Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 8 grudnia 2025 02:10
  • Data zakończenia: 8 grudnia 2025 02:30

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Przed zainstalowaniem uzwojenia wsypywanego stojana w silniku indukcyjnym, należy odpowiednio przygotować jego żłobki przez

A. nałożenie oleju elektroizolacyjnego
B. nałożenie lakieru elektroizolacyjnego
C. zabezpieczenie klinami ochronnymi
D. wyłożenie izolacją żłobkową
Właściwe wyłożenie żłobków izolacją żłobkową przed umieszczeniem uzwojenia w silniku indukcyjnym jest kluczowe dla zapewnienia efektywności i bezpieczeństwa pracy silnika. Izolacja żłobkowa stanowi barierę między uzwojeniem a żłobkiem, chroniąc przed zwarciami oraz poprawiając trwałość elementów. Dzięki zastosowaniu odpowiednich materiałów izolacyjnych, takich jak żywice epoksydowe lub poliuretanowe, uzyskujemy wysoką odporność na działanie wysokich temperatur i wilgoci. Przykładem zastosowania tych materiałów jest przemysł motoryzacyjny, gdzie silniki są narażone na ekstremalne warunki. Ponadto, zgodnie z normami IEC 60034 dotyczącymi silników elektrycznych, odpowiednia izolacja żłobków jest niezbędna do zachowania parametrów pracy silnika oraz spełnienia wymogów bezpieczeństwa. W praktyce, stosowanie wysokiej jakości izolacji przekłada się na mniejsze straty energii oraz wydłużenie żywotności silnika, co jest kluczowe z punktu widzenia efektywności kosztowej i ekologicznej.

Pytanie 2

Ile pomiarów izolacyjnej rezystancji należy przeprowadzić, aby zidentyfikować uszkodzenie w przewodzie YDY3x 6 450/700 V?

A. 12
B. 3
C. 6
D. 9
Prawidłowa odpowiedź to 3 pomiary rezystancji izolacji, co wynika z praktyków oceny stanu izolacji przewodów elektroenergetycznych. W przypadku przewodów YDY3x 6 450/700 V, które są typowymi przewodami stosowanymi w instalacjach elektrycznych, kluczowe jest przeprowadzanie pomiarów rezystancji izolacji w różnych punktach. Zgodnie z normą PN-IEC 60364-6, co najmniej trzy pomiary powinny być wykonane dla każdej fazy przewodu oraz dodatkowo dla przewodu neutralnego i ochronnego. W praktyce, pomiary powinny obejmować zarówno wartości rezystancji międzyfazowej, jak i rezystancji do ziemi. Przykładowo, jeśli wykonasz pomiar izolacji na długości przewodu, który wykazuje niską rezystancję, może to wskazywać na uszkodzenie izolacji w tym obszarze. Dodatkowo, regularne pomiary rezystancji izolacji pozwalają na wczesne wykrywanie potencjalnych problemów, co jest istotne dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznej.

Pytanie 3

Podczas pomiarów kontrolnych, przed odbiorem mieszkania, wykryto usterkę w instalacji oświetleniowej. Na zdjęciu przedstawiono fragment pomieszczenia przed tynkowaniem i wykonaniem wylewek. W celu wymiany uszkodzonych przewodów typu DY 1,5 mm2, prowadzonych w rurach instalacyjnych giętkich, należy w pierwszej kolejności

Ilustracja do pytania
A. do końców starych przewodów zamocować nowe i wyciągając stare wprowadzać do rur nowe przewody.
B. wyciągnąć stare przewody z rur i wciągnąć nowe za pomocą sprężystego drutu stalowego.
C. rozkuć ściany, wprowadzić nowe przewody w ścianach i listwach przypodłogowych.
D. rozkuć ściany i podłogę oraz wymienić uszkodzone odcinki instalacji.
Odpowiedź polegająca na zamocowaniu nowych przewodów do końców starych i wyciąganiu ich podczas wprowadzania nowych jest najbardziej efektywnym sposobem wymiany uszkodzonych przewodów w instalacji elektrycznej. Metoda ta minimalizuje inwazyjność pracy, co jest kluczowe w kontekście renowacji pomieszczeń. Działając w ten sposób, oszczędzamy czas i koszty związane z ewentualnymi naprawami ścian i podłóg. Ponadto, stosując ten sposób, możemy zachować integralność istniejącej instalacji, unikając potencjalnego uszkodzenia rur, co może prowadzić do dodatkowych kosztów. W praktyce, ta technika jest szeroko zalecana w standardach branżowych, takich jak PN-IEC 60364, które podkreślają znaczenie skutecznych i bezpiecznych metod naprawy instalacji elektrycznych. Warto również dodać, że przy tej metodzie kluczowe jest użycie odpowiednich materiałów, takich jak przewody o właściwej specyfikacji oraz narzędzi, które umożliwiają precyzyjne wykonanie wymiany.

Pytanie 4

Wybierz z tabeli numer katalogowy wtyczki, która wraz przewodem wystarczy do zasilenia betoniarki z silnikiem trójfazowym pobierającym w warunkach pracy znamionowej moc 12 kVA. Maszyna sterowana jest stycznikiem z cewką na napięcie 230 V i zasilana z sieci TN-S o napięciu 230/400 V.

Ilustracja do pytania
A. 014-6
B. 024-6
C. 025-6
D. 015-6
Wybór niewłaściwej wtyczki, takiej jak 014-6, 015-6 lub 024-6, może wydawać się na pierwszy rzut oka odpowiedni, jednakże przy bliższym przyjrzeniu się okazuje się, że każda z tych opcji nie spełnia podstawowych wymagań dla urządzenia o mocy 12 kVA. Wtyczka 014-6 jest zaprojektowana na niższe obciążenia, co oznacza, że jej maksymalna wartość prądu jest niewystarczająca dla betoniarki, która wymaga 17,32 A. Z kolei wtyczka 015-6 również nie jest przystosowana do pracy z takim obciążeniem, co może prowadzić do niebezpiecznych sytuacji związanych z przegrzewaniem i uszkodzeniem wtyczki. W przypadku wtyczki 024-6, choć może ona mieć nieco wyższe parametry, wciąż nie osiąga wymaganej wydajności prądowej. Użycie niewłaściwej wtyczki może skutkować nie tylko awarią sprzętu, ale także naruszeniem przepisów BHP, które wymuszają stosowanie odpowiednich, certyfikowanych komponentów do zasilania maszyn przemysłowych. Warto pamiętać, że każde urządzenie elektryczne powinno być zasilane zgodnie z jego specyfikacją, co obejmuje również właściwy dobór wtyczek oraz przewodów, aby zminimalizować ryzyko awarii i zapewnić bezpieczeństwo użytkowania.

Pytanie 5

Na rysunku przedstawiono schemat łącznika

Ilustracja do pytania
A. jednobiegunowego.
B. schodowego.
C. dwubiegunowego.
D. hotelowego.
Odpowiedź "schodowego" jest poprawna, ponieważ na przedstawionym schemacie znajduje się symbol łącznika schodowego, który jest kluczowym elementem w systemach oświetleniowych. Łącznik schodowy umożliwia sterowanie oświetleniem z dwóch lub więcej miejsc, co jest szczególnie przydatne w korytarzach, na schodach czy w dużych pomieszczeniach. Istotnym elementem tego rozwiązania są dodatkowe styki krzyżowe, które pozwalają na wygodne przełączanie między różnymi punktami zasilania, co zwiększa komfort użytkowników. Przykładowo, w domach jednorodzinnych, łączniki schodowe są często instalowane na pierwszym i ostatnim piętrze schodów, umożliwiając włączanie i wyłączanie światła bez konieczności przechodzenia przez całe pomieszczenie. Zgodnie z normą PN-EN 60669, projektowanie obwodów oświetleniowych przy użyciu łączników schodowych jest uznawane za standardową praktykę, co dodatkowo potwierdza ich znaczenie w nowoczesnych instalacjach elektrycznych.

Pytanie 6

Który z łączników instalacyjnych przedstawionych na rysunkach należy zastosować w układzie realizującym sterowanie oświetleniem z dwóch miejsc?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Łącznik schodowy, który wybrałeś, jest kluczowym elementem w systemach oświetleniowych, umożliwiającym sterowanie z dwóch różnych miejsc, co jest niezwykle przydatne w wielu zastosowaniach, jak np. w długich korytarzach czy na schodach. Dzięki zastosowaniu tego typu łącznika można w wygodny sposób włączać i wyłączać światło, co zwiększa komfort użytkowników i bezpieczeństwo. Łączniki schodowe są również zgodne z obowiązującymi normami, które zalecają ich użycie w miejscach wymagających podwójnego sterowania. W praktyce, stosując łącznik schodowy, pamiętaj o odpowiednim okablowaniu oraz zastosowaniu odpowiednich zabezpieczeń, aby zapewnić długotrwałe i niezawodne działanie instalacji. Warto również zwrócić uwagę na jakość użytych materiałów oraz zgodność z dyrektywami Unii Europejskiej, które regulują kwestie bezpieczeństwa elektrycznego, co podkreśla znaczenie dobrych praktyk w branży.

Pytanie 7

W jakiej jednostce miary określa się moment obrotowy, który należy zastosować przy dokręcaniu śrub w urządzeniach elektrycznych?

A. kgˑm2
B. kg
C. Pa
D. Nˑm
Moment siły, znany również jako moment obrotowy, jest miarą siły, która powoduje obrót ciała wokół osi. Jednostką momentu siły w międzynarodowym układzie jednostek SI jest niutonometr (N·m). W kontekście dokręcania zacisków śrubowych aparatów elektrycznych, używanie odpowiedniego momentu siły jest kluczowe, aby zapewnić prawidłowe i bezpieczne połączenie elektryczne. Zbyt mały moment może prowadzić do luzów, co z kolei może skutkować przerwaniem kontaktu elektrycznego, a zbyt duży moment może spowodować uszkodzenie śrub lub elementów, które są łączone. W praktyce, producenci sprzętu często podają zalecany moment dokręcania w instrukcjach obsługi, co może być wzorem do naśladowania w codziennym użytkowaniu. Stosowanie momentu siły w N·m jest również zgodne z normami branżowymi, co podkreśla jego znaczenie w zapewnieniu bezpieczeństwa i niezawodności w instalacjach elektrycznych.

Pytanie 8

Widoczny zanik w obwodzie instalacji elektrycznej może zapewnić

A. bezpiecznik instalacyjny
B. wyłącznik instalacyjny płaski
C. ochronnik przeciwprzepięciowy
D. wyłącznik różnicowoprądowy
Wyłącznik instalacyjny płaski, choć pełni ważną funkcję w instalacji elektrycznej, nie zapewnia widocznej przerwy w obwodzie. Jego zadaniem jest włączanie oraz wyłączanie obwodu, ale nie zabezpiecza go przed przeciążeniem ani zwarciem. Ochronnik przeciwprzepięciowy, z drugiej strony, ma na celu ochronę urządzeń przed nagłymi wzrostami napięcia, ale również nie przerywa obwodu w przypadku zagrożenia. Natomiast wyłącznik różnicowoprądowy służy do ochrony przed porażeniem prądem elektrycznym poprzez wykrywanie różnic w prądzie płynącym do i od urządzenia, lecz także nie oferuje funkcji widocznej przerwy w obwodzie w kontekście zabezpieczeń przed przeciążeniem. Użytkownicy często mylą te elementy, ponieważ nie dostrzegają różnicy między ich funkcjami. Kluczowe jest zrozumienie, że tylko bezpiecznik instalacyjny, działając na zasadzie przerwania obwodu w momencie wystąpienia anomalii w przepływie prądu, gwarantuje bezpieczeństwo w przypadku awarii. W niektórych sytuacjach, wybór niewłaściwego urządzenia zabezpieczającego może prowadzić do poważnych konsekwencji, dlatego znajomość ról poszczególnych elementów instalacji elektrycznych jest niezbędna dla zapewnienia ich prawidłowego funkcjonowania.

Pytanie 9

Jaką z poniższych wkładek bezpiecznikowych powinno się zastosować w celu zabezpieczenia przewodów przed skutkami zwarć oraz przeciążeń w obwodzie jednofazowego bojlera elektrycznego o parametrach znamionowych: PN = 3 kW, UN = 230 V?

A. aM 16 A
B. gG 20 A
C. gG 16 A
D. aM 20 A
Wybór wkładki bezpiecznikowej gG 16 A do zabezpieczenia obwodu jednofazowego bojlera elektrycznego o mocy znamionowej 3 kW i napięciu 230 V jest uzasadniony z kilku powodów. Po pierwsze, moc bojlera wynosząca 3 kW przy 230 V generuje prąd znamionowy równy około 13 A (obliczane według wzoru I = P/U). W tym przypadku wkładka gG, zaprojektowana do ochrony przewodów przed przeciążeniem i zwarciem, jest odpowiednia, gdyż może wytrzymać chwilowe przeciążenia, jakie mogą wystąpić podczas rozruchu bojlera. Ponadto, wkładki gG mają charakterystykę czasowo-prądową, co oznacza, że mogą tolerować krótkotrwałe przeciążenia, co czyni je idealnym wyborem w aplikacjach, gdzie występują takie zjawiska. Stosowanie wkładek aM, które są bardziej przystosowane do ochrony obwodów silnikowych, nie jest wskazane w tym przypadku, ponieważ ich charakterystyka nie jest optymalna do zabezpieczenia obwodu grzewczego. W praktyce, dobór wkładek bezpiecznikowych powinien opierać się na analizie specyfiki obciążenia oraz na standardach takich jak PN-EN 60269, które definiują wymagania dla wkładek bezpiecznikowych. Dlatego wkładka gG 16 A jest najlepszym wyborem dla tego zastosowania.

Pytanie 10

Aby zrealizować połączenie przewodów z żyłami jednodrutowymi przy użyciu złączki WAGO, co powinno się zastosować?

A. cęgi do zdejmowania izolacji oraz zaciskarkę końcówek
B. nóż monterski
C. cęgi do zdejmowania izolacji oraz wkrętak
D. prasę hydrauliczną
Użycie noża monterskiego do wykonywania połączeń przewodów z żyłami jednodrutowymi za pomocą złączek typu WAGO jest kluczowe, ponieważ nóż ten pozwala na precyzyjne i bezpieczne usunięcie izolacji z końców przewodów. Właściwe zdobędziecie wiedzę na temat długości odizolowanego przewodu, co jest istotne w kontekście połączeń, aby uzyskać pewne i trwałe połączenie. Złącza WAGO są popularne w branży elektrycznej ze względu na łatwość zastosowania oraz dobry kontakt elektryczny, jednak ich skuteczność w dużej mierze zależy od poprawnego przygotowania przewodów. Używając noża monterskiego, należy zachować ostrożność, aby nie uszkodzić samego przewodu, co mogłoby prowadzić do problemów z przewodnictwem prądu. Przykładem praktycznego zastosowania może być montaż instalacji elektrycznych w budynkach mieszkalnych, gdzie złącza WAGO można wykorzystać do łączenia kabli w rozdzielniach. Zgodnie z normami branżowymi, zaleca się również regularne sprawdzanie jakości połączeń, co przyczynia się do zwiększenia bezpieczeństwa i niezawodności instalacji.

Pytanie 11

Na podstawie charakterystyki przedstawionej na rysunku określ przedział czasu, w którym może, lecz nie musi nastąpić zadziałanie wyzwalacza termobimetalowego wyłącznika S301 B10 1P 6 kA, przy przepływie przez niego prądu o wartości 25 A.

Ilustracja do pytania
A. 60 s ÷ 10 000 s
B. 10 s ÷ 60 s
C. 0,06 s ÷ 0,017 s
D. 0 s ÷ 0,06 s
Poprawna odpowiedź to 10 s ÷ 60 s, co wynika z charakterystyki wyzwalacza termobimetalowego wyłącznika S301 B10 1P 6 kA. Przy prądzie 25 A, który jest 2,5-krotnością prądu znamionowego wynoszącego 10 A, czas zadziałania wyzwalacza wynosi od 10 do 60 sekund. Tego typu wyłączniki są kluczowe w systemach zasilania, ponieważ chronią obwody przed przegrzaniem i potencjalnym uszkodzeniem spowodowanym nadmiernym prądem. W praktyce oznacza to, że wyzwalacz będzie działał w określonym czasie, co jest istotne dla zapewnienia bezpieczeństwa instalacji elektrycznej. Warto również zauważyć, że zgodność z normą IEC 60947-2, która reguluje wymagania dla wyłączników, potwierdza, że czas zadziałania w tym przedziale jest optymalny dla zachowania równowagi między bezpieczeństwem a funkcjonalnością. Dobrze zaprojektowane systemy powinny uwzględniać te parametry, aby skutecznie chronić przed skutkami przeciążeń.

Pytanie 12

Na rysunku przedstawiono charakterystykę wyłącznika nadmiarowo-prądowego KS6 B32/3 znajdującą się w katalogu producenta. Wyłącznik ten można zastosować do zabezpieczenia przewodów o obciążalności długotrwałej

Ilustracja do pytania
A. 29 A
B. 25 A
C. 34 A
D. 30 A
Wyłącznik nadmiarowo-prądowy KS6 B32/3 ma znamionowy prąd wyzwalania wynoszący 32 A. W kontekście doboru zabezpieczeń elektrycznych, kluczową zasadą jest, aby obciążalność długotrwała przewodów była zawsze większa od prądu znamionowego wyłącznika. Gdyby obciążalność przewodów była zbyt niska, mogłoby to prowadzić do niepożądanych wyzwalań wyłącznika w normalnych warunkach pracy, co generowałoby przestoje i koszty. W przypadku prądu znamionowego 32 A, odpowiednią wartością obciążalności długotrwałej przewodu byłoby 34 A, co zapewnia odpowiedni margines bezpieczeństwa. Wartości takie są zgodne z normami PN-IEC 60364, które szczegółowo określają zasady doboru zabezpieczeń. Przykładem praktycznym może być instalacja oświetlenia, gdzie odpowiedni dobór przewodów i wyłączników zabezpiecza przed skutkami zwarć oraz poprawia bezpieczeństwo użytkowników. Właściwe podejście do doboru zabezpieczeń pozwala nie tylko na ochronę instalacji, ale także na wydłużenie jej żywotności oraz redukcję kosztów eksploatacyjnych.

Pytanie 13

Minimalna akceptowalna wartość rezystancji izolacji dla przewodów instalacji przeznaczonej na napięcie znamionowe nieprzekraczające 500 V, w tym FELV, wynosi

A. 1,5 MΩ
B. 1,0 MΩ
C. 0,5 MΩ
D. 2,0 MΩ
Wybór wartości 1,5 MΩ, 0,5 MΩ lub 2,0 MΩ jako minimalnej rezystancji izolacji dla instalacji elektrycznych do 500 V jest wynikiem nieporozumień dotyczących standardów bezpieczeństwa i wymagań technicznych. Wartość 1,5 MΩ może wydawać się odpowiednia w kontekście innych zastosowań, jednak nie spełnia podstawowych norm dla instalacji na napięcie do 500 V, które wyraźnie określają minimalną wartość na poziomie 1,0 MΩ. Z kolei wartość 0,5 MΩ jest całkowicie niewystarczająca i stwarza poważne ryzyko dla bezpieczeństwa, ponieważ nie zapewnia odpowiedniej ochrony przed przebiciem i porażeniem prądem. Natomiast 2,0 MΩ, choć wydaje się być odpowiednio wysoka, nie jest zakładanym minimum, co może prowadzić do nadmiernych kosztów w kontekście wymogów projektowych, gdzie nie zawsze jest konieczne stosowanie tak wysokiej wartości. W praktyce rzeczywiste wymagania powinny być dostosowane do specyfiki instalacji oraz jej przeznaczenia, jednak zawsze z poszanowaniem ustalonych norm i standardów. Błędem jest zatem myślenie, że wartości wyższe niż wymagane są zawsze korzystne; kluczowe jest przestrzeganie ściśle określonych norm, które zostały opracowane w celu ochrony bezpieczeństwa ludzi i mienia.

Pytanie 14

Który z pokazanych na rysunkach przewodów należy zastosować do wykonania instalacji zasilającej odbiornik prądu stałego w układzie 2/M DC 220/110 V?

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Wybór przewodu D do instalacji zasilającej odbiornik prądu stałego w układzie 2/M DC 220/110 V jest właściwy z kilku powodów. Przewód ten charakteryzuje się odpowiednią izolacją, która jest niezbędna do pracy w warunkach napięcia stałego. W przypadku prądu stałego, szczególnie przy wyższych napięciach, kluczowe jest, aby przewód był odporny na przepięcia oraz miał właściwości dielektryczne, które zapobiegają przebiciu izolacji. W praktyce oznacza to, że przewody stosowane w instalacjach DC muszą być zgodne z normami, takimi jak IEC 60228 oraz IEC 60529, które określają wymagania dotyczące izolacji i ochrony przed wodą i ciałami stałymi. Przykładem zastosowania przewodu D mogą być instalacje w fotowoltaice, gdzie również wykorzystywane są wysokie napięcia stałe. Odpowiedni dobór przewodu wpływa nie tylko na bezpieczeństwo, ale także na efektywność energetyczną całego systemu. Dlatego korzystanie z przewodów zgodnych ze specyfikacjami producentów oraz standardami branżowymi jest kluczowe.

Pytanie 15

Który z wymienionych systemów powinien być zainstalowany w instalacji elektrycznej zasilającej istotne odbiory niskiego napięcia, aby w momencie utraty zasilania nastąpiło automatyczne przełączenie pomiędzy podstawowym źródłem a rezerwowym źródłem zasilania?

A. SZR
B. SCO
C. SPZ
D. SRN
Odpowiedź SZR (System Zasilania Rezerwowego) jest prawidłowa, ponieważ ten układ jest zaprojektowany do automatycznego przełączania źródeł zasilania w przypadku zaniku zasilania z głównego źródła. Działa on na zasadzie monitorowania napięcia w sieci zasilającej; w momencie wykrycia spadku napięcia lub całkowitego braku zasilania, SZR automatycznie uruchamia rezerwowe źródło zasilania, co zapewnia ciągłość pracy ważnych odbiorników niskiego napięcia, takich jak systemy alarmowe, oświetlenie awaryjne czy urządzenia medyczne. Przykładowo, w szpitalach i centrach danych, gdzie nieprzerwane zasilanie jest kluczowe, SZR eliminuje ryzyko przestojów. Stosowanie SZR jest zgodne z normami PN-EN 50171 oraz PN-EN 62040, które określają wymagania dotyczące systemów zasilania awaryjnego oraz UPS. Dzięki temu, instalacje z SZR nie tylko zwiększają bezpieczeństwo, ale też poprawiają efektywność operacyjną, co jest niezbędne w obiektach o krytycznym znaczeniu.

Pytanie 16

Który licznik należy zamontować w instalacji elektrycznej, aby umożliwić przedpłatowy system rozliczania energii elektrycznej?

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.
Wybór niewłaściwego licznika do instalacji elektrycznej, jak w przypadku odpowiedzi A, C czy D, może prowadzić do poważnych problemów w zakresie zarządzania zużyciem energii. Liczniki, które nie są przystosowane do systemu przedpłatowego, nie mogą umożliwić użytkownikom wprowadzania kodów doładowujących, co jest kluczowym elementem tego systemu. Liczniki tradycyjne, które są powszechnie instalowane w domach, umożliwiają jedynie pomiar zużycia energii bez interakcji ze stroną użytkownika w zakresie przedpłat. Takie urządzenia są zgodne z innymi standardami, ale nie mają funkcjonalności, która jest istotna w kontekście nowoczesnych systemów zarządzania energią. Typowym błędem myślowym jest założenie, że każdy licznik energii może funkcyjnie zastąpić licznik przedpłatowy. Różnice te są kluczowe, szczególnie w sytuacjach, gdy użytkownicy chcą mieć większą kontrolę nad swoimi wydatkami. Aby wdrożyć skuteczny system zarządzania energią w budynkach mieszkalnych czy komercyjnych, konieczne jest zrozumienie specyfiki liczników i ich przeznaczenia. Dlatego właściwy wybór licznika, który wspiera system przedpłatowy, jest nie tylko kwestią techniczną, ale również finansową.

Pytanie 17

Który z przedstawionych przyrządów jest przeznaczony do wykrywania pod obciążeniem wadliwych połączeń elektrycznych w torach wielkoprądowych?

Ilustracja do pytania
A. Przyrząd 3.
B. Przyrząd 2.
C. Przyrząd 4.
D. Przyrząd 1.
Wybór przyrządu niezgodnego z funkcją wykrywania wadliwych połączeń elektrycznych pod obciążeniem może prowadzić do poważnych konsekwencji operacyjnych. Przyrządy, które nie są zaprojektowane do pomiaru temperatury, takie jak multimetry czy oscyloskopy, nie są w stanie wykryć problemów związanych z nadmiernym nagrzewaniem, które często występują w przypadku wadliwych połączeń. Wiele osób może błędnie zakładać, że tradycyjne metody pomiarowe są wystarczające do diagnozowania problemów w torach elektrycznych. Niemniej jednak, nie uwzględniają one krytycznego aspektu, jakim jest temperatura operacyjna, która może z łatwością umknąć w standardowych pomiarach elektrycznych. Dodatkowo, niezrozumienie zasad termowizji prowadzi do zaniedbań w utrzymaniu infrastruktury, co może skutkować poważnymi awariami i dużymi kosztami napraw. Dlatego coraz ważniejsze staje się stosowanie nowoczesnych technologii, takich jak termowizja, które dostarczają nie tylko precyzyjnych danych, ale również umożliwiają przewidywanie i zapobieganie awariom jeszcze przed ich wystąpieniem.

Pytanie 18

Jakie może być najczęstsze uzasadnienie nadpalenia izolacji jednego z przewodów neutralnych w listwie N rozdzielnicy w mieszkaniu?

A. Zbyt duża moc urządzenia
B. Zbyt duży przekrój uszkodzonego przewodu
C. Luźne połączenie w listwie neutralnej
D. Błędnie dobrana wartość nominalna wyłącznika nadprądowego
Poluzowane połączenie w listwie neutralnej jest najczęstszą przyczyną nadpalenia izolacji przewodów. Gdy połączenie nie jest wystarczająco mocne, pojawia się opór, co prowadzi do powstawania ciepła. Z czasem, to ciepło może spalić izolację przewodu, co jest szczególnie niebezpieczne, ponieważ może prowadzić do zwarcia lub pożaru. W praktyce, regularne sprawdzanie i dokręcanie połączeń elektrycznych jest kluczowe dla zapewnienia bezpieczeństwa instalacji. Zgodnie z wytycznymi normy PN-IEC 60364, należy zwracać szczególną uwagę na jakości wykonania połączeń, aby zminimalizować ryzyko awarii. W przypadku stwierdzenia poluzowanych połączeń, zaleca się ich niezwłoczne naprawienie oraz przegląd całej instalacji elektrycznej, aby upewnić się, że wszystkie połączenia są prawidłowo wykonane. Przykładowo, w instalacjach przemysłowych stosowanie odpowiednich narzędzi do dokręcania oraz regularne przeglądy mogą znacznie zredukować ryzyko wystąpienia problemów związanych z poluzowanymi połączeniami.

Pytanie 19

Zamiast starego bezpiecznika trójfazowego 25A, należy zastosować wysokoczuły wyłącznik różnicowoprądowy. Który z przedstawionych w katalogu, należy wybrać?

WyłącznikOznaczenie
A.BPC 425/030 4P AC
B.BDC 225/030 2P AC
C.BPC 425/100 4P AC
D.BDC 440/030 4P AC
A. C.
B. A.
C. B.
D. D.
Wybór odpowiedzi A, czyli BPC 425/030 4P AC, jest zgodny z wymogami dotyczącymi zabezpieczeń elektrycznych w instalacjach trójfazowych. Wyłącznik różnicowoprądowy (RCD) jest kluczowym elementem ochrony przed porażeniem elektrycznym, który wykrywa różnice w prądzie między przewodami fazowymi a neutralnym. Wymagana charakterystyka AC oznacza, że wyłącznik jest przystosowany do ochrony przed prądami przemiennymi, co jest typowe w instalacjach domowych i przemysłowych. Prąd znamionowy 25A oraz wartość różnicowoprądowa 30mA (oznaczona jako 030) są standardowymi wartościami stosowanymi w takich instalacjach. Wartość 30mA jest powszechnie uznawana za bezpieczną dla ochrony ludzi przed porażeniem. W praktyce, zastosowanie takiego wyłącznika w instalacji trójfazowej nie tylko zwiększa bezpieczeństwo, ale również spełnia wymagania norm IEC 61008, które definiują wymagania dotyczące wyłączników różnicowoprądowych. Dzięki odpowiedniemu doborowi wyłącznika różnicowoprądowego zapewniasz bezpieczeństwo użytkowników oraz zabezpieczenie instalacji elektrycznej przed skutkami zwarć i zwarć doziemnych.

Pytanie 20

Na ilustracji przedstawiono schemat układu zasilania silnika elektrycznego zawierający

Ilustracja do pytania
A. wyłącznik silnikowy.
B. cyklokonwertor.
C. czujnik kolejności i zaniku faz.
D. przekaźnik termobimetalowy.
Czujnik kolejności i zaniku faz jest kluczowym elementem w układach zasilania silników trójfazowych. Jego podstawowym zadaniem jest monitorowanie obecności oraz kolejności faz, co ma istotne znaczenie dla prawidłowej pracy silników elektrycznych. W sytuacji, gdy jedna z faz zniknie lub dojdzie do zmian w kolejności, czujnik natychmiast odcina zasilanie, co zapobiega uszkodzeniu silnika. Przykładowo, w aplikacjach przemysłowych, gdzie silniki są narażone na różne warunki pracy, użycie czujnika pozwala na zwiększenie bezpieczeństwa i niezawodności systemu. W standardzie PN-EN 60204-1, który dotyczy bezpieczeństwa urządzeń elektrycznych w maszynach, podkreślono znaczenie ochrony silników przed negatywnymi skutkami zasilania. Dodatkowo, czujniki te mogą być wyposażone w dodatkowe funkcje, takie jak sygnalizacja optyczna stanu pracy, co ułatwia diagnostykę i konserwację systemów zasilania.

Pytanie 21

Który z przedstawionych wyłączników różnicowoprądowych umożliwia monitorowanie prądu upływu w instalacji elektrycznej?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Wyłącznik różnicowoprądowy przedstawiony na zdjęciu D jest właściwym rozwiązaniem do monitorowania prądu upływu w instalacji elektrycznej. Posiada on wskaźnik prądu upływu, który jest kluczowy dla bezpiecznej eksploatacji systemów elektrycznych. W praktyce, posiadając wyłącznik z takim wskaźnikiem, użytkownik jest w stanie na bieżąco śledzić ewentualne nieprawidłowości w działaniu instalacji, co może zapobiec poważnym uszkodzeniom sprzętu lub zagrożeniu dla życia. Standardy, takie jak PN-EN 61008, podkreślają konieczność stosowania wyłączników różnicowoprądowych dla zwiększenia bezpieczeństwa instalacji elektrycznych. Przykładem zastosowania może być system monitorowania w budynkach mieszkalnych, gdzie wyłącznik D informuje o wszelkich problemach związanych z prądem upływu, co pozwala na szybsze reakcje i zminimalizowanie ryzyka. Posiadanie takiego wskaźnika jest zgodne z najlepszymi praktykami w zakresie ochrony przeciwnapięciowej i bezpieczeństwa elektrycznego.

Pytanie 22

Jakiego urządzenia należy użyć do pomiaru rezystancji izolacji w instalacji elektrycznej?

A. Omomierza
B. Megaomomierza
C. Watomierza
D. Megawoltomierza
Megaomomierz, znany również jako miernik izolacji, jest specjalistycznym urządzeniem stosowanym do pomiaru rezystancji izolacji instalacji elektrycznych. Jego głównym celem jest ocena stanu izolacji przewodów oraz urządzeń elektrycznych, co ma kluczowe znaczenie dla zapewnienia bezpieczeństwa systemu. Pomiar rezystancji izolacji przeprowadza się zazwyczaj przy zastosowaniu napięcia wyższego niż standardowe napięcie robocze, co pozwala na wykrycie potencjalnych uszkodzeń i degradacji materiałów izolacyjnych. Przykładowo, w instalacjach o napięciu 230V, pomiar izolacji przeprowadza się zazwyczaj przy napięciu 500V lub 1000V, co jest zgodne z normami IEC 61010 oraz IEC 60364. Dzięki temu jesteśmy w stanie zidentyfikować uszkodzenia, które mogą prowadzić do porażeń prądem lub zwarć, co czyni ten pomiar niezbędnym w każdej rutynowej konserwacji instalacji elektrycznych.

Pytanie 23

Który z wymienionych parametrów można zmierzyć przyrządem przedstawionym na ilustracji?

Ilustracja do pytania
A. Rezystancję izolacji.
B. Chwilową moc obciążenia.
C. Impedancję pętli zwarcia.
D. Prąd upływu.
Rezystancja izolacji jest kluczowym parametrem, który można zmierzyć przy pomocy miernika izolacji, znanego również jako megomierz. Urządzenie to jest wykorzystywane do oceny stanu izolacji elektrycznej w instalacjach i urządzeniach elektrycznych. Pomiar ten jest niezwykle istotny, ponieważ odpowiednia rezystancja izolacji zapewnia bezpieczeństwo użytkowania i zapobiega porażeniom prądem, a także minimalizuje ryzyko awarii. Miernik izolacji generuje wysokie napięcie, które powoduje, że prąd przepływa przez izolację. Na podstawie zmierzonego prądu można obliczyć rezystancję, która jest wyrażana w megaomach (MΩ). W praktyce, normy takie jak PN-EN 61557-2 określają wymagania dotyczące pomiarów rezystancji izolacji. Regularne pomiary rezystancji izolacji są zalecane w ramach działań prewencyjnych, szczególnie w przemyśle, gdzie eksploatacja urządzeń elektrycznych odbywa się w trudnych warunkach. Dbanie o odpowiednie wartości rezystancji izolacyjnej to nie tylko wymóg prawny, ale również dobra praktyka, która przyczynia się do zapewnienia długotrwałej i bezawaryjnej pracy instalacji.

Pytanie 24

Jaki jest prawidłowy sposób postępowania w przypadku wykrycia uszkodzenia izolacji przewodu zasilającego?

A. Zapewnienie dodatkowego uziemienia uszkodzonego przewodu.
B. Kontynuowanie użytkowania do czasu planowanej konserwacji.
C. Natychmiastowe odłączenie zasilania i wymiana przewodu.
D. Owinięcie uszkodzonego miejsca taśmą izolacyjną.
Prawidłowe postępowanie w przypadku wykrycia uszkodzenia izolacji przewodu zasilającego to natychmiastowe odłączenie zasilania i wymiana przewodu. Jest to zgodne z podstawowymi zasadami bezpieczeństwa pracy z urządzeniami i instalacjami elektrycznymi. Uszkodzona izolacja może prowadzić do niebezpiecznych sytuacji, takich jak porażenie prądem, zwarcia, a nawet pożar. Dlatego kluczowe jest, aby niezwłocznie usunąć zagrożenie poprzez odłączenie zasilania, co zapobiega dalszemu narażeniu na ryzyko. Następnie uszkodzony przewód powinien zostać wymieniony na nowy, spełniający odpowiednie normy i standardy. Takie podejście jest nie tylko zgodne z zasadami BHP, ale także z dobrą praktyką inżynierską, która kładzie nacisk na prewencję i dbałość o bezpieczeństwo użytkowników oraz sprzętu. Przykładem może być wymiana uszkodzonego przewodu w gospodarstwie domowym; ignorowanie takiego problemu mogłoby doprowadzić do poważnych konsekwencji, dlatego działanie jest kluczowe.

Pytanie 25

W rozdzielnicy zasilającej instalację niskiego napięcia w budynku doszło do wyzwolenia wyłącznika różnicowoprądowego, podczas gdy inne zabezpieczenia nie zareagowały. Jaką można wskazać przyczynę?

A. Awaria wyłącznika nadprądowego w rozdzielnicy
B. Uszkodzenie lub przepalenie przewodu neutralnego
C. Zwarcie rezystancyjne do obudowy odbiornika
D. Przeciążenie obwodu
Zwarcie rezystancyjne do obudowy odbiornika jest jedną z najczęstszych przyczyn zadziałania wyłącznika różnicowoprądowego, ponieważ polega na niepożądanym połączeniu między przewodami roboczymi a obudową urządzenia. W takiej sytuacji część prądu 'ucieka' do ziemi poprzez obudowę, co skutkuje wywołaniem różnicy potencjałów. Wyłącznik różnicowoprądowy działa na zasadzie porównania prądów wpływających i wypływających z obwodu. Kiedy wystąpi niewielka, ale zauważalna różnica, wyłącznik uruchamia się, aby chronić ludzi przed ryzykiem porażenia prądem. W praktyce, aby zminimalizować ryzyko tego typu awarii, należy regularnie kontrolować stan techniczny urządzeń oraz ich instalacji, a także stosować odpowiednie materiały oraz zapewnić właściwą wentylację. Normy takie jak PN-EN 61008-1 wskazują na konieczność stosowania wyłączników różnicowoprądowych w instalacjach niskiego napięcia, co pomaga w ochronie życia i zdrowia użytkowników oraz minimalizuje ryzyko uszkodzeń sprzętu.

Pytanie 26

Jaki procent strumienia świetlnego jest kierowany w dół w oprawie oświetleniowej klasy V?

A. (40 ÷ 60) %
B. (0 ÷ 10) %
C. (90 ÷ 100) %
D. (60 ÷ 90) %
Odpowiedź (0 ÷ 10) % jest prawidłowa w kontekście opraw oświetleniowych V klasy, które charakteryzują się tym, że ich głównym celem jest minimalizowanie ilości światła skierowanego w dół. W oprawach tych stosowane są specjalne osłony i reflektory, które ograniczają emisję światła w kierunku podłogi, co jest zgodne z zasadami oświetlenia efektywnego i zrównoważonego. Przykładowo, w zastosowaniach komercyjnych, takich jak sklepy czy galerie, oprawy V klasy są wykorzystywane do tworzenia efektów świetlnych, które podkreślają produkty bez przytłaczania przestrzeni nadmiernym oświetleniem. Ta technologia pozwala na kontrolowanie rozkładu światła, co jest szczególnie ważne w miejscach, gdzie design wnętrza i estetyka odgrywają kluczową rolę. Warto również zauważyć, że w kontekście standardów, takich jak normy EN 12464-1 dotyczące oświetlenia miejsc pracy, oprawy te często stosowane są w celu zapewnienia odpowiednich warunków oświetleniowych, jednocześnie minimalizując rozproszenie światła w górę i zmniejszając efekt olśnienia.

Pytanie 27

Jakie napięcie powinno być zastosowane w mierniku podczas pomiaru rezystancji izolacyjnej urządzenia elektrycznego o nominalnym napięciu 230/400 V?

A. 1 000 V
B. 250 V
C. 500 V
D. 750 V
Odpowiedź 500 V jest prawidłowa, ponieważ zgodnie z normami i zaleceniami dotyczącymi pomiarów rezystancji izolacji, napięcie testowe powinno być na poziomie 500 V dla maszyn elektrycznych o napięciu znamionowym 230/400 V. Pomiar taki ma na celu wykrycie ewentualnych uszkodzeń izolacji, które mogą prowadzić do niebezpiecznych sytuacji. W praktyce, napięcie testowe 500 V jest standardem branżowym, szczególnie w przypadku sprzętu niskonapięciowego, gdyż zapewnia wystarczającą moc do przetestowania izolacji bez ryzyka uszkodzenia elementów wrażliwych. Dodatkowo, w wielu krajach stosowane są normy IEC 60364 oraz IEC 61557, które precyzują wymagania dotyczące pomiarów izolacji, a ich przestrzeganie jest kluczowe dla zapewnienia bezpieczeństwa użytkowania maszyn. Przykładowo, w przypadku stacji transformatorowych, regularne pomiary izolacji przy użyciu napięcia 500 V pozwalają na wczesne wykrywanie problemów i zapobieganie awariom, co przekłada się na dłuższą żywotność urządzeń oraz zwiększone bezpieczeństwo operacyjne.

Pytanie 28

Na rysunku przedstawiono schemat

Ilustracja do pytania
A. stycznika.
B. wyłącznika różnicowoprądowego.
C. przekaźnika.
D. łącznika wielofunkcyjnego.
Stycznik to taka część elektryczna, która jest mega ważna w automatyzacji obwodów. Dzięki niemu można zdalnie uruchamiać duże urządzenia, co jest przydatne w różnych sytuacjach, jak na przykład oświetlenie, silniki elektryczne czy inne maszyny w fabrykach. Działa to na zasadzie elektromagnetyzmu, a cewka (A1, A2) uruchamia mechanizm, który zamyka lub otwiera obwód. Przykładowo, można go używać do automatycznego włączania silników w napędach. To wszystko jest zgodne z normami IEC 60947-4-1, które dotyczą rozdziału energii. Fajnie jest też korzystać ze styczników z dodatkowymi zabezpieczeniami, jak wyłączniki termiczne, żeby uniknąć przeciążeń i uszkodzeń. Wiedza o tym, jak działają styczniki, jest naprawdę kluczowa dla ludzi, którzy projektują i naprawiają instalacje elektryczne.

Pytanie 29

W lokalu, który jest zasilany napięciem 400 V (3/N/PE 50Hz), zainstalowano następujące urządzenia:
1. przepływowy podgrzewacz wody (12 kW) - obwód trójfazowy
2. zmywarka do naczyń (3,5 kW) - obwód jednofazowy
3. kuchenka elektryczna (9,5 kW) - obwód trójfazowy
4. pralka automatyczna (4,5 kW) - obwód jednofazowy

Odbiorniki jednofazowe i trójfazowe są zasilane z dwóch różnych obwodów. W celu zabezpieczenia wykorzystano wyłączniki instalacyjne. Jakie wartości prądu znamionowego powinny być zastosowane dla zabezpieczeń obwodu jedno- i trójfazowego?

A. 40 A, 40 A
B. 40 A, 25 A
C. 25 A, 25 A
D. 25 A, 40 A
Wartości prądów znamionowych w niepoprawnych odpowiedziach mogą wprowadzać w błąd, ponieważ nie uwzględniają one rzeczywistych wymagań technicznych związanych z mocą odbiorników. W przypadku, gdy dla obwodu trójfazowego zastosowano by zabezpieczenie o wartości 25 A, to byłoby to niewystarczające dla podgrzewacza wody, który wymaga przynajmniej 17,32 A, co w połączeniu z marginesem bezpieczeństwa powinno skutkować zabezpieczeniem 40 A. Ponadto, zastosowanie zabezpieczenia 25 A dla obwodu jednofazowego zmywarki również jest nieodpowiednie, ponieważ przy mocy 3,5 kW pobór prądu wynosi 15 A, co nie jest wystarczające w kontekście dodatkowych obciążeń, które mogą wystąpić w czasie pracy. Takie podejście ignoruje zasady dotyczące projektowania zabezpieczeń, które zalecają dobieranie wartości zabezpieczeń z uwzględnieniem maksymalnych obciążeń oraz ewentualnych skoków chwilowych poboru prądu. Zbyt niskie wartości zabezpieczeń mogą prowadzić do częstych wyłączeń, co wpłynie na komfort użytkowania oraz w dłuższej perspektywie może uszkodzić urządzenia. Wartości 40 A dla obu obwodów są zgodne z dobrymi praktykami branżowymi oraz uwzględniają zasady ochrony przed przeciążeniem, co jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych.

Pytanie 30

W którym z wymienionych miejsc można zainstalować oprawę oświetleniową posiadającą w karcie katalogowej następujące oznaczenia?

Ilustracja do pytania
A. Na zewnątrz, do oświetlenia placu budowy.
B. W pomieszczeniach z łatwopalnymi oparami.
C. Na dnie basenu o głębokości 4 m.
D. W pomieszczeniu zagrożonym wybuchem.
Oprawa oświetleniowa z oznaczeniem IP65 jest odpowiednia do instalacji na zewnątrz, w tym na placu budowy, ze względu na jej odporność na kurz oraz strumienie wody. Oznaczenie IP65 wskazuje, że urządzenie jest całkowicie chronione przed dostępem kurzu (klasa 6) oraz że wytrzymuje strumienie wody z dowolnego kierunku (klasa 5). Takie właściwości są kluczowe w warunkach budowlanych, gdzie sprzęt narażony jest na trudne warunki atmosferyczne i konieczność zapewnienia odpowiedniego oświetlenia dla bezpieczeństwa pracowników i jakości wykonywanych robót. W praktyce oprawy oświetleniowe IP65 są często stosowane w przestrzeniach zewnętrznych, takich jak place budowy, parkingi, czy obiekty sportowe. Dobrą praktyką jest również zapewnienie, aby instalacja odbywała się zgodnie z przepisami lokalnymi i normami, takimi jak PN-EN 60598 dotycząca oświetlenia. Warto również zwrócić uwagę na odpowiednie akcesoria montażowe oraz dodatkowe zabezpieczenia, aby zapewnić długotrwałe i bezpieczne użytkowanie oświetlenia w trudnych warunkach.

Pytanie 31

Zakres działania wyzwalaczy elektromagnetycznych w instalacyjnych wyłącznikach nadprądowych dla charakterystyki C mieści się w przedziale

A. 20-30 krotności prądu znamionowego
B. 1-20 krotności prądu znamionowego
C. 5-10 krotności prądu znamionowego
D. 3-5 krotności prądu znamionowego
Wybór odpowiedzi "5-10 krotności prądu znamionowego" dla charakterystyki C wyłączników nadprądowych jest poprawny, ponieważ odpowiada on standardowym wartościom zdefiniowanym w normach elektrotechnicznych. Wyłączniki charakteryzujące się tym zakresem są zaprojektowane tak, aby reagować na przeciążenia oraz krótkie spięcia w sytuacjach, gdy prąd wzrasta do poziomów znacznie wyższych niż prąd znamionowy. W praktyce oznacza to, że wyłączniki te skutecznie chronią instalacje elektryczne przed uszkodzeniami, które mogą być spowodowane nagłymi skokami prądu. Przykładem zastosowania wyłączników o charakterystyce C mogą być instalacje elektryczne w obiektach przemysłowych, gdzie urządzenia takie jak silniki i transformatory mogą generować znaczne prądy rozruchowe. Dobrze dobrany wyłącznik nadprądowy, zgodnie z normą PN-EN 60898, w odpowiednich sytuacjach zabezpiecza przed skutkami przeciążeń, co jest kluczowe dla bezpiecznej eksploatacji urządzeń oraz minimalizowania ryzyka pożarów i awarii.

Pytanie 32

Parametry której maszyny elektrycznej zapisano na przedstawionej tabliczce znamionowej?

Ilustracja do pytania
A. Dławika.
B. Silnika jednofazowego.
C. Transformatora jednofazowego.
D. Prądnicy synchronicznej.
Tabliczka znamionowa, którą analizujesz, zawiera kluczowe informacje dotyczące silnika jednofazowego. W szczególności, moc znamionowa wynosząca 1.1 kW oraz prąd znamionowy 7.1 A są typowe dla tego typu silników, które są powszechnie stosowane w aplikacjach domowych oraz przemysłowych. Napięcie 230 V / 50 Hz wskazuje na standardowe parametry zasilania w Europie, co czyni ten silnik odpowiednim do zasilania z sieci elektrycznej. Dodatkowo, prędkość obrotowa 1400 min-1 sugeruje, że silnik jest przystosowany do zastosowań wymagających umiarkowanej prędkości, takich jak małe pompy czy wentylatory. Również obecność kondensatora rozruchowego, o wartości 160 µF/320V, jest charakterystyczna dla silników jednofazowych, które w przeciwieństwie do silników trójfazowych, często wymagają takiego elementu do uruchomienia. Takie silniki są szeroko stosowane w codziennych urządzeniach, takich jak pralki czy odkurzacze, co potwierdza ich znaczenie w nowoczesnym świecie. Zrozumienie tych parametrów jest kluczowe dla prawidłowego doboru silnika do konkretnej aplikacji, co jest zgodne z zasadami efektywnego projektowania systemów elektrycznych.

Pytanie 33

W układzie przedstawionym na rysunku, po podłączeniu odbiornika, zadziałał wyłącznik różnicowoprądowy. Przyczyną tego jest

Ilustracja do pytania
A. zwarcie między przewodem neutralnym i ochronnym.
B. dotyk bezpośredni przewodu pod napięciem.
C. nieprawidłowe połączenie przewodu neutralnego i ochronnego.
D. pojawienie się napięcia na części metalowej normalnie nie przewodzącej.
Nieprawidłowe połączenie przewodu neutralnego (N) z przewodem ochronnym (PE) jest kluczowym czynnikiem, który spowodował zadziałanie wyłącznika różnicowoprądowego. W momencie, gdy te dwa przewody są połączone, wyłącznik różnicowoprądowy wykrywa różnicę w prądzie, co prowadzi do jego zadziałania w celu ochrony użytkowników przed porażeniem prądem. Przykładowo, w przypadku instalacji elektrycznych w budynkach mieszkalnych, zaleca się stosowanie wyłączników różnicowoprądowych w obwodach zasilających gniazda, co zwiększa bezpieczeństwo użytkowników. W praktyce, aby zapewnić prawidłowe działanie wyłączników, konieczne jest przestrzeganie standardów, takich jak norma PN-EN 61008-1, która określa wymagania dla różnicowoprądowych wyłączników nadprądowych. Dobre praktyki obejmują regularne testowanie tych urządzeń, aby upewnić się, że działają prawidłowo i mogą skutecznie chronić przed zagrożeniami elektrycznymi.

Pytanie 34

Rysunek przedstawia symbol graficzny przewodu

Ilustracja do pytania
A. PEN
B. PE
C. FE
D. FB
Wybór odpowiedzi na inne symbole, takie jak FB, PEN czy FE, wskazuje na nieporozumienie związane z oznaczeniami przewodów elektrycznych. Skrót FB odnosi się do przewodów, które są używane w kontekście komunikacji, a nie do ochrony, co czyni tę odpowiedź niewłaściwą. Przewód PEN (Protective Earth and Neutral) to przewód, który łączy funkcje przewodu neutralnego i ochronnego, ale jego oznaczenie nie odpowiada symbolowi przedstawionemu w rysunku. W systemach elektrycznych, przewód PEN jest używany jedynie w określonych aplikacjach, na przykład w sieciach TN-C, gdzie nie jest zawsze zalecany ze względu na potencjalne ryzyko związane z porażeniem prądem. Z kolei skrót FE nie jest standardowym oznaczeniem w kontekście przewodów ochronnych; może być mylony z innymi terminami używanymi w branży, co potwierdza potrzebę znajomości odpowiednich norm i standardów. Wybierając nieprawidłowe odpowiedzi, można łatwo popełnić błąd, nie rozumiejąc podstawowych zasad projektowania i bezpieczeństwa instalacji elektrycznych, co prowadzi do potencjalnych zagrożeń. Upewnienie się, że znasz znaczenia poszczególnych symboli oraz ich zastosowania jest kluczowe dla bezpieczeństwa w pracy z instalacjami elektrycznymi.

Pytanie 35

Jakie minimalne napięcie znamionowe może posiadać izolacja przewodów używanych w sieci trójfazowej o niskim napięciu 230/400 V?

A. 300/300 V
B. 300/500 V
C. 100/100 V
D. 450/750 V
Izolacja przewodów w sieciach elektrycznych jest kluczowym elementem zapewniającym bezpieczeństwo i efektywność systemów zasilających. Wybór niewłaściwego napięcia znamionowego może prowadzić do poważnych konsekwencji, takich jak uszkodzenie przewodów, ryzyko porażenia prądem, a nawet pożarów. Odpowiedzi takie jak 300/300 V, 100/100 V czy 450/750 V mogą wydawać się atrakcyjne, jednak każda z nich ma swoje ograniczenia i nie spełnia wymagań dla instalacji niskonapięciowych. Na przykład, napięcie 300/300 V jest zbyt niskie w kontekście zastosowań niskonapięciowych, co może prowadzić do uszkodzenia izolacji w przypadku wystąpienia zwarcia. Natomiast 100/100 V jest zdecydowanie niewystarczające dla standardowych instalacji trójfazowych. Z kolei 450/750 V, mimo że może wyglądać na odpowiednie, jest zbyt wysokie dla nominalnych wartości napięcia 230/400 V, co może prowadzić do nieoptymalnego doboru komponentów w instalacji. Dlatego kluczowe jest stosowanie przewodów o odpowiednich dla danego zastosowania parametrach, jak 300/500 V, co zapewnia bezpieczeństwo oraz efektywność działania całego systemu elektrycznego. Zrozumienie norm i standardów, takich jak PN-EN 60228, jest niezbędne dla inżynierów i techników zajmujących się projektowaniem oraz instalowaniem systemów elektrycznych.

Pytanie 36

Na przyrządzie ustawionym na zakres 300 V zmierzono napięcie w sieci, które wynosi 230 V. Do wykonania pomiaru zastosowano miernik analogowy o dokładności w klasie 1,5. Jaki jest błąd bezwzględny uzyskanego pomiaru?

A. ± 4,60 V
B. ± 4,50 V
C. ± 4,40 V
D. ± 4,30 V
Poprawna odpowiedź to ± 4,50 V, co wynika z zastosowania wzoru do obliczania błędu bezwzględnego pomiaru. Klasa dokładności miernika analogowego oznacza, że maksymalny błąd pomiarowy wynosi 1,5% zakresu pomiarowego. W przypadku zakresu 300 V, maksymalny błąd obliczamy jako 1,5% z 300 V, co daje 4,5 V. To oznacza, że rzeczywisty wynik pomiaru napięcia sieciowego 230 V może różnić się od wartości rzeczywistej o maksymalnie ± 4,50 V. Praktyczne zastosowanie tego typu pomiarów związane jest z zapewnieniem bezpieczeństwa w instalacjach elektrycznych oraz monitorowaniem ich parametrów, co jest kluczowe dla efektywnego zarządzania energią. W branży elektrycznej stosuje się różne klasy dokładności w zależności od wymaganych precyzji pomiarów, dlatego zrozumienie tych standardów jest niezbędne dla inżynierów i techników zajmujących się systemami zasilania. Odpowiednia interpretacja wyników pomiarów, z uwzględnieniem błędów, ma fundamentalne znaczenie dla analizy i diagnozowania układów elektrycznych.

Pytanie 37

Na którym rysunku przedstawiono przewód elektroenergetyczny stosowany do wykonywania napowietrznych przyłączy budynków mieszkalnych?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Wybór odpowiedzi C jest poprawny, ponieważ przedstawiony na rysunku przewód czterordzeniowy jest typowym rozwiązaniem stosowanym do tworzenia napowietrznych przyłączy elektroenergetycznych do budynków mieszkalnych. Tego typu przewody składają się z trzech przewodów fazowych oraz jednego przewodu neutralnego (N), co pozwala na właściwe zasilanie budynków w energię elektryczną. W praktyce, przewody te charakteryzują się odpowiednią izolacją oraz wytrzymałością mechaniczną, co jest niezbędne w trudnych warunkach atmosferycznych. W Polsce, zgodnie z normami PN-EN 60502-1, przewody te powinny być projektowane w sposób zapewniający ich długotrwałą i bezpieczną eksploatację. Zastosowanie przewodów czterordzeniowych w instalacjach napowietrznych jest zgodne z najlepszymi praktykami branżowymi, ponieważ umożliwia nie tylko efektywne przesyłanie energii, ale także odpowiednie zabezpieczenie instalacji przed przeciążeniem i zwarciem. Warto również dodać, że ich montaż często wiąże się z określonymi wymaganiami dotyczącymi odległości od przeszkód oraz maksymalnych wysokości usytuowania, co wpływa na bezpieczeństwo oraz niezawodność całego systemu zasilania.

Pytanie 38

W którym miejscu układu przedstawionego na schemacie powinny zostać zainstalowane zabezpieczenia nadprądowe o największej wartości prądu znamionowego?

Ilustracja do pytania
A. W rozdzielnicy mieszkaniowej.
B. Bezpośrednio przed licznikami.
C. W rozdzielnicy głównej.
D. W złączu.
Zabezpieczenia nadprądowe o najwyższej wartości prądu powinny być montowane w złączu elektrycznym. To takie kluczowe miejsce, gdzie instalacja odbiorcza spotyka się z siecią elektroenergetyczną. Dzięki temu cała instalacja jest lepiej chroniona przed przeciążeniami i zwarciami. Instalując te zabezpieczenia w złączu, nie tylko broni się przewody zasilające, ale i wszystkie obwody odbiorcze. Z tego co wiem, jest to zgodne z normami, jak PN-IEC 60364, które mówią, że trzeba je stosować w złączu. W praktyce, jak już dojdzie do przeciążenia, to zabezpieczenie w złączu zadziała najszybciej, co może uratować droższe elementy instalacji. Weźmy na przykład budynki mieszkalne – tam często montuje się te zabezpieczenia w złączu, żeby cała instalacja była bezpieczniejsza dla użytkowników.

Pytanie 39

Jakie mogą być przyczyny nadmiernego przegrzewania się wyłącznika nadmiarowo-prądowego podczas długotrwałego zasilania sprawnego odbiornika?

A. Zbyt niski prąd znamionowy wyłącznika
B. Słabo dokręcone złącza wyłącznika
C. Niewłaściwe napięcie zasilania
D. Zbyt wysoka moc zasilanego odbiornika
Słabo dokręcone zaciski wyłącznika nadmiarowo-prądowego mogą prowadzić do nadmiernego nagrzewania się tego urządzenia z kilku powodów. Gdy zaciski są niedostatecznie dokręcone, opór elektryczny w miejscach połączeń wzrasta, co skutkuje generowaniem dodatkowego ciepła. Zjawisko to jest zgodne z prawem Joule'a, które mówi, że moc wydzielana w postaci ciepła jest proporcjonalna do kwadratu prądu przepływającego przez opór. W praktyce, niedostateczne dokręcenie zacisków może również prowadzić do niestabilności połączenia, co zwiększa ryzyko wystąpienia łuków elektrycznych, które mogą znacznie podnieść temperaturę wyłącznika. Aby temu zapobiec, zaleca się regularne kontrolowanie stanu zacisków oraz korzystanie z narzędzi pomiarowych, takich jak kamery termograficzne, w celu identyfikacji miejsc o podwyższonej temperaturze. Właściwe dokręcenie elementów montażowych powinno być zgodne z normami IEC 60947 oraz ogólnymi zasadami instalacji elektrycznych, co zapewnia bezpieczne i efektywne działanie wyłącznika nadmiarowo-prądowego.

Pytanie 40

Elektryczne połączenie, które umożliwia przesył energii elektrycznej, znajdujące się pomiędzy złączem a systemem odbiorczym w budynku, określane jest mianem

A. instalacji wewnętrznej
B. przyłącza napowietrznego
C. wewnętrznej linii zasilającej
D. przyłącza kablowego
Odpowiedzi takie jak "instalacja wnętrzowa", "przyłącze kablowe" oraz "przyłącze napowietrzne" odnoszą się do innych aspektów systemu elektrycznego, które są mylone z wewnętrzną linią zasilającą. Instalacja wnętrzowa dotyczy ogółu elementów zainstalowanych wewnątrz budynku, takich jak gniazdka, włączniki czy oświetlenie, ale nie wskazuje na konkretne połączenie zasilające. Przyłącze kablowe odnosi się do połączenia między siecią dystrybucyjną a budynkiem, które ma na celu dostarczenie energii do budynku, ale nie jest to już linia zasilająca wewnętrzna. Natomiast przyłącze napowietrzne to forma dostarczenia energii elektrycznej, która wykorzystuje przewody zawieszone na słupach, co również nie dotyczy przesyłu energii wewnątrz budynku. Pojęcia te mogą prowadzić do nieporozumień, zwłaszcza u osób, które nie mają doświadczenia w dziedzinie elektryki. Poprawne zrozumienie różnicy między tymi terminami jest kluczowe dla projektowania i realizacji efektywnych oraz bezpiecznych systemów zasilania w obiektach budowlanych.