowanie (np. w radioterapii stereotaktycznej), ale one są modyfikacją standardu i stosuje się je w ściśle określonych wskazaniach. W typowym, „zwykłym” leczeniu radykalnym raka np. głowy i szyi, piersi, prostaty czy płuca, podstawą jest właśnie jedna frakcja dziennie przez pięć dni w tygodniu, aż do osiągnięcia zaplanowanej dawki całkowitej.

Pytanie 8

W których projekcjach wykonuje się standardowe badanie mammograficzne?

A. Kraniokaudalnej i skośnej przyśrodkowo-bocznej.
B. Kaudokranialnej i zrotowanej.
C. Kaudokranialnej i skośnej przyśrodkowo-bocznej.
D. Kraniokaudalnej i zrotowanej.
Prawidłowo wskazana projekcja kraniokaudalna (CC) oraz skośna przyśrodkowo-boczna, czyli mediolateral oblique (MLO), to standardowy zestaw w rutynowym badaniu mammograficznym. W praktyce technik wykonuje dla każdej piersi przynajmniej te dwie projekcje, bo one się wzajemnie uzupełniają i dają możliwie pełny obraz gruczołu piersiowego. Projekcja kraniokaudalna polega na uciśnięciu piersi między detektorem a kompresorem z góry na dół. Dzięki temu dobrze oceniamy centralne i przyśrodkowe części piersi, a także struktury położone bardziej powierzchownie. Widzimy wtedy rozkład tkanki gruczołowej, mikrozwapnienia, zarysy ewentualnych guzków. Z mojego doświadczenia, jeśli CC jest dobrze wykonana, to brodawka jest widoczna w profilu, a pierś jest równomiernie spłaszczona, bez zagięć skóry, co ma ogromne znaczenie dla jakości obrazu. Z kolei projekcja skośna przyśrodkowo-boczna (MLO) jest kluczowa, bo obejmuje nie tylko pierś, ale też ogon pachowy, czyli fragment tkanki gruczołowej wchodzący w dół pachy. Właśnie tam często lokalizują się zmiany, które mogą umknąć w projekcji CC. W dobrych praktykach przyjmuje się, że na MLO powinna być widoczna fałda podpiersiowa, mięsień piersiowy większy i jak największa objętość tkanki piersi. To jest taki wyznacznik poprawnego pozycjonowania pacjentki. Standardy programów przesiewowych (np. europejskich EUREF) jasno wskazują zestaw CC + MLO jako podstawę badania screeningowego. Dodatkowe projekcje, jak np. powiększeniowe czy celowane, wykonuje się dopiero przy podejrzeniu zmiany. W praktyce technika najważniejsze jest prawidłowe ułożenie pacjentki, odpowiedni ucisk piersi (żeby zmniejszyć dawkę i poprawić kontrast) oraz unikanie artefaktów. Moim zdaniem im lepiej rozumiesz, po co robisz te dwie konkretne projekcje, tym łatwiej potem zauważyć, że czegoś na obrazie brakuje i trzeba np. powtórzyć ujęcie albo dodać kolejne.

Pytanie 9

Na schemacie oznaczono

Ilustracja do pytania
A. 1 – załamek T; 2 – załamek P
B. 1 – załamek P; 2 – załamek T
C. 1 – załamek U; 2 – załamek P
D. 1 – załamek U; 2 – załamek T
Na schemacie prawidłowo rozpoznałeś: 1 – załamek P, 2 – załamek T. To jest klasyczny zapis pojedynczego cyklu pracy serca w EKG. Załamek P odpowiada depolaryzacji przedsionków, czyli ich pobudzeniu elektrycznemu poprzedzającemu skurcz. W zapisie zawsze występuje przed zespołem QRS, ma zwykle niewielką amplitudę i zaokrąglony kształt. Załamek T natomiast odzwierciedla repolaryzację komór, czyli „powrót” komórek mięśnia komór do stanu wyjściowego po skurczu. Pojawia się po zespole QRS i odcinku ST, jest zwykle szerszy i łagodniej zaokrąglony niż P. Z mojego doświadczenia, w praktyce technika EKG kluczowe jest szybkie rozpoznanie tych elementów, bo od nich zaczyna się każda analiza zapisu: liczenie częstości, ocena rytmu zatokowego (czy każdy QRS ma przed sobą załamek P), ocena przewodzenia przedsionkowo‑komorowego (odstęp PQ) czy wstępna ocena niedokrwienia i zaburzeń elektrolitowych (kształt i biegunowość załamka T, odcinek ST). Standardy interpretacji EKG (np. zalecenia Europejskiego Towarzystwa Kardiologicznego) kładą duży nacisk na systematyczną analizę: najpierw rytm i załamek P, potem QRS, na końcu repolaryzacja, czyli ST i T. W codziennej pracy w pracowni diagnostyki elektromedycznej prawidłowe rozpoznawanie P i T pomaga uniknąć pomylenia artefaktów z patologią, np. drżenia mięśniowego z migotaniem przedsionków, czy płaskiego T z błędem ułożenia elektrod. Moim zdaniem warto sobie utrwalić prostą zasadę: mały, pierwszy – P (przedsionki), wysoki, ostry – QRS (komory kurczą się), ostatni, szerszy – T (komory się „resetują”).

Pytanie 10

Którą strukturę anatomiczną i w jakiej projekcji uwidoczniono na radiogramie?

Ilustracja do pytania
A. Wyrostek dziobiasty w projekcji skośnej.
B. Wyrostek łokciowy w projekcji osiowej.
C. Staw kolanowy w projekcji tunelowej.
D. Guz piętowy w projekcji osiowej.
Prawidłowo rozpoznałeś wyrostek łokciowy w projekcji osiowej. Na tym radiogramie patrzymy na staw łokciowy niejako „od tyłu”, wzdłuż długiej osi kości ramiennej i kości przedramienia. Charakterystyczny jest widok bloczka i główki kości ramiennej oraz wyraźne uwidocznienie wyrostka łokciowego, który w tej projekcji tworzy taką jakby półksiężycowatą, masywną strukturę w tylnej części stawu. W projekcji osiowej promień centralny jest skierowany wzdłuż osi wyrostka łokciowego, co pozwala dobrze ocenić jego zarys korowy, powierzchnię stawową oraz ewentualne odłamy kostne. W praktyce technik radiologii wykonuje takie zdjęcie głównie przy podejrzeniu złamania wyrostka łokciowego, awulsji przy urazach bezpośrednich, a także przy kontroli zrostu po zespoleniach chirurgicznych (np. płyty, śruby). Moim zdaniem to jedno z tych zdjęć, gdzie prawidłowe ułożenie pacjenta jest ważniejsze niż „dokręcanie kV” – jeśli łokieć nie jest odpowiednio zgięty (zwykle około 90°) i ustabilizowany, zarysy wyrostka nakładają się i obraz traci wartość diagnostyczną. Według dobrych praktyk (wg standardów radiologii narządu ruchu) w urazach łokcia zaleca się wykonanie minimum dwóch projekcji prostopadłych, ale właśnie projekcja osiowa wyrostka łokciowego jest często dodatkowo zlecana przez ortopedów, kiedy klinicznie bolesny jest tylny przedział stawu. Warto też pamiętać, że na takim zdjęciu łatwo ocenić nie tylko samo złamanie, ale też stopień przemieszczenia odłamów, co ma znaczenie przy kwalifikacji do leczenia operacyjnego lub zachowawczego. W codziennej pracy dobrze jest „nauczyć się na oko” typowego kształtu wyrostka łokciowego w tej projekcji, wtedy różne subtelne nierówności czy zatarcia warstwy korowej szybciej rzucają się w oczy.

Pytanie 11

W jakich jednostkach mierzy się natężenie dźwięku?

A. W grejach (Gy).
B. W amperach (A).
C. W hercach (Hz).
D. W decybelach (dB).
Natężenie dźwięku w praktyce medycznej i technicznej opisujemy w decybelach (dB), więc wybrana odpowiedź jest jak najbardziej prawidłowa. Decybel to jednostka logarytmiczna, która porównuje poziom mierzonego sygnału (np. ciśnienia akustycznego) do wartości odniesienia. W akustyce medycznej najczęściej używa się poziomu ciśnienia akustycznego wyrażanego w dB SPL (Sound Pressure Level), gdzie punktem odniesienia jest minimalne słyszalne ciśnienie dla zdrowego ucha. Dzięki skali logarytmicznej możemy w wygodny sposób opisać bardzo duży zakres natężeń – od ledwo słyszalnego szeptu, aż po dźwięki uszkadzające słuch. W audiometrii tonalnej, którą spotkasz w diagnostyce elektromedycznej, wynik badania słuchu zapisuje się właśnie w decybelach HL (Hearing Level). Na audiogramie widzisz progi słyszenia pacjenta w dB HL dla różnych częstotliwości (w Hz), ale samo „jak głośno” jest zawsze w decybelach. Moim zdaniem to jeden z kluczowych nawyków: częstotliwość = herce, głośność / natężenie = decybele. W praktyce BHP i ochrony słuchu też operuje się decybelami, np. dopuszczalne poziomy hałasu na stanowisku pracy (np. 85 dB przez 8 godzin). W gabinecie laryngologicznym czy pracowni audiometrycznej ustawiasz poziom bodźca w dB, a nie w hercach czy amperach. W diagnostyce obrazowej i fizyce medycznej też czasem spotyka się dB, np. przy opisie wzmocnienia/ tłumienia sygnału w ultrasonografii, ale tam chodzi bardziej o poziom sygnału elektrycznego lub ultradźwiękowego. Dobrą praktyką jest zawsze doprecyzowanie, o jaki „rodzaj” dB chodzi (dB SPL, dB HL, dB(A)), ale fundament pozostaje taki sam: natężenie dźwięku opisujemy w decybelach.

Pytanie 12

Jaka jest odległość pomiędzy źródłem promieniowania a powierzchnią ciała pacjenta w technice izocentrycznej radioterapii?

A. Zmienna, zależna od grubości pacjenta i rodzaju akceleratora.
B. Stała i wynosi 110 cm.
C. Stała i wynosi 100 cm.
D. Zmienna, zależna od lokalizacji punktu izocentrycznego w ciele pacjenta.
Prawidłowa odpowiedź wynika bezpośrednio z samej idei techniki izocentrycznej. W radioterapii izocentrycznej kluczowe jest położenie izocentrum, czyli punktu w przestrzeni, w którym przecinają się osie wszystkich wiązek promieniowania i oś obrotu gantry, stołu oraz kolimatora. Ten punkt umieszcza się wewnątrz ciała pacjenta – w obszarze planowanej objętości napromienianej (PTV), a nie na powierzchni skóry. Skoro izocentrum jest „w środku”, to odległość od źródła promieniowania do powierzchni ciała musi się zmieniać w zależności od tego, jak głęboko i w jakim miejscu anatomicznym to izocentrum zostało zaplanowane. W praktyce planowania leczenia (TPS – treatment planning system) ustala się stałą odległość źródło–izocentrum (najczęściej ok. 100 cm dla typowego akceleratora liniowego), natomiast odległość źródło–skóra (SSD) wychodzi zmienna. Jeżeli punkt izocentryczny leży płytko, blisko skóry, SSD będzie stosunkowo duża. Jeśli guz jest głęboko w miednicy lub w śródpiersiu, powierzchnia skóry znajdzie się bliżej głowicy, czyli SSD się zmniejsza. Widać to bardzo dobrze przy rotacyjnych technikach jak VMAT czy klasyczna terapia łukowa: gantry obraca się wokół pacjenta, izocentrum pozostaje nieruchome w ciele, a geometria odległości do skóry zmienia się wraz z kształtem i grubością pacjenta w różnych projekcjach. Moim zdaniem najważniejsze praktyczne skojarzenie jest takie: w technice izocentrycznej „święte” i stałe jest źródło–izocentrum, a nie źródło–skóra. Dlatego radioterapeuci i technicy planując ustawienie pacjenta korzystają z współrzędnych izocentrum (laser, systemy IGRT) i nie próbują na siłę utrzymywać jednej odległości SSD. To podejście ułatwia skomplikowane techniki wielopolowe, IMRT czy stereotaksję, gdzie wiele wiązek musi trafiać w ten sam punkt w przestrzeni bez względu na kształt pacjenta. Z mojego doświadczenia, jeżeli ktoś mechanicznie myśli tylko „100 cm od skóry”, to zwykle ma kłopot ze zrozumieniem geometrii izocentrycznej i potem gorzej ogarnia planowanie bardziej zaawansowanych technik.

Pytanie 13

Celem radioterapii paliatywnej nie jest

A. zmniejszenie dolegliwości bólowych.
B. zahamowanie procesu nowotworowego.
C. przedłużenie życia.
D. trwałe wyleczenie.
Prawidłowo wskazana odpowiedź „trwałe wyleczenie” dobrze oddaje sens radioterapii paliatywnej. Napromienianie paliatywne stosuje się u chorych, u których nowotwór jest najczęściej uogólniony, nieoperacyjny albo bardzo zaawansowany miejscowo i szanse na całkowite wyleczenie są znikome. Celem takiego leczenia nie jest więc radykalne usunięcie choroby, tylko poprawa jakości życia pacjenta. W praktyce oznacza to głównie zmniejszenie dolegliwości bólowych, redukcję krwawień z guza, zmniejszenie duszności przy naciekach na płuca czy oskrzela, a także zapobieganie powikłaniom, takim jak złamania patologiczne w przerzutach do kości czy ucisk na rdzeń kręgowy. Typowe są krótsze schematy frakcjonowania (np. 8 Gy jednorazowo, 5×4 Gy, 10×3 Gy), bo liczy się szybki efekt objawowy, a nie maksymalne „dobicie” guza. Standardy i wytyczne (np. ESMO, ESTRO) podkreślają, że w paliacji akceptuje się pewien stopień progresji choroby, o ile pacjent ma mniej objawów i funkcjonuje lepiej w życiu codziennym. Dlatego pozostałe odpowiedzi – przedłużenie życia, łagodzenie bólu i częściowe zahamowanie procesu nowotworowego – jak najbardziej mieszczą się w realnych, praktycznych celach radioterapii paliatywnej. Moim zdaniem ważne jest, żeby zawsze pamiętać o rozmowie z pacjentem: jasno tłumaczymy, że nie „wyleczymy” nowotworu, ale możemy sprawić, że będzie mniej boleć, łatwiej będzie się poruszać i ogólnie komfort życia się poprawi, czasem nawet na dłuższy okres niż wszyscy się spodziewają.

Pytanie 14

Przy ułożeniu do zdjęcia kręgów szyjnych CIII-CVII w projekcji przednio-tylnej lampa może być odchylona o kąt

A. 40°-45° dogłowowo.
B. 10°-15° dogłowowo.
C. 10°-15° doogonowo.
D. 40°-45° doogonowo.
Prawidłowa odpowiedź 10°–15° dogłowowo wynika z geometrii promienia centralnego i ułożenia kręgosłupa szyjnego w projekcji przednio-tylnej. Szyja ma naturalną lordozę, a wyrostki kolczyste i trzony kręgów CIII–CVII nie leżą idealnie prostopadle do kasety. Gdybyśmy ustawili lampę bez kąta, promień padałby bardziej na wyrostki kolczyste i barki, a trzony kręgów byłyby częściowo zasłonięte i zniekształcone. Odchylenie lampy dogłowowo o 10°–15° pozwala „wycelować” promień centralny w przestrzenie międzykręgowe i lepiej uwidocznić trzony kręgów szyjnych, minimalizując nakładanie się struktur i skrócenie rzutowe. W praktyce technik celuje zwykle na poziom C4–C5, przy ustabilizowanej głowie, barkach opuszczonych możliwie nisko i brodzie lekko uniesionej, tak aby podnieść żuchwę z pola obrazowania. Moim zdaniem warto zapamiętać tę wartość kąta jako standard dla AP kręgosłupa szyjnego w pozycji stojącej lub siedzącej, szczególnie gdy barki są masywne. W wielu podręcznikach do techniki RTG podkreśla się, że kąt powyżej 15° może już powodować nienaturalne rozciągnięcie obrazowanych struktur, a zbyt mały kąt pogarsza widoczność przestrzeni międzykręgowych. W codziennej pracy dobrze jest porównać zdjęcie z opisem technicznym: czy widoczne są wszystkie trzony CIII–CVII, czy linia krawędzi trzonów jest gładka, bez dużych deformacji perspektywicznych. Jeżeli obraz jest „spłaszczony” lub przestrzenie międzykręgowe się zlewają, to jednym z pierwszych podejrzeń jest właśnie niewłaściwy kąt odchylenia lampy. Dlatego stosowanie 10°–15° dogłowowo uważa się za dobrą praktykę i standardowe ustawienie w klasycznej projekcji AP kręgów szyjnych.

Pytanie 15

Zadaniem technika elektroradiologa w pracowni naczyniowej jest

A. wprowadzenie cewnika w światło naczyń.
B. przygotowanie cewników.
C. przygotowanie niezbędnych narzędzi.
D. nadzorowanie sprawnego działania aparatury rentgenowskiej.
Prawidłowo wskazana rola technika elektroradiologa w pracowni naczyniowej to nadzorowanie sprawnego działania aparatury rentgenowskiej. W pracowni angiograficznej technik jest odpowiedzialny przede wszystkim za stronę techniczną badania, a nie za wykonywanie czynności inwazyjnych w obrębie naczyń. To lekarz – najczęściej radiolog interwencyjny, kardiolog lub chirurg naczyniowy – wprowadza cewnik do światła naczynia, prowadzi go, podaje kontrast i wykonuje właściwy zabieg. Technik natomiast musi zadbać o to, żeby cały system obrazowania działał stabilnie, bezpiecznie i dawał obrazy o jak najlepszej jakości przy możliwie najmniejszej dawce promieniowania. W praktyce oznacza to m.in. prawidłowe ustawienie parametrów ekspozycji, kontrolę pracy lampy rentgenowskiej, generatora, stołu angiograficznego, systemu akwizycji obrazu oraz monitorów. Technik sprawdza przed badaniem poprawność działania układów sterowania, kolimatorów, systemów automatycznej kontroli ekspozycji, a także współpracuje z lekarzem przy doborze protokołów obrazowania, np. częstości serii, czasu akwizycji, projekcji, synchronizacji z podaniem kontrastu. Moim zdaniem bardzo ważne jest też to, że technik pilnuje bezpieczeństwa radiologicznego całego zespołu i pacjenta: dobiera osłony, kontroluje dawkę, dba o prawidłowe ustawienie ramienia C, żeby ograniczyć niepotrzebne ekspozycje. W dobrze działającej pracowni naczyniowej technik jest takim „operatorem systemu”, który musi szybko reagować, gdy pojawiają się komunikaty błędów, spadek jakości obrazu, przegrzewanie lampy czy problemy z archiwizacją w systemie PACS. To wszystko bezpośrednio przekłada się na bezpieczeństwo zabiegu, komfort pracy lekarza i skuteczność diagnostyki oraz terapii.

Pytanie 16

Który radioizotop jest emiterem promieniowania alfa?

A. 99mTc
B. 131I
C. 18F
D. 223Ra
Prawidłowo wskazany radioizotop to 223Ra, czyli rad-223. Jest to klasyczny emiter promieniowania alfa, wykorzystywany w medycynie nuklearnej głównie w leczeniu przerzutów do kości u chorych na raka prostaty opornego na kastrację. Cząstki alfa to jądra helu (2 protony i 2 neutrony), mają bardzo mały zasięg w tkankach – rzędu kilku dziesiątych milimetra – ale bardzo wysoką liniową gęstość jonizacji (wysoki LET). To oznacza, że oddają energię na bardzo krótkim dystansie, silnie uszkadzając DNA komórek nowotworowych, a jednocześnie relatywnie oszczędzając bardziej odległe, zdrowe tkanki. Właśnie dlatego 223Ra jest tak ceniony w tzw. terapii ukierunkowanej na kości: jako radionuklid emituje głównie promieniowanie alfa, wiąże się z tkanką kostną w miejscach wzmożonego metabolizmu kostnego (czyli tam, gdzie są przerzuty osteoblastyczne) i dostarcza bardzo skoncentrowaną dawkę w ognisku nowotworu. Z praktycznego punktu widzenia ważne jest, że alfa-emiter wymaga szczególnej ostrożności w zakresie ochrony radiologicznej personelu przy przygotowaniu i podawaniu radiofarmaceutyku, ale jednocześnie dawka narażenia dla otoczenia pacjenta jest zwykle mniejsza niż przy silnych emiterach gamma, bo cząstki alfa są łatwo pochłaniane. Moim zdaniem, jeśli ktoś pracuje w medycynie nuklearnej, to kojarzenie 223Ra z terapią paliatywną przerzutów do kości to absolutna podstawa. W wytycznych i standardach (różne towarzystwa onkologiczne i medycyny nuklearnej) podkreśla się, że wybór alfa-emiterów, takich jak 223Ra, jest szczególnie korzystny tam, gdzie zależy nam na wysokiej skuteczności biologicznej przy ograniczonym zasięgu promieniowania. To bardzo dobry przykład praktycznego zastosowania fizyki promieniowania w nowoczesnej terapii celowanej.

Pytanie 17

Która struktura może być oknem akustycznym w badaniu ultrasonograficznym?

A. Złóg w pęcherzyku żółciowym.
B. Wypełniony płynem pęcherz moczowy.
C. Przestrzeń międzyżebrowa.
D. Wypełnione gazami jelito cienkie.
Prawidłowo wskazany wypełniony płynem pęcherz moczowy jest klasycznym przykładem tzw. okna akustycznego w badaniu USG. W praktyce oznacza to, że struktura zawierająca jednorodny płyn bardzo dobrze przewodzi fale ultradźwiękowe, nie rozprasza ich nadmiernie i nie tworzy silnych artefaktów, które zasłaniają głębiej położone narządy. Dzięki temu przez taki pęcherz można „podglądać” struktury leżące za nim, np. macicę, jajniki, prostatę czy fragmenty jelit, z dużo lepszą jakością obrazu. W standardach badań ginekologicznych i urologicznych USG jamy brzusznej zaleca się, żeby pacjent przyszedł z wypełnionym pęcherzem – to nie jest przypadek, tylko właśnie świadome wykorzystanie okna akustycznego. Płyn w pęcherzu jest anechogeniczny, czyli na monitorze widzimy czarny, jednolity obszar, bez wewnętrznych ech. Ułatwia to ocenę ściany pęcherza, polipów, guzów oraz umożliwia lepszą wizualizację narządów miednicy mniejszej. Moim zdaniem to jeden z najbardziej „namacalnych” przykładów, jak fizyka ultradźwięków przekłada się bezpośrednio na praktykę pracy technika elektroradiologii. W codziennej pracy dobrze jest pamiętać, że każde środowisko płynowe w ciele (torbiele, zbiorniki płynu w jamach ciała) może pełnić podobną rolę – często specjalnie wykorzystuje się wysięki lub płyn w jamie otrzewnej czy opłucnej, żeby lepiej zobrazować narządy, które normalnie byłyby częściowo zasłonięte przez gaz lub kości. To jest zgodne z dobrymi praktykami opisywanymi w podręcznikach USG i wytycznych towarzystw radiologicznych: szukamy takich „okien”, które poprawiają jakość obrazu, skracają czas badania i zmniejszają ryzyko błędnej interpretacji.

Pytanie 18

Przy ułożeniu do zdjęcia AP czaszki płaszczyzna

A. strzałkowa jest równoległa do kasety.
B. oczodołowo-uszna środkowa jest prostopadła do kasety.
C. czołowa jest prostopadła do kasety.
D. oczodołowo-uszna dolna jest równoległa do kasety.
W pozycjonowaniu do projekcji AP czaszki bardzo łatwo się pomylić między różnymi płaszczyznami, bo ich nazwy są do siebie podobne, a w praktyce liczy się dosłownie kilka stopni różnicy. W tym pytaniu pułapka polega na tym, że część osób automatycznie myśli o płaszczyźnie czołowej i strzałkowej, bo są bardziej znane z anatomii, a w radiografii czaszki kluczowe są jednak linie oczodołowo-uszne. Płaszczyzna czołowa rzeczywiście ustawiona jest mniej więcej równolegle do kasety przy AP czaszki, ale pytanie dotyczy konkretnej płaszczyzny używanej jako punkt odniesienia do pozycjonowania. W standardach radiologicznych to właśnie linia oczodołowo-uszna środkowa (OML) jest kontrolowana względem kasety, a nie ogólna płaszczyzna czołowa. Z kolei płaszczyzna strzałkowa pośrodkowa powinna być prostopadła do kasety, a nie równoległa. Jeżeli ktoś zakłada, że powinna być równoległa, to zwykle wynika to z pomieszania z projekcją boczną czaszki, gdzie głowa faktycznie jest ustawiona bokiem i płaszczyzna strzałkowa biegnie równolegle do kasety. To typowy błąd: przenoszenie ustawień z innej projekcji. Linie oczodołowo-uszne dolna (IOML) i środkowa (OML) też często się mylą. Dolna bywa wykorzystywana w innych projekcjach (np. niektóre zdjęcia zatok, projekcje skośne), ale w klasycznej projekcji AP czaszki to OML ma być prostopadła do kasety. Ustawianie dolnej równolegle do kasety spowodowałoby, że głowa byłaby odchylona, a obraz czaszki nie byłby prawidłowo odwzorowany – pojawią się skróty, przemieszczenie struktur, gorsza ocena symetrii. Z mojego doświadczenia najlepiej zapamiętać prostą zasadę: w projekcjach AP/PA czaszki patrzymy na OML prostopadłą do kasety i na płaszczyznę strzałkową pośrodkową bez rotacji. Każde inne ustawienie tych linii prowadzi do zniekształceń i jest sprzeczne z dobrymi praktykami radiograficznymi opisanymi w podręcznikach do techniki RTG.

Pytanie 19

Który załamek odzwierciedla szybką repolaryzację komór w zapisie EKG?

A. R
B. S
C. T
D. Q
Prawidłowo wskazany załamek T odzwierciedla fazę szybkiej repolaryzacji komór, czyli powrót błony komórkowej kardiomiocytów komorowych do spoczynkowego potencjału po skurczu. W ujęciu elektrofizjologicznym odpowiada to głównie fazie 3 potencjału czynnościowego komórek mięśnia komór – intensywny wypływ jonów potasu na zewnątrz i wygaszanie napływu jonów wapnia. Na standardowym 12‑odprowadzeniowym EKG załamek T pojawia się po zespole QRS i przed odcinkiem TP, jest zwykle dodatni w większości odprowadzeń kończynowych i przedsercowych (z wyjątkiem aVR i czasem V1). W praktyce technika zapisu ma duże znaczenie: prawidłowe ułożenie elektrod, filtracja zakłóceń i poprawna kalibracja (10 mm/mV, 25 mm/s) ułatwiają wiarygodną ocenę morfologii załamka T. To ma znaczenie, bo zmiany kształtu lub kierunku załamka T są jednym z podstawowych kryteriów oceny niedokrwienia, przerostu komór, zaburzeń elektrolitowych (np. hiperkaliemia – wysokie, ostre T) czy toksycznego działania leków. Z mojego doświadczenia w pracowni EKG bardzo często lekarz najpierw „rzuca okiem” właśnie na odcinek ST i załamki T, żeby szybko wychwycić ostrą patologię. W dobrych praktykach diagnostyki elektromedycznej zaleca się systematyczną analizę: rytm, częstość, oś elektryczna, zespół QRS, odcinek ST i właśnie załamek T, z porównaniem do poprzednich zapisów pacjenta. Umiejętność kojarzenia załamka T z repolaryzacją komór to podstawa do dalszej, bardziej zaawansowanej interpretacji, np. rozróżniania zmian wtórnych do poszerzonego QRS od pierwotnych zaburzeń repolaryzacji. Moim zdaniem warto też nawykowo sprawdzać zgodność kierunku T z główną składową QRS w danym odprowadzeniu – niezgodność często sugeruje patologię, nawet jeśli pacjent jeszcze nic nie czuje.

Pytanie 20

Kolonoskopia to badanie, które ma na celu ocenę błony śluzowej

A. żołądka.
B. jelita grubego.
C. jelita cienkiego.
D. dwunastnicy.
Prawidłowo – kolonoskopia służy do oceny błony śluzowej jelita grubego, czyli okrężnicy, esicy i odbytnicy. W badaniu używa się giętkiego endoskopu wprowadzanego przez odbyt, a operator ogląda od środka ścianę jelita na monitorze w powiększeniu. Dzięki temu można bardzo dokładnie ocenić wygląd śluzówki: kolor, ukształtowanie, obecność nadżerek, owrzodzeń, polipów, guzów czy źródeł krwawienia. Z mojego doświadczenia to jedno z kluczowych badań w profilaktyce raka jelita grubego – standardem jest wykonywanie kolonoskopii przesiewowej u osób po 50. roku życia (a czasem wcześniej, gdy są obciążenia rodzinne). W trakcie kolonoskopii zgodnie z dobrymi praktykami nie tylko się ogląda jelito, ale też od razu wykonuje procedury terapeutyczne: usuwa polipy pętlą diatermiczną, pobiera wycinki do badania histopatologicznego, tamuje krwawienie za pomocą klipsów endoskopowych czy koagulacji. Dobre przygotowanie pacjenta, czyli dokładne oczyszczenie jelita środkami przeczyszczającymi dzień przed badaniem, jest absolutnie kluczowe – od tego zależy jakość oceny błony śluzowej, a tym samym wiarygodność wyniku. W praktyce technik czy personel pomocniczy musi pilnować, żeby pacjent miał właściwe przeciwwskazania ocenione (np. ciężka niewydolność krążenia, perforacja, ostre zapalenie otrzewnej) oraz żeby sprzęt był prawidłowo zdezynfekowany zgodnie z procedurami endoskopowymi. Moim zdaniem warto też zapamiętać prostą zasadę: kolonoskopia = jelito grube, gastroskopia = przełyk, żołądek i dwunastnica. To pomaga na egzaminach i w praktyce na oddziale, kiedy lekarz zleca różne badania endoskopowe i trzeba je dobrze od siebie odróżniać.

Pytanie 21

W standardowym badaniu elektrokardiologicznym elektrodę C4 należy umocować

A. w IV międzyżebrzu przy lewym brzegu mostka.
B. w V międzyżebrzu w linii środkowo-obojczykowej lewej.
C. w IV międzyżebrzu przy prawym brzegu mostka.
D. w połowie odległości między punktem C2 i C4.
Prawidłowe umiejscowienie elektrody C4 w standardowym 12‑odprowadzeniowym EKG to V4, czyli V międzyżebrze w linii środkowo‑obojczykowej lewej. To jest klasyczny, opisany w wytycznych punkt: najpierw lokalizujemy lewe V międzyżebrze, potem wyznaczamy linię środkowo‑obojczykową (mniej więcej przez środek obojczyka) i tam przyklejamy elektrodę przedsercową V4. Ten punkt jest kluczowy, bo odprowadzenie V4 bardzo dobrze „patrzy” na ścianę przednio‑przegrodową i koniuszek lewej komory. W zawale przednim, zwłaszcza w okolicy koniuszka, zmiany w V4 są często jednymi z pierwszych i najbardziej wyraźnych. Moim zdaniem to jedno z najważniejszych odprowadzeń w praktyce ratunkowej i kardiologicznej. W standardzie rozmieszczenia elektrod przedsercowych przyjmuje się kolejność: V1 – IV międzyżebrze przy prawym brzegu mostka, V2 – IV międzyżebrze przy lewym brzegu mostka, V4 – V międzyżebrze linia środkowo‑obojczykowa lewa, dopiero potem V3 pomiędzy V2 i V4, a V5 i V6 bocznie w linii pachowej przedniej i środkowej. Właśnie dlatego w pytaniu mowa o C4 (oznaczenie stosowane często zamiennie z V4 w niektórych aparatach i opisach). Trzymanie się tych lokalizacji nie jest „fanaberią”, tylko elementem standaryzacji. Jeżeli przesuniemy elektrodę nawet o jedno międzyżebrze w górę czy w dół, możemy sztucznie zmienić amplitudę zespołów QRS, wygląd odcinka ST czy załamków T. W praktyce może to prowadzić np. do fałszywego podejrzenia przerostu komór, zawału lub odwrotnie – do przeoczenia zmian niedokrwiennych. Z mojego doświadczenia wynika, że dobrze wyrobiony nawyk liczenia żeber i świadomego szukania V międzyżebrza bardzo ułatwia szybkie, poprawne zakładanie elektrod, nawet u osób z otyłością czy u kobiet z dużymi piersiami (gdzie czasem trzeba minimalnie „obejść” tkankę, ale zachowując poziom V międzyżebrza i linię środkowo‑obojczykową). To wszystko składa się na dobrą praktykę techniczną w diagnostyce elektromedycznej.

Pytanie 22

Na radiogramie uwidoczniono

Ilustracja do pytania
A. paluch szpotawy(hallux varus) stopy prawej.
B. złamanie podstawy I kości śródstopia.
C. paluch koślawy (hallux valgus) stopy prawej.
D. złamanie guzowatości V kości śródstopia.
Na radiogramie w projekcji AP widoczna jest stopa prawa z wyraźnym zniekształceniem w obrębie pierwszego promienia – palucha i I kości śródstopia. Trzon I kości śródstopia jest odchylony przyśrodkowo, natomiast paliczek bliższy palucha ustawiony jest bocznie, co daje obraz typowego palucha koślawego (hallux valgus). W standardach opisu radiologicznego ocenia się przede wszystkim kąt między I a II kością śródstopia oraz kąt palucha względem I kości śródstopia – tutaj widać ich wyraźne poszerzenie. Dodatkowo przyśrodkowo na głowie I kości śródstopia zaznacza się poszerzenie obrysu, odpowiadające klinicznie tzw. „bunionowi”, czyli zgrubieniu w okolicy stawu śródstopno‑paliczkowego. Moim zdaniem to bardzo klasyczny obraz, często spotykany u pacjentów z dolegliwościami bólowymi przodostopia i problemem z doborem obuwia. W praktyce technika RTG stopy w obciążeniu („na stojąco”) jest tu kluczowa – dzięki temu widać rzeczywiste ustawienie palucha pod wpływem siły ciężkości, co jest zgodne z zaleceniami dobrych praktyk w diagnostyce ortopedycznej. Taki obraz jest podstawą do kwalifikacji do leczenia zachowawczego (wkładki, fizjoterapia, modyfikacja obuwia) albo operacyjnego (różne typy osteotomii korekcyjnych I kości śródstopia i paliczka). Warto też pamiętać, że przy ocenie radiogramu szuka się jednocześnie współistniejących zmian, jak np. artroza stawu śródstopno‑paliczkowego I, zwapnienia przyczepów więzadeł czy deformacje sąsiednich palców – tutaj nie ma cech ostrego złamania, ciągłość beleczkowania kostnego jest zachowana, a linie korowe nie są przerwane.

Pytanie 23

W technice napromieniania SSD mierzona jest odległość źródła promieniowania od

A. stołu aparatu terapeutycznego.
B. punktu zdefiniowanego na skórze pacjenta.
C. napromienianego guza.
D. izocentrum aparatu terapeutycznego.
W technice napromieniania SSD (source–skin distance) kluczowe jest właśnie to, że jako punkt odniesienia przyjmuje się punkt zdefiniowany na skórze pacjenta. Cała metoda polega na ustawieniu stałej odległości od źródła promieniowania do powierzchni ciała, a nie do guza czy izocentrum. Dzięki temu łatwiej kontrolować warunki geometryczne wiązki, dawkę na głębokości referencyjnej oraz powtarzalność ułożeń między frakcjami. W praktyce wygląda to tak, że terapeuta wyznacza na skórze pacjenta odpowiedni punkt (np. tuszem, markerem, czasem z użyciem tatuaży), a potem za pomocą wskaźnika odległości (tzw. distance indicator, suwak SSD, czasem laser + miarka) ustawia dokładnie wymaganą SSD, np. 100 cm. Moim zdaniem to jest bardzo „technicznie wygodna” metoda, szczególnie przy prostszych polach i technikach 2D. W standardach radioterapii opisuje się ją jako alternatywę dla napromieniania izocentrycznego (SAD), gdzie odległość jest stała do izocentrum w ciele pacjenta. W SSD zawsze kalibruje się dawkę przy określonej odległości źródło–skóra, a planowanie dawki na głębokości wymaga już uwzględnienia krzywych procentowej dawki głębokiej (PDD). W codziennej pracy technika SSD bywa wykorzystywana np. przy napromienianiu zmian powierzchownych, pól na skórę, czasem w prostych polach paliatywnych, gdzie ważne jest szybkie i powtarzalne ustawienie. Dobrą praktyką jest, żeby ten punkt na skórze był jednoznacznie oznaczony, łatwy do odtworzenia, a kontrola SSD odbywała się przed każdą frakcją, bo każda zmiana ułożenia, podkładek czy materaca może tę odległość zaburzyć.

Pytanie 24

Który załamek w zapisie EKG odpowiada zjawisku depolaryzacji przedsionków mięśnia sercowego?

A. P
B. T
C. Q
D. R
Załamek P w zapisie EKG odpowiada depolaryzacji przedsionków, czyli momentowi, kiedy bodziec elektryczny rozchodzi się przez mięsień przedsionków i przygotowuje je do skurczu. To jest tak naprawdę pierwszy element całego cyklu sercowego widocznego w standardowym zapisie 12-odprowadzeniowego EKG. W fizjologicznych warunkach załamek P jest dodatni w większości odprowadzeń kończynowych, szczególnie w II odprowadzeniu, które zwykle analizuje się jako wzorcowe. Moim zdaniem warto „nauczyć się na pamięć”, że P = przedsionki, bo to potem bardzo ułatwia interpretację różnych zaburzeń rytmu, np. migotania czy trzepotania przedsionków. W praktyce technika EKG i personel medyczny, zgodnie z wytycznymi kardiologicznymi, zawsze ocenia obecność, kształt i częstość załamków P. Brak prawidłowych załamków P albo ich nietypowy kształt może sugerować np. rytm z węzła AV, ektopowe pobudzenie przedsionkowe albo przerost przedsionków. W badaniach wysiłkowych czy holterowskich ciągłe śledzenie załamków P pomaga odróżnić tachykardię zatokową od nadkomorowych zaburzeń rytmu. Warto też pamiętać, że załamek P kończy się przed zespołem QRS – to czas, kiedy impuls po przejściu przez przedsionki dociera do węzła przedsionkowo‑komorowego. W dobrych praktykach diagnostyki elektromedycznej zawsze analizuje się P w kontekście całego odstępu PQ (PR), bo to daje informację nie tylko o depolaryzacji przedsionków, ale też o przewodzeniu przedsionkowo‑komorowym. Z mojego doświadczenia, jak ktoś dobrze rozumie załamek P, to dużo szybciej ogarnia resztę zapisu EKG, bo ma solidny punkt odniesienia do oceny rytmu i przewodnictwa.

Pytanie 25

Parametr SNR w obrazowaniu MR oznacza

A. wielkość pola widzenia.
B. stosunek sygnału do szumu.
C. rozmiar matrycy.
D. grubość obrazowanej warstwy.
Parametr SNR w obrazowaniu MR to stosunek sygnału do szumu (Signal to Noise Ratio) i jest jednym z absolutnie kluczowych pojęć przy ocenie jakości obrazów rezonansu. Mówiąc po ludzku: patrzymy, jak silny jest użyteczny sygnał pochodzący z tkanek pacjenta w porównaniu do przypadkowych zakłóceń, czyli szumu. Im wyższy SNR, tym obraz jest bardziej „czysty”, gładszy, z wyraźniejszym zarysem struktur anatomicznych i mniejszym ziarnem. Przy niskim SNR obraz robi się „ziarnisty”, poszarpany, trudniej odróżnić szczegóły, a diagnostyka staje się mniej pewna. W praktyce technik MR ciągle balansuje parametrami, które wpływają na SNR: zwiększenie grubości warstwy, liczby akwizycji (NEX/NSA), pola widzenia (FOV), czy zastosowanie odpowiednich cewek odbiorczych poprawia SNR, ale często kosztem rozdzielczości lub czasu badania. Z kolei zwiększenie rozdzielczości (większa matryca, mniejszy voxel) zwykle SNR obniża. Moim zdaniem ważne jest, żeby nie traktować SNR jako abstrakcyjnej liczby, tylko jako realne narzędzie do oceny, czy dana sekwencja nadaje się do wiarygodnej interpretacji. W wielu ośrodkach przyjmuje się minimalne wartości SNR dla konkretnych protokołów, tak żeby radiolog miał wystarczająco „czysty” obraz do opisu. W zaawansowanych systemach kontroli jakości MR SNR mierzy się regularnie na fantomach, żeby sprawdzać stabilność aparatu i wychwycić spadek jakości zanim zauważy go lekarz. W codziennej pracy, jeśli radiolog mówi, że „za dużo szumu na obrazach”, to w praktyce właśnie ma zastrzeżenia do zbyt niskiego SNR i trzeba tak dobrać parametry, żeby ten stosunek sygnału do szumu poprawić, nie tracąc przy tym istotnych informacji diagnostycznych.

Pytanie 26

Ilustracja przedstawia pozycjonowanie pacjentki do badania mammograficznego w projekcji

Ilustracja do pytania
A. skośnej.
B. dolinowej.
C. kranio-kaudalnej.
D. kleopatry.
Na ilustracji widać klasyczne ułożenie pacjentki do mammografii w projekcji skośnej, czyli mediolateral oblique (MLO). Głowica z detektorem jest ustawiona pod kątem, zwykle około 40–60°, tak żeby objąć jak największą część tkanki gruczołowej, zwłaszcza ogon Spence’a, czyli fragment piersi sięgający w stronę dołu pachowego. Właśnie w tej projekcji technik stara się „wyciągnąć” pierś do przodu, dociągnąć tkankę z okolicy pachy i równomiernie ją spłaszczyć między płytką dociskową a detektorem. Moim zdaniem to jest najważniejsza projekcja w mammografii skriningowej, bo najlepiej pokazuje górno‑zewnętrzny kwadrant piersi i węzły chłonne pachowe przednie. W praktyce, zgodnie z zaleceniami EUREF i Polskiego Towarzystwa Radiologicznego, standardowy zestaw obejmuje właśnie dwie podstawowe projekcje: kranio‑kaudalną (CC) oraz skośną MLO. Bez poprawnie wykonanej projekcji skośnej badanie jest uznawane za niepełne. Technik musi zwrócić uwagę na kilka detali: widoczny mięsień piersiowy większy sięgający co najmniej do wysokości brodawki, brak zagięć skóry, brak „ściśnięcia” tylko brodawki bez głębszej tkanki, odpowiednie ustawienie brodawki w profilu. W realnej pracy, gdy pacjentka ma ograniczoną ruchomość barku lub jest po operacji, poprawne ułożenie do projekcji skośnej bywa trudne, ale tym bardziej trzeba się starać, bo to właśnie w tej projekcji najczęściej wychwytuje się niewielkie mikrozwapnienia i zmiany w górnych partiach piersi. Dobra znajomość tej pozycji ułatwia też późniejszą korelację zmian pomiędzy USG, mammografią i ewentualnie tomosyntezą.

Pytanie 27

Podczas badania EEG otwarcie oczu powoduje

A. spontaniczną hiperwentylację.
B. zaniknięcie rytmu alfa.
C. zjawisko habituacji.
D. reakcję paradoksalną.
Prawidłowo – podczas badania EEG otwarcie oczu powoduje zanik, czyli blokowanie rytmu alfa w okolicach potylicznych. U zdrowej, zrelaksowanej osoby, leżącej spokojnie z zamkniętymi oczami, dominuje właśnie rytm alfa: fale o częstotliwości około 8–13 Hz, najlepiej widoczne w odprowadzeniach potylicznych (O1, O2). Jest to taki „fizjologiczny podpis” stanu czuwania w spoczynku z zamkniętymi oczami. W momencie, kiedy badany otwiera oczy, do kory wzrokowej dociera strumień bodźców wzrokowych i aktywność bioelektryczna ulega desynchronizacji – zamiast ładnego, regularnego rytmu alfa pojawia się bardziej niskonapięciowa, szybka czynność beta lub mieszanina różnych częstotliwości. Ten efekt nazywa się blokowaniem albo wygaszeniem rytmu alfa (ang. alpha blocking). Dla technika EEG to jest bardzo praktyczna sprawa: reakcja na otwarcie oczu jest jednym z podstawowych testów jakości zapisu i stanu pacjenta. Jeśli rytm alfa się nie pojawia przy zamkniętych oczach albo nie znika po ich otwarciu, to od razu zapala się lampka ostrzegawcza – można podejrzewać np. uszkodzenie kory potylicznej, głębokie zaburzenia świadomości, działanie leków, czasem artefakty. W standardach wykonywania EEG (np. zalecenia IFCN, krajowe wytyczne pracowni EEG) zawsze podkreśla się konieczność rejestrowania fragmentów z oczami zamkniętymi i otwartymi oraz dokładnego opisywania reaktywności rytmu alfa. W praktyce klinicznej ocena tego zjawiska pomaga różnicować stany śpiączki, encefalopatie metaboliczne czy efekty działania leków sedacyjnych. Z mojego doświadczenia warto sobie to dobrze zapamiętać: oczy zamknięte – alfa się pojawia, oczy otwarte – alfa znika. To jest jeden z najbardziej klasycznych i powtarzalnych elementów zapisu EEG, który bardzo często pojawia się też na egzaminach i w zadaniach testowych.

Pytanie 28

W badaniu PET stosuje się tylko radioizotopy emitujące

A. pozytony.
B. neutrony.
C. elektrony.
D. cząstki alfa.
W badaniu PET kluczowa jest emisja pozytonów, dlatego poprawna jest odpowiedź z radioizotopami emitującymi właśnie pozytony. Cała fizyka PET opiera się na zjawisku anihilacji pozyton–elektron. Radioizotop (np. 18F, 11C, 13N, 15O) wprowadzony do organizmu jest wbudowywany w radiofarmaceutyk, który zachowuje się jak zwykła cząsteczka metaboliczna, np. 18F-FDG zachowuje się podobnie do glukozy. Taki radionuklid rozpada się beta plus, czyli emituje pozyton. Pozyton po bardzo krótkiej drodze w tkankach (rzędu milimetrów) zderza się z elektronem, dochodzi do anihilacji i powstają dwa fotony gamma o energii 511 keV, biegnące prawie dokładnie w przeciwnych kierunkach. Detektory w gantrze PET rejestrują te dwa kwanty jednocześnie (koincydencja czasowa) i na tej podstawie wyznaczana jest linia, na której zaszła anihilacja. Oprogramowanie rekonstruuje z milionów takich zdarzeń trójwymiarowy rozkład aktywności radiofarmaceutyku w ciele pacjenta. W praktyce klinicznej ma to ogromne znaczenie np. w onkologii: PET-CT z 18F-FDG pozwala wykryć przerzuty, ocenić żywotność guza czy odpowiedź na chemioterapię. Standardy pracowni medycyny nuklearnej (np. EANM) jasno wskazują stosowanie wyłącznie radionuklidów beta plus dla klasycznego PET, bo tylko one dają charakterystyczny sygnał dwóch fotonów 511 keV. Moim zdaniem warto zapamiętać prostą regułę: PET = pozytony + anihilacja + dwa fotony 511 keV, reszta rodzajów promieniowania tutaj się po prostu nie sprawdza do obrazowania tą techniką.

Pytanie 29

Jaki czas należy ustawić do wykonania zdjęcia rentgenowskiego dwójki górnej lewej?

Tabela ekspozycji
wartościczasu (s)napięcia (kV)natężenia (mA)
zęby przedtrzonowe i kły0,160608
siekacze0,120608
zęby trzonowe0,200608
ekspozycja zgryzowo-skrzydełkowa0,180666
A. 0,120 s
B. 0,180 s
C. 0,200 s
D. 0,160 s
Poprawnie wybrałeś czas 0,120 s, bo dwójka górna lewa (siekacz boczny szczęki) należy do grupy zębów „siekacze” i dokładnie ta grupa ma w tabeli ekspozycji przypisany czas 0,120 s przy napięciu 60 kV i natężeniu 8 mA. Czyli klucz do zadania to nie tyle numer zęba, co umiejętność prawidłowego przyporządkowania go do odpowiedniej grupy anatomiczno-funkcjonalnej w tabeli: siekacze, kły i przedtrzonowce, trzonowce, ekspozycje zgryzowo‑skrzydełkowe. Dwójka górna jest siekaczem, więc korzystamy z wiersza „siekacze”. Moim zdaniem w praktyce bardzo ważne jest, żebyś nie ustawiać czasu „na oko”, tylko zawsze odnosił się do tabeli ekspozycji producenta aparatu lub do procedur wewnętrznych pracowni. Dzięki temu dawka promieniowania jest możliwie mała, a obraz ma wystarczającą gęstość optyczną i kontrast, żeby lekarz mógł coś sensownego ocenić. Zbyt długi czas ekspozycji to prześwietlenie zdjęcia, utrata detali, a przy okazji niepotrzebne zwiększenie dawki pacjenta. Zbyt krótki – niedoświetlenie, szum, brak czytelności struktur okołowierzchołkowych, co w stomatologii jest bardzo krytyczne. W dobrych praktykach stomatologicznych przyjęte jest, że dla siekaczy ustawia się zwykle krótszy czas niż dla zębów trzonowych, bo tkanki w tym rejonie są cieńsze, a masa kostna mniejsza. To dokładnie widać w tabeli: 0,120 s dla siekaczy vs 0,200 s dla trzonowców. W pracy z aparatem RTG warto też pamiętać, że tabelę traktujemy jako punkt wyjścia – u osób o bardzo masywnej budowie, przy dużej ilości tkanek miękkich, czas można minimalnie korygować, ale zawsze świadomie i w granicach protokołu. Z mojego doświadczenia, im lepiej ktoś rozumie powiązanie: rodzaj zęba → grubość tkanek → parametry ekspozycji, tym szybciej i pewniej pracuje przy aparacie RTG i rzadziej musi powtarzać zdjęcia, co jest kluczowe z punktu widzenia ochrony radiologicznej.

Pytanie 30

Jaki rozmiar kasety należy zastosować, wykonując standardowe zdjęcie stawu kolanowego w projekcji bocznej?

A. 35×35 cm
B. 18×24 cm
C. 35×43 cm
D. 9×13 cm
Prawidłowo – do standardowego zdjęcia stawu kolanowego w projekcji bocznej stosuje się kasetę o rozmiarze 18×24 cm. Ten format jest uznawany za klasyczny dla badań pojedynczych stawów kończyn u dorosłych, zwłaszcza kolana, skokowego czy łokcia. Rozmiar 18×24 cm pozwala objąć cały staw kolanowy w projekcji bocznej: nasadę dalszą kości udowej, bliższą kości piszczelowej, rzepkę oraz okoliczne tkanki miękkie, a jednocześnie nie jest zbyt duży, więc ogranicza niepotrzebne naświetlanie tkanek poza obszarem zainteresowania. Z mojego doświadczenia to jest taki „złoty standard” – łatwo się pozycjonuje pacjenta, kolano dobrze wypełnia pole kasety, a kolimator można ustawić bardzo precyzyjnie. Przy prawidłowym ułożeniu w projekcji bocznej, z lekkim zgięciem stawu (zwykle ok. 20–30°), na obrazie w formacie 18×24 cm mamy czytelne odwzorowanie przestrzeni stawowej, powierzchni stawowych oraz ewentualnych wysięków, zwapnień czy zmian pourazowych. W praktyce technik dobiera kasetę tak, żeby: po pierwsze – nie obcinać struktur anatomicznych istotnych diagnostycznie, po drugie – nie naświetlać pół stołu. Dlatego do kończyn stosuje się mniejsze formaty, a duże kasety zostawia się na klatkę piersiową czy miednicę. W nowoczesnych pracowniach DR czy CR wciąż zachowuje się te same zasady – nawet jeśli fizycznej kasety już nie ma, to pole ekspozycji i kolimację planuje się w odniesieniu do tradycyjnych formatów, właśnie takich jak 18×24 cm dla kolana. To ułatwia trzymanie się standardów opisanych w podręcznikach z techniki radiologicznej i w protokołach pracownianych.

Pytanie 31

Który artefakt uwidoczniono na skanie RM głowy?

Ilustracja do pytania
A. Zawijanie obrazu.
B. Poruszenie pacjenta.
C. Przesunięcie chemiczne.
D. Efekt uśrednienia.
Prawidłowo rozpoznano artefakt zawijania obrazu (aliasing). Na tym skanie RM głowy widać struktury anatomiczne „przeniesione” spoza pola widzenia (FOV) do wnętrza obrazu – wyglądają jakby fragment czaszki lub tkanek miękkich nagle pojawiał się w nienaturalnym miejscu, przy brzegu kadru. To właśnie typowy obraz zawijania: sygnał z obszaru poza FOV zostaje „zmapowany” po przeciwnej stronie obrazu w kierunku fazowym. W praktyce klinicznej ten artefakt występuje najczęściej przy zbyt małym polu obrazowania w osi przednio–tylnej lub lewo–prawo, szczególnie w badaniach głowy, kręgosłupa szyjnego i jamy brzusznej. Dobre praktyki według standardów producentów aparatów MR i wytycznych to m.in.: zwiększenie FOV w kierunku fazowym, zastosowanie oversamplingu (phase oversampling, no phase wrap), zmianę kierunku kodowania fazy, a w razie potrzeby użycie cewek powierzchniowych o mniejszym zasięgu. Moim zdaniem bardzo ważne jest, żeby w technikum od razu kojarzyć: obraz „przełożony” przez krawędź kadru = zawijanie, a nie poruszenie czy efekt uśrednienia. W realnej pracy technika zawijanie potrafi całkowicie uniemożliwić ocenę np. tylnej jamy czaszki, jeśli sygnał z nosa lub twarzy wchodzi w pole móżdżku, dlatego rutynowo kontroluje się FOV i parametry fazy jeszcze przed rozpoczęciem sekwencji. Warto też pamiętać, że w sekwencjach szybkich, np. FSE, aliasing może być bardziej widoczny, więc tym bardziej trzeba pilnować ustawień.

Pytanie 32

W obrazowaniu metodą rezonansu magnetycznego T1 oznacza czas

A. relaksacji poprzecznej.
B. relaksacji podłużnej.
C. inwersji.
D. echa.
Prawidłowo: w obrazowaniu metodą rezonansu magnetycznego T1 oznacza czas relaksacji podłużnej (spin–sieć). Chodzi o to, jak szybko namagnesowanie podłużne protonów (w osi głównego pola magnesu) wraca do stanu równowagi po pobudzeniu impulsami RF. W praktyce im krótszy T1, tym dany rodzaj tkanek szybciej „odzyskuje” swoje namagnesowanie podłużne i tym jaśniej świeci na obrazach T1‑zależnych. Dlatego na typowych sekwencjach T1‑zależnych tłuszcz ma krótki T1 i jest jasny, a płyny (np. płyn mózgowo‑rdzeniowy) mają długi T1 i wypadają ciemno. To jest bardzo użyteczne np. w rezonansie głowy: kontrast między istotą białą i szarą mózgu wynika w dużej mierze z różnic w T1. Po podaniu środka kontrastowego gadolinowego też patrzymy głównie na obrazy T1‑zależne, bo skrócenie T1 powoduje wzmocnienie sygnału w miejscach gromadzenia się kontrastu (np. guz, obszar zapalny, zaburzona bariera krew–mózg). Moim zdaniem dobrze jest kojarzyć, że T1 to nie jest żaden „czas echa” ani „czas inwersji”, tylko fizyczny parametr tkanki, który decyduje o kontraście przy odpowiednio dobranych parametrach sekwencji (TR, TE, ewentualnie TI). W codziennej pracy technika czy elektroradiologa rozumienie T1 pomaga świadomie dobierać protokoły, wiedzieć czemu zmiana TR zmienia kontrast i dlaczego w jednych badaniach lekarz chce mocno T1‑zależne obrazy, a w innych bardziej T2‑zależne. To jest taka podstawa fizyki MR, do której ciągle się wraca.

Pytanie 33

Jak przebiega promień centralny w projekcji AP czaszki?

A. Od tyłu ku przodowi, prostopadle do płaszczyzny czołowej.
B. Od przodu ku tyłowi, prostopadle do płaszczyzny czołowej.
C. Od tyłu ku przodowi, prostopadle do płaszczyzny strzałkowej.
D. Od przodu ku tyłowi, prostopadle do płaszczyzny strzałkowej.
Prawidłowo wskazana odpowiedź odzwierciedla klasyczne ustawienie w projekcji AP czaszki: promień centralny biegnie od przodu ku tyłowi, prostopadle do płaszczyzny czołowej. W praktyce oznacza to, że lampa RTG znajduje się przed twarzą pacjenta, a kaseta / detektor za potylicą, a wiązka pada na czoło i przechodzi w kierunku tyłu głowy. Płaszczyzna czołowa to taka, która dzieli ciało na część przednią i tylną, więc promień prostopadły do niej biegnie dokładnie w osi przednio–tylnej (AP). To jest zgodne z opisami w standardowych atlasach projekcji radiologicznych i wytycznymi stosowanymi w pracowniach RTG. W projekcji AP czaszki zależy nam na możliwie równomiernym odwzorowaniu struktur kości czaszki od strony czołowej aż po potylicę, przy minimalnych zniekształceniach geometrycznych. Ustawienie promienia centralnego prostopadle do płaszczyzny czołowej ogranicza powiększenie i zniekształcenia kształtu kości, co ma znaczenie np. przy ocenie symetrii łuków jarzmowych, zatok czołowych, oczodołów czy sklepienia czaszki. Z mojego doświadczenia w pracowniach RTG jednym z częstszych błędów u uczących się jest mylenie płaszczyzny czołowej i strzałkowej – tu warto zapamiętać prostą rzecz: projekcja AP to wiązka padająca od przodu, a więc jej kierunek jest prostopadły do płaszczyzny czołowej, a równoległy do płaszczyzny strzałkowej. W poprawnie wykonanej projekcji AP czaszki linia środkowa ciała (płaszczyzna strzałkowa pośrodkowa) powinna pokrywać się z osią długą kasety, a promień centralny padać centralnie przez nasadę nosa lub glabelę – zależnie od konkretnego wariantu projekcji i protokołu pracowni. Takie ustawienie pozwala na powtarzalność badania i porównywanie obrazów w czasie, co jest bardzo ważne przy kontroli urazów, zmian pooperacyjnych czy procesów litycznych w kościach czaszki.

Pytanie 34

Który narząd został uwidoczniony na przedstawionym obrazie scyntygraficznym?

Ilustracja do pytania
A. Trzustka.
B. Serce.
C. Płuca.
D. Wątroba.
Na obrazie scyntygraficznym widoczna jest wątroba – charakterystyczne, nieregularne ognisko gromadzenia znacznika położone w prawej górnej części jamy brzusznej, przesunięte nieco ku górze pod prawym łukiem żebrowym. W badaniach medycyny nuklearnej, szczególnie w klasycznej scyntygrafii wątroby i śledziony z użyciem koloidów znakowanych technetem-99m, fizjologicznie największą aktywność obserwujemy właśnie w miąższu wątrobowym. Kolorowe mapowanie (czerwony/żółty – najwyższe wychwyty, zielony/niebieski – niższe) dobrze pokazuje rozkład perfuzji i czynności fagocytarnej komórek układu siateczkowo‑śródbłonkowego. Moim zdaniem warto zapamiętać, że w prawidłowym badaniu wątroba ma dość jednorodną intensywność, o wyraźnych granicach, bez ubytków wychwytu. W praktyce klinicznej scyntygrafię wątroby wykorzystuje się rzadziej niż kiedyś, ale nadal bywa przydatna przy ocenie rozległości uszkodzenia miąższu, funkcji resztkowej po resekcjach czy w kwalifikacji do zabiegów radioembolizacji. W standardach medycyny nuklearnej podkreśla się konieczność prawidłowego pozycjonowania pacjenta (najczęściej pozycja leżąca na plecach, detektor nad jamą brzuszną) oraz stosowania odpowiednich okien energetycznych dla Tc-99m, żeby uzyskać czytelny obraz narządu. Dobra praktyka to zawsze korelacja scyntygrafii z badaniami anatomicznymi, np. USG lub TK, ale pierwszym krokiem jest właśnie poprawne rozpoznanie, że oglądamy wątrobę, a nie płuca czy serce. Takie „czytanie z mapy izotopowej” to typowa umiejętność technika pracowni medycyny nuklearnej.

Pytanie 35

Wskazaniem do wykonania scyntygrafii perfuzyjnej jest

A. zatorowość płucna.
B. ciężkie nadciśnienie płucne.
C. zapalenie płuc.
D. ropień płuca.
Prawidłowo – klasycznym, wręcz podręcznikowym wskazaniem do wykonania scyntygrafii perfuzyjnej płuc jest właśnie podejrzenie zatorowości płucnej. Badanie perfuzyjne ocenia rozkład przepływu krwi w łożysku naczyniowym płuc, czyli mówiąc prościej: sprawdza, czy krew dociera równomiernie do wszystkich obszarów miąższu płucnego. W zatorowości płucnej fragment tętnicy płucnej zostaje zamknięty przez skrzeplinę, więc radiofarmaceutyk podany dożylnie nie dociera do odpowiedniego segmentu płuca i na obrazie scyntygraficznym widzimy ubytki perfuzji. Klasyczne jest porównywanie perfuzji z wentylacją (badanie V/Q – ventilation/perfusion). W zatorowości płucnej pojawiają się tzw. niezgodne ubytki: wentylacja jest zachowana, a perfuzja w danym obszarze jest wyraźnie upośledzona. To właśnie ten wzorzec w praktyce klinicznej bardzo silnie sugeruje zatorowość. Moim zdaniem warto zapamiętać, że scyntygrafia perfuzyjna jest szczególnie przydatna u pacjentów, u których nie można wykonać angio-TK (np. ciężka niewydolność nerek, uczulenie na jodowy środek kontrastowy, ciąża przy ograniczaniu dawki promieniowania). W wielu wytycznych medycyny nuklearnej i pulmonologii podkreśla się, że przy prawidłowym badaniu V/Q prawdopodobieństwo istotnej zatorowości jest bardzo małe. W codziennej pracy technika elektroradiologii ważne jest prawidłowe przygotowanie radiofarmaceutyku (najczęściej makroagregaty albuminy znakowane technetem-99m), odpowiednie ułożenie pacjenta, wykonanie kilku projekcji oraz współpraca z lekarzem w ocenie jakości obrazu. Dobrą praktyką jest też zawsze korelowanie wyniku scyntygrafii z obrazem RTG klatki piersiowej, żeby nie pomylić ubytków perfuzji z rozległymi zmianami strukturalnymi płuc.

Pytanie 36

Pojawienie się w zapisie EKG patologicznego załamka Q lub QS może wskazywać na

A. blok prawej odnogi pęczka Hisa.
B. bliznę po zawale podwsierdziowym.
C. blok lewej odnogi pęczka Hisa.
D. bliznę po zawale pełnościennym.
Patologiczny załamek Q albo kompleks QS wielu osobom kojarzy się ogólnie z poważnym uszkodzeniem mięśnia sercowego, więc łatwo tu o skrót myślowy w stronę „jakiejś poważnej blokady przewodzenia” albo „każdego typu zawału”. To jest dość typowy błąd. W blokach odnóg pęczka Hisa obraz EKG zmienia się przede wszystkim w obrębie zespołu QRS, ale w inny sposób. W bloku lewej odnogi pęczka Hisa QRS jest szeroki, zwykle ≥ 120 ms, z charakterystycznym kształtem „M” lub „RR'” w odprowadzeniach V5–V6, I, aVL. Często obserwujemy brak prawidłowych małych załamków q w odprowadzeniach bocznych, natomiast nie mówimy tu o patologicznych załamkach Q w sensie blizny pozawałowej, tylko o zaburzeniu sekwencji depolaryzacji komór. Sygnał elektryczny idzie najpierw przez prawą komorę, później przez lewą, stąd ten zniekształcony, szeroki zespół. W bloku prawej odnogi z kolei typowy jest obraz rSR' w V1–V2, szeroki QRS, z poszerzoną końcową częścią zespołu w odprowadzeniach prawokomorowych. Znowu, dominuje zaburzona kolejność pobudzenia komór, a nie utrwalona martwica ściany. Załamek Q w tym kontekście nie jest cechą diagnostyczną bloku prawej odnogi. Kolejna częsta pomyłka to wiązanie patologicznych załamków Q z zawałem podwsierdziowym. Zawał podwsierdziowy, czyli niedokrwienie obejmujące głównie warstwę podwsierdziową, ma zwykle charakter „non-Q”, bez typowych, głębokich załamków Q. W EKG dominuje obniżenie odcinka ST, zmiany załamka T, ale nie powstaje klasyczna blizna transmuralna, która odwraca wektor pobudzenia i daje trwały Q lub QS. Z mojego doświadczenia wynika, że uproszczenie „każdy zawał = załamki Q” jest bardzo mylące. Standardy interpretacji EKG i wytyczne kardiologiczne dość mocno to rozróżniają: patologiczny Q lub QS jest typowy dla przebytego zawału pełnościennego, a nie dla bloków odnóg ani dla zawału ograniczonego do warstw podwsierdziowych. Dlatego przy analizie EKG warto zawsze patrzeć na szerokość QRS, morfologię w konkretnych odprowadzeniach i kontekst kliniczny, zamiast automatycznie łączyć każdy nietypowy kształt z tym samym rozpoznaniem.

Pytanie 37

Największa wartość energii promieniowania stosowanego w radioterapii jest generowana przy użyciu

A. aparatu rentgenowskiego.
B. aparatu kobaltowego.
C. radioaktywnego cezu-137.
D. przyspieszacza liniowego.
Prawidłowo wskazany został przyspieszacz liniowy, bo to właśnie linac jest podstawowym źródłem najwyższych energii promieniowania stosowanych we współczesnej teleradioterapii. Typowy aparat kobaltowy (Co‑60) emituje promieniowanie gamma o stałej energii około 1,17–1,33 MeV, natomiast przyspieszacz liniowy generuje wiązki fotonowe o energiach nominalnych 4, 6, 10, 15, a nawet 18 MV, a także wiązki elektronowe o różnych energiach do leczenia zmian powierzchownych. Dzięki temu można dobrać energię do głębokości guza, uzyskać odpowiedni rozkład dawki i lepiej oszczędzić tkanki zdrowe. W praktyce klinicznej, zgodnie ze standardami nowoczesnej radioterapii, większość planów leczenia nowotworów głęboko położonych (np. rak płuca, rak prostaty, guzy głowy i szyi) wykonuje się właśnie na linacach, często w technikach IMRT, VMAT czy stereotaksji. Moim zdaniem kluczowe jest zrozumienie, że wysoka energia wiązki z przyspieszacza liniowego pozwala na tzw. efekt build‑up – maksymalna dawka pojawia się pod powierzchnią skóry, co zmniejsza jej uszkodzenie. Aparat rentgenowski do klasycznych zdjęć RTG pracuje na znacznie niższych napięciach (rzędu 30–150 kV), więc jego promieniowanie ma dużo mniejszą energię fotonów i nie nadaje się do głębokiego leczenia onkologicznego. Cez‑137 i kobalt‑60 są używane głównie w starszych typach teleterapii lub w brachyterapii, ale także nie osiągają tak szerokiego zakresu energii jak linac. W dobrze wyposażonych ośrodkach onkologicznych przyspieszacz liniowy jest dziś złotym standardem, właśnie ze względu na możliwość generowania najwyższych energii promieniowania terapeutycznego oraz precyzyjną modulację dawki w przestrzeni i czasie.

Pytanie 38

Czym charakteryzuje się późny odczyn popromienny?

A. Występuje po 6 miesiącach od zakończenia radioterapii, pojawia się nagle, zwykle jest trwały i może stanowić zagrożenie dla życia pacjenta.
B. Występuje w trakcie lub do 6 miesięcy od zakończenia radioterapii, zwykle jest trwały i może powodować zagrożenie dla życia pacjenta.
C. Występuje w trakcie lub do 6 miesięcy od zakończenia radioterapii, ustępuje samoistnie lub po prostym leczeniu farmakologicznym.
D. Występuje po 6 miesiącach od zakończenia radioterapii, ustępuje samoistnie lub po prostym leczeniu farmakologicznym.
Późny odczyn popromienny to klasyczny temat w radioterapii i warto go mieć naprawdę dobrze poukładany w głowie. Kluczowe są tu trzy elementy: czas, dynamika pojawienia się objawów i ich trwałość. Za późne odczyny uznaje się te, które występują po upływie co najmniej 6 miesięcy od zakończenia napromieniania. W praktyce klinicznej często mówimy wręcz o miesiącach–latach po terapii. To odróżnia je od odczynów wczesnych, które pojawiają się w trakcie lub do 6 miesięcy po radioterapii. Wybrana odpowiedź dobrze podkreśla, że późny odczyn pojawia się nagle – pacjent często przez dłuższy czas czuje się w porządku, a po jakimś czasie dochodzi do gwałtownego ujawnienia się zmian. Moim zdaniem to jest jedna z pułapek radioterapii: pacjent kończy leczenie, wydaje się, że wszystko jest dobrze, a jednak ryzyko uszkodzeń tkanek późno reagujących (np. rdzeń kręgowy, nerki, płuca, serce) nadal istnieje. Co ważne, późne odczyny są zwykle trwałe, bo wiążą się z nieodwracalnym uszkodzeniem struktur o powolnej regeneracji: zwłóknieniem, martwicą, teleangiektazjami, przewlekłym owrzodzeniem. W skrajnych sytuacjach mogą stanowić realne zagrożenie życia – przykłady to popromienne zwłóknienie płuc z niewydolnością oddechową, mielopatia popromienna z porażeniem, ciężkie uszkodzenie serca po napromienianiu śródpiersia czy perforacja jelita po radioterapii miednicy. W dobrych praktykach planowania radioterapii (wg wytycznych np. ESTRO, QUANTEC) bardzo mocno pilnuje się dawek tolerancji dla narządów krytycznych właśnie z powodu ryzyka późnych powikłań. Dlatego tak ważne jest precyzyjne wyznaczanie OAR (organs at risk), stosowanie technik IMRT/VMAT, odpowiednie frakcjonowanie dawki i dokładne unieruchomienie pacjenta. Z mojego doświadczenia patrząc na opisy planów, cała filozofia ograniczania dawki do tkanek zdrowych kręci się głównie wokół zapobiegania późnym odczynom, bo jak już się pojawią, to najczęściej nie da się ich cofnąć, można tylko łagodzić objawy.

Pytanie 39

Którą strukturę anatomiczną zaznaczono na radiogramie stawu kolanowego?

Ilustracja do pytania
A. Nadkłykieć przyśrodkowy.
B. Kłykieć boczny.
C. Nadkłykieć boczny.
D. Kłykieć przyśrodkowy.
Na radiogramie w projekcji AP widoczny jest staw kolanowy, a strzałka wskazuje na wystającą ponad powierzchnię stawową część dalszej kości udowej po stronie przyśrodkowej. To właśnie nadkłykieć przyśrodkowy kości udowej. Nadkłykcie są zlokalizowane powyżej kłykci – są bardziej wyniosłe, służą głównie jako miejsca przyczepu więzadeł i mięśni, a nie jako część bezpośrednio tworząca powierzchnię stawową. Na zdjęciu dobrze widać, że zaznaczona struktura leży ponad przyśrodkowym przedziałem szczeliny stawowej, a jej zarys nie wchodzi w obręb powierzchni stawowej – to typowy obraz nadkłykcia. W praktyce klinicznej prawidłowe rozróżnienie kłykci i nadkłykci ma znaczenie np. przy opisie złamań (wg standardów AO, przy kwalifikacji do leczenia operacyjnego) czy przy planowaniu dostępu chirurgicznego w endoprotezoplastyce kolana. Nadkłykieć przyśrodkowy jest miejscem przyczepu m.in. więzadła pobocznego piszczelowego, dlatego jego uszkodzenia mogą być związane z niestabilnością przyśrodkową stawu kolanowego. W opisach radiologicznych zgodnych z dobrymi praktykami (np. zalecenia towarzystw radiologicznych) zawsze podaje się, czy zmiana obejmuje kłykieć, czy nadkłykieć, bo od tego zależy zarówno biomechanika stawu, jak i ryzyko wtórnej choroby zwyrodnieniowej. Moim zdaniem warto sobie nawykowo na każdym RTG kolana „od góry do dołu” nazwać: nadkłykcie, kłykcie, powierzchnię stawową, szczelinę stawową i nasadę kości piszczelowej – wtedy takie pytania robią się naprawdę proste i bardzo praktyczne na dyżurze czy w pracowni RTG.

Pytanie 40

Przedstawiony obraz radiologiczny został zarejestrowany podczas badania jelita

Ilustracja do pytania
A. grubego po doustnym podaniu środka kontrastującego.
B. cienkiego po doustnym podaniu środka kontrastującego.
C. cienkiego po doodbytniczym podaniu środka kontrastującego.
D. grubego po doodbytniczym podaniu środka kontrastującego.
Na obrazie widać klasyczną wlewkę doodbytniczą jelita grubego (tzw. badanie kontrastowe jelita grubego z barytem). Środek cieniujący został podany od strony odbytnicy, dlatego kontrast bardzo dokładnie wypełnia światło okrężnicy, odwzorowując jej zarys, haustracje i przebieg. Jelito grube ma charakterystyczny obraz: szerokie światło, wyraźne haustry układające się w takie jakby segmenty, brak typowych dla jelita cienkiego fałdów okrężnych przechodzących przez całe światło. Na zdjęciu widoczny jest zarys okrężnicy wstępującej, poprzecznej, zstępującej i esicy, co jednoznacznie przemawia za jelitem grubym. Po doodbytniczym podaniu kontrastu uzyskujemy tzw. badanie wlewu kontrastowego, które w standardowej praktyce radiologicznej stosuje się głównie do oceny zmian strukturalnych jelita grubego: zwężeń, uchyłków, guzów, nieprawidłowego poszerzenia, zaburzeń zarysów fałdów śluzówki. W technikach zgodnych z dobrymi praktykami (np. zalecenia towarzystw radiologicznych) pacjent jest odpowiednio przygotowany – oczyszczenie jelita, często dieta płynna dzień wcześniej – tak żeby kontrast równomiernie wypełniał światło i nie było artefaktów z zalegających mas kałowych. Moim zdaniem to jedno z badań, na których bardzo dobrze widać różnicę między jelitem cienkim a grubym, co przydaje się potem przy interpretacji tomografii czy badań z podwójnym kontrastem. Warto zapamiętać: jelito grube + baryt podany od dołu = wlew doodbytniczy, taki jak na tym zdjęciu.