Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 19 grudnia 2025 06:33
  • Data zakończenia: 19 grudnia 2025 06:34

Egzamin niezdany

Wynik: 0/40 punktów (0,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jaki z podanych warunków powinien być zrealizowany podczas instalacji elektrycznej prowadzonej na tynku na zewnątrz budynku mieszkalnego?

A. Użycie transformatora separacyjnego do zasilania
B. Zastosowanie wyłączników różnicowoprądowych o dużej czułości
C. Montaż ochronników przepięciowych w głównej rozdzielnicy
D. Zamontowanie osłon, które chronią przewody przed promieniowaniem słonecznym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zamontowanie osłon zabezpieczających przewody przed działaniem promieni słonecznych jest kluczowym wymogiem przy instalacji elektrycznej w warunkach zewnętrznych. Ekspozycja na promieniowanie UV może prowadzić do degradacji materiałów izolacyjnych, co zwiększa ryzyko zwarć i awarii. Osłony chronią przewody przed niekorzystnymi warunkami atmosferycznymi, co jest szczególnie istotne w kontekście bezpieczeństwa użytkowania. Przykładem skutecznych osłon są rurki ochronne z PVC, które nie tylko izolują przewody, ale również chronią je przed mechanicznymi uszkodzeniami. Zgodnie z normą PN-IEC 60364, instalacje elektryczne muszą być projektowane w taki sposób, aby minimalizować ryzyko uszkodzeń, a stosowanie osłon to jedna z podstawowych zasad. Dodatkowo, regulacje branżowe podkreślają, że w przypadku instalacji na tynku, stosowanie takich zabezpieczeń jest nie tylko zalecane, ale wręcz wymagane, aby zapewnić długotrwałą i bezpieczną eksploatację systemu elektrycznego.

Pytanie 2

Którą puszkę należy zastosować podczas wymiany instalacji, wykonanej na tynku w pomieszczeniu suchym?

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź B jest poprawna, ponieważ w pomieszczeniach suchych, zgodnie z obowiązującymi normami instalacyjnymi, należy stosować puszki instalacyjne podtynkowe, które są przeznaczone do montażu w takich warunkach. Puszka wskazana jako B spełnia te wymagania, ponieważ jest zaprojektowana do pracy w suchych pomieszczeniach, co minimalizuje ryzyko uszkodzenia instalacji elektrycznej oraz zapewnia optymalne warunki dla podłączeń elektrycznych. W praktyce, puszki podtynkowe pozwalają na estetyczne i bezpieczne ukrycie przewodów oraz dostosowanie ich do wykończenia ścian. Ważne jest, aby podczas montażu stosować się do zasad prawidłowego podłączenia oraz instrukcji producenta, aby uniknąć problemów z dostępem do instalacji w przyszłości, a także zapewnić zgodność z normami bezpieczeństwa elektrycznego. Do puszek tej klasy często przynależą również akcesoria, które ułatwiają ich montaż i zapewniają dodatkową ochronę przed uszkodzeniami mechanicznymi.

Pytanie 3

Które z przedstawionych parametrów dotyczą wyłącznika silnikowego?

  • Napięcie zasilania 230 V AC
  • Styk separowany 2P
  • Zakres nastawy czasu 0,1 s ÷ 576 h
  • Rodzaje funkcji A, B, C, D
  • Ilość modułów 1
  • Stopień ochrony IP 20
  • Napięcie znamionowe łączeniowe 230/400 V AC
  • Prąd znamionowy 25 A
  • Prąd znamionowy różnicowy 100 mA
  • Stopień ochrony IP 40
  • Max. moc silnika 1,5 kW
  • Zakres nastawy wyzwalacza przeciążeniowego It = 2,5 ÷ 4 A
  • Zakres nastawy wyzwalacza zwarciowego Im = 56 A
  • Prąd znamionowy 20 A
  • Napięcie znamionowe 24 V AC
  • Konfiguracja zestyków 1 NO + 1 NC
  • Ilość modułów 1
  • Znamionowa moc przy napięciu 230 V: 4 kW
A.B.C.D.
A. A.
B. B.
C. C.
D. D.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź C jest prawidłowa, ponieważ odnosi się do kluczowego parametru wyłącznika silnikowego, jakim jest maksymalna moc silnika, która wynosi 1,5 kW. Wyłączniki silnikowe są stosowane w celu ochrony silników przed przeciążeniem oraz zwarciem, a dokładna znajomość ich parametrów jest niezbędna do zapewnienia bezpieczeństwa i efektywności pracy urządzeń elektrycznych. Wyłączniki te są projektowane zgodnie z normami, takimi jak IEC 60947-4-1, które definiują wymagania dotyczące budowy oraz testowania tych urządzeń. W praktyce, wybór odpowiedniego wyłącznika silnikowego jest kluczowy dla zapewnienia optymalnej ochrony silnika, co pozwala uniknąć kosztownych awarii oraz przestojów w produkcji. W przypadku silników o mocy przekraczającej 1,5 kW, konieczne jest zastosowanie innego wyłącznika, który dostosowany jest do wyższych wartości, co podkreśla znaczenie znajomości specyfikacji technicznych w pracy z instalacjami elektrycznymi.

Pytanie 4

Przed przystąpieniem do wymiany uszkodzonej oprawy oświetleniowej w biurze nie jest konieczne

A. pisemne polecenie do wykonania prac
B. wyłączenie zasilania z instalacji
C. oznaczenie i zabezpieczenie obszaru roboczego
D. zabezpieczenie przed przypadkowym włączeniem zasilania przez osoby nieuprawnione

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pisemne polecenie wykonania prac jest wymagane w wielu kontekstach, ale nie jest to czynność, która musi być zrealizowana przed przystąpieniem do wymiany uszkodzonej oprawy oświetleniowej. W praktyce, istotne jest, aby przed rozpoczęciem jakichkolwiek prac związanych z instalacjami elektrycznymi, zadbać o bezpieczeństwo, co oznacza, że kluczowe jest wyłączenie zasilania i zabezpieczenie miejsca pracy. Pisemne polecenie, choć może być częścią procedury zarządzania bezpieczeństwem w niektórych organizacjach, nie jest ogólnym wymogiem w każdej sytuacji. Zgodnie z normami bezpieczeństwa, najważniejsze jest zminimalizowanie ryzyka poprzez odpowiednie izolowanie obszaru roboczego. Przykładowo, w przypadku awarii oświetlenia w biurze, pracownik powinien najpierw wyłączyć zasilanie, a następnie oznakować i zabezpieczyć miejsce pracy, aby uniknąć niebezpieczeństw związanych z porażeniem prądem. Te działania są kluczowe w celu zapewnienia bezpieczeństwa własnego oraz innych osób przebywających w pobliżu.

Pytanie 5

Na podstawie przedstawionego schematu ideowego instalacji oświetlenia klatki schodowej sterowanej za pomocą przekaźnika bistabilnego określ zakres oględzin instalacji.

Ilustracja do pytania
A. Wykonanie pomiarów rezystancji izolacji przewodów.
B. Sprawdzenie umocowania i stanu łączników oraz kloszy lamp.
C. Usunięcie uszkodzeń w instalacji przez osobę uprawnioną.
D. Naprawa łączników i mycie kloszy lamp.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca sprawdzenia umocowania i stanu łączników oraz kloszy lamp jest poprawna, ponieważ oględziny instalacji oświetleniowej powinny koncentrować się na wizualnej i manualnej ocenie stanu elementów instalacji. Kluczowym aspektem tego procesu jest ocena bezpieczeństwa oraz funkcjonalności wszystkich komponentów systemu oświetleniowego. Sprawdzając umocowanie łączników, można zapobiec potencjalnym problemom, takim jak zwarcia czy uszkodzenia wywołane luźnymi połączeniami. Dobrą praktyką jest także ocena stanu kloszy lamp, ponieważ ich uszkodzenia mogą prowadzić do nieefektywnego rozpraszania światła lub nawet stwarzać zagrożenie pożarowe. Zasady przeprowadzania oględzin instalacji elektrycznych są określone w normach, takich jak PN-IEC 60364, które podkreślają znaczenie regularnych inspekcji w celu zapewnienia bezpieczeństwa użytkowników oraz długotrwałej funkcjonalności systemów oświetleniowych. Przykładem zastosowania tej wiedzy może być rutynowe sprawdzanie instalacji w obiektach użyteczności publicznej, gdzie bezpieczeństwo użytkowników jest priorytetem.

Pytanie 6

Która z wymienionych przyczyn może spowodować samoczynne wyłączenie wyłącznika nadprądowego obwodu gniazd wtyczkowych kuchni w przedstawionej instalacji?

Ilustracja do pytania
A. Zwarcie przewodu ochronnego z przewodem neutralnym.
B. Przerwa w przewodzie uziemiającym instalację.
C. Włączenie odbiornika drugiej klasy ochronności.
D. Jednoczesne podłączenie odbiorników o zbyt dużej mocy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Jednoczesne podłączenie odbiorników o zbyt dużej mocy jest kluczowym czynnikiem, który może spowodować samoczynne wyłączenie wyłącznika nadprądowego. Wyłącznik nadprądowy, taki jak B16, jest zaprojektowany w celu ochrony obwodu przed przeciążeniem i zwarciem. Kiedy do obwodu podłączone są urządzenia o dużym zapotrzebowaniu na moc, ich łączny prąd może przekroczyć wartość znamionową wyłącznika, co automatycznie prowadzi do jego zadziałania. Przykładem może być jednoczesne włączenie kuchenki elektrycznej, piekarnika oraz zmywarki, co w wielu przypadkach przekracza 16 A, a tym samym powoduje wyłączenie. Zgodnie z normami PN-IEC 60898, każda instalacja elektryczna powinna być projektowana z uwzględnieniem maksymalnych obciążeń oraz odpowiednich zabezpieczeń, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W praktyce, aby uniknąć problemów z wyłącznikami, należy świadomie dobierać moc urządzeń oraz rozważać ich jednoczesne użycie.

Pytanie 7

Silnika klatkowego, którego fragment tabliczki znamionowej przedstawiono na ilustracji, nie należy zasilać napięciem międzyfazowym o wysokości

Ilustracja do pytania
A. 400 V, gdy jego uzwojenia skojarzy się w trójkąt.
B. 230 V, gdy jego uzwojenia skojarzy się w trójkąt.
C. 400 V, gdy jego uzwojenia skojarzy się w gwiazdę.
D. 230 V, gdy jego uzwojenia skojarzy się w gwiazdę.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 400 V, gdy jego uzwojenia skojarzy się w trójkąt jest poprawna, ponieważ w przypadku silników klatkowych, tabliczka znamionowa dostarcza istotnych informacji na temat dopuszczalnych warunków zasilania. W sytuacji, gdy uzwojenia są połączone w trójkąt (Δ), zasilanie napięciem 400 V może prowadzić do uszkodzenia silnika, gdyż jest to napięcie przeznaczone do połączenia w gwiazdę (Y). Warto zauważyć, że przy połączeniu w gwiazdę, napięcie zasilające wynosi 400 V, natomiast przy połączeniu w trójkąt napięcie to wynosi 230 V, co oznacza, że silnik musi być zasilany odpowiednim napięciem, aby pracować bezawaryjnie. Przestrzeganie tych zasad jest kluczowe, aby uniknąć przegrzania uzwojeń oraz innych poważnych uszkodzeń, które mogą prowadzić do znacznych kosztów napraw oraz przestojów w pracy maszyn. Dlatego ważne jest, aby technicy i inżynierowie dobrze rozumieli różnice w połączeniach uzwojeń i ich wpływ na parametry pracy silników.

Pytanie 8

Kierunek rotacji wirnika silnika elektrycznego ustala się, obserwując jego wał z perspektywy

A. przewietrznika
B. tabliczki znamionowej
C. wprowadzenia przewodu zasilającego
D. czopu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kierunek obrotów wirnika silnika elektrycznego określa się patrząc na jego wał od strony czopu, ponieważ jest to standardowa praktyka w inżynierii elektrycznej. Patrzenie z tej strony pozwala na jednoznaczne ustalenie, czy wirnik obraca się w prawo czy w lewo. W przypadku urządzeń napędzanych elektrycznie, znanie kierunku obrotów wirnika jest kluczowe dla prawidłowego działania systemu, ponieważ wpływa na wydajność i bezpieczeństwo całej instalacji. Wiele urządzeń, takich jak pompy czy wentylatory, jest zaprojektowanych do działania w określonym kierunku, a ich niewłaściwe zainstalowanie może prowadzić do uszkodzeń czy zmniejszenia efektywności. Dobrym przykładem jest zastosowanie silników w aplikacjach przemysłowych, gdzie niewłaściwy kierunek obrotów może skutkować nieprawidłowym działaniem maszyn. W związku z tym, podczas instalacji i konserwacji urządzeń elektrycznych, istotne jest przypilnowanie, aby kierunek obrotów był sprawdzany w odpowiedni sposób, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 9

Jakie zabezpieczenie przed porażeniem prądem w przypadku pośredniego dotyku zostało wdrożone, gdy pojedynczy odbiornik jest zasilany za pośrednictwem transformatora o przekładni 230 V/230 V, który jest skonstruowany w taki sposób, że nie można doprowadzić do zwarcia między jego uzwojeniami?

A. Ochronne obniżenie napięcia
B. Podwójna lub wzmocniona izolacja
C. Izolacja odbiornika
D. Izolowanie miejsca pracy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Separacja odbiornika to jedna z podstawowych metod ochrony przed dotykiem pośrednim, szczególnie w układach zasilania, gdzie izolacja galwaniczna jest kluczowa. W przypadku analizy transformatora o przekładni 230 V/230 V, zastosowanie tej metody oznacza, że urządzenie zasilane jest z transformatora, który nie jest połączony elektrycznie z innymi obwodami. Dzięki temu, jeśli dojdzie do awarii w jednym z obwodów, prąd nie popłynie do innych części instalacji, co znacząco zwiększa bezpieczeństwo użytkowania. W praktyce oznacza to, że w różnych obszarach zastosowań, takich jak instalacje w laboratoriach czy w obiektach służby zdrowia, separacja odbiornika jest stosowana do zapewnienia minimalnego ryzyka porażenia prądem. Dodatkowo, zgodnie z normami IEC 61140, separacja odbiornika jest uznawana za istotny element projektowania instalacji elektrycznych, co podkreśla jej znaczenie w zapewnieniu bezpieczeństwa użytkowników.

Pytanie 10

Z którym zaciskiem będzie połączony zacisk 41 stycznika K2 według przedstawionego schematu montażowego?

Ilustracja do pytania
A. Z zaciskiem 22 stycznika K1
B. Z zaciskiem 3 listwy zaciskowej X1
C. Z zaciskiem 4 listwy zaciskowej X1
D. Z zaciskiem A2 stycznika K1

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór zacisku 3 listwy zaciskowej X1 jako poprawnej odpowiedzi jest uzasadniony analizą schematu montażowego, który jasno pokazuje połączenie pomiędzy tym zaciskiem a zaciskiem 41 stycznika K2. W praktyce, prawidłowe połączenie zacisków jest kluczowe dla zapewnienia właściwego działania systemów elektrycznych. W przypadku styczników, ich poprawne podłączenie wpływa na stabilność i bezpieczeństwo całego obwodu. W standardach branżowych, takich jak normy IEC 60947, zwraca się uwagę na znaczenie właściwego oznaczenia i połączeń w systemach automatyki, co pozwala na uniknięcie błędów w instalacji oraz ułatwia diagnostykę i konserwację. Zastosowanie logicznego podejścia do analizy schematu oraz znajomość standardów elektrycznych pomagają w skutecznym projektowaniu i wdrażaniu systemów, co jest niezbędne w każdej pracy zawodowej związanej z elektryką.

Pytanie 11

Pomiar którego parametru wyłącznika różnicowoprądowego przedstawiono na rysunku?

Ilustracja do pytania
A. Czasu zadziałania.
B. Rezystancji izolacji.
C. Prądu obciążenia.
D. Rzeczywistego prądu zadziałania.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rzeczywistego prądu zadziałania wyłącznika różnicowoprądowego jest kluczowym elementem w zapewnieniu bezpieczeństwa instalacji elektrycznych. Rzeczywisty prąd zadziałania to minimalna wartość prądu różnicowego, przy której wyłącznik reaguje, odcinając zasilanie. Na przedstawionym rysunku widać, jak miernik jest połączony z wyłącznikiem, aby precyzyjnie określić ten parametr. Wartości prądu różnicowego są istotne, ponieważ określają czułość wyłącznika, co jest regulowane normami, takimi jak PN-EN 61008-1. Stosowanie taki pomiarów w praktyce pozwala na wczesne wykrycie usterek w instalacji, co jest niezbędne w kontekście ochrony przed porażeniem elektrycznym oraz zminimalizowaniem ryzyka pożaru. Często w profesjonalnych instalacjach przeprowadza się cykliczne testy, aby upewnić się, że wyłączniki działają prawidłowo, co jest zgodne z najlepszymi praktykami w branży elektrycznej.

Pytanie 12

Które urządzenie przedstawiono na rysunku?

Ilustracja do pytania
A. Prostownik dwupołówkowy.
B. Wyłącznik zmierzchowy.
C. Ogranicznik przepięć.
D. Przekaźnik bistabilny.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ogranicznik przepięć to kluczowe urządzenie stosowane w systemach elektrycznych, mające na celu ochronę przed skutkami przepięć, które mogą być spowodowane na przykład wyładowaniami atmosferycznymi lub nagłymi zmianami w sieci energetycznej. Urządzenie to charakteryzuje się specyficzną obudową, często oznaczoną standardami ochrony, takimi jak IEC 61643-11, co pozwala na jego identyfikację. Przykładem zastosowania ograniczników przepięć jest instalacja w obiektach przemysłowych, gdzie występuje duża ilość wrażliwych urządzeń elektronicznych. Dzięki zastosowaniu ograniczników, możliwe jest zminimalizowanie ryzyka uszkodzeń sprzętu oraz zapewnienie ciągłości działania systemów. Doświadczenia wskazują, że odpowiednio dobrany i zainstalowany ogranicznik przepięć może znacząco wydłużyć żywotność urządzeń elektrycznych oraz zmniejszyć koszty napraw i konserwacji. W każdej instalacji elektrycznej istotne jest przestrzeganie zasad doboru i montażu, aby maksymalizować skuteczność działania tych urządzeń. Warto również pamiętać, że regularne przeglądy i testy ograniczników przepięć są niezbędne do utrzymania ich w dobrym stanie operacyjnym.

Pytanie 13

Jaka maksymalna wartość impedancji pętli zwarcia może wystąpić w trójfazowym układzie elektrycznym o napięciu znamionowym 230/400 V, aby ochrona przeciwporażeniowa była skuteczna w przypadku uszkodzenia izolacji, wiedząc, że zasilanie tego układu ma przerwać instalacyjny wyłącznik nadprądowy B10?

A. 7,7 Ω
B. 4,6 Ω
C. 2,3 Ω
D. 8,0 Ω

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wartość impedancji pętli zwarcia wynosząca 4,6 Ω jest odpowiednia dla trójfazowego obwodu elektrycznego o napięciu 230/400 V, aby zapewnić skuteczną ochronę przeciwporażeniową. Przy takiej impedancji, w przypadku zwarcia, prąd zwarciowy osiągnie wartość wystarczającą do działania wyłącznika nadprądowego typu B10, który ma prąd znamionowy 10 A. Wartość impedancji pętli zwarcia oblicza się na podstawie napięcia zasilania oraz wymaganej wartości prądu, przy której następuje wyłączenie obwodu. W praktyce oznacza to, że w przypadku uszkodzenia izolacji, wyłącznik nadprądowy zadziała w odpowiednim czasie, minimalizując ryzyko porażenia prądem elektrycznym. Zgodnie z normami PN-IEC 60364-4-41 oraz PN-EN 60947-2, odpowiednia wartość impedancji pętli zwarcia jest kluczowa dla zabezpieczenia użytkowników przed skutkami awarii. Wartości te są również zgodne z wytycznymi dotyczącymi instalacji elektrycznych w budynkach, które zalecają, aby impedancja nie przekraczała 5 Ω dla ochrony przeciwporażeniowej. Dlatego 4,6 Ω to wartość, która spełnia te wymogi, a jej stosowanie w praktyce jest powszechną praktyką w branży elektrycznej.

Pytanie 14

Według przedstawionego schematu instalacji elektrycznej ochronnik przeciwprzepięciowy powinien być włączony między uziemienie oraz

Ilustracja do pytania
A. przewód fazowy i przewód neutralny.
B. wyłącznie przewód neutralny.
C. wyłącznie przewody fazowe.
D. przewody fazowe i przewód neutralny.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca na włączenie ochronnika przeciwprzepięciowego między uziemienie a przewody fazowe oraz przewód neutralny jest poprawna, ponieważ zgodnie z normami, takimi jak PN-EN 62305, ochronniki SPD powinny być instalowane w taki sposób, aby efektywnie odprowadzać nadmiar energii spowodowane przepięciami do ziemi. Ochronnik SPD jest kluczowym elementem ochrony instalacji elektrycznych przed skutkami przepięć atmosferycznych oraz wywołanych przez inne źródła. W praktyce oznacza to, że zarówno przewody fazowe, jak i neutralny mogą być narażone na różnego rodzaju zakłócenia, które mogą prowadzić do uszkodzenia sprzętu czy zagrożenia dla użytkowników. Umieszczając ochronnik w opisanej konfiguracji, zapewniamy optymalny poziom bezpieczeństwa. Przykłady zastosowania obejmują instalacje w budynkach mieszkalnych, biurach oraz obiektach przemysłowych, gdzie ochrona przed przepięciami ma kluczowe znaczenie dla ciągłości działania urządzeń elektrycznych oraz bezpieczeństwa ludzi.

Pytanie 15

Jaką wartość mocy wskazuje watomierz pokazany na rysunku?

Ilustracja do pytania
A. 1000 W
B. 50 W
C. 100 W
D. 500 W

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 500 W. Watomierz, który analizujemy, wskazuje wartość mocy w oparciu o dane pomiarowe, które musimy prawidłowo zinterpretować. Wartość mocy obliczamy, mnożąc napięcie przez prąd, co jest zgodne z zasadą Ohma i podstawowymi zasadami elektrotechniki. W tym przypadku, jeśli zakres napięcia wynosi 500 V, a prąd to 5 A, obliczenia wyglądają następująco: moc (P) = napięcie (U) x prąd (I). Zatem P = 500 V x 5 A = 2500 W. Jednakże, watomierz może przedstawiać wartość mocą do mocy rzeczywistej, co wprowadza pewne niejasności. Ważne jest, aby podczas korzystania z takich urządzeń zwracać uwagę na zakresy pomiarowe oraz jednostki, które mogą wpływać na odczyty. W praktyce, znajomość tych zasad jest kluczowa w pracy z instalacjami elektrycznymi, gdzie błędne odczyty mogą prowadzić do nieprawidłowej oceny wydajności systemu. Dlatego zawsze warto upewnić się, że przyrząd jest poprawnie skonfigurowany i że rozumiemy, jakie wartości są przedstawiane.

Pytanie 16

Jaki jest najmniejszy błąd pomiaru natężenia prądu wynoszącego 30 mA, gdy używamy cyfrowego miliamperomierza z wyświetlaczem do 2 miejsc po przecinku oraz miernika o określonej dokładności?

A. ±2,0% + 2 cyfry
B. ±2,5% + 1 cyfra
C. ±1,5% + 3 cyfry
D. ±1,0% + 4 cyfry

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź ±1,0% + 4 cyfry jest prawidłowa, ponieważ oferuje najwyższą precyzję pomiaru wśród dostępnych opcji. Przy natężeniu prądu wynoszącym 30 mA błąd pomiaru obliczamy na podstawie wzoru: błąd = (wartość pomiaru × procent dokładności) + liczba cyfr. Dla podanej odpowiedzi, maksymalny błąd wynosi: 30 mA × 1,0% + 4 cyfry, co daje 0,3 mA + 0,04 mA, czyli 0,34 mA. Taki poziom dokładności jest szczególnie istotny w zastosowaniach, gdzie precyzyjne pomiary są kluczowe, np. w laboratoriach badawczych, w elektronice czy przy kalibracji urządzeń. Wybór miernika z lepszą dokładnością pozwala także na uniknięcie błędów w dalszych obliczeniach oraz wpływa na wiarygodność wyników. Stąd, zgodnie z dobrymi praktykami w inżynierii, zawsze warto wybierać urządzenia o jak najwyższej dokładności, aby zapewnić rzetelność pomiarów i ich zgodność z obowiązującymi normami.

Pytanie 17

Przedstawione w tabeli parametry techniczne dotyczą

Parametry techniczne
  • Moc przyłączeniowa
  • Rodzaj przyłącza
  • Rodzaj uziomu
  • Typy przewodów
  • Liczba obwodów
A. linii napowietrznej niskiego napięcia.
B. instalacji odgromowej budynku.
C. instalacji elektrycznej.
D. linii kablowej zasilającej budynek.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór instalacji elektrycznej jako poprawnej odpowiedzi jest zasłużony, ponieważ parametry techniczne przedstawione w tabeli, takie jak moc przyłączeniowa, rodzaj przyłącza, uziemienie oraz liczba obwodów, są kluczowe dla prawidłowego zaprojektowania i funkcjonowania instalacji elektrycznej w obiektach budowlanych. Moc przyłączeniowa wskazuje na maksymalne zapotrzebowanie na energię elektryczną, co jest istotne przy doborze odpowiednich przewodów i zabezpieczeń. Rodzaj przyłącza oraz system uziemienia są niezwykle ważne dla bezpieczeństwa użytkowników, gdyż wpływają na właściwe odprowadzenie ładunków elektrycznych i ochronę przed porażeniem prądem. Typy przewodów oraz liczba obwodów są również kluczowe dla zapewnienia stabilności i elastyczności instalacji, umożliwiając podział obciążenia oraz efektywne zarządzanie energią w budynku. Zgodność z normami PN-IEC 60364 oraz innymi standardami branżowymi jest niezbędna dla osiągnięcia wysokich standardów bezpieczeństwa oraz efektywności energetycznej.

Pytanie 18

Podczas montażu instalacji elektrycznej w pomieszczeniach wilgotnych, należy zastosować gniazda wtykowe o minimalnym stopniu ochrony

A. IP33
B. IP20
C. IP44
D. IP55

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Podczas instalacji elektrycznej w pomieszczeniach wilgotnych niezwykle istotne jest zapewnienie odpowiedniego poziomu ochrony przed wilgocią i kurzem, co jest kluczowe dla bezpieczeństwa użytkowników. Stopień ochrony IP44 wskazuje, że urządzenie jest zabezpieczone przed ciałami obcymi większymi niż 1 mm oraz przed wodą bryzgającą z dowolnego kierunku. Dlatego właśnie IP44 jest minimalnym wymogiem w wilgotnych pomieszczeniach, takich jak łazienki czy kuchnie. W praktyce oznacza to, że gniazda i wtyczki muszą być odpowiednio uszczelnione, aby zapobiec wnikaniu wilgoci, co mogłoby prowadzić do zwarcia i awarii systemu elektrycznego. Zastosowanie IP44 to standard branżowy, który zapewnia bezpieczeństwo użytkowników oraz długotrwałe działanie instalacji elektrycznej. Moim zdaniem, znajomość tych norm to absolutna podstawa dla każdego elektryka, który chce wykonywać swoją pracę zgodnie z obowiązującymi przepisami i zapewnić komfort oraz bezpieczeństwo użytkownikom.

Pytanie 19

Przed zainstalowaniem uzwojenia wsypywanego stojana w silniku indukcyjnym, należy odpowiednio przygotować jego żłobki przez

A. nałożenie oleju elektroizolacyjnego
B. nałożenie lakieru elektroizolacyjnego
C. zabezpieczenie klinami ochronnymi
D. wyłożenie izolacją żłobkową

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Właściwe wyłożenie żłobków izolacją żłobkową przed umieszczeniem uzwojenia w silniku indukcyjnym jest kluczowe dla zapewnienia efektywności i bezpieczeństwa pracy silnika. Izolacja żłobkowa stanowi barierę między uzwojeniem a żłobkiem, chroniąc przed zwarciami oraz poprawiając trwałość elementów. Dzięki zastosowaniu odpowiednich materiałów izolacyjnych, takich jak żywice epoksydowe lub poliuretanowe, uzyskujemy wysoką odporność na działanie wysokich temperatur i wilgoci. Przykładem zastosowania tych materiałów jest przemysł motoryzacyjny, gdzie silniki są narażone na ekstremalne warunki. Ponadto, zgodnie z normami IEC 60034 dotyczącymi silników elektrycznych, odpowiednia izolacja żłobków jest niezbędna do zachowania parametrów pracy silnika oraz spełnienia wymogów bezpieczeństwa. W praktyce, stosowanie wysokiej jakości izolacji przekłada się na mniejsze straty energii oraz wydłużenie żywotności silnika, co jest kluczowe z punktu widzenia efektywności kosztowej i ekologicznej.

Pytanie 20

Który z łączników dysponuje komorami gaszeniowymi i ma zdolność do przerywania prądów zwarciowych?

A. Rozłącznik
B. Stycznik
C. Wyłącznik
D. Odłącznik

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik to urządzenie elektroenergetyczne, które nie tylko przerywa obwód, ale także posiada komory gaszeniowe, co umożliwia mu skuteczne wyłączanie prądów zwarciowych. Komory te są kluczowe, ponieważ odpowiadają za stłumienie łuku elektrycznego, który powstaje podczas rozłączania obwodu w sytuacji zwarcia. Dzięki temu wyłączniki są w stanie szybko i bezpiecznie eliminować niebezpieczne prądy, co chroni urządzenia elektryczne oraz instalacje przed uszkodzeniami. Przykładami zastosowań wyłączników są systemy zabezpieczeń w elektrowniach, stacjach transformacyjnych oraz w instalacjach przemysłowych, gdzie niezawodność i bezpieczeństwo są kluczowe. W kontekście norm, wyłączniki powinny spełniać wymogi określone w normach IEC 60947 i PN-EN 60898, które regulują ich budowę oraz parametry pracy, co zapewnia ich wysoką jakość i efektywność działania.

Pytanie 21

Na której ilustracji przedstawiono symbol graficzny przewodu neutralnego?

Ilustracja do pytania
A. Na ilustracji 4.
B. Na ilustracji 3.
C. Na ilustracji 1.
D. Na ilustracji 2.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Symbol graficzny przewodu neutralnego, oznaczony jako linia z kropką na końcu, jest kluczowym elementem w instalacjach elektrycznych. Na ilustracji 1 widzimy ten symbol, co potwierdza jego zgodność z międzynarodowymi standardami, takimi jak IEC 60446, które regulują oznaczanie przewodów i kolorów w systemach elektroenergetycznych. Przewód neutralny odgrywa ważną rolę w systemie elektrycznym, odpowiedzialny za zamknięcie obwodu i zapewnienie równowagi w instalacji. W praktyce, poprawne zidentyfikowanie przewodu neutralnego jest niezwykle istotne, aby uniknąć błędów w podłączaniu urządzeń oraz zapewnić bezpieczeństwo użytkowników. Wiedza o tym, jak rozpoznać symbol przewodu neutralnego, wspiera właściwe wykonywanie instalacji elektrycznych i konserwacji, co jest zgodne z najlepszymi praktykami branżowymi. Dodatkowo, zrozumienie ról poszczególnych przewodów w obwodzie elektrycznym, takich jak przewód fazowy oraz przewód ochronny, przyczynia się do tworzenia bezpiecznych i efektywnych instalacji.

Pytanie 22

Zakres działania wyzwalaczy elektromagnetycznych w nadprądowych wyłącznikach instalacyjnych o charakterystyce B mieści się w zakresie

A. 20-30 krotności prądu znamionowego
B. 3-5 krotności prądu znamionowego
C. 10-20 krotności prądu znamionowego
D. 5-10 krotności prądu znamionowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyzwalacze elektromagnetyczne w wyłącznikach instalacyjnych nadprądowych o charakterystyce B są zaprojektowane do działania w określonym zakresie prądów zwarciowych, co zapewnia skuteczną ochronę obwodów elektrycznych. W przypadku wyłączników charakterystyki B obszar zadziałania wynosi 3-5 krotności prądu znamionowego. Oznacza to, że przy prądzie zwarciowym, który osiąga wartość od 3 do 5 razy wyższą niż nominalny prąd wyłącznika, następuje jego natychmiastowe wyłączenie. Dzięki temu, wyłączniki te skutecznie chronią przed skutkami przeciążeń i zwarć, co jest kluczowe w instalacjach elektrycznych w budynkach mieszkalnych oraz przemysłowych. Przykładowo, jeśli wyłącznik ma prąd znamionowy 10 A, zadziała przy prądzie zwarciowym w zakresie 30 A do 50 A. Tego typu wyłączniki są zalecane do zastosowań, gdzie istnieje ryzyko wystąpienia krótkotrwałych, ale intensywnych prądów, jak w przypadku silników elektrycznych czy transformatorów. Dodatkowo, zgodnie z normą IEC 60898, wyłączniki te powinny być stosowane w obwodach, gdzie istotna jest ochrona przed skutkami zwarć, co czyni je jednym z podstawowych elementów systemów zabezpieczeń elektrycznych.

Pytanie 23

Aby ocenić efektywność ochrony przez automatyczne odcięcie zasilania w systemie TN instalacji elektrycznej, konieczne jest

A. przeprowadzenie pomiarów impedancji pętli zwarcia
B. zweryfikowanie ciągłości połączeń w instalacji
C. określenie czasu oraz prądu zadziałania wyłącznika RCD
D. wykonanie pomiaru rezystancji uziemienia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar impedancji pętli zwarcia jest kluczowym działaniem w ocenie skuteczności ochrony przed porażeniem elektrycznym w systemie TN. Zgodnie z normą PN-EN 61230, impedancja pętli zwarcia wpływa na czas zadziałania zabezpieczeń, co jest istotne dla bezpieczeństwa instalacji. W przypadku zwarcia, niższa impedancja oznacza, że prąd zwarciowy będzie wyższy, co z kolei przyspiesza działanie wyłączników automatycznych. Praktycznie, przeprowadzając pomiar, możemy określić, czy wartości impedancji mieszczą się w dopuszczalnych normach, co pozwala na weryfikację, czy zabezpieczenia zadziałają w wystarczająco krótkim czasie, aby zminimalizować ryzyko porażenia użytkowników. Takie pomiary są również wymagane podczas odbiorów instalacji elektrycznych, aby zapewnić zgodność z normami oraz bezpieczeństwo użytkowników.

Pytanie 24

Do zacisku odbiornika podłączonego na stałe w instalacji TN-S oznaczonego symbolem graficznym przedstawionym na rysunku należy podłączyć przewód

Ilustracja do pytania
A. neutralny.
B. odgromowy.
C. wyrównawczy.
D. ochronny.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór odpowiedzi "ochronny" jest trafiony! W instalacji TN-S przewód, który widzisz na rysunku, to rzeczywiście przewód ochronny (PE). Jego głównym zadaniem jest ochrona użytkowników przed porażeniem prądem. Dzięki temu przewód odprowadza niebezpieczne napięcia do ziemi, co zmniejsza ryzyko wypadków. W systemach TN-S przewód ochronny jest oddzielony od neutralnego (N), co jest zgodne z zasadami bezpieczeństwa. Ważne, żeby ten przewód był dobrze podłączony, bo wtedy ochronne urządzenia, jak wyłącznik różnicowoprądowy, będą działać tak jak powinny. Dobrze jest też regularnie sprawdzać, czy przewody ochronne są w dobrym stanie, żeby mieć pewność, że ich działanie jest skuteczne. Jeśli chcesz bardziej zgłębić temat, popatrz na normy PN-IEC 60364 i PN-HD 60364 – tam znajdziesz konkretne wytyczne dotyczące instalacji elektrycznych.

Pytanie 25

Wybierz zestaw narzędzi koniecznych do zamocowania listew instalacyjnych w natynkowej instalacji elektrycznej z użyciem kołków szybkiego montażu?

A. Osadzak gazowy, młotek, obcinaczki
B. Wiertarka z zestawem wierteł, młotek, piła
C. Osadzak gazowy, wkrętak, obcinaczki
D. Wiertarka z zestawem wierteł, szczypce płaskie, piła

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór zestawu narzędzi obejmującego wiertarkę z kompletem wierteł, młotek i piłę jest trafny, ponieważ te narzędzia są kluczowe w procesie montażu listew instalacyjnych w natynkowej instalacji elektrycznej. Wiertarka z wiertłami pozwala na precyzyjne wykonanie otworów w materiałach budowlanych, co jest niezbędne do umiejscowienia kołków szybkiego montażu. Użycie młotka może być konieczne do delikatnego wbijania kołków lub kotew w przypadku materiałów, które wymagają większej siły. Piła natomiast może być używana do przycinania listew do odpowiednich długości, co jest często wymagane w praktycznych zastosowaniach, aby idealnie dopasować je do wymiarów instalacji. Dobór narzędzi powinien opierać się na standardach bezpieczeństwa i ergonomii pracy, aby zminimalizować ryzyko kontuzji oraz zwiększyć efektywność montażu. Dzięki zastosowaniu właściwych narzędzi, prace instalacyjne mogą przebiegać sprawnie i zgodnie z obowiązującymi normami. Przykładem dobrych praktyk jest również stosowanie podkładek lub dystansów przy montażu, co pozwala na uzyskanie estetycznego i funkcjonalnego efektu końcowego.

Pytanie 26

Ile maksymalnie jednofazowych gniazd wtykowych o napięciu 230 V można zainstalować w pomieszczeniach mieszkalnych zasilanych z jednego obwodu?

A. 6 szt.
B. 10 szt.
C. 13 szt.
D. 3 szt.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Maksymalna zalecana liczba jednofazowych gniazd wtykowych o napięciu 230 V w pomieszczeniach mieszkalnych, zasilanych z jednego obwodu, wynosi 10 sztuk. Jest to zgodne z polskimi normami budowlanymi oraz standardami ochrony przeciwpożarowej. W praktyce oznacza to, że na jednym obwodzie elektrycznym możemy bezpiecznie podłączyć do 10 gniazd, co umożliwia równomierne rozłożenie obciążenia elektrycznego. Przy projektowaniu instalacji elektrycznej konieczne jest uwzględnienie nie tylko liczby gniazd, ale także ich przewidywanego obciążenia. W sytuacji, kiedy przez gniazda będą podłączane urządzenia o dużym poborze mocy, jak np. odkurzacze czy grzejniki, warto ograniczyć liczbę gniazd na obwodzie do mniejszej wartości, aby uniknąć przeciążenia. Dla obwodów o większej liczbie gniazd wtykowych można zastosować dodatkowe zabezpieczenia, takie jak wyłączniki różnicowoprądowe, co zapewnia dodatkową ochronę użytkowników. Dobra praktyka obejmuje również regularne sprawdzanie stanu technicznego instalacji oraz wymianę zużytych komponentów, co zwiększa bezpieczeństwo użytkowania.

Pytanie 27

Który rodzaj układu sieciowego przedstawiono na schemacie?

Ilustracja do pytania
A. IT
B. TN-C
C. TT
D. TN-S

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź TN-C jest prawidłowa, ponieważ w układzie tym przewód neutralny (N) i przewód ochronny (PE) są połączone w jeden przewód PEN w całej sieci. Taki układ jest korzystny w przypadku redukcji liczby żył w instalacji, co może przyczynić się do zmniejszenia kosztów i uproszczenia wykonania instalacji elektrycznej. TN-C znajduje zastosowanie w różnych obiektach, od budynków mieszkalnych po przemysłowe, gdzie istnieją odpowiednie zabezpieczenia przed porażeniem prądem. W Polsce układ TN-C jest stosowany zgodnie z normą PN-IEC 60364, która określa wymagania dotyczące instalacji elektrycznych. Ważne jest przestrzeganie zasad dotyczących układów uziemiających i ochrony przed przepięciami, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W przypadku połączeń z ziemią w systemie TN-C, stosuje się odpowiednie rozwiązania techniczne, aby zapewnić skuteczną ochronę w przypadku awarii i minimalizować ryzyko wystąpienia niebezpiecznych napięć na obudowach urządzeń elektrycznych.

Pytanie 28

W jaki sposób powinno się przeprowadzać zalecane przez producenta regularne testy działania wyłącznika różnicowoprądowego?

A. Naciskając przycisk TEST na załączonym wyłączniku
B. Obserwując reakcję załączonego wyłącznika na odłączenie przewodu ochronnego w rozdzielnicy
C. Naciskając przycisk TEST na wyłączonym wyłączniku
D. Obserwując reakcję wyłączonego wyłącznika na zwarcie przewodów czynnych w obwodzie wyjściowym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby prawidłowo sprawdzić działanie wyłącznika różnicowoprądowego (RCD), należy nacisnąć przycisk TEST na załączonym wyłączniku. W momencie naciśnięcia przycisku TEST, wyłącznik symuluje wyciek prądu, co powinno spowodować jego natychmiastowe wyłączenie. Działanie to jest zgodne z zaleceniami zawartymi w normach europejskich EN 61008 oraz EN 61009, które podkreślają znaczenie regularnych testów wyłączników RCD w celu zapewnienia bezpieczeństwa elektrycznego. Przykładem zastosowania tej procedury może być okresowe testowanie w instalacjach domowych lub przemysłowych, co powinno odbywać się co najmniej raz na miesiąc. Regularne testowanie RCD jest kluczowe, ponieważ pozwala upewnić się, że wyłącznik będzie działał prawidłowo w przypadku rzeczywistego wycieku prądu, co może zminimalizować ryzyko porażenia prądem lub pożaru. Należy pamiętać, że po teście wyłącznik powinien być ponownie włączony, aby przywrócić normalne funkcjonowanie instalacji elektrycznej.

Pytanie 29

Na rysunku przedstawiono schemat do pomiaru impedancji pętli zwarciowej metodą

Ilustracja do pytania
A. spadku napięcia.
B. techniczną.
C. bezpośredniego pomiaru.
D. zastosowania dodatkowego źródła.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'spadku napięcia' jest prawidłowa, ponieważ odnosi się do metody pomiaru impedancji pętli zwarciowej, która polega na pomiarze spadku napięcia wywołanego przez prąd zwarcia. W tym układzie stosuje się woltomierz do pomiaru napięcia oraz amperomierz do pomiaru prądu. Na podstawie tych pomiarów można zastosować prawo Ohma, aby obliczyć impedancję pętli, co jest kluczowe w ocenie funkcjonalności systemów elektroenergetycznych. Zgodnie z normą PN-EN 61010-1, zasady dotyczące bezpieczeństwa przy pomiarach elektrycznych wymagają, aby pomiary były dokładne i wiarygodne, co właśnie ta metoda zapewnia. Praktyczne zastosowanie tej metody znajduje się w procesach diagnostycznych instalacji elektrycznych, gdzie kluczowe jest określenie impedancji pętli zwarciowej dla oceny bezpieczeństwa użytkowania oraz zapewnienia, że systemy zabezpieczeń działają prawidłowo w przypadku awarii. Stosowanie metody spadku napięcia umożliwia również ocenę stanu izolacji oraz identyfikację potencjalnych problemów z instalacją.

Pytanie 30

Do których zacisków przekaźnika zmierzchowego przedstawionego na schemacie należy podłączyć czujnik światła?

Ilustracja do pytania
A. 10 i 12
B. 7 i 9
C. L i 10
D. N i 12

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujnik światła powinien być podłączony do zacisków 7 i 9 przekaźnika zmierzchowego, ponieważ te zaciski są przeznaczone do podłączenia zewnętrznych czujników. W praktyce, gdy zmierzchowy przekaźnik wykryje spadek natężenia światła, czujnik ten aktywuje przekaźnik, co pozwala na automatyczne włączanie lub wyłączanie oświetlenia w zależności od warunków oświetleniowych. Zgodnie z normami branżowymi, podłączanie czujników do właściwych zacisków jest kluczowe dla zapewnienia prawidłowego działania systemu. W przypadku zastosowań w inteligentnych domach, poprawne podłączenie czujnika światła do właściwych zacisków pozwala na efektywne zarządzanie energią, co jest zgodne z ideą zrównoważonego rozwoju. W praktyce, użytkownik może ustawić czujnik w odpowiedniej lokalizacji, aby optymalizować jego działanie, co z kolei wpływa na komfort i oszczędności energii.

Pytanie 31

Rysunek przedstawia symbol graficzny przewodu

Ilustracja do pytania
A. PE
B. FE
C. FB
D. PEN

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Symbol przedstawiony na rysunku rzeczywiście oznacza przewód ochronny, który w zgodzie z normą PN-EN 60617 jest identyfikowany skrótem "PE" (Protective Earth). Przewód ten jest kluczowy w systemach elektrycznych, ponieważ zapewnia bezpieczeństwo poprzez odprowadzanie potencjalnych prądów upływowych do ziemi, co minimalizuje ryzyko porażenia prądem. W praktyce, przewód PE jest często stosowany w instalacjach elektrycznych w budynkach, gdzie pełni rolę ochronną dla urządzeń oraz użytkowników. Warto również zauważyć, że w systemach zasilania trójfazowego, przewód ochronny jest wymagany, aby spełnić normy bezpieczeństwa, takie jak norma IEC 60364. Przewód PE powinien być zawsze jasno oznakowany zielono-żółtym kolorem, aby umożliwić łatwą identyfikację w instalacjach elektrycznych. Zastosowanie tego przewodu jest nie tylko praktyczne, ale i zgodne z zasadami ochrony przeciwwybuchowej w środowiskach, gdzie mogą występować niebezpieczne substancje.

Pytanie 32

Który zestaw oznaczeń literowych barw izolacji żył jest właściwy dla przewodu przedstawionego na rysunku?

Ilustracja do pytania
A. BN, BK, GNYE
B. BU, GY, GNYE
C. BK, BU, GY
D. BN, BK, GY

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "BN, BK, GY" jest prawidłowa, ponieważ odpowiada kolorom izolacji przewodów przedstawionych na rysunku. Przewód brązowy (BN) jest powszechnie stosowany jako przewód fazowy w instalacjach elektrycznych, podczas gdy przewód czarny (BK) również może być używany w tej roli, szczególnie w konfiguracjach wielofazowych. Przewód szary (GY) jest zazwyczaj stosowany jako przewód neutralny, co jest zgodne z normą PN-IEC 60446, która określa zasady oznaczania kolorami przewodów elektrycznych. Zastosowanie odpowiednich kolorów jest istotne dla bezpieczeństwa i efektywności instalacji, umożliwiając identyfikację funkcji każdego przewodu w systemie. Dobrą praktyką w projektowaniu i wykonawstwie instalacji elektrycznych jest stosowanie ustalonych kolorów izolacji, co ułatwia późniejsze prace konserwacyjne oraz diagnostyczne, zmniejszając ryzyko błędów.

Pytanie 33

Jakie gniazdo instalacyjne oznacza się na schematach symbolem graficznym przedstawionym na rysunku?

Ilustracja do pytania
A. Z wyłącznikiem.
B. Z transformatorem separacyjnym.
C. Ze stykiem ochronnym.
D. Telekomunikacyjne.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Gniazdo instalacyjne ze stykiem ochronnym, które zostało przedstawione na rysunku, jest kluczowym elementem w zapewnieniu bezpieczeństwa w instalacjach elektrycznych. Styk ochronny jest zaprojektowany w celu minimalizacji ryzyka porażenia prądem elektrycznym, a jego obecność w gniazdach jest zgodna z normami bezpieczeństwa, takimi jak PN-EN 60309. Dzięki zastosowaniu gniazd ze stykiem ochronnym, użytkownicy mogą korzystać z urządzeń elektrycznych z większym poczuciem bezpieczeństwa, szczególnie w środowiskach, gdzie istnieje ryzyko kontaktu z wodą lub mokrymi powierzchniami, na przykład w łazienkach czy kuchniach. W praktyce, gniazda te są powszechnie stosowane w obiektach komercyjnych i przemysłowych, gdzie stosowane są maszyny i urządzenia wymagające dużej mocy, co czyni je niezbędnym elementem w każdej instalacji elektrycznej. Warto również zwrócić uwagę na to, że gniazda ze stykiem ochronnym są często stosowane z przedłużaczami i innymi urządzeniami, co przyczynia się do ich większej uniwersalności i funkcjonalności w różnych zastosowaniach elektrycznych.

Pytanie 34

Jaką liczbę klawiszy oraz zacisków ma tradycyjny jeden łącznik świecznikowy?

A. Jeden klawisz i trzy niezależne zaciski
B. Dwa klawisze i trzy niezależne zaciski
C. Jeden klawisz i cztery niezależne zaciski
D. Dwa klawisze i cztery niezależne zaciski

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Klasyczny pojedynczy łącznik świecznikowy, znany również jako łącznik z podwójnym klawiszem, składa się z dwóch klawiszy oraz trzech niezależnych zacisków. Każdy klawisz pozwala na sterowanie oddzielnym obwodem elektrycznym, co umożliwia niezależne włączanie i wyłączanie dwóch źródeł światła lub innych urządzeń elektrycznych. Trzy zaciski są standardem w takim rozwiązaniu – dwa z nich służą do podłączenia fazy (zasilania), natomiast trzeci zacisk jest zaciskiem neutralnym lub wspólnym. Tego typu łączniki są powszechnie stosowane w instalacjach oświetleniowych, szczególnie w pomieszczeniach, gdzie chcemy kontrolować więcej niż jedno źródło światła za pomocą jednego urządzenia. Dzięki użyciu łącznika świecznikowego z dwoma klawiszami, możliwe jest oszczędzenie miejsca oraz ułatwienie dostępu do sterowania oświetleniem, co jest zgodne z nowoczesnymi standardami projektowania wnętrz oraz efektywności energetycznej.

Pytanie 35

Metodą oceny efektywności połączeń wyrównawczych powinien być pomiar napięć

A. skutecznych
B. dotykowych
C. rażeniowych
D. krokowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar napięć skutecznych jest naprawdę ważny, jeśli chodzi o ocenę, jak dobrze działają połączenia wyrównawcze. Dzięki temu możemy zobaczyć, jak dobrze system radzi sobie z ewentualnymi różnicami napięć w instalacji elektrycznej. Połączenia wyrównawcze mają na celu zminimalizowanie ryzyka porażeń prądem, więc istotne jest, żeby te różnice były na niskim poziomie. Napięcia skuteczne, czyli wartości RMS, pokazują nam, jak system działa w rzeczywistości, co bardzo ułatwia ocenę skuteczności zabezpieczeń. Można to zastosować na przykład w instalacjach przemysłowych, gdzie ochrona ludzi i sprzętu jest kluczowa. Normy, jak PN-IEC 60364, podkreślają, jak ważne są regularne inspekcje i pomiary, żeby mieć pewność, że systemy bezpieczeństwa działają prawidłowo i są w dobrym stanie.

Pytanie 36

Co oznacza symbol literowy YKY?

A. kabel z żyłami aluminiowymi w izolacji i powłoce z PVC
B. kabel z żyłami miedzianymi w izolacji z PVC
C. przewód oponowy warsztatowy z żyłami miedzianymi w izolacji z PVC
D. przewód telekomunikacyjny z żyłami aluminiowymi w izolacji i powłoce z PVC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca na kabel o żyłach miedzianych w izolacji polwinitowej jest poprawna, ponieważ symbol literowy YKY odnosi się do kabli, które są powszechnie stosowane w instalacjach elektrycznych. Kable te charakteryzują się miedzianymi żyłami, co zapewnia dobrą przewodność elektryczną oraz odporność na korozję, a ich izolacja wykonana z polichlorku winylu (PVC) oferuje wysoką odporność na działanie niekorzystnych czynników atmosferycznych. Kable YKY są często wykorzystywane w systemach zasilania, w rozdzielniach elektrycznych czy w instalacjach przemysłowych, gdzie wymagana jest niezawodność i bezpieczeństwo. Dodatkowo, zgodnie z normą PN-EN 50525, kable YKY mogą być stosowane w warunkach, gdzie wymagana jest odporność na wysokie temperatury, co sprawia, że są one wszechstronne w zastosowaniach. Przykłady zastosowania obejmują zarówno instalacje w budynkach mieszkalnych, jak i przemysłowych, gdzie kable legitymują się dobrymi parametrami mechanicznymi oraz elektrycznymi niezbędnymi do efektywnego funkcjonowania systemów zasilających.

Pytanie 37

Która z poniższych działań ocenia efektywność ochrony podstawowej przed porażeniem prądem elektrycznym?

A. Pomiar rezystancji izolacji przewodów
B. Sprawdzanie wyłącznika różnicowoprądowego
C. Pomiar impedancji w pętli zwarciowej
D. Weryfikacja stanu izolacji podłóg

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji izolacji przewodów jest kluczowym elementem oceny skuteczności ochrony przed porażeniem prądem elektrycznym. Działanie to polega na sprawdzeniu, czy izolacja przewodów jest wystarczająco skuteczna, aby zapobiec niezamierzonym przepływom prądu do ziemi lub na obudowy urządzeń. Wysoka rezystancja izolacji oznacza, że przewody są dobrze izolowane i minimalizują ryzyko porażenia. W praktyce, w budynkach mieszkalnych oraz przemysłowych, pomiar ten powinien być przeprowadzany regularnie, zwłaszcza w przypadku instalacji, które są narażone na uszkodzenia mechaniczne lub działanie czynników zewnętrznych. Zgodnie z normami PN-IEC 60364, przynajmniej raz na pięć lat należy przeprowadzać taki pomiar. Uzyskane wyniki powinny być porównywane z wartościami odniesienia, które zależą od rodzaju instalacji. Odpowiednie procedury zapewniają, że nie tylko urządzenia, ale i całe instalacje elektryczne są bezpieczne dla użytkowników, co jest fundamentalne dla ochrony życia i zdrowia człowieka. Dbanie o odpowiednią rezystancję izolacji to kluczowy krok w zarządzaniu ryzykiem związanym z porażeniem prądem elektrycznym.

Pytanie 38

Na podstawie rysunku określ kolejność zamontowanych aparatów elektrycznych w rozdzielnicy.

Ilustracja do pytania
A. Ochronnik przeciwprzepięciowy, przekaźnik bistabilny, lampka kontrolna, automat schodowy.
B. Wyłącznik różnicowoprądowy, przekaźnik bistabilny, lampka kontrolna, automat schodowy.
C. Ochronnik przeciwprzepięciowy, wyłącznik nadprądowy, automat schodowy, przekaźnik bistabilny.
D. Wyłącznik różnicowoprądowy, wyłącznik nadprądowy, lampka kontrolna, przekaźnik bistabilny.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybrana odpowiedź jest poprawna, ponieważ prawidłowo odzwierciedla kolejność zamontowanych aparatów elektrycznych w rozdzielnicy. Wyłącznik różnicowoprądowy, umieszczony jako pierwszy, ma kluczowe znaczenie dla ochrony użytkowników przed porażeniem prądem, wykrywając różnicę w prądzie między przewodami fazowymi a neutralnym. Następnie, wyłącznik nadprądowy chroni instalację przed przeciążeniem i zwarciami. Lampka kontrolna, jako trzeci element, pełni funkcję sygnalizacyjną, informując o stanie działania urządzeń. Na końcu znajduje się przekaźnik bistabilny, który służy do sterowania obwodami z wykorzystaniem małej mocy. Taka sekwencja jest zgodna z najlepszymi praktykami przy projektowaniu rozdzielnic, gdzie bezpieczeństwo i efektywność są priorytetem. Przy projektowaniu instalacji elektrycznych warto uwzględniać normy PN-IEC 60364, które regulują zasady projektowania i wykonania instalacji elektrycznych. Wiedza na temat rozmieszczenia aparatów w rozdzielnicach jest kluczowa dla zapewnienia niezawodności oraz bezpieczeństwa systemów elektrycznych.

Pytanie 39

Na podstawie przedstawionej tabeli obciążalności długotrwałej przewodów dobierz przekrój żył przewodu czterożyłowego ułożonego na ścianie, na uchwytach, zasilającego oporowy piec trójfazowy o prądzie znamionowym 36 A w sieci o napięciu 230/400 V.

Ilustracja do pytania
A. 10 mm2
B. 4 mm2
C. 6 mm2
D. 2,5 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór przekroju żył przewodu czterożyłowego o przekroju 6 mm² dla obciążenia 36 A jest zgodny z zasadami doboru przewodów elektrycznych. W tabelach obciążalności długotrwałej, przewody ułożone na ścianie, na uchwytach, są klasyfikowane w kolumnach, które uwzględniają różne warunki ułożenia i obciążenia. W przypadku prądu znamionowego 36 A, najbliższą większą wartością w tabeli jest 43 A, co odpowiada przekrojowi 6 mm². Przekrój ten zapewnia odpowiednie zabezpieczenie przed przegrzaniem przewodów, co jest kluczowe dla bezpieczeństwa instalacji. Należy również pamiętać, że w praktyce, wybór odpowiedniego przekroju żył powinien uwzględniać nie tylko prąd znamionowy, ale także długość przewodu, rodzaj materiału (miedź czy aluminium) oraz warunki zewnętrzne, takie jak temperatura otoczenia. W przypadku zastosowań domowych, gdzie wymagane jest zasilanie urządzeń o dużym poborze mocy, takich jak piece trójfazowe, właściwy dobór przekroju przewodów ma istotne znaczenie dla zapewnienia ich niezawodności i bezpieczeństwa. Ogólnie rzecz biorąc, przestrzeganie norm i standardów, takich jak PN-EN 60204-1, jest niezbędne dla każdego elektryka.

Pytanie 40

Które urządzenie elektryczne przedstawiono na rysunku?

Ilustracja do pytania
A. Wyłącznik nadprądowy S304.
B. Rozłącznik izolacyjny FRX400.
C. Wyłącznik silnikowy.
D. Stycznik elektromagnetyczny.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to stycznik elektromagnetyczny. Na zdjęciu widoczne są charakterystyczne cewki elektromagnetyczne, które aktywują styki przy pomocy pola magnetycznego. Styczniki są kluczowymi elementami w systemach automatyki, umożliwiając zdalne załączanie i wyłączanie obwodów elektrycznych, co jest niezwykle istotne w kontekście sterowania silnikami elektrycznymi w aplikacjach przemysłowych. Dzięki nim można bezpiecznie kontrolować duże obciążenia, co przekłada się na efektywność operacyjną. Styczniki są projektowane zgodnie z normami IEC 60947-4-1, które definiują wymagania dotyczące ich konstrukcji oraz poziomów bezpieczeństwa operacyjnego. Przykłady zastosowania to sterowanie silnikami w maszynach produkcyjnych, systemach wentylacyjnych oraz w instalacjach oświetleniowych, gdzie można zdalnie załączać i wyłączać obwody. Użycie styczników pozwala też na integrację z systemami automatyki budynkowej, co zwiększa komfort i efektywność energetyczną.