Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 22:17
  • Data zakończenia: 17 grudnia 2025 22:31

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Na którym rysunku przedstawiono schemat montażowy?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Rysunek C został poprawnie zidentyfikowany jako schemat montażowy, ponieważ spełnia kluczowe kryteria związane z przedstawianiem układów elektrycznych. Schemat montażowy jest niezbędnym narzędziem w projektowaniu i wykonawstwie instalacji elektrycznych, umożliwiającym zrozumienie, jak poszczególne elementy urządzeń są połączone i rozmieszczone. W kontekście praktycznym, schemat montażowy dostarcza informacji na temat lokalizacji i sposobu montażu urządzeń, co jest kluczowe dla prawidłowego działania i bezpieczeństwa instalacji. Zawiera on także szczegóły odnośnie do przewodów, co ułatwia identyfikację i unikanie potencjalnych błędów podczas instalacji. Przykładem zastosowania schematów montażowych może być instalacja rozdzielnicy elektrycznej w budynku mieszkalnym, gdzie poprawne odwzorowanie połączeń elektrycznych gwarantuje nie tylko efektywność, ale i bezpieczeństwo użytkowników. Ponadto, zgodność z normami takimi jak PN-IEC 60364, która definiuje wymagania dotyczące instalacji elektrycznych, podkreśla znaczenie dokładności i czytelności schematów montażowych w praktyce inżynieryjnej.

Pytanie 2

Która z opraw oświetleniowych najlepiej nadaje się do oświetlenia bezpośredniego?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Odpowiedź B jest prawidłowa, ponieważ oprawa ta jest zaprojektowana do oświetlenia bezpośredniego, skupiając światło w dół, co jest kluczowe w kontekście miejsc pracy, takich jak biura czy przestrzenie do czytania. Downlighty, jak ten opisany w odpowiedzi B, charakteryzują się wysoką efektywnością i są często stosowane w nowoczesnych aranżacjach wnętrz. Oprócz ich funkcjonalności, istotne jest również, że zastosowanie oświetlenia bezpośredniego sprzyja koncentracji i minimalizuje zmęczenie wzroku. W praktyce, dla osiągnięcia optymalnego efektu, zaleca się umieszczanie takich opraw w odległości od 1,5 do 2 metrów od miejsca, które mają oświetlać. Normy, takie jak EN 12464-1, wskazują na odpowiednie poziomy oświetlenia w różnych typach pomieszczeń, co czyni wybór odpowiednich opraw niezwykle istotnym. Warto również pamiętać, że dobór odpowiednich żarówek, takich jak LED-y o wysokim wskaźniku oddawania barw (CRI), może znacznie poprawić jakość oświetlenia.

Pytanie 3

Na którym rysunku przedstawiono szybkozłączkę do puszek instalacyjnych?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Wybór odpowiedzi, która nie jest oznaczona literą D, prowadzi do nieporozumienia dotyczącego funkcji oraz zastosowania szybkozłączek w instalacjach elektrycznych. Elementy, które nie spełniają charakterystycznych cech szybkozłączek, jak brak żółtych dźwigni czy przezroczystej obudowy, mogą być mylone z innymi komponentami, co jest typowym błędem w analizie wizualnej. Wiele osób często myli szybkozłączki z innymi rodzajami złącz, takimi jak tradycyjne złącza śrubowe czy lutowane, które wymagają użycia narzędzi oraz bardziej czasochłonnych technik montażowych. Przy wyborze odpowiednich elementów do instalacji istotne jest zrozumienie ich przeznaczenia oraz właściwości, co jest kluczowe w kontekście zapewnienia bezpieczeństwa i zgodności z normami. Instalacje elektryczne muszą być projektowane zgodnie z zasadami określonymi w normach, takich jak PN-EN 60364, które wskazują na konieczność stosowania odpowiednich komponentów w celu minimalizacji ryzyka uszkodzeń czy awarii. Dlatego istotne jest, aby podczas pracy z instalacjami elektrycznymi mieć na uwadze nie tylko estetykę, ale przede wszystkim funkcjonalność i bezpieczeństwo, co jest podkreślane w najlepszych praktykach branżowych.

Pytanie 4

Przed dokonaniem pomiarów rezystancji izolacyjnej obwodu oświetleniowego, oprócz odłączenia zasilania, co jeszcze należy zrobić?

A. zamontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
B. wymontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
C. wymontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
D. zamontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
Zamontowanie źródeł światła oraz otwieranie łączników instalacyjnych przed pomiarem rezystancji izolacji obwodu oświetleniowego jest nieodpowiednim działaniem, które może prowadzić do wielu problemów technicznych. Po pierwsze, pozostawienie źródeł światła w obwodzie może skutkować ich uszkodzeniem, gdyż wiele z nich nie jest przystosowanych do wytrzymywania napięcia testowego, które może być znacznie wyższe niż nominalne wartości robocze. Przykładowo, podczas testu rezystancji izolacji przy użyciu napięcia 500V, nieodpowiednio zabezpieczone źródła światła mogą ulec uszkodzeniu, co wiąże się z dodatkowymi kosztami naprawy lub wymiany. Podobnie, otwarcie łączników instalacyjnych może prowadzić do nieprzewidywalnych sytuacji, w których obwód może nie być całkowicie odłączony, co może spowodować powstanie niebezpiecznych warunków pracy. Zgodnie z zasadami BHP oraz wytycznymi dotyczącymi pomiarów elektrycznych, istotne jest, aby zawsze upewnić się, że obwód jest w pełni odłączony przed przystąpieniem do jakichkolwiek testów. Nieprzestrzeganie tych zasad może prowadzić do poważnych zagrożeń dla personelu oraz uszkodzeń sprzętu, co jest nieakceptowalne w profesjonalnych instalacjach elektrycznych.

Pytanie 5

Narzędzie z rysunku służy do

Ilustracja do pytania
A. tworzenia oczek na przewodzie.
B. ściągania izolacji.
C. zaciskania końcówek tulejkowych.
D. profilowania przewodów.
Narzędzie przedstawione na zdjęciu to ściągacz izolacji, który jest niezbędnym przyrządem w dziedzinie prac elektrycznych. Jego głównym zadaniem jest usuwanie izolacji z przewodów bez uszkodzenia samego przewodu, co jest kluczowe dla zapewnienia właściwego połączenia elektrycznego. Dzięki regulowanej średnicy szczęk, ściągacz izolacji może być używany do różnych grubości przewodów, co zwiększa jego uniwersalność. W praktyce, stosowanie tego narzędzia pozwala na szybkie i precyzyjne przygotowanie przewodów do dalszej obróbki, na przykład przed lutowaniem lub zaciskaniem końcówek. W branży elektrycznej, standardy dotyczące bezpieczeństwa i jakości często wymagają, aby przewody były odpowiednio przygotowane, co czyni to narzędzie niezastąpionym. Ponadto, stosowanie ściągacza pozwala na zachowanie integralności przewodu, co ma kluczowe znaczenie dla przewodności elektrycznej i bezpieczeństwa instalacji.

Pytanie 6

Jakim oznaczeniem charakteryzuje się przewód jednożyłowy z żyłą wykonaną z aluminium, w izolacji z PVC, o przekroju 2,5 mm2, przeznaczony na napięcie znamionowe izolacji 500 V?

A. ADY 500 V 2,5 mm2
B. YLY 500 V 2,5 mm2
C. YDY 500 V 2,5 mm2
D. ALY 500 V 2,5 mm2
No, niestety, nie wszystkie inne odpowiedzi są poprawne. Odpowiedź ALY 500 V 2,5 mm2 ma poważny błąd, bo 'L' sugeruje, że przewód wykonany jest z miedzi, a nie z aluminium. W przypadku YDY 500 V 2,5 mm2, 'Y' mówi, że to przewód jednożyłowy, ale 'D' jest tu problematyczne, bo powinno dotyczyć PVC przy żyłach aluminiowych. Co do YLY 500 V 2,5 mm2, to znowu 'L' sugeruje miedź, co jest sprzeczne z informacjami w pytaniu. Często ludzie popełniają błąd, ignorując materiał żyły, co może prowadzić do różnych problemów w instalacji. Mylimy symbole różnych typów przewodów, co może później skutkować ich niewłaściwym doborem i zwiększa ryzyko awarii. W inżynierii elektrycznej, ogarnięcie tych oznaczeń jest mega ważne, żeby wszystko działało bezpiecznie i sprawnie.

Pytanie 7

Na którym rysunku przedstawiono schemat połączeń umożliwiający pomiar energii elektrycznej pobranej przez użytkownika?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Błędne odpowiedzi mogą być wynikiem nieporozumień co do tego, jak działają liczniki energii i ich podłączenie w obwodach elektrycznych. Schematy A, B i D mogą mieć błędy w połączeniu przewodów fazowych i neutralnych, co prowadzi do złego pomiaru energii. Często myli się, że licznik może być podłączony równolegle do obciążenia, a to wcale nie działa, bo licznik wtedy nie zmierzy przepływu prądu. Właściwy pomiar wymaga szeregowego połączenia, żeby licznik był w torze prądowym. Dodatkowo, jeśli źle rozumie się rolę przewodów, można mieć problem z ich zidentyfikowaniem, co może być niebezpieczne. Warto zwrócić uwagę na normy i przepisy dotyczące instalacji elektrycznych, bo pokazują, jak ważne jest bezpieczeństwo i poprawność podłączeń. Zrozumienie zasad działania systemów pomiarowych oraz ich prawidłowego podłączenia jest kluczowe, żeby zapewnić bezpieczeństwo i efektywność energetyczną w codziennym użytkowaniu energii.

Pytanie 8

Jakie oznaczenia oraz jaka minimalna wartość prądu znamionowego powinna mieć wkładka topikowa, aby chronić przewody przed skutkami zwarć i przeciążeń w obwodzie jednofazowego bojlera elektrycznego o parametrach znamionowych: PN = 3 kW, UN = 230 V?

A. gG 16 A
B. gB 20 A
C. aR 16 A
D. aM 20 A
Wkładka topikowa oznaczona jako gG 16 A jest odpowiednia do ochrony obwodów elektrycznych, w tym przypadku obwodu jednofazowego bojlera elektrycznego o mocy znamionowej 3 kW i napięciu 230 V. Oznaczenie gG (ogólne zabezpieczenie, przystosowane do ochrony obwodów przed przeciążeniami oraz zwarciami) wskazuje, że wkładka ta ma zdolność do przerwania obwodu zarówno w przypadku zwarcia, jak i przeciążenia. Analizując parametry bojlera, obliczamy prąd znamionowy przy pomocy wzoru: I = P / U, co daje I = 3000 W / 230 V ≈ 13 A. Wkładka gG 16 A będzie odpowiednia, ponieważ jej nominalny prąd przewyższa obliczony prąd znamionowy bojlera, a jednocześnie zapewnia odpowiednie zabezpieczenie przed skutkami zwarć. W praktyce wkładki gG są powszechnie stosowane w instalacjach domowych oraz przemysłowych, co gwarantuje ich niezawodność oraz efektywność w odpowiednich zastosowaniach. Dla bezpieczeństwa zaleca się również regularne kontrolowanie stanu wkładek oraz ich wymianę, aby zapewnić optymalne funkcjonowanie systemu elektrycznego.

Pytanie 9

Zgodnie z aktualnymi przepisami prawa budowlanego, w nowych budynkach konieczne jest montowanie gniazdek z zabezpieczeniami.

A. w holach.
B. w łazienkach.
C. we wszystkich pomieszczeniach.
D. w sypialniach.
Odpowiedzi wskazujące na instalację gniazd z kołkami ochronnymi w holach, sypialniach czy we wszystkich pomieszczeniach mogą wynikać z niepełnego zrozumienia przepisów dotyczących bezpieczeństwa elektrycznego. Warto zaznaczyć, że chociaż gniazda z kołkami ochronnymi są ważnym elementem instalacji elektrycznych, ich umiejscowienie powinno być zgodne z warunkami panującymi w poszczególnych pomieszczeniach. Hol, jako przestrzeń o niskim ryzyku kontaktu z wodą, nie wymaga stosowania gniazd z kołkami ochronnymi w takim stopniu, jak łazienki. Z kolei w sypialniach również nie jest to standardem, ponieważ te pomieszczenia są mniej narażone na kontakt z wodą, co zmniejsza ryzyko porażenia prądem. W odniesieniu do odpowiedzi mówiącej o 'wszystkich pomieszczeniach', warto wskazać, że takie podejście może prowadzić do niewłaściwego planowania instalacji elektrycznych, które powinny być dostosowane do specyfiki każdego pomieszczenia. W praktyce, stosowanie gniazd z kołkami ochronnymi powinno być zróżnicowane w zależności od miejsca, aby zapewnić efektywne zabezpieczenia, które są zgodne z wymogami norm PN-IEC 60364. Dlatego ważne jest, aby projektanci i wykonawcy instalacji elektrycznych dokładnie znali przepisy i dostosowywali je do warunków panujących w każdym pomieszczeniu, co jest kluczowe dla zachowania bezpieczeństwa użytkowników.

Pytanie 10

Którym symbolem graficznym oznacza się instalację prowadzoną na drabinkach kablowych?

Ilustracja do pytania
A. Symbolem 2.
B. Symbolem 4.
C. Symbolem 3.
D. Symbolem 1.
Symbol 2 jest poprawnym oznaczeniem instalacji prowadzonej na drabinkach kablowych, zgodnie z aktualnymi normami i standardami branżowymi, takimi jak PN-IEC 60617. Drabinki kablowe są powszechnie stosowane w infrastrukturze elektroenergetycznej, gdzie służą do organizacji i prowadzenia okablowania w sposób uporządkowany i estetyczny. W praktyce, instalacje prowadzone na drabinkach kablowych charakteryzują się równoległymi liniami, które symbolizują drabinki, oraz dodatkowymi poprzeczkami, które mogą ilustrować mocowania kabli. Ważne jest, aby znać te symbole, gdyż są one niezbędnymi elementami dokumentacji technicznej, a ich poprawne użycie może znacząco ułatwić identyfikację i konserwację instalacji. Użycie symbolu 2 w schematach pozwala na łatwe zrozumienie rozmieszczenia instalacji przez techników oraz inżynierów, co przyczynia się do większego bezpieczeństwa i efektywności pracy. Dodatkowo, znajomość takich symboli jest kluczowa w kontekście współpracy z innymi specjalistami w branży, co może przyspieszyć procesy projektowe i wykonawcze.

Pytanie 11

Z którym zaciskiem będzie połączony zacisk 42 stycznika K2 według przedstawionego schematu montażowego?

Ilustracja do pytania
A. Z zaciskiem 4 listwy zaciskowej X1
B. Z zaciskiem 22 stycznika K1
C. Z zaciskiem 3 listwy zaciskowej X1
D. Z zaciskiem A2 stycznika K1
Zacisk 42 stycznika K2 jest połączony z zaciskiem 4 listwy zaciskowej X1, co można zweryfikować na podstawie schematu montażowego. Ważne jest, aby dokładnie analizować schematy w kontekście połączeń elektrycznych, ponieważ zapewniają one wizualizację, która jest kluczowa dla właściwego zrozumienia działania obwodu. W praktyce, połączenia takie umożliwiają prawidłowe funkcjonowanie urządzeń, na przykład sterowanie silnikami lub innymi komponentami systemu. W przypadku styczników, poprawne połączenia są istotne dla zapewnienia ich niezawodnej pracy. Dobrą praktyką jest również dokumentowanie wszelkich połączeń, co ułatwia późniejsze serwisowanie oraz modyfikacje w instalacji. Zrozumienie schematu oraz umiejętność interpretacji połączeń elektrycznych są fundamentami pracy w branży elektroinstalacyjnej. Warto również zaznaczyć, że zgodność z normami oraz standardami branżowymi, takimi jak IEC, jest niezbędna dla zapewnienia bezpieczeństwa i efektywności działania systemów elektrycznych.

Pytanie 12

Który rodzaj przewodu przedstawiono na rysunku?

Ilustracja do pytania
A. Wielodrutowy nieuzbrojony.
B. Wielożyłowy uzbrojony.
C. Jednożyłowy uzbrojony.
D. Jednodrutowy nieuzbrojony.
Wybór niepoprawnej odpowiedzi może wynikać z nieporozumienia w interpretacji konstrukcji przewodów elektrycznych. Odpowiedź "Jednożyłowy uzbrojony" sugeruje, że przewód składa się z jednej, grubej żyły otoczonej metalowym pancerzem. Przewody jednożyłowe są często używane w instalacjach, gdzie wymagana jest wysoka odporność na mechaniczne uszkodzenia, jednak w przypadku przedstawionego rysunku nie ma żadnych oznak uzbrojenia. To prowadzi do kolejnego błędnego wniosku, który wskazuje na "Wielożyłowy uzbrojony". Takie przewody posiadają wiele żył, ale ich konstrukcja wskazuje na obecność zabezpieczeń mechanicznych, co nie ma miejsca w analizowanym przypadku. Z kolei "Jednodrutowy nieuzbrojony" nie odzwierciedla budowy przewodu, ponieważ sugeruje, że przewód składa się z jednego drutu, co jest sprzeczne z widocznym przekrojem. W praktyce, przewody uzbrojone często stosowane są w miejscach, gdzie mogą być narażone na uszkodzenia, co również wyklucza ich obecność w tym przypadku. Kluczowym aspektem w rozróżnieniu tych przewodów jest znajomość ich struktury i przeznaczenia, co jest niezbędne do prawidłowego wyboru materiałów w instalacjach elektrycznych, aby zapewnić bezpieczeństwo oraz efektywność energetyczną. Zrozumienie różnicy między różnymi typami przewodów pomoże uniknąć poważnych błędów w projektach elektrycznych.

Pytanie 13

W obiekcie zasilanym napięciem 400 V (3/N/PE 50Hz) zainstalowano następujące urządzenia:
1. przepływowy podgrzewacz wody - 12 kW - obwód trójfazowy
2. zmywarka - 3,5 kW - obwód jednofazowy
3. kuchenka elektryczna - 9,5 kW - obwód trójfazowy
4. pralka automatyczna - 4,5 kW - obwód jednofazowy

Każde z urządzeń stanowi odrębny obwód w tablicy rozdzielczej. Jakie wyłączniki instalacyjne należy zastosować z odpowiednimi wartościami prądu znamionowego, według kolejności dla każdego urządzenia (w kolejności 1,2,3,4)?

A. 16 A, 20 A, 20 A, 16 A
B. 16 A, 20 A, 20 A, 16 A
C. 20 A, 16 A, 20 A, 16 A
D. 20 A, 16 A, 16 A, 20 A
Wybór innych wartości prądów znamionowych dla wyłączników instalacyjnych może prowadzić do niewłaściwej ochrony odbiorników i stwarzać ryzyko ich uszkodzenia, a nawet pożaru. Dla przykładu, zastosowanie wyłącznika o prądzie 16 A dla kuchenki elektrycznej o mocy 9,5 kW w obwodzie 3-fazowym jest błędne, ponieważ moc ta wymaga przynajmniej 20 A. Prąd znamionowy wyłączników powinien być zawsze dobrany na podstawie obliczeń mocy i zastosowanej metody ochrony. Wybór zbyt niskiego prądu znamionowego może prowadzić do częstego wyłączania się zabezpieczenia, co nie tylko jest niewygodne, ale także może doprowadzić do uszkodzenia urządzenia przez nienależyte zasilanie. Z kolei użycie wyłącznika o zbyt wysokim prądzie może nie zapewnić odpowiedniej ochrony przed przeciążeniem, co stwarza ryzyko przegrzania i uszkodzenia przewodów. W normach instalacyjnych oraz w praktyce inżynierskiej kluczowe jest przestrzeganie zasad doboru zabezpieczeń, które uwzględniają zarówno moc odbiorników, jak i ich charakterystykę. Istotne jest również, aby uwzględniać współczynniki obciążenia, które mogą wpływać na rzeczywisty pobór prądu przez urządzenia. Dlatego też właściwe zrozumienie i stosowanie tych zasad jest niezbędne dla zapewnienia bezpieczeństwa instalacji elektrycznych.

Pytanie 14

Na którym rysunku przedstawiono przewód instalacyjny wtynkowy typu YDYt?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Poprawna odpowiedź to B, ponieważ przewód instalacyjny wtynkowy typu YDYt jest miedzianym przewodem jednodrutowym, który ma charakterystyczną izolację z PVC. Takie przewody są projektowane do stosowania w instalacjach elektrycznych, w miejscach, gdzie można je przybijać do ścian bez ryzyka uszkodzenia izolacji. Na zdjęciu B widzimy przewód, w którym żyły są oddzielone, co rzeczywiście odpowiada normom dla przewodów tego typu. Przewody YDYt są często wykorzystywane w instalacjach wewnętrznych, gdzie ich układ nie wymaga dodatkowej ochrony mechanicznej. Dzięki swojej konstrukcji, przewody te pozwalają na łatwy montaż i estetyczne wykończenie, co jest szczególnie ważne w budynkach mieszkalnych i biurowych. W praktyce oznacza to, że instalatorzy mogą je stosować w różnych konfiguracjach, co wpływa na elastyczność projektowania instalacji elektrycznych. Zgodność z normami PN-EN 60228 oraz PN-EN 50525-2-21 potwierdza ich jakość oraz bezpieczeństwo użytkowania.

Pytanie 15

Jakie źródło światła przedstawiono na rysunku?

Ilustracja do pytania
A. Żarówkę halogenową.
B. Świetlówkę kompaktową.
C. Lampę metalohalogenkową.
D. Lampę indukcyjną.
Wybór lampy indukcyjnej, żarówki halogenowej lub lampy metalohalogenkowej jako odpowiedzi na pytanie o źródło światła przedstawione na zdjęciu opiera się na nieprawidłowej interpretacji ich cech charakterystycznych. Lampa indukcyjna, choć efektywna, nie ma kształtu spirali typowego dla świetlówek kompaktowych. W rzeczywistości, lampy te wykorzystują pole elektromagnetyczne do generowania światła, co sprawia, że ich konstrukcja jest zupełnie inna. Żarówki halogenowe, z kolei, są bardziej zaawansowaną formą żarówek wolframowych, charakteryzującą się niewielkim rozmiarem oraz wysoką wydajnością, ale nie przybierają formy zwiniętej. Lampy metalohalogenkowe, które często znajdują zastosowanie w oświetleniu przemysłowym, mają także różne kształty i są przeznaczone do innych celów, takich jak oświetlenie uliczne czy w halach produkcyjnych. Wybór tych odpowiedzi może wynikać z mylnego skojarzenia typowych cech tych lamp z wyglądem świetlówki kompaktowej. Kluczowe jest zrozumienie, że każda z tych lamp ma swoje unikalne zastosowanie oraz konstrukcję, a błędna interpretacja ich funkcji prowadzi do mylnych wniosków. Aby efektywnie dobrać źródło światła, należy zwracać uwagę na jego charakterystykę, efektywność energetyczną oraz przeznaczenie, co jest kluczowe w kontekście oszczędzania energii oraz ochrony środowiska.

Pytanie 16

Która z poniższych zasad nie jest zawsze obligatoryjna w trakcie serwisowania i konserwacji instalacji elektrycznych o napięciu do 1 kV?

A. Pod napięciem wolno wymieniać tylko bezpieczniki lub żarówki (świetlówki) w nienaruszonej oprawie
B. Pomiary i próby można realizować bez wyłączania napięcia, o ile zastosuje się odpowiednie środki ochrony
C. Każde prace remontowe powinny być prowadzone po odłączeniu napięcia
D. Wszelkie prace można wykonywać jedynie w obecności osoby asekurującej
Odpowiedzi sugerujące, że prace remontowe należy zawsze wykonywać po wyłączeniu napięcia, że pod napięciem można wymieniać tylko bezpieczniki lub żarówki, czy że wszelkie prace można wykonywać tylko w obecności osoby asekurującej, mogą prowadzić do nieporozumień i błędnych praktyk. Owszem, wyłączenie napięcia jest generalnie najbezpieczniejszym podejściem, jednak w niektórych sytuacjach, takich jak wymiana bezpieczników czy żarówek, przy zachowaniu odpowiednich środków ostrożności, można te prace wykonać pod napięciem. Istnieją normy i przepisy BHP, które określają, kiedy i jak można pracować w warunkach napięcia, a także jakie środki ochrony osobistej należy stosować. Ponadto, nie wszystkie prace wymagają obecności osoby asekurującej, co może spowodować niepotrzebne opóźnienia w realizacji zadań. Kluczowym błędem myślowym w takich podejściach jest założenie, że każda sytuacja jest równoznaczna z wysokim ryzykiem i wymaga nadzoru, co nie zawsze jest prawdą. Zrozumienie kontekstu, w jakim przeprowadzane są prace oraz umiejętność oceny ryzyka to umiejętności, które powinny być rozwijane przez osoby pracujące w branży elektrycznej. Należy również pamiętać, że interpretacja przepisów powinna być dostosowywana do specyficznych warunków pracy oraz typu realizowanej operacji.

Pytanie 17

Które z wymienionych urządzeń elektrycznych jest pokazane na ilustracji?

Ilustracja do pytania
A. Elektromagnes.
B. Wzbudnik indukcyjny.
C. Dławik magnetyczny.
D. Transformator.
Transformator jest kluczowym urządzeniem elektrycznym, które służy do zmiany poziomu napięcia w systemach energetycznych. Na ilustracji widać, że transformator składa się z dwóch cewek – pierwotnej i wtórnej – nawiniętych na wspólnym rdzeniu magnetycznym, co jest typowym rozwiązaniem w tych urządzeniach. Dzięki zasadzie indukcji elektromagnetycznej transformator może efektywnie przenosić energię elektryczną między obwodami, co jest kluczowe w systemach przesyłowych energii. Na przykład, transformatory są niezbędne do podwyższania napięcia w stacjach transformacyjnych, co ogranicza straty energii w trakcie przesyłania jej na dużą odległość. Dobrą praktyką jest regularne przeprowadzanie konserwacji transformatorów oraz monitorowanie ich stanu, aby zapewnić niezawodność i efektywność ich działania. W branży energetycznej obowiązują normy takie jak IEC 60076, które regulują wszystkie aspekty projektowania, budowy i eksploatacji transformatorów.

Pytanie 18

Na podstawie danych katalogowych przedstawionych w tabeli określ, którym wyłącznikiem należy zastąpić uszkodzony wyłącznik różnicowoprądowy P304 25/0,03 A w instalacji mieszkaniowej trójfazowej o napięciu znamionowym 230/400 V.

Prąd znamionowy25 A25 A25 A25 A
Liczba biegunów2P4P4P2P
Znamionowy prąd różnicowy30 mA30 mA300 mA300 mA
Typ wyłączaniaACACACAC
Znamionowe napięcie izolacji500 V500 V500 V500 V
Częstotliwość znamionowa50 Hz50 Hz50 Hz50 Hz
Wytrzymałość elektryczna (liczba cykli)2 0002 0002 0002 000
Temperatura pracy-25°C ÷ 40°C-25°C ÷ 40°C-25°C ÷ 40°C-25°C ÷ 40°C
Znamionowa zwarciowa zdolność łączeniowa15 kA15 kA15 kA15 kA
A.B.C.D.
A. B.
B. D.
C. A.
D. C.
Wybranie odpowiedzi B. jest właściwe, ponieważ wyłącznik różnicowoprądowy P304 25/0,03 A ma specyfikację prądu znamionowego 25 A oraz prądu różnicowego 30 mA. W kontekście instalacji mieszkaniowych trójfazowych, istotne jest, aby odpowiedni wyłącznik miał te same parametry. Wyłącznik oznaczony literą B. również spełnia te normy: 25 A prądu znamionowego i 30 mA prądu różnicowego, co zapewnia efektywne zabezpieczenie przed porażeniem elektrycznym oraz przeciążeniem. Dodatkowo, typ wyłączania AC jest zgodny z typowymi wymaganiami dla instalacji domowych, gdzie obciążenia są zwykle jednofazowe, a występowanie prądów różnicowych jest minimalne. Zastosowanie wyłączników różnicowoprądowych zgodnych z tymi parametrami nie tylko zwiększa bezpieczeństwo użytkowników, ale także spełnia standardy określone w normach PN-EN 61008-1, które regulują kwestie instalacji elektrycznych. Znajomość tych zasad jest kluczowa dla każdego elektryka, aby zapewnić właściwe działanie instalacji elektrycznych.

Pytanie 19

Jakiej kategorii urządzeń elektrycznych dotyczą przekładniki pomiarowe?

A. Do wzmacniaczy maszynowych
B. Do transformatorów
C. Do prądnic tachometrycznych
D. Do indukcyjnych sprzęgieł dwukierunkowych
Przekładniki pomiarowe są urządzeniami elektrycznymi, które zaliczają się do grupy transformatorów. Ich głównym zadaniem jest przekształcanie wysokich wartości prądu lub napięcia na niższe, co umożliwia ich bezpieczne i precyzyjne pomiary. Przekładniki pomiarowe są niezwykle istotne w systemach elektroenergetycznych, gdzie zapewniają ciągłość i dokładność pomiarów w stacjach transformatorowych oraz w rozdzielniach. Na przykład, przekładniki prądowe mogą być używane do monitorowania prądu w liniach przesyłowych, co pozwala na wczesne wykrywanie nieprawidłowości oraz optymalizację działania systemów. W kontekście standardów, przekładniki są zgodne z normami IEC 61869, które regulują wymagania dotyczące ich konstrukcji i testowania. Dzięki temu inżynierowie mogą być pewni, że stosowane urządzenia spełniają określone kryteria jakości i bezpieczeństwa. Zrozumienie roli przekładników pomiarowych w systemach energetycznych jest kluczowe dla każdego specjalisty w dziedzinie elektrotechniki.

Pytanie 20

Jakie akcesoria, oprócz szczypiec, powinien mieć monter do podłączenia kabla YnKY5x120 w rozdzielnicy?

A. Nóż monterski, praskę, ściągacz izolacji
B. Ściągacz izolacji, nóż monterski, wkrętak
C. Nóż monterski, praskę, zestaw kluczy
D. Lutownicę, zestaw wkrętaków, ściągacz izolacji
Kiedy wybierasz narzędzia do podłączenia kabla YnKY5x120 do rozdzielnicy, warto chwilę się zastanowić, co jest najpotrzebniejsze. Jeśli myślałeś o ściągaczu izolacji czy lutownicy, to pamiętaj, że ściągacz, choć przydatny, nie jest najważniejszy w tej sytuacji. Jasne, że ściągacz się przydaje, gdy trzeba zedrzeć izolację z końców przewodów, ale przy kablach o dużym przekroju, jak YnKY5x120, praska jest o wiele bardziej istotna. Lutownica? Hmm, w nowoczesnych instalacjach elektrycznych, to niezbyt dobry pomysł, bo lutowanie może osłabić połączenia i sprawić, że będą mniej trwałe oraz mniej bezpieczne. Prościej mówiąc, teraz standardem są złącza mechaniczne, które zapewniają lepszą jakość połączeń na dłuższą metę. Nóż monterski, praska i komplet kluczy to są te narzędzia, które według norm branżowych naprawdę powinny znaleźć się w twoim wyposażeniu, bo solidne połączenia to podstawa. Często ludziom zdarza się polegać na narzędziach, które nie pasują do konkretnej instalacji, a to może skutkować różnymi awariami. Żeby zapewnić bezpieczeństwo i niezawodność podłączeń, monterzy muszą znać swoje materiały i narzędzia, kierując się najlepszymi praktykami oraz zaleceniami technicznymi.

Pytanie 21

Jakie działania oraz w jakiej sekwencji powinny zostać przeprowadzone przy wymianie uszkodzonego fragmentu przewodu w instalacji umieszczonej w rurach peszla?

A. Odłączenie zasilania, otwarcie puszek instalacyjnych, odkręcenie końców uszkodzonego przewodu, wymiana uszkodzonego odcinka przewodu, połączenie wymienionego przewodu w puszkach, zamknięcie puszek, włączenie zasilania, sprawdzenie poprawności działania instalacji
B. Odłączenie napięcia, rozkuwanie tynku, poprowadzenie nowej rury peszla z przewodami, uzupełnienie tynku, włączenie napięcia
C. Pomiar rezystancji przewodu, odłączenie napięcia, wymiana uszkodzonego przewodu, włączenie zasilania, sprawdzenie działania instalacji
D. Odłączenie zasilania, rozkuwanie tynku w miejscu uszkodzenia, wymiana rury peszla z przewodami, włączenie napięcia, sprawdzenie funkcjonowania instalacji
Jak się przygotowujesz do wymiany uszkodzonego odcinka przewodu w rurach peszla, to trzeba dobrze przemyśleć, co robisz. Najpierw ważne jest, żeby odłączyć napięcie zasilania – to wiadomo, ale niektórzy zapominają o otwarciu puszek instalacyjnych. Bez tego dostanie się do przewodów to jak szukanie igły w stogu siana. Następnie, jak mówisz o wymianie rury peszla, nie można tego robić bez odkręcenia końców uszkodzonego przewodu. W praktyce najlepiej jest analizować całą instalację w puszkach, a nie grzebać tam, gdzie nie potrzeba, żeby nie komplikować sobie życia. Gdzieś mi się wydaje, że niektórzy też zapominają o ponownym sprawdzeniu działania instalacji po włączeniu napięcia, co jest naprawdę istotne, żeby mieć pewność, że wszystko działa jak powinno. Czasem zrywanie tynku bez przemyślenia to totalna strata czasu, a później uzupełnianie go bez sensu jest niepotrzebne, jeśli nie wykonasz odpowiedniego dostępu do przewodów. Dlatego lepiej działać według norm i standardów, które mówią, że wszystko trzeba robić z głową i w bezpieczny sposób.

Pytanie 22

Który z wymienionych parametrów elementów instalacji elektrycznej można zmierzyć przyrządem, którego fragment pokazano na rysunku?

Ilustracja do pytania
A. Impedancję pętli zwarcia.
B. Rezystancję uziemienia.
C. Rezystancję izolacji.
D. Czas wyłączenia wyłącznika nadprądowego.
Wybór innych opcji, takich jak rezystancja izolacji czy rezystancja uziemienia, to nie jest dobry wybór. Te pomiary wymagają całkiem innych metod i sprzętu. Rezystancja izolacji to zdolność materiałów do opierania się przepływowi prądu, co jest bardzo ważne dla bezpieczeństwa. Mierniki do tego typu pomiarów działają na wyższych napięciach, więc to nie ma nic wspólnego z pomiarami impedancji pętli zwarcia. Rezystancja uziemienia z kolei odnosi się do skuteczności połączeń uziemiających, a to też wymaga innego sprzętu i techniki pomiarowej. Czas wyłączenia wyłącznika nadprądowego to inny temat, który można ocenić w kontekście zabezpieczeń, ale nie mierzysz go tym miernikiem z rysunku. Ta odpowiedź pokazuje typowy błąd w myśleniu, gdzie różne pomiary są mylone, co prowadzi do złych wniosków. Zrozumienie tych różnic jest kluczowe, żeby dobrze zarządzać bezpieczeństwem instalacji elektrycznych i robić poprawne pomiary według norm.

Pytanie 23

W oprawie oświetleniowej pokazanej na zdjęciu została zamontowana żarówka

Ilustracja do pytania
A. rtęciowa.
B. sodowa.
C. żarowa.
D. halogenowa.
Wybór żarówki sodowej, rtęciowej lub żarowej jako odpowiedzi wskazuje na pewne nieporozumienia dotyczące budowy i zastosowania różnych typów źródeł światła. Żarówki sodowe, na przykład, są powszechnie stosowane w oświetleniu ulicznym i mają charakterystyczny żółty kolor światła, co czyni je mniej efektywnymi w kontekście oświetlenia wnętrz, w którym wymagane jest naturalne odwzorowanie kolorów. Z kolei żarówki rtęciowe były popularne w przeszłości, ale obecnie są coraz rzadziej stosowane ze względu na ich szkodliwość dla środowiska oraz znaczące zanieczyszczenie światłem. Te źródła światła mają również inną konstrukcję, co sprawia, że są łatwo rozpoznawalne. Żarówki żarowe, mimo że uznawane są za klasyczne rozwiązanie, charakteryzują się niską efektywnością energetyczną oraz krótką żywotnością. W praktyce, ich stosowanie w nowoczesnym oświetleniu jest coraz bardziej ograniczone, co ukazuje zmieniające się normy energetyczne i ekologiczne, które promują bardziej efektywne źródła światła, takie jak halogeny. Dlatego ważne jest, aby zrozumieć różnice między tymi technologiami i podejmować świadome decyzje dotyczące wyboru odpowiednich źródeł światła do danego zastosowania.

Pytanie 24

Który z pokazanych na rysunkach przewodów należy zastosować do wykonania instalacji zasilającej odbiornik prądu stałego w układzie 2/M DC 220/110 V?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Wybór innych przewodów, takich jak A, B czy C, do instalacji zasilającej odbiornik prądu stałego w układzie 2/M DC 220/110 V jest nieodpowiedni z kilku istotnych powodów. Przede wszystkim, nie każdy przewód jest przystosowany do pracy w warunkach napięcia stałego, co jest kluczowe w tym przypadku. Przewody A, B i C mogą mieć różne właściwości izolacyjne, które nie są wystarczające do ochrony przed skutkami działania napięcia stałego, co może prowadzić do porażenia prądem lub zwarcia. Typowe błędy przy wyborze przewodów do instalacji DC to pomijanie specyfikacji dotyczących odporności na przebicia oraz nieprzestrzeganie norm bezpieczeństwa, takich jak IEC 60228. Osoby wybierające te przewody często kierują się jedynie ich wyglądem lub ceną, ignorując fundamentalne różnice w konstrukcji, które są kluczowe dla bezpieczeństwa całego systemu. W praktyce, stosowanie niewłaściwego przewodu w instalacjach DC może prowadzić do poważnych awarii oraz zwiększa ryzyko pożaru. Warto również pamiętać o tym, że instalacje elektryczne muszą być projektowane z uwzględnieniem lokalnych przepisów i norm, co dodatkowo podkreśla konieczność starannego doboru komponentów instalacji.

Pytanie 25

O czym świadczy słabsze świecenie diody L2 w stosunku do świecących się diod L1 i L3 na wskazanym strzałką urządzeniu w rozdzielni elektrycznej przedstawionej na rysunku?

Ilustracja do pytania
A. Wystąpiła asymetria napięciowa między fazami.
B. Instalacja działa poprawnie.
C. W jednej z faz wystąpił zanik napięcia.
D. W układzie zasilania wystąpiła nieprawidłowa kolejność faz.
Istnieje wiele powodów, dla których błędne odpowiedzi mogą wydawać się przekonujące, jednak każda z nich ma swoje wady merytoryczne. Zgłaszanie nieprawidłowej kolejności faz jako przyczyny słabszego świecenia diody L2 jest mylące, ponieważ w przypadku takiej sytuacji diody świeciłyby w sposób nieregularny albo mogłyby nie świecić wcale. Widziana asymetria napięciowa jest efektem obciążenia, a nie błędnej konfiguracji faz. Zanik napięcia w jednej z faz może rzeczywiście wpłynąć na świecenie diody, ale jest to sytuacja skrajna, podczas gdy w omawianym przypadku mamy do czynienia z różnym natężeniem prądu w fazach, co prowadzi do obserwowanej asymetrii. Twierdzenie, że instalacja działa poprawnie, jest również zwodnicze, ponieważ sam fakt, że jedna z diod świeci słabiej, sugeruje problemy z równowagą obciążenia. Instalacje elektryczne powinny utrzymywać równomierny rozkład obciążeń, a wszelkie odchylenia powinny być natychmiast analizowane oraz korygowane w celu zapewnienia bezpieczeństwa i efektywności energetycznej. W praktyce monitorowanie obciążeń fazowych oraz ich optymalizacja zgodnie z normami, takimi jak PN-EN 50160, jest kluczowe dla zapewnienia stabilności sieci elektrycznej.

Pytanie 26

Jakiego zestawu narzędzi należy używać podczas przygotowania przewodów LY do instalacji elektrycznej?

A. Przyrząd do ściągania izolacji, obcinaczki czołowe, nóż monterski
B. Zaciskarka końcówek tulejkowych, obcinaczki czołowe, wkrętak
C. Nóż monterski, wkrętak, obcinaczki boczne
D. Obcinaczki boczne, przyrząd do ściągania izolacji, zaciskarka końcówek tulejkowych
Obcinaczki boczne, przyrząd do ściągania izolacji oraz zaciskarka końcówek tulejkowych są niezbędnymi narzędziami przy przygotowaniu przewodów LY do montażu elektrycznego. Obcinaczki boczne służą do precyzyjnego przycinania przewodów, co jest istotne, aby uzyskać równe i czyste końce, co z kolei minimalizuje ryzyko uszkodzenia izolacji oraz zapewnia solidne połączenia. Przyrząd do ściągania izolacji umożliwia bezpieczne usunięcie izolacji z końcówek przewodów bez ryzyka ich uszkodzenia. Dzięki temu można łatwo przygotować przewody do dalszego montażu, gwarantując, że przewody będą miały odpowiednią długość i będą gotowe do połączenia. Zaciskarka końcówek tulejkowych jest kluczowa w procesie montażu, gdyż pozwala na pewne i trwałe połączenie przewodu z końcówką. Przestrzeganie standardów branżowych, takich jak PN-EN 60204-1 dotyczący bezpieczeństwa maszyn, podkreśla znaczenie stosowania odpowiednich narzędzi, co wpływa na jakość wykonania instalacji elektrycznych. W praktyce, wykorzystanie tych narzędzi wpływa na efektywność pracy oraz bezpieczeństwo użytkownika.

Pytanie 27

Warunkiem automatycznego odłączenia zasilania w systemach typu TN jest relacja (UO - napięcie nominalne w V; Ia - wartość prądu w A, zapewniająca natychmiastowe, automatyczne zadziałanie urządzenia ochronnego; Zs - impedancja pętli zwarciowej w Ω)

A. UO > Zs ∙ 2Ia
B. UO < Zs ∙ Ia
C. UO > Zs ∙ Ia
D. UO < Zs ∙ 2Ia
Niewłaściwe odpowiedzi mogą wynikać z niepełnego zrozumienia zasad działania układów zabezpieczeń elektrycznych. W przypadku odpowiedzi, gdzie UO jest mniejsze od Zs ∙ Ia, zakłada się, że napięcie nie jest wystarczające do wyzwolenia ochrony, co jest błędne. W rzeczywistości, aby zapewnić skuteczną reakcję urządzenia ochronnego, napięcie musi przekraczać wartość wynikającą z iloczynu impedancji pętli zwarciowej i prądu zadziałania. Odpowiedzi sugerujące, że UO powinno być mniejsze od tego iloczynu, wskazują na błędne założenia dotyczące warunków pracy zabezpieczeń. Również odpowiedzi, w których UO jest większe od Zs ∙ 2Ia, nie uwzględniają, że wartość prądu zadziałania powinna być odpowiednio dobrana do rzeczywistych warunków obciążeniowych. Należy pamiętać, że w projektowaniu instalacji elektrycznych kluczowe jest zachowanie właściwych relacji między napięciem, prądem i impedancją, co jest regulowane przez normy i standardy branżowe, takie jak PN-IEC 60364 dotyczące instalacji elektrycznych. Brak takiej wiedzy może prowadzić do poważnych konsekwencji, takich jak uszkodzenia urządzeń, a nawet zagrożenie dla życia ludzi. Dlatego ważne jest, aby dobrze rozumieć te relacje i ich praktyczne zastosowanie w projektowaniu i eksploatacji instalacji elektrycznych.

Pytanie 28

Korzystając z podanego wzoru i tabeli wyznacz wartość rezystancji izolacji uzwojeń silnika w temperaturze 20 °C, jeżeli rezystancja izolacji uzwojeń tego silnika zmierzona w temperaturze 17 °C wyniosła 7,3 MΩ.

Współczynniki przeliczeniowe K₂₀ dla rezystancji izolacji uzwojeń silników
R₂₀ = K₂₀·Rₜ
Temperatura w °C01114172023262932
Współczynnik przeliczeniowy K₂₀0,670,730,810,901,001,101,211,341,48
A. 8,11 MΩ
B. 6,57 MΩ
C. 8,20 MΩ
D. 6,40 MΩ
Odpowiedzi, które sugerują wartości rezystancji izolacji silnika inne niż 6,57 MΩ, mogą wynikać z mylnych obliczeń oraz błędnego zrozumienia procesu przeliczania rezystancji w różnych temperaturach. Na przykład, jeśli ktoś oblicza rezystancję na podstawie nieodpowiednich współczynników temperatury, może dojść do fałszywego wyniku. Wartości 8,11 MΩ oraz 8,20 MΩ są wynikiem pomylenia współczynników lub niepoprawnego zastosowania wzoru. Często występującym błędem jest ignorowanie faktu, że rezystancja izolacji maleje wraz ze wzrostem temperatury, co jest odwrotnością niektórych parametrów elektrycznych, które mogą wzrastać w takich warunkach. Zrozumienie, jak temperatura wpływa na właściwości materiałów izolacyjnych, jest kluczowe w inżynierii elektrycznej. Dlatego ważne jest, aby nie tylko znać wzory, ale także rozumieć fizyczne zjawiska zachodzące w izolacji. W praktyce, błędne przeliczenie wartości oparte na niewłaściwych danych może prowadzić do poważnych usterek lub uszkodzenia urządzeń, co podkreśla znaczenie dokładności obliczeń i znajomości standardów branżowych, takich jak IEC 60034-1, które promują odpowiednie procedury konserwacyjne i diagnostyczne w obszarze elektrotechniki.

Pytanie 29

Jakie narzędzia powinny być zastosowane przy trasowaniu instalacji elektrycznej w ścianach w pomieszczeniach mieszkalnych?

A. Ołówek, poziomnica, miarka taśmowa, sznurek traserski
B. Zestaw wkrętaków, kleszcze monterskie, sznurek traserski, młotek
C. Poziomnica, kleszcze monterskie, zestaw wkrętaków, młotek
D. Ołówek, miarka taśmowa, kleszcze monterskie, młotek
Każda z alternatywnych odpowiedzi zawiera narzędzia, które w pewnym zakresie mogą być pomocne w pracach budowlanych, jednak nie są one odpowiednimi wyborami do trasowania instalacji elektrycznej podtynkowej. Poziomnica i przymiar taśmowy to narzędzia, które umożliwiają precyzyjne pomiary i kontrolę poziomu, jednak w zestawie, który nie zawiera ołówka i sznurka traserskiego, brakuje kluczowych narzędzi do efektywnego trasowania. Użycie kleszczy monterskich oraz młotka, choć istotnych w innych aspektach montażu, nie jest przydatne w procesie trasowania, gdzie wymagana jest precyzja i dokładność. Wybierając zestaw narzędzi, ważne jest, aby unikać narzędzi, które nie wpisują się w specyfikę danego zadania, na przykład młotek, który w kontekście trasowania może prowadzić do uszkodzeń ścian i nieprecyzyjnych oznaczeń. Często pojawia się mylne przekonanie, że bardziej złożony zestaw narzędzi z większą ilością funkcji będzie lepszy, podczas gdy kluczem do sukcesu w trasowaniu jest prostota i precyzja. Wybierając odpowiednie narzędzia, należy kierować się ich funkcją i zastosowaniem w konkretnych zadaniach, aby zapewnić efektywność i bezpieczeństwo wykonywanych prac.

Pytanie 30

Który element rozdzielnicy przedstawiono na ilustracji?

Ilustracja do pytania
A. Regulator temperatury.
B. Lampkę sygnalizacyjną trójfazową.
C. Czujnik zaniku fazy.
D. Przekaźnik czasowy.
Lampka sygnalizacyjna trójfazowa, przedstawiona na ilustracji, jest kluczowym elementem w każdej rozdzielnicy elektrycznej. Jej główną funkcją jest wizualna sygnalizacja obecności napięcia w trzech fazach instalacji. Dzięki zastosowaniu kilku diod LED lub żarówek, użytkownik może szybko zidentyfikować, czy wszystkie fazy są pod napięciem. To istotne w kontekście zapewnienia stabilności i bezpieczeństwa działania urządzeń trójfazowych, takich jak silniki elektryczne czy maszyny przemysłowe. W przypadku braku napięcia w którejkolwiek z faz, zdradza to problem, który może prowadzić do uszkodzeń sprzętu lub przestojów w produkcji. Dobre praktyki w zakresie instalacji elektrycznych zalecają umieszczanie lamp sygnalizacyjnych w widocznych miejscach, co umożliwia szybkie reagowanie na ewentualne awarie. Ważne jest także, aby lampki były zgodne z normami bezpieczeństwa i odporne na warunki panujące w danym środowisku pracy.

Pytanie 31

Dokonując oględzin powykonawczych zabezpieczeń w instalacji elektrycznej przedstawionej na schemacie można stwierdzić, że zamieniono miejscami bezpieczniki

Ilustracja do pytania
A. B1 z B2
B. B3 z B2
C. B1 z B4
D. B2 z B4
Odpowiedź B1 z B2 jest prawidłowa, ponieważ analiza schematu instalacji elektrycznej wyraźnie wskazuje na zamianę miejscami tych dwóch bezpieczników. Bezpiecznik B1, który ma wartość nominalną 10A, powinien być umieszczony na początku instalacji, gdzie jego zadaniem jest ochrona całego obwodu przed przeciążeniem. Z kolei bezpiecznik B2, o wartości 25A, jest przeznaczony do zabezpieczania obwodów o większym poborze mocy. Przełożenie tych miejsc prowadzi do nieodpowiedniego zabezpieczenia, co jest sprzeczne z normami bezpieczeństwa, takimi jak PN-IEC 60364, które wymagają, aby zabezpieczenia były dobierane na podstawie charakterystyki obwodów oraz urządzeń, które mają chronić. Właściwe umiejscowienie bezpieczników jest kluczowe dla zachowania bezpieczeństwa użytkowników oraz ochrony instalacji. W praktyce, niewłaściwe dobranie wartości bezpieczników może prowadzić do ich nadmiernego przepalania lub wręcz do uszkodzenia urządzeń podłączonych do instalacji, co generuje dodatkowe koszty napraw i obniża komfort użytkowania.

Pytanie 32

W układzie przedstawionym na rysunku łącznik nie powoduje wyłączenia żarówki. W celu zdiagnozowania usterki wykonano pomiary, których wyniki zapisano w tabeli.

Lp.Pomiar rezystancji między punktamiWartość
Ω
12 – 30
23 – 50
35 – 6 (łącznik w pozycji otwarty)0
45 – 6 (łącznik w pozycji zamknięty)0
54 – 70
Ilustracja do pytania
A. uszkodzenie przewodu między punktami 2 – 3.
B. zwarcie międzyprzewodowe między punktami 5 – 6.
C. niepewne zamocowanie puszki rozgałęźnej do podłoża.
D. przerwa w przewodzie neutralnym.
Wybór odpowiedzi dotyczącej uszkodzenia przewodu między punktami 2 – 3 jest często wynikiem błędnego rozumienia pojęcia obwodu elektrycznego oraz sposobu działania łączników. Użytkownicy mogą myśleć, że każde uszkodzenie przewodu prowadzi do braku działania urządzenia, jednak w przypadku otwartego obwodu żarówka nie świeci. Z drugiej strony, niepewne zamocowanie puszki rozgałęźnej do podłoża nie ma wpływu na działanie obwodu elektrycznego, gdyż fizyczne położenie nie wpływa na przewodnictwo elektryczne, o ile połączenia są właściwie wykonane. Podobnie, przerwa w przewodzie neutralnym może wydawać się problematyczna, jednak w przypadku obwodu z żarówką i wyłącznikiem nie spowoduje stałego świecenia. Kluczowym błędem myślowym jest przypisywanie problemów z oświetleniem do uszkodzeń przewodów, gdy w rzeczywistości może to być efekt zwarcia, jak wskazuje analiza pomiarów. Takie myślenie wprowadza w błąd i może prowadzić do nieprawidłowych diagnoz oraz nieefektywnego usuwania usterek w instalacji elektrycznej. W celu uniknięcia takich pomyłek, ważne jest zrozumienie działania obwodów oraz umiejętność analizy wyników pomiarów, co powinno być częścią każdych badań nad układami elektrycznymi.

Pytanie 33

Które urządzenie przedstawiono na rysunku?

Ilustracja do pytania
A. Wyłącznik zmierzchowy.
B. Przekaźnik bistabilny.
C. Prostownik dwupołówkowy.
D. Ogranicznik przepięć.
Ogranicznik przepięć to kluczowe urządzenie stosowane w systemach elektrycznych, mające na celu ochronę przed skutkami przepięć, które mogą być spowodowane na przykład wyładowaniami atmosferycznymi lub nagłymi zmianami w sieci energetycznej. Urządzenie to charakteryzuje się specyficzną obudową, często oznaczoną standardami ochrony, takimi jak IEC 61643-11, co pozwala na jego identyfikację. Przykładem zastosowania ograniczników przepięć jest instalacja w obiektach przemysłowych, gdzie występuje duża ilość wrażliwych urządzeń elektronicznych. Dzięki zastosowaniu ograniczników, możliwe jest zminimalizowanie ryzyka uszkodzeń sprzętu oraz zapewnienie ciągłości działania systemów. Doświadczenia wskazują, że odpowiednio dobrany i zainstalowany ogranicznik przepięć może znacząco wydłużyć żywotność urządzeń elektrycznych oraz zmniejszyć koszty napraw i konserwacji. W każdej instalacji elektrycznej istotne jest przestrzeganie zasad doboru i montażu, aby maksymalizować skuteczność działania tych urządzeń. Warto również pamiętać, że regularne przeglądy i testy ograniczników przepięć są niezbędne do utrzymania ich w dobrym stanie operacyjnym.

Pytanie 34

Którym z kluczy nie da się skręcić stojana silnika elektrycznego śrubami jak przedstawiona na ilustracji?

Ilustracja do pytania
A. Nasadowym.
B. Płaskim.
C. Oczkowym.
D. Imbusowym.
Odpowiedź "Imbusowym" jest prawidłowa, ponieważ klucz imbusowy jest zaprojektowany do używania ze śrubami, które mają gniazdo sześciokątne wewnętrzne. W przypadku przedstawionej na ilustracji śruby, która ma sześciokątną główkę zewnętrzną, klucz imbusowy nie jest odpowiedni. Zamiast tego można zastosować klucz nasadowy, oczkowy lub płaski, które są przystosowane do pracy ze śrubami mającymi zewnętrzne główki. W praktyce, korzystanie z klucza imbusowego do dokręcania śrub z gniazdem zewnętrznym prowadzi do uszkodzenia zarówno narzędzia, jak i śruby. W kontekście standardów branżowych, ważne jest, aby dobierać narzędzia odpowiednio do typu śruby, co zwiększa efektywność pracy i zmniejsza ryzyko awarii. Zrozumienie różnic pomiędzy typami kluczy i ich zastosowaniami jest kluczowe dla prawidłowego wykonywania prac montażowych i serwisowych, co jest standardem w branży inżynieryjnej.

Pytanie 35

Miernikiem, którego przełącznik zakresów przedstawiono na rysunku, nie można zmierzyć

Ilustracja do pytania
A. parametrów wyłączników RCD.
B. rezystancji izolacji.
C. ciągłości połączeń.
D. impedancji pętli zwarcia.
Poprawna odpowiedź to rezystancja izolacji, ponieważ miernik przedstawiony na rysunku nie posiada zakresu do jej pomiaru. Rezystancja izolacji jest kluczowym parametrem, który pozwala ocenić jakość izolacji przewodów i urządzeń elektrycznych. W praktyce, pomiar ten jest realizowany za pomocą specjalistycznych mierników, które generują napięcia o wysokiej wartości, co umożliwia dokładne zbadanie stanu izolacji. Wartości rezystancji izolacji powinny być zgodne z normami, takimi jak PN-EN 60204-1, które określają minimalne wymagania dla sprzętu elektrycznego stosowanego w maszynach. Regularne pomiary rezystancji izolacji są istotne dla zapewnienia bezpieczeństwa użytkowników oraz zapobiegania potencjalnym zagrożeniom, takim jak porażenie prądem czy zwarcia. Dlatego kluczowe jest posiadanie odpowiedniego wyposażenia, które pozwoli na przeprowadzenie tych pomiarów.

Pytanie 36

Której piły należy użyć do przycięcia korytka instalacyjnego?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Okej, to piła oznaczona jako C to taka specyficzna piła do metalu. Ma cienkie ostrze i drobne zęby, więc idealnie nadaje się do precyzyjnego cięcia korytek instalacyjnych, zwłaszcza tych metalowych. Widziałem, że często używa się takich korytek w elektryce lub hydraulice, gdzie ważne jest, żeby wszystko ładnie wyglądało i było poukładane. Jak użyjesz tej piły, to cięcia będą równe, co naprawdę ma znaczenie, bo to pozwala uniknąć deformacji materiału. W budownictwie mówi się, że trzeba używać odpowiednich narzędzi do rodzaju materiału, bo to zmniejsza ryzyko, że coś się uszkodzi. Przykładowo, można precyzyjnie przyciąć korytka do odpowiedniej długości, żeby dopasować je do różnych instalacji, co jest super ważne.

Pytanie 37

Jakie oznaczenia oraz jaka minimalna wartość prądu znamionowego powinna mieć wkładka topikowa stosowana do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego bojlera elektrycznego o parametrach: PN = 3 kW, UN = 230 V?

A. aR 16 A
B. aM 20 A
C. gG 16 A
D. gB 20 A
Wybór wkładki topikowej gG 16 A jako zabezpieczenia dla obwodu jednofazowego bojlera elektrycznego o mocy 3 kW i napięciu 230 V jest właściwy z kilku powodów. Przede wszystkim, wkładki gG są stosowane do ochrony obwodów przed przeciążeniem oraz zwarciem, co jest kluczowe w przypadku urządzeń grzewczych, takich jak bojler. Znamionowy prąd bojlera można obliczyć, dzieląc moc przez napięcie, co daje wynik P/N = 3000 W / 230 V ≈ 13 A. Wybierając wkładkę o wartości 16 A, zapewniamy odpowiedni margines bezpieczeństwa, który zapobiega przypadkowemu wyłączeniu z powodu chwilowych przeciążeń. Standardy branżowe, takie jak PN-EN 60269, wskazują na odpowiednie zastosowanie wkładek gG w instalacjach, gdzie wymagane jest zabezpieczenie przed skutkami zwarć i przegrzania. W praktyce, wkładki topikowe gG są powszechnie stosowane w domowych instalacjach elektrycznych i zapewniają skuteczną ochronę oraz niezawodność działania.

Pytanie 38

W instalacji elektrycznej, której schemat przedstawiono na rysunku błędnie podłączono

Ilustracja do pytania
A. żyrandol.
B. przewody zasilające.
C. łącznik.
D. przewód ochronny.
Wybór łącznika jako błędnie podłączonego elementu jest poprawny, ponieważ łącznik powinien być zawsze podłączony w obwodzie fazowym (L) w celu prawidłowej kontroli zasilania. W sytuacji, gdy łącznik przerywa obwód neutralny (N), mamy do czynienia z poważnym zagrożeniem dla bezpieczeństwa użytkowników. Zgodnie z normami PN-IEC 60364, instalacje elektryczne powinny być projektowane oraz wykonywane w sposób zapewniający ich bezpieczeństwo, co obejmuje również właściwe podłączenie łączników. Praktyka poprawnego stosowania łączników w instalacjach elektrycznych polega na tym, że przy włączonym obwodzie fazowym, możliwe jest odcięcie zasilania i tym samym zapewnienie bezpieczeństwa podczas konserwacji urządzeń. Dobrą praktyką jest również stosowanie łączników, które posiadają oznaczenia wskazujące ich położenie w obwodzie, co ułatwia identyfikację w razie awarii. Podczas projektowania instalacji, należy także uwzględnić odpowiednie zabezpieczenia, takie jak wyłączniki różnicowoprądowe, aby minimalizować ryzyko porażenia prądem. Dlatego poprawne podłączenie łącznika jest kluczowe dla ogólnego bezpieczeństwa instalacji elektrycznej.

Pytanie 39

W których z wymienionych rodzajów silników stosuje się wirnik przedstawiony na ilustracji?

Ilustracja do pytania
A. Asynchronicznych pierścieniowych.
B. Uniwersalnych.
C. Synchronicznych.
D. Asynchronicznych klatkowych.
Jak wybrałeś złą odpowiedź, to może być trochę mylące w kontekście konstrukcji silników elektrycznych. Silniki synchroniczne, które wskazałeś w odpowiedziach, mają wirniki z magnesami trwałymi albo z uzwojeniem wzbudzenia. Wiesz, kluczowa różnica to to, że w silnikach synchronicznych prędkość obrotowa wirnika jest zsynchronizowana z częstotliwością prądu zasilającego, a w asynchronicznych to działa na zasadzie poślizgu. Z kolei silniki pierścieniowe mają wirnik z uzwojeniem, połączonym z pierścieniami ślizgowymi, co pozwala regulować prędkość, ale nie daje takiej efektywności jak klatkowe. No i silniki uniwersalne, które mogą działać zarówno na prądzie stałym, jak i przemiennym, mają zupełnie inną konstrukcję wirnika. Błędy w myśleniu, które prowadzą do takich omyłek, zazwyczaj wynikają z pomylenia zasad działania różnych silników. Zrozumienie tych różnic to klucz do efektywnego projektowania i użytkowania systemów napędowych.

Pytanie 40

Zamiast starego bezpiecznika trójfazowego 25A, należy zastosować wysokoczuły wyłącznik różnicowoprądowy. Który z przedstawionych w katalogu, należy wybrać?

WyłącznikOznaczenie
A.BPC 425/030 4P AC
B.BDC 225/030 2P AC
C.BPC 425/100 4P AC
D.BDC 440/030 4P AC
A. C.
B. A.
C. B.
D. D.
Wybór niewłaściwego rodzaju wyłącznika różnicowoprądowego może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa elektrycznego. W przypadku zastosowania wyłącznika o niewłaściwej charakterystyce, takiego jak wyłączniki jednofazowe lub o nieodpowiedniej wartości prądowej, istnieje ryzyko, że nie dostosuje się on do wymagań instalacji trójfazowej. Wyłączniki różnicowoprądowe, które nie mają certyfikacji dla obciążeń trójfazowych, mogą nie zadziałać w przypadku wystąpienia awarii, co naraża użytkowników na niebezpieczeństwo porażenia prądem. Często błędem jest także wybór wyłącznika o wyższej wartości różnicowoprądowej, co nie tylko zmniejsza skuteczność ochrony, ale również jest niezgodne z normami, które zalecają zastosowanie 30mA w instalacjach, gdzie ochrona przed porażeniem jest kluczowa. Przy doborze sprzętu elektrycznego ważne jest również zrozumienie, że każda instalacja ma swoje specyficzne wymagania i jest istotne, aby dostosować parametry wyłącznika do warunków użytkowania. Zastosowanie niewłaściwego typu wyłącznika może nawet prowadzić do niewłaściwej pracy pozostałych urządzeń elektrycznych, co naraża je na uszkodzenia. Dlatego kluczowe jest, aby podejmować decyzje oparte na wiedzy o standardach branżowych i dobrych praktykach w zakresie instalacji elektrycznych.