Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 20 stycznia 2026 15:58
  • Data zakończenia: 20 stycznia 2026 16:11

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podczas wymiany gniazdka trójfazowego w instalacji przemysłowej należy

A. zmienić przewody na nowe o większym przekroju
B. utrzymać odpowiednią kolejność przewodów fazowych w zaciskach gniazda
C. zagiąć oczka na końcach przewodów
D. zamontować końcówki oczkowe na przewodach
Zachowanie kolejności przewodów fazowych w zaciskach gniazda trójfazowego jest kluczowym aspektem bezpieczeństwa i prawidłowego działania instalacji. W układach trójfazowych, każdy z przewodów fazowych (L1, L2, L3) ma przypisane określone funkcje oraz wartości napięć, które powinny być utrzymywane w odpowiedniej sekwencji. Niezachowanie tej kolejności może prowadzić do problemów z równowagą obciążenia, co z kolei może skutkować uszkodzeniem urządzeń elektrycznych, a nawet zagrożeniem pożarowym. W praktyce, np. w przypadku podłączania silników elektrycznych, niewłaściwa kolejność faz może spowodować, że silnik będzie działał w odwrotnym kierunku, co może prowadzić do poważnych uszkodzeń. Zgodnie z normami PN-IEC 60364, zachowanie odpowiedniej kolejności połączeń jest niezbędne dla zapewnienia właściwej funkcjonalności oraz bezpieczeństwa instalacji elektrycznych.

Pytanie 2

W tabeli zamieszczono wyniki okresowych pomiarów impedancji pętli zwarcia instalacji elektrycznej budynku mieszkalnego wykonanej w układzie TN-S. Jaka jest najbardziej prawdopodobna przyczyna zwiększonej wartości Zs w sypialni?

Pomiar impedancji pętli zwarcia obwodów gniazd jednofazowych zabezpieczonych wyłącznikami nadprądowymi B16
Pomieszczenie:SalonSypialniaKuchniaPrzedpokójŁazienka
Wartość ZS:2,32 Ω6,84 Ω1,72 Ω1,39 Ω2,55 Ω
A. Brak ciągłości przewodu neutralnego w mierzonym obwodzie.
B. Brak ciągłości przewodu ochronnego w mierzonym obwodzie.
C. Niewłaściwie dobrany wyłącznik nadprądowy dla mierzonego obwodu.
D. Poluzowany przewód liniowy zasilający gniazda w mierzonym obwodzie.
Poprawna odpowiedź dotyczy poluzowanego przewodu liniowego zasilającego gniazda w obwodzie, co może prowadzić do zwiększonej wartości impedancji pętli zwarcia (Zs). W praktyce, poluzowanie przewodu wpływa na zwiększenie rezystancji, co z kolei podnosi wartość Zs. W sytuacji awaryjnej, wysoka impedancja pętli zwarcia oznacza, że w przypadku wystąpienia zwarcia prąd zwarcia będzie niższy, co może prowadzić do opóźnienia w działaniu zabezpieczeń, takich jak wyłączniki nadprądowe, co naraża instalację na potencjalne uszkodzenia. Standardy, takie jak PN-IEC 60364, podkreślają znaczenie zapewnienia odpowiedniej wartości Zs dla bezpieczeństwa użytkowania instalacji. Warto regularnie przeprowadzać pomiary Zs w obiektach, aby upewnić się, że wartości te są zgodne z wymaganiami normatywnymi i praktykami branżowymi, co zapobiega ryzyku pożarów oraz uszkodzeń urządzeń elektrycznych.

Pytanie 3

Ile wynosi najmniejsza wartość prądu wywołującego zadziałanie wyłącznika nadprądowego o przedstawionej charakterystyce i prądzie znamionowym 16 A, aby wyłącznik ten zapewniał w sieci TN-S skuteczną ochronę przeciwporażeniową przy uszkodzeniu?

Ilustracja do pytania
A. 18 A
B. 48 A
C. 80 A
D. 23 A
Odpowiedź 80 A jest poprawna, ponieważ wyłącznik nadprądowy o charakterystyce B zadziała w zakresie od 3 do 5 razy większym od prądu znamionowego. W przypadku wyłącznika o prądzie znamionowym 16 A, najmniejszy prąd potrzebny do zadziałania wynosi 48 A, co oznacza, że wyłącznik zadziała przy prądzie 48 A, ale aby zapewnić skuteczną ochronę przeciwporażeniową w sieci TN-S, konieczne jest, aby wyłącznik zadziałał przy maksymalnym prądzie, czyli 80 A. Oznacza to, że w sytuacjach awaryjnych, gdzie może wystąpić niebezpieczne uszkodzenie instalacji, wyłącznik ten zadziała, chroniąc osoby i sprzęt przed skutkami przepływu prądu. W praktyce, zastosowanie wyłączników nadprądowych o odpowiednich charakterystykach jest kluczowe dla bezpieczeństwa instalacji elektrycznych, a standardy, takie jak PN-EN 60947-2, regulują ich użycie w kontekście ochrony przed skutkami zwarć. Warto również zauważyć, że dobór odpowiednich wyłączników powinien być przeprowadzany przez wykwalifikowanych specjalistów, aby spełniały one wymagania ochrony przeciwporażeniowej.

Pytanie 4

Którego z poniższych pomiarów eksploatacyjnych instalacji oświetleniowej nie jest możliwe przeprowadzić przy użyciu typowego miernika uniwersalnego?

A. Napięcia w poszczególnych fazach
B. Rezystancji izolacji przewodów
C. Prądu, który jest pobierany przez odbiornik
D. Ciągłości przewodów ochronnych
Rezystancja izolacji przewodów jest kluczowym pomiarem w ocenie bezpieczeństwa instalacji elektrycznych i oświetleniowych. Typowe mierniki uniwersalne, takie jak multimetrowe, są przeznaczone głównie do pomiarów prądu, napięcia i oporu, jednak nie są wystarczające do pomiaru rezystancji izolacji. Pomiar ten wymaga zastosowania specjalistycznych urządzeń, takich jak megomierze, które generują znacznie wyższe napięcia (zazwyczaj w zakresie 250V, 500V lub 1000V) w celu oceny jakości izolacji. W praktyce, taki pomiar pozwala na wykrycie uszkodzeń izolacji, które mogą prowadzić do niebezpiecznych sytuacji, takich jak przebicia elektryczne. Normy takie jak PN-IEC 60364 podkreślają konieczność regularnego przeprowadzania pomiarów rezystancji izolacji, co jest niezbędne dla zapewnienia bezpieczeństwa użytkowników oraz trwałości instalacji. Przykładowo, w przypadku instalacji w obiektach publicznych, pomiar ten jest obligatoryjny, aby zapewnić spełnienie określonych standardów bezpieczeństwa elektrycznego.

Pytanie 5

Instalacja, w której zamontowano piec oporowy zawierający 3 grzałki o mocy 1 kW i napięciu 230 V każda, jest zasilana jednofazowo przewodem miedzianym o długości 45 m. Aby spadek napięcia \( \Delta U\% \) nie był większy niż 3%, do rozdzielniczy zasilającej powinien dochodzić przewód o przekroju nie mniejszym niż
$$ S = \frac{200 \cdot P \cdot l}{U_n^2 \cdot \Delta U_{\%} \cdot \gamma_{Cu}} $$
\( \gamma_{Cu} = 57 \, \text{m/} \Omega \, \text{mm}^2 \)

A. 1,5 mm²
B. 2,5 mm²
C. 4 mm²
D. 6 mm²
Twoja odpowiedź jest prawidłowa. Aby zapewnić, że spadek napięcia w instalacji nie przekroczy 3%, konieczne jest obliczenie minimalnego przekroju przewodu zasilającego. Używając wzoru S = (200 * P * l) / (Un² * ΔU% * γCu), podstawiamy wartości: moc (P) wynosi 3 kW (3 grzałki po 1 kW), długość przewodu (l) to 45 m, napięcie znamionowe (Un) to 230 V, a wartość ΔU% to 3%. Po obliczeniach otrzymujemy wynik około 5.25 mm². Zgodnie z normami oraz dobrymi praktykami w branży, zawsze należy stosować przewody o przekroju większym lub równym uzyskanym wartościom, aby zapewnić bezpieczeństwo i odpowiednią wydajność. W tym przypadku najbliższy większy standardowy przekrój to 6 mm². W praktyce, dobór odpowiedniego przekroju przewodu jest kluczowy dla unikania strat energii, przegrzewania oraz potencjalnych zagrożeń związanych z pożarami elektrycznymi.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

W jakim zakresie powinien znajdować się zmierzony rzeczywisty prąd różnicowy IΔN wyłącznika różnicowoprądowego typu AC w odniesieniu do jego wartości znamionowej, aby mógł być dopuszczony do użytkowania?

A. Od 0,5 IΔN do 1,2 IΔN
B. Od 0,3 IΔN do 1,0 IΔN
C. Od 0,5 IΔN do 1,0 IΔN
D. Od 0,3 IΔN do 0,8 IΔN
Zakresy prądów różnicowych, które są w niepoprawnych odpowiedziach, mogą powodować złe wnioski o tym, jak działają wyłączniki różnicowoprądowe. Odpowiedzi, które mówią o zakresach poniżej 0,5 IΔN, nie są dobre, bo mogą wywoływać fałszywe wyłączenia i stanowią zagrożenie dla ludzi. Wyłączniki są projektowane do działania w określonych warunkach, więc ich czułość musi być dopasowana do tego, co się dzieje w rzeczywistości. Na przykład, ustawienie na 0,3 IΔN może sprawić, że wyłącznik wyłączy się z powodu normalnych wahań prądu, a nie rzeczywistego zagrożenia. Z drugiej strony, za wysoki zakres, jak 1,2 IΔN, może stwarzać niebezpieczeństwo, bo nie uwzględnia, że ​​ochrona różnicowoprądowa ma za zadanie wykrywać małe prądy upływowe. Ważne, żeby użytkownicy wiedzieli, że wybór odpowiedniego wyłącznika różnicowoprądowego oraz zrozumienie jego parametrów jest kluczowe dla bezpieczeństwa, czy to w domach, czy w przemyśle.

Pytanie 9

Jakie wymagania muszą być spełnione podczas pomiaru rezystancji izolacyjnej w instalacji elektrycznej po wcześniejszym odłączeniu zasilania?

A. Włączone urządzenia do gniazd wtyczkowych, aktywne łączniki oświetleniowe, usunięte źródła światła
B. Wyłączone urządzenia z gniazd wtyczkowych, aktywne łączniki oświetleniowe, usunięte źródła światła
C. Włączone urządzenia do gniazd wtyczkowych, aktywne łączniki oświetleniowe, zamontowane źródła światła
D. Wyłączone urządzenia z gniazd wtyczkowych, aktywne łączniki oświetleniowe, zamontowane źródła światła
Prawidłowa odpowiedź wskazuje na konieczność wyłączenia odbiorników z gniazd wtyczkowych oraz wymontowania źródeł światła przed przystąpieniem do pomiaru rezystancji izolacji. To kluczowe kroki, które mają na celu zapewnienie bezpieczeństwa oraz dokładności pomiarów. W czasie testów rezystancji izolacji, włączenie odbiorników lub pozostawienie źródeł światła w obwodzie mogłoby prowadzić do błędnych wyników, które nie oddają rzeczywistego stanu izolacji. Przykładowo, podłączenie urządzeń może stworzyć drogę dla prądu, co zafałszuje pomiar rezystancji. W branży elektrycznej zaleca się, aby przed każdym pomiarem izolacji, upewnić się, że wszystkie urządzenia są odłączone, co jest zgodne z normą PN-EN 61557, która określa wymagania dotyczące pomiarów. Tylko w ten sposób można rzetelnie ocenić stan izolacji oraz wykryć ewentualne uszkodzenia, co jest kluczowe dla bezpieczeństwa użytkowników i integrności instalacji.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Ile wynosi wartość mocy wskazana przez watomierz przedstawiony na ilustracji?

Ilustracja do pytania
A. 1 000 W
B. 100 W
C. 50 W
D. 500 W
Wybór wartości mocy innej niż 500 W może wynikać z nieprawidłowej analizy danych dostępnych na watomierzu lub błędnego rozumienia zasad działania urządzeń elektrycznych. Odpowiedzi takie jak 50 W, 100 W czy 1 000 W mogłyby być interpretowane w kontekście niewłaściwej oceny rzeczywistego zużycia energii. Przykładowo, niektórzy mogą błędnie założyć, że wartość 50 W oznacza, iż urządzenie działa w trybie oszczędnym przy minimalnym obciążeniu, ignorując jednak, że w rzeczywistości to maksymalne obciążenie dla danego urządzenia. Podobnie, wartość 100 W może być mylona z typowym zużyciem małego urządzenia, podczas gdy rzeczywista wartość mocy może być znacznie wyższa. W przypadku wyboru 1 000 W, może to sugerować mylne przeświadczenie o wydajności urządzenia i jego zapotrzebowaniu na moc, co w rezultacie prowadzi do niewłaściwego projektowania instalacji elektrycznych oraz do zwiększonych kosztów eksploatacji. W praktyce, poprawne odczytywanie pomiarów mocy na watomierzu jest kluczowe dla efektywnego zarządzania energią oraz dla zgodności z normami bezpieczeństwa, a także dla optymalizacji kosztów związanych z użytkowaniem energii elektrycznej.

Pytanie 13

Jakie urządzenie, przy wykorzystaniu przekaźnika termicznego i stycznika, oferuje kompleksową ochronę przed zwarciem oraz przeciążeniem dla silnika trójfazowego o parametrach:
Pn = 5,5 kW, Un = 400/690 V?

A. Bezpiecznik typu aM
B. Bezpiecznik typu aR
C. Wyłącznik nadprądowy typu B
D. Wyłącznik nadprądowy typu Z
Bezpiecznik typu aR, mimo że jest powszechnie stosowany w obwodach zasilających, nie jest odpowiedni do zabezpieczenia silników trójfazowych. Bezpieczniki aR są przeznaczone głównie do ochrony obwodów urządzeń elektrycznych przed zwarciami, ale ich charakterystyka czasowo-prądowa nie jest dostosowana do długotrwałych prądów rozruchowych silników, które mogą przekraczać czterokrotnie ich nominalne wartości. Z tego powodu, bezpiecznik aR może zadziałać zbyt szybko w przypadku uruchamiania silnika, co prowadzi do niepotrzebnych przerw w pracy. Kolejnym niewłaściwym wyborem są bezpieczniki typu aM, które pomimo swojej poprawnej funkcji mogą nie zapewniać odpowiedniej ochrony w niektórych zastosowaniach. Wyłączniki nadprądowe typu B oraz Z również nie są zalecane do zabezpieczania silników trójfazowych, ponieważ ich krzywe zadziałania są zaprojektowane z myślą o standardowych obwodach i mogą nie reagować adekwatnie w sytuacjach, gdy silnik wymaga ochrony przed przeciążeniem. Warto zaznaczyć, że dobór zabezpieczeń wymaga analizy zarówno charakterystyki obciążenia, jak i specyfiki instalacji, co często jest pomijane przez osoby zajmujące się projektowaniem systemów elektrycznych. Niewłaściwy dobór zabezpieczeń może prowadzić do poważnych uszkodzeń sprzętu oraz wydłużenia czasu przestoju, co w dłuższej perspektywie negatywnie wpływa na efektywność operacyjną zakładu.

Pytanie 14

Na podstawie zamieszczonych w tabeli danych łożysk dobierz łożysko do silnika o średnicy wału d = 12 mm, średnicy wewnętrznej tarczy łożyskowej D = 37 mm i szerokości tarczy łożyskowej B = 12 mm.

SymbolWymiary podstawowe
d [mm]D [mm]B [mm]r [mm]
6700101530,1
62003090,6
6001122880,3
630137121
A. 6700
B. 6200
C. 6301
D. 6001
Odpowiedź 6301 jest prawidłowa, ponieważ dokładnie spełnia wszystkie wymagane wymiary dla danego zastosowania. Średnica wału o wartości 12 mm odpowiada średnicy otworu wewnętrznego łożyska 6301, który wynosi również 12 mm. Dodatkowo, średnica zewnętrzna tego łożyska wynosi 37 mm, co idealnie pasuje do średnicy wewnętrznej tarczy łożyskowej, a jego szerokość wynosząca 12 mm również jest zgodna z wymaganiami. W praktyce, dobór odpowiedniego łożyska jest kluczowy dla trwałości i niezawodności maszyn. Wybór łożyska zgodnego z wymiarami zapewnia optymalne przenoszenie obciążeń i minimalizuje zużycie. Zgodnie z międzynarodowymi standardami, właściwy dobór łożysko wpływa na efektywność działania silników i urządzeń, co często przekłada się na obniżenie kosztów eksploatacji oraz wydłużenie żywotności komponentów. W branży inżynieryjnej, stosowanie łożysk takich jak 6301 jest powszechne w silnikach elektrycznych, gdzie kluczowym aspektem jest redukcja tarcia, co z kolei zwiększa efektywność energetyczną.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Jakie oznaczenie stopnia ochrony powinna mieć obudowa urządzenia elektrycznego, które jest zainstalowane w pomieszczeniach o dużej wilgotności?

A. IP11
B. IP32
C. IP44
D. IP22
Oznaczenie stopnia ochrony IP44 wskazuje, że urządzenie elektryczne jest chronione przed ciałami stałymi o średnicy 1 mm oraz przed wodą, która może padać w dowolnym kierunku. To czyni je odpowiednim rozwiązaniem do stosowania w pomieszczeniach wilgotnych, takich jak łazienki czy kuchnie, gdzie występuje ryzyko kontaktu z wodą i wilgocią. Zgodnie z normą IEC 60529, IP44 zapewnia odpowiedni poziom ochrony, który minimalizuje ryzyko uszkodzeń związanych z wilgocią, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W praktyce, urządzenia takie jak oświetlenie zewnętrzne, gniazda elektryczne czy wyłączniki umieszczone w wilgotnych pomieszczeniach powinny posiadać tę klasę ochrony, aby zminimalizować ryzyko zwarcia elektrycznego oraz wypadków. Dobrą praktyką jest również regularne sprawdzanie stanu obudów i uszczelek, aby zapewnić ich ciągłą skuteczność ochrony przed wodą i zanieczyszczeniami.

Pytanie 17

Urządzenie oznaczone przedstawionym symbolem klasy ochronności można podłączyć do instalacji

Ilustracja do pytania
A. o obniżonym napięciu zasilania SELV lub PELV.
B. ze stykiem ochronnym.
C. bez przewodu ochronnego.
D. separowanej elektrycznie od linii zasilającej.
Zastanawiając się nad podłączaniem urządzeń elektrycznych, trzeba mieć na uwadze kilka ważnych rzeczy. Wydaje mi się, że nie do końca zrozumiałeś, jak działa klasa ochronności III. To, co napisałeś, sugeruje, że takie urządzenie powinno być odseparowane od zasilania, a to nie jest do końca prawda. Klasa III dotyczy niskonapięciowych systemów, które wcale nie potrzebują takiej separacji, jak to wskazujesz. Dodatkowo, jeśli podłączysz je do instalacji z ochronnym stykem, to może być niebezpieczne, bo klasa III działa na niskich napięciach, więc nie ma potrzeby dodatkowych zabezpieczeń. Warto pamiętać, że źle jest mylić te klasy ochronności i nie rozumieć, kiedy stosować styki ochronne. W każdym razie, jeśli chcesz bezpiecznie korzystać z takich urządzeń, trzeba trzymać się standardów jak IEC 61140.

Pytanie 18

Który z wymienionych rozwiązań powinien być zastosowany w warsztacie remontowym, aby zapewnić podstawową ochronę przed porażeniem prądem elektrycznym?

A. Miejscowe połączenia wyrównawcze
B. Separacja elektryczna
C. Wyłączniki różnicowoprądowe
D. Obudowy i osłony
Miejscowe połączenia wyrównawcze, separacja elektryczna oraz wyłączniki różnicowoprądowe to metody ochrony przed porażeniem prądem, które są istotne, jednak nie stanowią podstawowego zabezpieczenia w kontekście warsztatu remontowego. Miejscowe połączenia wyrównawcze są stosowane w celu eliminacji różnic potencjałów między elementami instalacji, co może być istotne w sytuacjach, gdy różne części instalacji mogą mieć inne napięcia. To podejście nie eliminuje jednak bezpośredniego ryzyka kontaktu z elementami pod napięciem. Separacja elektryczna, z kolei, polega na oddzieleniu obwodów elektrycznych od innych obwodów, co również nie wystarcza jako główna forma ochrony, gdyż nie zabezpiecza przed przypadkowym dotknięciem żywych części. Wyłączniki różnicowoprądowe, choć bardzo ważne w systemach zabezpieczeń elektrycznych, działają jako dodatkowa warstwa ochrony, a nie jako podstawowe zabezpieczenie. Ich funkcja polega na szybkim odcięciu zasilania w przypadku wykrycia różnicy między prądem wpływającym a prądem wypływającym, co nie zastąpi fizycznej ochrony urządzeń poprzez obudowy i osłony. Te metody powinny być traktowane jako uzupełnienie, a nie substytut dla podstawowego zabezpieczenia, jakim są obudowy i osłony, które chronią przed bezpośrednim dotykiem.

Pytanie 19

Jak wymiana uzwojenia pierwotnego na inne, wykonane z drutów nawojowych o podwójnym przekroju i tej samej liczbie zwojów, wpłynie na działanie transformatora, przy zachowanym uzwojeniu wtórnym?

A. Zwiększy się efektywność transformatora
B. Zmaleje napięcie na końcówkach uzwojenia wtórnego
C. Zredukuje się moc pobierana z transformatora
D. Wzrasta napięcie na końcówkach uzwojenia wtórnego
Wymiana uzwojenia pierwotnego na druty o większym przekroju, przy tej samej liczbie zwojów, wpływa korzystnie na sprawność transformatora. Zwiększenie przekroju drutów prowadzi do obniżenia oporu elektrycznego uzwojenia, co w efekcie zmniejsza straty mocy na skutek efektu Joule'a (straty I²R). To oznacza, że przy tej samej wartości prądu, straty ciepła w uzwojeniu pierwotnym będą mniejsze, co przekłada się na wyższą sprawność całego urządzenia. W praktyce, zastosowanie drutów o większym przekroju jest zgodne z zasadami inżynierii, gdzie dąży się do minimalizacji strat energii oraz poprawy efektywności energetycznej urządzeń. W przemyśle energetycznym, efektywność transformatorów jest kluczowa, ponieważ ma bezpośredni wpływ na zużycie energii i koszty operacyjne. Na przykład, w elektrowniach i stacjach transformacyjnych stosuje się takie rozwiązania, aby zminimalizować straty energii i poprawić parametry pracy urządzeń.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Podczas uruchamiania silnika pralki wyzwala się od razu wyłącznik różnicowoprądowy. Aby zidentyfikować problem, zmierzono rezystancję pomiędzy wszystkimi zaciskami uzwojeń silnika a obudową, uzyskując dla każdego pomiaru wartość w okolicach 7 kΩ. Co można wnioskować na podstawie tych pomiarów?

A. Jedno z uzwojeń odłączyło się od tabliczki zaciskowej
B. Jeden z zacisków silnika może być poluzowany
C. Izolacja uzwojeń silnika jest zawilgocona
D. Pojawiła się przerwa w jednym z uzwojeń silnika
Rozważając inne możliwe przyczyny zadziałania wyłącznika różnicowoprądowego, warto zauważyć, że twierdzenie o luzie w zaciskach silnika jest nieuzasadnione. Jeśli jeden z zacisków byłby nieprawidłowo podłączony, prawdopodobnie rezystancja między uzwojeniem a obudową byłaby znacznie niższa, a nie w okolicy 7 kΩ. Ponadto, przerwa w uzwojeniu silnika również nie tłumaczy niskiej rezystancji, ponieważ przerwa w uzwojeniu skutkowałaby brakiem rezystancji. Z kolei domniemanie, że jedno z uzwojeń odłączyło się od tabliczki zaciskowej, jest mało prawdopodobne, biorąc pod uwagę, że zadziałanie wyłącznika różnicowoprądowego sugeruje obecność przewodzenia prądu, a nie jego braku. Te błędne interpretacje mogą prowadzić do nieprawidłowej diagnostyki, co w efekcie może skutkować dalszymi uszkodzeniami sprzętu lub zagrożeniem dla użytkownika. Kluczowe jest zrozumienie, że prawidłowe diagnozowanie usterek w urządzeniach elektrycznych wymaga nie tylko znajomości teorii, ale też umiejętności praktycznych w interpretacji wyników pomiarów oraz rozpoznawania przyczyn, które mogą nie być oczywiste na pierwszy rzut oka.

Pytanie 22

Na wyjściu układu zasilacza przedstawionego na schemacie zaobserwowano przebieg napięcia pokazany na rysunku. Oznacza to, że

Ilustracja do pytania
A. uszkodzona jest dioda, a kondensator jest sprawny.
B. układ pracuje prawidłowo.
C. dioda jest sprawna, a uszkodzony jest kondensator.
D. uszkodzona jest dioda i kondensator.
Dioda w prostowniku jednopołówkowym pełni kluczową rolę, pozwalając prądowi przepływać tylko w jednym kierunku. W przedstawionym schemacie, przebieg napięcia na wyjściu układu wskazuje na prawidłowe działanie diody, ponieważ prąd przepływa tylko w jednej połówce cyklu. Jednakże, jeżeli obserwujemy pulsujące napięcie, zamiast wygładzonego napięcia stałego, sugeruje to uszkodzenie kondensatora, który powinien pełnić funkcję filtrowania. Kondensator w układzie zasilacza jest odpowiedzialny za redukcję tętnień napięcia i wygładzanie szczytów. Praktyczne zastosowanie tego układu można zauważyć w zasilaczach do urządzeń elektronicznych, gdzie stabilne napięcie jest kluczowe dla poprawnego działania. W przypadkach, gdy kondensator jest uszkodzony, może to prowadzić do wahań napięcia, co może uszkodzić podłączone urządzenia. Dobrą praktyką jest regularne monitorowanie stanu kondensatorów w układach zasilających, aby zapewnić ich niezawodność oraz wydajność.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Najtrudniejsze okoliczności gaszenia łuku elektrycznego występują w obwodzie o charakterze

A. rezystancyjnym, przy przepływie prądu przemiennego
B. rezystancyjnym, przy przepływie prądu stałego
C. indukcyjnym, przy przepływie prądu sinusoidalnego
D. indukcyjnym, przy przepływie prądu stałego
W obwodach o charakterze indukcyjnym, szczególnie przy przepływie prądu stałego, występują trudności związane z gaszeniem łuku elektrycznego, ze względu na charakterystyki reaktancji indukcyjnej. Łuk elektryczny generowany w takich obwodach ma tendencję do utrzymywania się, ponieważ prąd stały nie zmienia kierunku i nie przechodzi przez zero, co jest kluczowym momentem ułatwiającym gaszenie łuku. W praktyce, w systemach elektroenergetycznych, takie zjawisko jest szczególnie istotne przy zabezpieczeniach, takich jak wyłączniki elektromagnetyczne, które muszą być odpowiednio zaprojektowane, aby skutecznie radzić sobie z długotrwałym łukiem. Dobry przykład zastosowania tej wiedzy można znaleźć w projektowaniu rozdzielnic elektrycznych, gdzie należy uwzględnić wpływ indukcyjności na dobór odpowiednich zabezpieczeń. W zgodzie z normami IEC oraz dobrymi praktykami inżynieryjnymi, ważne jest, aby inżynierowie projektując systemy elektryczne brali pod uwagę te zjawiska, co przekłada się na bezpieczeństwo i niezawodność obsługiwanych instalacji.

Pytanie 25

Przedstawione w tabeli wyniki pomiarów rezystancji uzwojeń i izolacji silnika trójfazowego wskazują na

Pomiar między zaciskami silnikaRezystancja
U1 – U232 Ω
V1 – V232 Ω
W1 – W232 Ω
U1 – V10
V1 – W15 MΩ
U1 – W15 MΩ
U1 – PE0
V1 – PE0
W1 – PE5 MΩ
A. zwarcie międzyzwojowe w uzwojeniu W1 - W2.
B. przerwę w uzwojeniu U1 - U2.
C. uszkodzoną izolację w uzwojeniach U1 - U2 oraz V1 - V2.
D. zwarcie między uzwojeniami U1 - U2 oraz W1 - W2.
Wyniki pomiarów rezystancji izolacji uzwojeń U1 - U2 oraz V1 - V2, które wynoszą 0 Ω, jednoznacznie wskazują na uszkodzenie izolacji tych uzwojeń. Zgodnie z normami branżowymi, rezystancja izolacji powinna być na poziomie minimum 1 MΩ, a wartość zerowa oznacza bezpośrednie zwarcie z obwodem ochronnym (PE). Uszkodzona izolacja może prowadzić do niebezpiecznych sytuacji, w tym do porażenia prądem oraz uszkodzenia urządzeń. W praktyce, przed uruchomieniem silników trójfazowych, zawsze należy przeprowadzać pomiary rezystancji izolacji, aby zapewnić ich prawidłowe funkcjonowanie oraz bezpieczeństwo. W przypadku stwierdzenia niskiej rezystancji, należy przeprowadzić dokładne oględziny oraz ewentualną wymianę uszkodzonego uzwojenia. Regularne monitorowanie tych parametrów jest kluczowe dla minimalizacji ryzyka awarii i zapewnienia długoterminowej niezawodności sprzętu.

Pytanie 26

Silnik obcowzbudny prądu stałego, którego schemat układu połączeń zamieszczono na rysunku, pracuje w warunkach znamionowego zasilania i obciążenia. Po zwiększeniu rezystancji regulatora w obwodzie twornika nastąpi

Ilustracja do pytania
A. zwiększenie prędkości obrotowej i zwiększenie prądu pobieranego z sieci.
B. zwiększenie prędkości obrotowej i zwiększenie strat w obwodzie twornika.
C. zmniejszenie prędkości obrotowej i zmniejszenie sprawności silnika.
D. zmniejszenie prędkości obrotowej i zmniejszenie prądu wzbudzenia.
Zwiększenie rezystancji w obwodzie twornika silnika obcowzbudnego prądu stałego prowadzi do wzrostu spadku napięcia na rezystorze, co w rezultacie obniża napięcie na tworniku. W kontekście działania silników elektrycznych, obniżenie napięcia na tworniku wpływa na prędkość obrotową silnika, ponieważ prędkość ta jest bezpośrednio związana z napięciem przyłożonym do twornika. Zmniejszenie napięcia skutkuje obniżeniem siły elektromotorycznej, co przekłada się na spadek prędkości obrotowej. Dodatkowo, wzrost rezystancji zwiększa straty mocy w formie ciepła na rezystorze, co prowadzi do zmniejszenia sprawności silnika. W praktyce, w zastosowaniach inżynieryjnych i przemysłowych, kontrola prędkości obrotowej silników jest kluczowym aspektem, który można osiągnąć poprzez odpowiednie regulowanie rezystancji w obwodzie. Dobrze zaprojektowane układy regulacji prędkości, zgodne z normami branżowymi, powinny uwzględniać efektywność energetyczną i minimalizować straty, co jest istotne dla zrównoważonego rozwoju przemysłu.

Pytanie 27

Dla urządzenia zasilanego z instalacji elektrycznej trójfazowej o napięciu 400 V, maksymalna moc pobierana wynosi 10 kW. Jaką minimalną wartość prądu znamionowego zabezpieczenia przedlicznikowego należy wybrać, zakładając, że odbiorniki mają charakterystyki rezystancyjne i pomijając selektywność zabezpieczeń?

A. 16 A
B. 10 A
C. 20 A
D. 25 A
Wybór złej wartości prądu znamionowego to dość powszechny problem. Często wynika to z braku zrozumienia podstawowych zasad obliczeń związanych z mocą w instalacjach trójfazowych. Odpowiedzi typu 10 A albo 20 A są niepoprawne, bo nie uwzględniają tego, jak wygląda rzeczywisty pobór mocy i jak to się łączy z mocą, napięciem i prądem. W przypadku 10 kW, prąd powinien być przynajmniej 14,43 A. Wybierając zabezpieczenie 10 A, narażasz instalację na naprawdę spore ryzyko przeciążenia. Z kolei wybór 20 A nie jest najlepszy, bo musi chronić przed nadmiarem prądu, ale nie być zbyt wysoki, żeby nie uszkodzić instalacji. Musisz pamiętać, że przy doborze zabezpieczeń warto kierować się mocą, normami i standardami, które mówią, jak to powinno wyglądać. Pomijanie tych zasad prowadzi do ryzykownych sytuacji z instalacjami elektrycznymi.

Pytanie 28

Jakie uszkodzenie lub defekt można wykryć podczas przeglądu instalacji elektrycznej w budynku mieszkalnym?

A. Przekroczenie dopuszczalnego czasu zadziałania wyłącznika ochronnego
B. Pogorszenie się stanu mechanicznego złącz i połączeń
C. Brak ciągłości połączeń
D. Pogorszenie się stanu izolacji
Pogorszenie się stanu mechanicznego złącz i połączeń jest kluczowym elementem, który można zlokalizować podczas oględzin instalacji elektrycznej. Wszelkie uszkodzenia mechaniczne złącz mogą prowadzić do zwiększonego oporu, co z kolei może skutkować przegrzewaniem się złącz oraz potencjalnymi awariami systemu. W praktyce, obserwacja stanu mechanicznego złącz pozwala na wczesne wykrywanie problemów, które mogą prowadzić do niebezpiecznych sytuacji, takich jak zwarcia czy pożary. Na przykład, złącza, które wykazują oznaki korozji lub zużycia, powinny być wymieniane, aby zapewnić bezpieczeństwo i niezawodność instalacji elektrycznej. W branży elektrycznej istnieją określone standardy, takie jak normy IEC 60364, które zalecają regularne przeglądy oraz konserwację elementów instalacji, co jest kluczowe dla zapewnienia ich prawidłowego funkcjonowania i bezpieczeństwa użytkowników. Przeprowadzanie systematycznych inspekcji złącz i połączeń jest zatem nie tylko zalecane, ale wręcz konieczne w kontekście utrzymania instalacji elektrycznej w dobrym stanie.

Pytanie 29

W jakim przypadku w instalacji elektrycznej niskiego napięcia powinno się wykonać pomiary kontrolne (sprawdzenie ciągłości przewodów, pomiary rezystancji izolacji, weryfikacja samoczynnego wyłączania napięcia)?

A. Po przeciążeniu urządzenia
B. Po naprawie zabezpieczeń
C. Po modernizacji instalacji
D. Po zadziałaniu zabezpieczeń
Prawidłowa odpowiedź "Po modernizacji instalacji" jest zgodna z przyjętymi standardami i dobrymi praktykami w zakresie bezpieczeństwa instalacji elektrycznych. Modernizacja instalacji, w tym zmiany w układzie, dodanie nowych obwodów lub urządzeń oraz wymiana komponentów, może wprowadzić nowe ryzyko. Dlatego po każdej modernizacji konieczne jest przeprowadzenie pomiarów kontrolnych, aby upewnić się, że instalacja spełnia wymogi norm i jest bezpieczna w użytkowaniu. Pomiary te obejmują sprawdzenie ciągłości przewodów, co jest niezbędne do zapewnienia, że nie ma przerw w obwodach, oraz pomiary rezystancji izolacji, które pomagają ocenić stan izolacji przewodów. Dodatkowo, sprawdzenie samoczynnego wyłączania napięcia jest kluczowe dla ochrony przed porażeniem elektrycznym. Przykładem zastosowania tej wiedzy jest sytuacja, w której po zainstalowaniu nowych gniazdek lub oświetlenia, technik elektryk przeprowadza te kontrole, aby zagwarantować, że wszelkie zmiany nie wpłynęły negatywnie na bezpieczeństwo instalacji.

Pytanie 30

Na rysunku 1 przedstawiono schemat prostownika trójpulsowego w układzie podstawowym, na rysunku 2 przebiegi czasowe napięć fazowych zasilających ten prostownik oraz przebieg napięcia na obciążeniu rezystancyjnym Ud. Jaką modyfikację wprowadzono do układu prostownika, aby uzyskać kształt napięcia wyprostowanego Ud jak na rysunku?

Ilustracja do pytania
A. Szeregowo z obciążeniem R dołączono dławik o dużej indukcyjności.
B. Szeregowo z obciążeniem R dołączono kondensator o dużej pojemności.
C. Równolegle z obciążeniem R dołączono dławik o dużej indukcyjności.
D. Równolegle z obciążeniem R dołączono kondensator o dużej pojemności.
Odpowiedź jest poprawna, ponieważ równoległe dołączenie kondensatora o dużej pojemności do obciążenia R pozwala na wygładzenie napięcia wyprostowanego U<sub>d</sub>. Kondensator działa jako filtr, gromadząc energię z pulsujących przebiegów napięcia podczas szczytów, a następnie oddając ją podczas spadków, co redukuje tętnienia. W praktyce, w systemach zasilania, takie kondensatory są powszechnie stosowane do stabilizacji napięcia wyjściowego, co jest istotne w aplikacjach wymagających ciągłości zasilania, takich jak zasilacze dla urządzeń elektronicznych. Dbanie o odpowiednią pojemność kondensatora jest kluczowe, gdyż zbyt mały kondensator może nie być w stanie skutecznie wygładzić napięcia. Standardowe praktyki zalecają również wykonanie analizy impedancji obciążenia oraz charakterystyki filtracji w celu optymalizacji pracy układu.

Pytanie 31

Podczas pracy urządzeń napędowych, oględziny nie obejmują oceny

A. wskazań aparatury kontrolno-pomiarowej
B. stanu osłon części wirujących
C. stanu szczotek
D. poziomu drgań
Odpowiedź "stanu szczotek" jest poprawna, ponieważ podczas oględzin urządzeń napędowych w czasie ich pracy koncentrujemy się na aspektach, które bezpośrednio wpływają na ich funkcjonowanie oraz bezpieczeństwo. Stan szczotek, które są zwykle elementami wykonawczymi w silnikach elektrycznych, nie jest kontrolowany podczas pracy, gdyż ich ocena wymaga zatrzymania urządzenia. Oględziny skupiają się na monitorowaniu parametrów pracy, takich jak poziom drgań, które mogą wskazywać na nieprawidłowości w pracy łożysk lub wirników, oraz na wskazaniach aparatury kontrolno-pomiarowej, które dostarczają kluczowych informacji o stanie technicznym urządzenia. Przykładem praktycznym są procedury dotyczące diagnostyki i konserwacji silników elektrycznych, gdzie regularne sprawdzanie poziomu drgań i temperatury ma na celu zapobieganie awariom oraz optymalizację pracy maszyn. Zgodnie z normami ISO 10816, monitorowanie drgań jest niezbędne dla zapewnienia ciągłości produkcji oraz minimalizacji kosztów związanych z naprawami i przestojami.

Pytanie 32

Na podstawie informacji przedstawionych na zamieszczonym na rysunku ekranie urządzenia pomiarowego ocen stan techniczny wyłącznika różnicowoprądowego 40 A/0,03 A.

Ilustracja do pytania
A. Aparat jest sprawny, właściwa wartość prądu zadziałania.
B. Aparat jest uszkodzony, niewłaściwa wartość prądu zadziałania.
C. Aparat jest uszkodzony, zbyt duża wartość rezystancji przewodu ochronnego RE.
D. Aparat jest sprawny, miernik ustawiono w nieodpowiedni dla badanego RCD tryb.
Wybór innej odpowiedzi często wynika z mylnego postrzegania działania wyłączników różnicowoprądowych i tego, jak je testować. Moim zdaniem, niektórzy mogą myśleć, że aparat działa poprawnie, gdyż mają fałszywe wrażenie, że tylko wartość prądu w normie świadczy o działaniu RCD. Ale w rzeczywistości, jeśli zadziałanie pokazuje tylko 9,0 mA, a nie wymagane 30 mA, to coś jest nie tak z detekcją. Kolejna rzecz, której ludzie często nie rozumieją, to że za duża rezystancja przewodu ochronnego nie jest przyczyną słabego działania RCD. To RCD powinno wyłączyć zasilanie, gdy wykryje jakąkolwiek różnicę prądów. A jeszcze jedna nieprawidłowa teza mówi, że aparat jest sprawny, co jest sprzeczne z główną zasadą, że RCD ma chronić nas przed prądem i wyłączać obwód w niebezpiecznych sytuacjach. Zrozumienie tych rzeczy jest naprawdę kluczowe, gdy chcemy dobrze korzystać z zabezpieczeń elektrycznych i czuć się bezpiecznie w instalacjach elektrycznych.

Pytanie 33

Który z wymienionych środków ochrony przeciwporażeniowej przedstawiony jest na schemacie?

Ilustracja do pytania
A. Izolacja stanowiska.
B. Wysokoczuły wyłącznik różnicowoprądowy.
C. Separacja elektryczna obwodu zasilającego więcej niż jeden odbiornik.
D. Umieszczenie części czynnych poza zasięgiem ręki.
Separacja elektryczna obwodu zasilającego więcej niż jeden odbiornik jest kluczowym rozwiązaniem w kontekście bezpieczeństwa elektrycznego. W praktyce oznacza to, że każdy odbiornik zasilany jest z osobnego obwodu, co minimalizuje ryzyko porażenia prądem w przypadku awarii. Przykładowo, w budynkach użyteczności publicznej, takich jak szpitale czy biura, oddzielne obwody dla urządzeń medycznych lub komputerowych zapewniają, że awaria jednego z nich nie wpływa na działanie pozostałych. Zgodnie z normą PN-EN 61140, separacja elektryczna jest jedną z podstawowych metod ochrony przed porażeniem prądem elektrycznym. W praktyce realizuje się ją poprzez zastosowanie osobnych obwodów, co również ułatwia identyfikację i lokalizację ewentualnych usterek. Warto zwrócić uwagę, że odpowiednie projektowanie takich systemów jest zgodne z dobrymi praktykami inżynieryjnymi, co przyczynia się do zwiększenia bezpieczeństwa użytkowników. Dbanie o takie rozwiązania jest nie tylko wymogiem prawnym, ale także etycznym obowiązkiem inżynierów elektryków.

Pytanie 34

Jaka może być przyczyna pojawienia się ujemnych wartości w przebiegu napięcia na odbiorniku o charakterze rezystancyjno-indukcyjnym zasilanym z prostownika, którego schemat przedstawiono na rysunku?

Ilustracja do pytania
A. Uszkodzenie diody.
B. Zmiana parametrów odbiornika.
C. Nieprawidłowa praca układu sterującego.
D. Uszkodzenie jednego z tyrystorów.
Kiedy dioda w mostku prostowniczym przestaje działać, to może być powód, dla którego na odbiorniku rezystancyjno-indukcyjnym zaczynają się pokazywać ujemne napięcia. Te diody są naprawdę ważne, bo kierują prąd w odpowiednią stronę, zamieniając napięcie przemienne na stałe. Jak jedna z nich się zepsuje, to prąd może zacząć płynąć w niewłaściwym kierunku i wtedy nagle na wyjściu dostajemy ujemne wartości. Żeby uniknąć takich sytuacji, warto regularnie sprawdzać stan diod i całego układu. Jak zauważasz jakiekolwiek dziwne zachowanie, jak te ujemne napięcia, lepiej od razu to zdiagnozować i wymienić uszkodzone diody. To pomoże przywrócić normalne działanie układu, co moim zdaniem jest super ważne.

Pytanie 35

Ile minimum osób powinno zajmować się pracami w warunkach szczególnego zagrożenia?

A. Jedna osoba
B. Cztery osoby
C. Dwie osoby
D. Trzy osoby
Odpowiedź, że co najmniej dwie osoby powinny wykonywać prace w warunkach szczególnego zagrożenia, jest zgodna z zasadami bezpieczeństwa i higieny pracy (BHP). W praktyce oznacza to, że w sytuacjach stwarzających ryzyko dla zdrowia lub życia, konieczne jest, aby jedna osoba mogła nie tylko wykonać dane zadanie, ale także zapewnić wsparcie oraz interwencję w przypadku nagłego wypadku. Taka zasada jest szczególnie ważna w środowiskach, gdzie występują czynniki niebezpieczne, takie jak substancje chemiczne, prace na wysokości czy w zamkniętych przestrzeniach. W odniesieniu do standardów OSHA (Occupational Safety and Health Administration) oraz normy ISO 45001, które dotyczą zarządzania bezpieczeństwem i zdrowiem w pracy, posiadanie co najmniej dwóch pracowników przy takich zadaniach jest kluczowe dla zapewnienia odpowiedniej reakcji na potencjalne zagrożenia. Przykładem może być sytuacja, w której jeden pracownik może doznać kontuzji lub stracić przytomność, a drugi będzie w stanie wezwać pomoc lub udzielić pierwszej pomocy, co może uratować życie. Dwuosobowa obsada w trudnych warunkach stanowi także dodatkowy element kontroli i bezpieczeństwa, co jest zalecane w wielu branżach, takich jak budownictwo czy przemysł chemiczny.

Pytanie 36

Jakiego typu obudowę ma urządzenie elektryczne oznaczone na tabliczce znamionowej symbolem IP001?

A. Głębinową
B. Zamkniętą
C. Wodoszczelną
D. Otwartą
Obudowa oznaczona symbolem IP001 wskazuje, że urządzenie ma otwartą konstrukcję, co oznacza, że nie jest przystosowane do ochrony przed wnikaniem wody ani ciał stałych. W standardzie IP (Ingress Protection) pierwsza cyfra, w tym przypadku '0', oznacza brak ochrony przed ciałami stałymi, zaś druga cyfra, '1', oznacza ograniczoną ochronę przed wodą. W praktyce oznacza to, że urządzenie jest przeznaczone do zastosowania w suchych pomieszczeniach, gdzie nie ma ryzyka kontaktu z wodą. Tego typu obudowy są często stosowane w urządzeniach elektronicznych, które nie wymagają specjalnej ochrony, takich jak niektóre modele komputerów, sprzętu biurowego lub urządzeń domowych. Zrozumienie klasyfikacji IP jest kluczowe dla odpowiedniego doboru urządzeń do zastosowań w różnych warunkach otoczenia oraz dla zapewnienia ich długotrwałego i bezpiecznego działania.

Pytanie 37

Kontrole instalacji elektrycznej w obiektach użyteczności publicznej powinny być przeprowadzane nie rzadziej niż co

A. 5 lat
B. 2 lata
C. 4 lata
D. 3 lata
Wybierając okres krótszy niż 5 lat na przeglądy instalacji elektrycznej, można narazić bezpieczeństwo użytkowników obiektu oraz naruszyć przepisy prawa. Odpowiedzi sugerujące przeglądy co 3, 2 lub 4 lata mogą wynikać z błędnego zrozumienia przepisów dotyczących konserwacji instalacji. W rzeczywistości, krótsze interwały mogą prowadzić do niepotrzebnych kosztów i obciążeń administracyjnych, a jednocześnie niekoniecznie zwiększą poziom bezpieczeństwa. Warto zauważyć, że w przypadku wielu budynków, które są używane sporadycznie lub nie narażone na intensywne użytkowanie, przegląd co 5 lat jest wystarczający i zgodny z wymaganiami norm. Warto również pamiętać, że przegląd instalacji nie jest tylko formalnością, ale powinien obejmować szczegółowe badania techniczne. Użytkownicy mogą mylnie sądzić, że częstsze przeglądy są zawsze lepsze, co nie jest zgodne z zasadą efektywności kosztowej. Zbyt częste kontrole mogą być uciążliwe i generować dodatkowe wydatki, które niekoniecznie przynoszą wymierne korzyści w zakresie bezpieczeństwa. Kluczowe jest zrozumienie, że przeglądy powinny być zgodne z rzeczywistym stanem technicznym instalacji oraz intensywnością jej użytkowania, a nie narzucane bezrefleksyjnie.

Pytanie 38

Jak często, według podanych w tabeli i zalecanych przez Prawo Budowlane czasookresów, należy wykonywać pomiary okresowe skuteczności ochrony przeciwporażeniowej i rezystancji izolacji instalacji elektrycznych w szkołach?

Zalecana częstotliwość wykonywania okresowych badań sprawności technicznej instalacji elektrycznych
w zależności od warunków środowiskowych
Lp.Rodzaj pomieszczeniaPomiar skuteczności ochrony
przeciwporażeniowej
(nie rzadziej niż):
Pomiar rezystancji izolacji
(nie rzadziej niż):
1O wyziewach żrących1 rok1 rok
2Zagrożonych wybuchem1 rok1 rok
3Otwarta przestrzeń1 rok5 lat
4Wilgotne i bardzo wilgotne
(o wilgotności względnej 75-100%)
1 rok5 lat
5Gorące (temperatura powyżej 35 °C)1 rok5 lat
6Zagrożone pożarem5 lat1 rok
7Stwarzające zagrożenie dla ludzi
(ZL I, ZL II, ZL III)
5 lat1 rok
8Zapylone5 lat5 lat


Pomiar skuteczności ochrony
przeciwporażeniowej
(nie rzadziej niż):
Pomiar rezystancji izolacji
(nie rzadziej niż):
A1 rok1 rok
B1 rok5 lat
C5 lat1 rok
D5 lat5 lat
A. A.
B. D.
C. C.
D. B.
Odpowiedź C jest prawidłowa, ponieważ zgodnie z obowiązującymi przepisami prawa budowlanego oraz standardami technicznymi, pomiary skuteczności ochrony przeciwporażeniowej w szkołach powinny być przeprowadzane co 5 lat, natomiast pomiary rezystancji izolacji wymagają okresowego sprawdzania co rok. Takie podejście ma na celu zapewnienie bezpieczeństwa użytkowników obiektów edukacyjnych, gdzie prawidłowa ochrona przed porażeniem prądem elektrycznym jest kluczowa. Przykładowo, w przypadku awarii systemów ochronnych, konsekwencje mogą być nie tylko materialne, ale przede wszystkim zdrowotne, zagrażające życiu uczniów i personelu. Regularne kontrole pozwalają na wczesne wykrycie potencjalnych usterek, co z kolei przyczynia się do zmniejszenia ryzyka wypadków. Warto zwrócić uwagę na standardy, takie jak PN-IEC 60364, które szczegółowo regulują wymagania dotyczące instalacji elektrycznych oraz ich okresowej konserwacji. Przestrzeganie tych zasad jest nie tylko obowiązkiem, ale również najlepszą praktyką w zarządzaniu bezpieczeństwem elektrycznym w obiektach edukacyjnych.

Pytanie 39

Obroty silnika indukcyjnego klatkowego obciążonego nominalnym momentem znacząco spadły. Jakie mogą być tego przyczyny?

A. Zadziałanie przekaźnika termicznego
B. Zbyt wysoka temperatura uzwojeń
C. Przepalony bezpiecznik topikowy w jednej z faz
D. Zwarcie w obwodzie wirnika
Zadziałanie przekaźnika termicznego zazwyczaj wskazuje na nadmierne nagrzewanie się silnika, co w konsekwencji prowadzi do wyłączenia go w celu ochrony przed uszkodzeniem. Chociaż taki stan rzeczy może również skutkować zmniejszeniem obrotów, to nie jest on pierwotną przyczyną opisanego scenariusza, gdyż w przypadku zadziałania przekaźnika termicznego silnik zwykle zatrzymuje się całkowicie, a nie zmienia jedynie obroty. Z kolei zwarcie w obwodzie wirnika powoduje poważne uszkodzenia, a nie tylko spadek obrotów. Tego rodzaju usterka prowadzi do natychmiastowego wyłączenia silnika z powodu nadmiernego prądu, a nie delikatnego spadku wydajności. Ponadto, zbyt wysoka temperatura uzwojeń jest zwykle wynikiem niewłaściwego chłodzenia lub nadmiernego obciążenia, a nie bezpośrednią przyczyną nagłego spadku obrotów, co jest istotnym zagadnieniem w kontekście eksploatacji silników. Typowe błędy myślowe w tym przypadku polegają na myleniu symptomów z przyczynami; zrozumienie mechanizmu działania silnika indukcyjnego oraz jego zabezpieczeń jest kluczowe dla prawidłowej diagnostyki i utrzymania urządzeń w ruchu. Dlatego istotne jest stosowanie się do standardów eksploatacyjnych oraz okresowe przeglądy instalacji.

Pytanie 40

Kontrolę instalacji elektrycznej, znajdującej się w pomieszczeniach o wysokiej wilgotności (75÷100%), w zakresie efektywności ochrony przed porażeniem elektrycznym należy przeprowadzać co najmniej raz na

A. 1 rok
B. 4 lata
C. 2 lata
D. 3 lata
Instalacje elektryczne w pomieszczeniach wilgotnych, takich jak łazienki czy piwnice, wymagają szczególnej uwagi w kontekście ochrony przeciwporażeniowej. Wilgotność powietrza w takich miejscach może prowadzić do zwiększonego ryzyka porażenia prądem, dlatego też zgodnie z obowiązującymi normami i zaleceniami, takie instalacje powinny być poddawane kontroli co najmniej raz w roku. Regularne przeglądy pozwalają na wczesne wykrywanie potencjalnych usterek, takich jak uszkodzenia izolacji, niewłaściwe zabezpieczenia czy korozja elementów instalacji. Przykładem może być kontrola stanu gniazdek elektrycznych, które w miejscach o wysokiej wilgotności narażone są na działanie wody, co może prowadzić do zwarć. Warto również zwrócić uwagę na zastosowanie odpowiednich zabezpieczeń, takich jak różnicowoprądowe wyłączniki zabezpieczające (RCD), które mogą istotnie zwiększyć poziom bezpieczeństwa. Przestrzeganie tych zasad jest zgodne z normami, takimi jak PN-IEC 60364, które określają wymagania dotyczące instalacji elektrycznych w miejscach narażonych na wilgoć.