Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 7 grudnia 2025 09:45
  • Data zakończenia: 7 grudnia 2025 10:37

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Urządzenie, którego dane techniczne przedstawiono w tabeli,

Ciecz roboczaOlej mineralny
WydajnośćDm3/min47 przy n=1450 min-1, p=1 MPa
Ciśnienie na wlocieMPa-0,02 (podciśnienie) do 0,5 (nadciśnienie)
Ciśnienie na wylocieMPamax. 10
Ciśnienie przeciekówMPamax. 0,2
Moment obrotowyNmmax. 235
Prędkość obrotowaobr/min1 000 do 1 800
Optymalna temperatura pracyK313÷338
Filtracjaμm16
A. otwiera i zamyka przepływ oleju.
B. steruje kierunkiem przepływu oleju.
C. utrzymuje stałe ciśnienie niezależnie od kierunku przepływu oleju.
D. wytwarza strumień oleju w układach i urządzeniach hydraulicznych.
Wybrana odpowiedź jest poprawna, ponieważ urządzenie opisane w tabeli to pompa hydrauliczna, która ma na celu wytwarzanie strumienia oleju w układach hydraulicznych. Wydajność na poziomie 47 dm³/min oraz ciśnienie robocze 1 MPa wskazują na typowe parametry działania pomp hydraulicznych. W praktyce, pompy te są kluczowe w wielu zastosowaniach, takich jak systemy hydrauliczne w maszynach budowlanych, pojazdach, a także w przemyśle. Dobrą praktyką jest regularne monitorowanie parametrów pracy pompy, co pozwala na wczesne wykrywanie usterek i zapewnia długotrwałą efektywność systemu. Ponadto, zgodnie z normami hydraulicznymi, ważne jest, aby pompy były dobierane do konkretnych aplikacji, co zwiększa ich wydajność i bezpieczeństwo działania.

Pytanie 2

Do czego służy narzędzie przedstawione na rysunku?

Ilustracja do pytania
A. Gięcia przewodów elektrycznych.
B. Usuwania izolacji z przewodów elektrycznych.
C. Łączenia przewodów hydraulicznych.
D. Cięcia przewodów pneumatycznych.
Narzędzie przedstawione na rysunku to nożyk do przewodów z tworzyw sztucznych, które są powszechnie wykorzystywane w instalacjach pneumatycznych. Jego konstrukcja umożliwia precyzyjne cięcie różnych typów przewodów pneumatycznych, co jest niezwykle istotne w branży automatyki i pneumatyki. Przewody te często stosowane są w systemach transportu sprężonego powietrza, gdzie ich integralność i odpowiednie dopasowanie mają kluczowe znaczenie dla sprawności całego układu. Dzięki zastosowaniu tego narzędzia, możliwe jest uzyskanie gładkich krawędzi bez uszkodzenia struktury materiału, co minimalizuje ryzyko przecieków i awarii. Warto zwrócić uwagę, że zgodnie z najlepszymi praktykami w branży, cięcie przewodów powinno być przeprowadzane w sposób zabezpieczający przed odkształceniem ich końców, co zapewnia prawidłowe działanie systemów pneumatycznych. Dobrej jakości nożyk do przewodów jest niezbędnym wyposażeniem każdego technika zajmującego się instalacjami pneumatycznymi.

Pytanie 3

Jaki aparat elektryczny jest wykorzystywany do ochrony silnika indukcyjnego przed przeciążeniem?

A. Wyłącznik nadmiarowy
B. Przekaźnik termobimetalowy
C. Stycznik elektromagnetyczny
D. Wyłącznik różnicowoprądowy
Przekaźnik termobimetalowy jest urządzeniem, które działa na zasadzie różnicy temperatur pomiędzy dwoma metalami o różnych współczynnikach rozszerzalności. Jego głównym zastosowaniem jest ochrona silników indukcyjnych przed przeciążeniem i przegrzaniem. W momencie, gdy prąd płynący przez silnik przekracza ustaloną wartość, przekaźnik odcina zasilanie, co zapobiega uszkodzeniu silnika. Przekaźniki termobimetalowe są często stosowane w obwodach napędowych, gdzie silniki są narażone na zmienne warunki pracy. Dobrą praktyką jest ich instalacja w połączeniu z wyłącznikami automatycznymi, co zapewnia dodatkową ochronę. Zgodnie z normami IEC 60947-4-1, przekaźniki te muszą spełniać określone wymagania zabezpieczeń przeciążeniowych, co czyni je wiarygodnym rozwiązaniem w aplikacjach przemysłowych.

Pytanie 4

Jakie parametry mierzy prądnica tachometryczna?

A. napięcie elektryczne
B. prędkość obrotową
C. prędkość liniową
D. naprężenia mechaniczne
Prądnica tachometryczna jest urządzeniem służącym do pomiaru prędkości obrotowej. Działa na zasadzie generowania napięcia elektrycznego proporcjonalnego do prędkości obrotowej wału lub innego elementu mechanicznego. W praktyce, prądnicę tachometryczną wykorzystuje się w wielu zastosowaniach, takich jak systemy sterowania silnikami, automatyka przemysłowa czy w urządzeniach pomiarowych. Dzięki swojej precyzji, prądnice tachometryczne są standardem w pomiarach prędkości obrotowej, a ich stosowanie jest zgodne z najlepszymi praktykami inżynieryjnymi. W kontekście automatyzacji, umożliwiają one monitorowanie i regulację procesów, co przekłada się na zwiększenie efektywności i bezpieczeństwa pracy maszyn. Przykładem mogą być systemy, w których prędkość obrotowa silnika musi być precyzyjnie kontrolowana, aby zapewnić optymalne warunki pracy.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Wskaż tabliczkę znamionową urządzenia napędowego przeznaczonego do zasilania napięciem stałym.

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Tabliczka znamionowa urządzenia napędowego zasilanego napięciem stałym, oznaczona jako C, zawiera kluczowe informacje dotyczące parametrów operacyjnych silnika. Napis 'D.C. SERIES MOTOR' jasno wskazuje, że jest to silnik prądu stałego, co jest istotne w kontekście doboru urządzeń do określonych aplikacji przemysłowych. Silniki prądu stałego charakteryzują się lepszą regulacją prędkości oraz momentu obrotowego w porównaniu do silników prądu przemiennego, co czyni je idealnym wyborem w zastosowaniach wymagających precyzyjnego sterowania. W przemyśle automatyki i robotyki, silniki te są często wykorzystywane w napędach, gdzie wymagana jest zmiana prędkości czy kierunku obrotów. Ponadto, znajomość rodzajów zasilania jest kluczowa dla bezpieczeństwa i efektywności energetycznej w projektowaniu systemów napędowych. Zgodnie z normami IEC, każda tabliczka znamionowa powinna zawierać informacje o napięciu, częstotliwości oraz typie prądu, co pozwala na prawidłowe użytkowanie i serwisowanie urządzeń.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Podczas funkcjonowania urządzenia zaobserwowano nasilenie hałasu, spowodowane przez łożysko toczne. Odpowiednią metodą naprawy maszyny może być

A. wymiana całego łożyska
B. zmniejszenie luzów łożyska
C. wymiana osłony łożyska
D. zmniejszenie nadmiaru smaru w łożysku
Wymiana całego łożyska jest odpowiednim rozwiązaniem w przypadku stwierdzenia zwiększonego hałasu, gdyż najczęściej oznacza to, że łożysko uległo uszkodzeniu lub zużyciu. W praktyce, łożyska toczne są zaprojektowane do pracy z minimalnym luzem i w odpowiednio smarowanych warunkach. Gdy zauważamy hałas, to zazwyczaj jest skutkiem odkształceń materiałowych lub uszkodzenia elementów tocznych, co może prowadzić do dalszych uszkodzeń mechanicznych w obrębie układu napędowego. W takim przypadku wymiana całego łożyska eliminuje ryzyko wystąpienia kolejnych awarii w przyszłości. Dobrą praktyką w branży jest również przeprowadzanie analizy przyczyn źródłowych usterki, co pozwala na zrozumienie, dlaczego łożysko uległo uszkodzeniu, co może być związane z niewłaściwym smarowaniem, luzami, czy też eksploatacją w warunkach przekraczających specyfikacje producenta. Wymiana łożyska powinna być przeprowadzana zgodnie z obowiązującymi standardami, takimi jak ISO 281, które określają metodologię doboru i oceny łożysk, co zwiększa niezawodność całego urządzenia.

Pytanie 10

Układ mechatroniczny jest zbudowany z elementu wykonawczego funkcjonującego w specjalnej osłonie, pod wysokim ciśnieniem roboczym, oraz z komponentów sterujących połączonych wzmocnionymi przewodami pneumatycznymi, które są mocowane za pomocą złączy wtykowych. Osoba obsługująca ten układ może być szczególnie narażona na uderzenie

A. tłoczyskiem siłownika
B. przerwanym przewodem pneumatycznym
C. siłownikiem
D. nieprawidłowo zamocowanym przewodem pneumatycznym
Wybór odpowiedzi dotyczącej "rozerwanego przewodu pneumatycznego" nie jest właściwy, ponieważ chociaż uszkodzony przewód może prowadzić do niebezpiecznych sytuacji, nie jest on bezpośrednią przyczyną uderzenia. W praktyce takie przypadki są zazwyczaj wynikiem wcześniejszych problemów z instalacją i konserwacją, a nie bezpośrednio związane z eksploatacją układu. Z kolei siłownik jako element wykonawczy, mimo że może generować znaczne siły, stanowi bardziej kontrolowany element układu, który w odpowiednio zaprojektowanych systemach nie powinien stwarzać zagrożenia dla użytkowników. Tłoczysko siłownika również nie jest przyczyną zagrożenia, o ile system jest odpowiednio zabezpieczony. Zastosowanie standardów takich jak ISO 12100, dotyczących bezpieczeństwa maszyn, podkreśla znaczenie analizy ryzyka oraz dostosowania środków ochronnych, aby zapobiec sytuacjom, w których elementy ruchome mogłyby stać się zagrożeniem dla osób w ich otoczeniu. Wiele osób mylnie utożsamia ogólne ryzyko związane z uszkodzeniem elementów układu z bezpośrednim zagrożeniem, co prowadzi do niewłaściwych wniosków. Kluczowe jest zrozumienie, że to zazwyczaj niewłaściwe działania związane z instalacją i konserwacją, a nie same elementy, stają się źródłem zagrożeń.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Jakie wymiary biorą pod uwagę dopuszczalne odchylenia w wykonaniu elementu mechanicznego?

A. Rzeczywiste
B. Graniczne
C. Jednostronne
D. Nominalne
Wybór odpowiedzi, która nie odnosi się do wymiarów granicznych, może prowadzić do nieporozumień w zakresie tolerancji wykonania elementów mechanicznych. Odpowiedź 'Rzeczywiste' sugeruje skupienie na wymiarach, które są mierzone po zakończeniu produkcji. To podejście, choć istotne, nie definiuje dopuszczalnych błędów wykonania, a jedynie rzeczywiste wyniki pomiarów, które mogą być poza akceptowalnymi limitami, co prowadzi do problemów z jakością. Odpowiedź 'Nominalne' odnosi się do idealnych wymiarów projektowych, które są podstawą do określenia wymiarów granicznych, ale nie stanowią one o tolerancjach wykonania. Z kolei 'Jednostronne' sugeruje podejście do tolerancji, które nie jest standardowo stosowane w produkcie, ponieważ rzeczywiste aplikacje często wymagają tolerancji dwustronnych dla zapewnienia pełnej funkcjonalności i bezpieczeństwa komponentów. Poprzez takie myślenie, można nieświadomie wprowadzać błędy do procesu projektowania i produkcji, prowadząc do nieprzewidzianych błędów montażowych oraz awarii mechanicznych. Dlatego kluczowe jest zrozumienie, że tolerancje graniczne odgrywają fundamentalną rolę w inżynierii i produkcji, a ich pominięcie może skutkować krytycznymi problemami operacyjnymi.

Pytanie 13

Określ prawidłową kolejność dokręcania śrub lub nakrętek części podzespołu, przedstawionego na rysunku.

Ilustracja do pytania
A. 1, 6, 2, 3, 4, 5
B. 5, 1, 3, 4, 6, 2
C. 2, 5, 3, 6, 4, 1
D. 6, 2, 4, 3, 5, 1
Prawidłowa kolejność dokręcania śrub lub nakrętek w podzespole jest kluczowa dla zapewnienia równomiernego dociśnięcia części, co może zapobiec ich odkształceniu oraz zapewnić stabilność i bezpieczeństwo konstrukcji. W przypadku dokręcania elementów, takich jak bloki silników czy podzespoły mechaniczne, stosuje się zazwyczaj schemat krzyżowy, który polega na naprzemiennym dociąganiu śrub w różnych miejscach. W tym wypadku zaczynamy od śruby 2, następnie przechodzimy do przeciwległej śruby 5, co pozwala na zminimalizowanie naprężeń wewnętrznych. Kolejność 3, 6, 4, 1 uzupełnia proces, rozkładając siłę dociągu w sposób optymalny. Taka praktyka jest zgodna z zaleceniami inżynieryjnymi i standardami, które postulują, aby równomiernie rozłożyć siłę dociągu w celu zwiększenia żywotności i niezawodności podzespołów. Znajomość tych zasad jest niezbędna w pracach mechanicznych i montażowych, aby uniknąć problemów z uszczelnieniem, odkształceniem elementów czy ich awarią.

Pytanie 14

Aby uzyskać precyzyjny pomiar natężenia prądu elektrycznego w systemach mechatronicznych, należy zastosować amperomierz

A. z jak najmniejszą rezystancją wewnętrzną
B. z rezystancją wewnętrzną o dowolnej wielkości, ponieważ nie wpływa ona na rezultaty pomiaru
C. z jak największą rezystancją wewnętrzną
D. z rezystancją wewnętrzną równą rezystancji obciążenia
Wybór amperomierza z rezystancją wewnętrzną równą rezystancji odbiornika jest mylny, ponieważ takie podejście prowadzi do sytuacji, w której amperomierz nie będzie w stanie dokładnie odzwierciedlić rzeczywistego natężenia prądu płynącego przez odbiornik. W rzeczywistości, jeśli rezystancja wewnętrzna amperomierza jest porównywalna z rezystancją odbiornika, to znaczna część prądu popłynie przez amperomierz, co zniekształci pomiar. Kolejnym błędem jest przekonanie, że rezystancja wewnętrzna amperomierza może być dowolna i nie wpływa na wynik pomiaru. Tego typu myślenie nie uwzględnia fundamentalnego faktu, że przyrządy pomiarowe zawsze wpływają na badany obwód. Zastosowanie amperomierza z dużą rezystancją wewnętrzną w obwodzie o niskiej impedancji spowoduje, że pomiar będzie znacząco zaniżony, a wyniki staną się nieprzydatne. Przykładem mogą być układy zasilające silniki elektryczne, gdzie niewłaściwy dobór amperomierza może prowadzić do nieprawidłowej analizy stanu pracy silnika, a w konsekwencji do jego uszkodzenia. W praktyce, aby uniknąć takich problemów, należy kierować się zasadą, że amperomierze powinny być projektowane z jak najmniejszą rezystancją wewnętrzną, co zapewnia ich prawidłowe działanie i wiarygodność wyników.

Pytanie 15

Na podstawie widoku płytki drukowanej i schematu ideowego wskaż, który element należy zamontować na płytce drukowanej w miejscu oznaczonym C3.

Ilustracja do pytania
A. Element 4.
B. Element 3.
C. Element 2.
D. Element 1.
Zgadza się, że element 2 to kondensator elektrolityczny o pojemności 100uF. To pasuje do tego, co widzimy w schemacie na miejscu oznaczonym C3. Wiesz, dobór odpowiednich komponentów w obwodach jest naprawdę ważny, bo od tego zależy, jak całość będzie działać. Kondensatory mają do odegrania sporo ról, zwłaszcza w filtracji sygnałów i stabilizacji napięcia. Gdybyśmy użyli kondensatora o innej pojemności, to mogłoby to wprowadzać jakieś zakłócenia w pracy urządzenia. Dlatego warto być dokładnym w projektowaniu i trzymać się specyfikacji, które podają producenci. Używanie komponentów zgodnych z normami, takimi jak IPC-2221, to dobry pomysł, bo to pomaga uniknąć problemów. No i pamiętajmy o montażu kondensatorów – jeśli podłączymy je źle, to możemy stracić ich wydajność. Dlatego warto mieć pod ręką dobrą dokumentację i umieć czytać schematy.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Jakie zasilanie należy zastosować do silnika, którego tabliczka znamionowa została przedstawiona na fotografii?

Ilustracja do pytania
A. Jednofazowe, 400 V
B. Napięcie stałe, 84 V
C. Trójfazowe, 400 V
D. Trójfazowe, 230 V
Odpowiedź "Trójfazowe, 400 V" jest poprawna, ponieważ na tabliczce znamionowej silnika znajduje się oznaczenie "3~ 400 V". Oznacza to, że silnik zbudowany jest do pracy w systemie trójfazowym z napięciem wynoszącym 400 V. Silniki trójfazowe są powszechnie stosowane w przemyśle ze względu na ich wyższą efektywność oraz mniejsze straty energii w porównaniu do silników jednofazowych. W zastosowaniach przemysłowych, gdzie wymagane są większe moce, zasilanie trójfazowe jest standardem, ponieważ pozwala na równomierne obciążenie linii zasilających oraz umożliwia lepsze wykorzystanie mocy. Warto również zwrócić uwagę na to, że przy podłączeniu silnika do zasilania, które nie odpowiada jego wymaganiom, może dojść do uszkodzenia wirnika, przegrzewania silnika lub w ogóle braku jego działania. Dlatego tak ważne jest, aby przy wyborze zasilania kierować się oznaczeniami na tabliczkach znamionowych oraz stosować się do branżowych standardów, aby zapewnić bezpieczeństwo i efektywność pracy urządzeń.

Pytanie 18

Na podstawie fragmentu instrukcji serwisowej sprężarki tłokowej wskaż, która z wymienionych czynności konserwacyjnych powinna być wykonywana najczęściej.

CzynnośćCykle
Filtr ssącykontrolowanieco tydzień
czyszczenieco 60 godzin eksploatacji
wymianazależnie od potrzeb (co najmniej raz w roku)
Kontrola stanu olejucodziennie przed uruchomieniem
Wymiana olejupierwsza wymianapo 40 godzinach eksploatacji
kolejna wymianaraz w roku
Spust kondensatuco najmniej raz w tygodniu
Czyszczenie zaworu zwrotnegoco najmniej raz w roku
Pasek klinowykontrola naprężeniaco tydzień
wymianaw przypadku zużycia
A. Wymiana paska klinowego.
B. Czyszczenie zaworu zwrotnego.
C. Wymiana filtra ssącego.
D. Kontrola stanu oleju.
Kontrola stanu oleju jest kluczowym elementem konserwacji sprężarek tłokowych. Regularne sprawdzanie poziomu i jakości oleju zapewnia prawidłowe smarowanie wszystkich ruchomych części, co wpływa na ich trwałość oraz efektywność energetyczną urządzenia. Niekontrolowanie stanu oleju może prowadzić do zwiększonego tarcia, a w konsekwencji do poważnych uszkodzeń silnika. Zgodnie z zaleceniami producentów, kontrola oleju powinna odbywać się codziennie przed rozpoczęciem pracy sprężarki. Dodatkowo, w przypadku wykrycia zanieczyszczeń oleju, jego wymiana powinna być przeprowadzona natychmiastowo, aby zapobiec dalszym uszkodzeniom. Przykładowo, w warunkach przemysłowych, gdzie sprężarki pracują non-stop, regularna kontrola oleju staje się kluczowym elementem strategii utrzymania ruchu, co przyczynia się do mniejszych kosztów eksploatacji oraz dłuższej żywotności maszyn.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

W miarę wzrostu współczynnika lepkości oleju używanego w systemach hydraulicznych, jakie zmiany zachodzą w lepkości oleju?

A. w mniejszym zakresie przy zmianach temperatury
B. w mniejszym zakresie przy zmianach ciśnienia
C. w szerszym zakresie przy zmianach ciśnienia
D. w szerszym zakresie przy zmianach temperatury
Odpowiedź jest prawidłowa, ponieważ współczynnik lepkości oleju hydraulicznego ma kluczowe znaczenie dla jego właściwości w zmiennych warunkach eksploatacyjnych. Im wyższy współczynnik lepkości, tym bardziej stabilne są właściwości oleju w zakresie temperatury. W praktyce oznacza to, że oleje o wysokiej lepkości wykazują mniejsze zmiany lepkości w odpowiedzi na zmiany temperatury, co jest szczególnie istotne w układach hydraulicznych, gdzie stabilność parametrów roboczych jest kluczowa dla efektywności i bezpieczeństwa. Na przykład, w systemach hydraulicznych stosowanych w maszynach budowlanych, oleje o odpowiednio dobranym współczynniku lepkości zapewniają nie tylko efektywne przenoszenie mocy, ale także minimalizują zużycie komponentów. Dobór oleju hydraulicznego zgodnie z normami branżowymi, takimi jak ISO 6743, jest istotny dla zapewnienia optymalnych właściwości smarnych i wydajności systemu. Przy odpowiednim doborze lepkości można osiągnąć lepszą wydajność energetyczną, zmniejszyć ryzyko przegrzania oraz przedłużyć żywotność układów hydraulicznych.

Pytanie 21

W urządzeniu zmierzchowym fotorezystor pełni rolę

A. ochrony prądowej systemu
B. przełącznika instalacyjnego systemu
C. czujnika poziomu światła
D. wskaźnika działania systemu
Fotorezystor, jako element wyłącznika zmierzchowego, pełni kluczową rolę czujnika natężenia oświetlenia, co oznacza, że jego zadaniem jest monitorowanie poziomu jasności otoczenia. Działa na zasadzie zmiany oporu elektrycznego w zależności od natężenia światła padającego na jego powierzchnię. W sytuacjach, gdy natężenie światła spada poniżej określonego progu, fotorezystor przekazuje sygnał do układu sterującego, co powoduje włączenie odpowiednich urządzeń, takich jak lampy zewnętrzne. Zastosowanie fotorezystorów w wyłącznikach zmierzchowych jest powszechne w systemach automatyzacji, co przyczynia się do oszczędności energii oraz poprawy komfortu użytkowania. Przykłady zastosowań obejmują oświetlenie uliczne, które automatycznie włącza się po zachodzie słońca oraz oświetlenie ogrodów, które działa na zasadzie detekcji zmierzchu. W branży elektrycznej standardy, takie jak IEC 61000, podkreślają znaczenie stosowania odpowiednich elementów detekcyjnych w instalacjach elektrycznych, co potwierdza rolę fotorezystora jako efektywnego czujnika natężenia oświetlenia.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Dławienie zaworów dławiąco-zwrotnych przedstawionych na schemacie ustawiono odpowiednio
1V1 – 50% i 1V2 - 100%. Określ prędkość wysuwania tłoczyska A1 przyjmując, że 0% oznacza całkowite dławienie, 100% oznacza brak dławienia.

Ilustracja do pytania
A. Cztery razy większa niż wsuwania.
B. Równa prędkości wsuwania.
C. Dwa razy mniejsza niż wsuwania.
D. Dwa razy większa niż wsuwania.
Wiele osób może błędnie sądzić, że prędkość wysuwania tłoczyska jest równa prędkości wsuwania lub, że jest mniejsza niż ta prędkość. To wynik niepełnego zrozumienia działania zaworów dławiających oraz ich wpływu na przepływ oleju. Odpowiedzi sugerujące, że prędkość wysuwania jest równa prędkości wsuwania, ignorują fakt, że podczas wsuwania tłoczyska zawór 1V1 dławienie ogranicza przepływ oleju o 50%. To ograniczenie skutkuje wolniejszym ruchem tłoczyska. Podobnie, twierdzenie, że prędkość wysuwania jest mniejsza niż prędkość wsuwania, jest rażącym błędem, ponieważ w rzeczywistości, z uwagi na pełny przepływ oleju podczas wysuwania (brak dławienia w zaworze 1V2), tłoczysko będzie poruszać się szybciej. Typowym błędem myślowym jest pomijanie wpływu ustawień zaworów na dynamikę systemu hydraulicznego. Dlatego tak ważne jest, aby dokładnie analizować każdy składnik systemu hydraulicznego oraz jego ustawienia, aby móc prawidłowo ocenić ich wpływ na efektywność działania całości. Wiedza ta jest fundamentalna w kontekście projektowania i eksploatacji systemów hydraulicznych, a niepoprawne interpretacje mogą prowadzić do poważnych błędów w praktyce inżynieryjnej.

Pytanie 25

Aby zrealizować lutowanie na płytce drukowanej, konieczne jest użycie stacji lutowniczej oraz

A. obcinacze i odsysacz
B. lampy UV i szczypce
C. lampy UV i odsysacz
D. obcinacze i szczypce
Odpowiedź 'obcinacze i szczypce' jest prawidłowa, ponieważ obydwa te narzędzia są niezbędne w procesie lutowania na płytkach drukowanych. Obcinacze służą do precyzyjnego przycinania nadmiaru nogi elementów elektronicznych po ich zamontowaniu, co ma kluczowe znaczenie dla estetyki oraz funkcjonalności płytki. Z kolei szczypce umożliwiają odpowiednie chwytanie i manipulowanie drobnymi komponentami, co jest ważne podczas montażu oraz lutowania w trudno dostępnych miejscach. Zastosowanie tych narzędzi jest zgodne z dobrymi praktykami w inżynierii elektronicznej, które podkreślają znaczenie precyzyjnego i estetycznego wykonania połączeń lutowanych, co przekłada się na niezawodność i długowieczność urządzeń elektronicznych. Warto również pamiętać o standardach IPC, które definiują zalecenia dotyczące lutowania i obróbki komponentów na płytkach, co czyni użycie obcinaczy i szczypców kluczowym elementem w procesie produkcji elektroniki.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Funkcją czujnika hallotronowego w urządzeniach do monitorowania i pomiarów jest detekcja

A. zmian wartości parametrów pola magnetycznego
B. zmian wartości momentów skręcających
C. wewnętrznych naprężeń
D. oporu przepływu płynów
Czujnik hallotronowy jest urządzeniem, które działa na zasadzie wykrywania zmian wartości parametrów pola magnetycznego. Jego działanie opiera się na efekcie Halle, który polega na generowaniu napięcia poprzecznego w przewodniku, gdy znajduje się on w zewnętrznym polu magnetycznym. W praktyce, czujniki te są szeroko stosowane w różnych aplikacjach, takich jak automatyka przemysłowa, pojazdy elektryczne oraz systemy zabezpieczeń. Na przykład, w automatyce przemysłowej mogą być używane do pomiaru pozycji wałów i położenia elementów ruchomych, zapewniając precyzyjne informacje zwrotne. Zgodnie z normami branżowymi, jak IEC 60947, czujniki hallotronowe powinny być stosowane w środowisku, w którym wymagana jest wysoka niezawodność działania oraz odporność na zakłócenia elektromagnetyczne. Ich stosowanie w nowoczesnych systemach kontrolnych pozwala na optymalizację procesów oraz zwiększenie bezpieczeństwa operacji. Warto również zauważyć, że czujniki te są niezwykle wszechstronne i mogą być używane w różnych konfiguracjach, co czyni je nieocenionym narzędziem w inżynierii mechanicznej i elektrycznej.

Pytanie 28

Wskaż kod barwny rezystora o rezystancji 26 kΩ.

KolorWartośćMnożnikTolerancja
1 pasek2 pasek3 pasek4 pasek
brak---± 20 %
srebrny--10-2 Ω± 10 %
złoty--10-1 Ω± 5 %
czarny-0100 Ω-
brązowy11101 Ω± 1 %
czerwony22102 Ω± 2 %
pomarańczowy33103 Ω-
żółty44104 Ω-
zielony55105 Ω± 0,5 %
niebieski66106 Ω± 0,25 %
fioletowy77107 Ω± 0,1 %
szary88108 Ω± 0,05 %
biały99109 Ω-
A. brązowy, zielony, pomarańczowy, żółty.
B. czerwony, niebieski, pomarańczowy, żółty.
C. żółty, szary, pomarańczowy, żółty.
D. pomarańczowy, fioletowy, pomarańczowy, żółty.
Kod barwny dla rezystora 26 kΩ wygląda tak: 'czerwony' dla 2, 'niebieski' dla 6, a 'pomarańczowy' to mnożnik, czyli 10^3. Tak więc mamy 26 x 10^3 Ω. Zrozumienie tych kodów jest naprawdę ważne w elektronice, bo pozwala szybko sprawdzić wartość rezystora bez multimetru. W praktyce, umiejętność szybkiego rozpoznawania wartości komponentów to coś, co się przydaje, szczególnie gdy robimy prototypy czy naprawiamy różne urządzenia. Dobrze jest też pamiętać o tolerancji, czyli tym, jak bardzo realna wartość może różnić się od tej nominalnej. W sytuacjach, kiedy dokładność ma duże znaczenie, odpowiednia tolerancja może decydować o tym, czy wszystko działa, jak powinno. Dlatego znajomość tych kodów to podstawa w nauce elektroniki.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Próba włączenia napędu z prawidłowo działającym silnikiem trójfazowym za każdym razem powoduje włączenie wyłącznika instalacyjnego. Jakie działanie może potencjalnie rozwiązać ten problem?

A. Zmiana kolejności faz
B. Odłączenie uziemienia silnika
C. Podłączenie kondensatora rozruchowego
D. Zastosowanie wyłącznika instalacyjnego zwłocznego
Zastosowanie wyłącznika instalacyjnego zwłocznego to rozwiązanie, które pozwala na bezpieczne użytkowanie urządzeń z silnikiem trójfazowym, zwłaszcza w sytuacjach, gdy przy rozruchu silnika występują chwilowe przeciążenia. Wyłącznik zwłoczny działa na zasadzie odroczenia zadziałania na krótki okres, co pozwala na rozruch silnika bez ryzyka natychmiastowego wyłączenia z powodu chwilowego wzrostu prądu. W praktyce, tego rodzaju wyłączniki są często stosowane w instalacjach przemysłowych, gdzie silniki mogą doświadczać większych obciążeń przy starcie. Ponadto, takie wyłączniki zgodne są z normami bezpieczeństwa, które zalecają stosowanie urządzeń chroniących przed przeciążeniem. Należy pamiętać, że w sytuacji, gdy silnik jest sprawny, a problemem jest tylko zbyt duży prąd rozruchowy, ważne jest, aby dobrać odpowiedni wyłącznik, który zminimalizuje ryzyko fałszywych alarmów oraz zapewni ciągłość pracy maszyny. W praktyce, instalatorzy powinni również zwracać uwagę na charakterystykę pracy silnika oraz jego zastosowanie, aby dobrać odpowiedni wyłącznik zwłoczny.

Pytanie 31

Jakie ciśnienie w barach odpowiada 1 500 mmHg, przy założeniu, że 1 bar = 100 000 Pa, a 1 mmHg = 133,4 Pa?

A. 2,001 bar
B. 4,001 bar
C. 3,001 bar
D. 5,001 bar
Przeliczanie ciśnienia z mmHg na bary to dość prosta sprawa, ale trzeba pamiętać o kilku rzeczach. Wiesz, 1 mmHg to 133,4 Pa, a 1 bar to 100 000 Pa. Jak chcesz to obliczyć dla 1500 mmHg, to najpierw mnożysz: 1500 mmHg razy 133,4 Pa/mmHg, co daje 200100 Pa. Potem dzielisz tą wartość przez 100 000 Pa/bar, żeby dostać bary, czyli 200100 Pa podzielone przez 100 000 Pa/bar równa się 2,001 bar. To jest mega ważne, bo w inżynierii chemicznej czy meteorologii takie przeliczenia są w zasadzie na porządku dziennym. Jeśli projektujesz coś, co wymaga konkretnego ciśnienia, jak na przykład system hydrauliczny, to musisz wiedzieć, jak to przeliczać, żeby wszystko działało jak należy.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jakie metody wykorzystuje się do produkcji prętów?

A. odlewanie
B. tłoczenie
C. wytłaczanie
D. walcowanie
Walcowanie jest procesem obróbki plastycznej, który polega na redukcji grubości materiału przez jego przetaczanie pomiędzy dwoma walcami. Technika ta jest szeroko stosowana w produkcji prętów, ponieważ pozwala na uzyskanie odpowiednich właściwości mechanicznych oraz wymiarowych. Walcowanie może być przeprowadzane na gorąco lub na zimno, co wpływa na strukturę mikro oraz mechaniczne właściwości końcowego produktu. Dzięki walcowaniu, pręty charakteryzują się jednorodnością materiałową oraz lepszą jakością powierzchni, co jest niezbędne w wielu zastosowaniach inżynieryjnych, takich jak budownictwo czy przemysł motoryzacyjny. W branży istnieją także normy, takie jak EN 10025, które określają wymagania dotyczące stali walcowanej, co dodatkowo podkreśla znaczenie tej metody w produkcji. Walcowanie jest procesem efektywnym, który przyczynia się do obniżenia kosztów produkcji oraz zwiększenia wydajności, co czyni tę metodę jedną z najpopularniejszych w obróbce metali.

Pytanie 34

Na ilustracji przedstawiono

Ilustracja do pytania
A. tranzystor unipolarny.
B. transoptor szczelinowy.
C. fotorezystor.
D. mostek prostowniczy.
Transoptor szczelinowy to element elektroniczny, który jest kluczowy w wielu zastosowaniach automatyki oraz systemów sterowania. Jego konstrukcja, która obejmuje szczelinę pomiędzy dwoma komponentami, umożliwia optyczne przekazywanie sygnału, co jest nieocenione w aplikacjach, gdzie izolacja galwaniczna jest wymagana. Na zdjęciu widoczny transoptor pozwala na detekcję obecności obiektów, co jest istotne w systemach pomiarowych i automatyzacji. Zastosowanie transoptorów szczelinowych obejmuje m.in. systemy bezpieczeństwa, gdzie mogą one wykrywać przeszkody w ruchu, oraz w interfejsach pomiędzy różnymi poziomami napięcia, co zapobiega uszkodzeniom komponentów elektronicznych. Stosowanie transoptorów szczelinowych jest zgodne z normami branżowymi, które zalecają stosowanie tego typu elementów w przypadku komunikacji między układami o różnych potencjałach elektrycznych, co minimalizuje ryzyko uszkodzeń spowodowanych przepięciami. Oprócz tego, ich zastosowanie w optoelektronice jest szerokie, co czyni je wszechstronnymi i efektywnymi komponentami w nowoczesnych systemach elektronicznych.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Wskaż prawidłowy plan montażu zespołu tarczy zapadki przedstawionej na rysunku.

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Przy udzielaniu odpowiedzi, która nie jest prawidłowa, istotne jest zrozumienie, dlaczego wybrane podejście nie spełnia kryteriów dotyczących montażu zespołu tarczy zapadki. Często błędy w wyborze niewłaściwego planu montażu wynikają z niedostatecznej analizy schematów oraz nieuwzględnienia specyfikacji technicznych. W przypadku odpowiedzi, która została uznana za błędną, mogło pojawić się przekonanie, że kolejność montażu elementów jest mniej istotna, co jest mylnym założeniem. Niewłaściwe rozmieszczenie elementów może prowadzić do niewłaściwego funkcjonowania całego zespołu, a w skrajnych przypadkach do uszkodzenia komponentów. Ponadto, niektóre odpowiedzi mogą sugerować ignorowanie standardów jakości, które określają procedury montażowe oraz kontrolę jakości w procesach produkcyjnych. Przykładowo, w przemyśle motoryzacyjnym, gdzie montaż tarczy zapadki jest kluczowy, błędne podejście do montażu może skutkować poważnymi konsekwencjami dla bezpieczeństwa pojazdu. Takie myślenie prowadzi również do typowych błędów, jak zbytnie skupienie się na pojedynczym elemencie montażu, a nie na całości systemu, co jest fundamentalnym błędem w podejściu inżynieryjnym. Znajomość standardowych praktyk oraz umiejętność ich zastosowania w praktyce są niezbędne do efektywnego montażu i zapewnienia trwałości oraz niezawodności działania zespołów mechanicznych.

Pytanie 38

Jeśli na tłok siłownika o powierzchni S = 0,003 m2 działa ciśnienie czynnika wynoszące 2 MPa, to jaka jest siła działająca na tłok?

A. 12 kN
B. 2 kN
C. 6 kN
D. 9 kN
Aby obliczyć siłę naporu działającą na tłok siłownika, należy skorzystać ze wzoru F = p * S, gdzie F to siła, p to ciśnienie, a S to powierzchnia przekroju tłoka. W naszym przypadku ciśnienie p wynosi 2 MPa, co należy przeliczyć na pascale: 2 MPa = 2 * 10^6 Pa. Powierzchnia S wynosi 0,003 m². Podstawiając wartości do wzoru, otrzymujemy F = 2 * 10^6 Pa * 0,003 m² = 6000 N, co jest równoważne 6 kN. Zrozumienie tego działania ma fundamentalne znaczenie w hydraulice, gdzie siły generowane przez ciśnienie są kluczowe dla działania maszyn i systemów. Na przykład w układach hydraulicznych w samochodach, takich jak hamulce czy podnośniki, prawidłowe obliczenie siły pozwala na efektywne i bezpieczne działanie tych mechanizmów. Zastosowanie ciśnienia i przekroju tłoka jest również istotne przy projektowaniu urządzeń takich jak prasy hydrauliczne czy siłowniki, gdzie precyzyjna manipulacja siłą jest niezbędna.

Pytanie 39

Która z wymienionych właściwości komponentów systemów automatyki, stosowanych w liniach produkcyjnych, ma kluczowe znaczenie przy projektowaniu linii do konfekcjonowania rozcieńczalników do farb i lakierów?

A. Efektywność
B. Iskrobezpieczeństwo
C. Niezawodność
D. Bezobsługowość
Iskrobezpieczeństwo jest kluczową cechą w projektowaniu linii produkcyjnych, zwłaszcza w kontekście konfekcjonowania substancji chemicznych, takich jak rozcieńczalniki do farb i lakierów, które są łatwopalne i mogą wydzielać niebezpieczne opary. Użycie podzespołów i urządzeń spełniających normy iskrobezpieczeństwa (np. ATEX w Europie) ma na celu minimalizację ryzyka wybuchów oraz pożarów. Przykładem mogą być pompy, które są zaprojektowane tak, aby nie generować iskier podczas pracy, a także systemy wentylacyjne, które skutecznie odprowadzają opary. W praktyce oznacza to stosowanie materiałów odpornych na korozję, jak również instalację odpowiednich czujników wykrywających obecność niebezpiecznych gazów. Właściwe zabezpieczenie strefy zagrożonej wybuchem powinno obejmować także odpowiednie klasyfikacje stref, które są zgodne z międzynarodowymi standardami, takimi jak IEC 60079. Zatem iskrobezpieczeństwo nie tylko zwiększa bezpieczeństwo pracowników, ale także zapewnia ciągłość produkcji, co jest niezbędne w efektywnych liniach produkcyjnych.

Pytanie 40

Na zamieszczonym rysunku przedstawiono schemat czujnika

Ilustracja do pytania
A. pojemnościowego.
B. indukcyjnego.
C. magnetycznego.
D. optycznego.
Czujnik optyczny, który przedstawiono na schemacie, jest jednym z kluczowych elementów wykorzystywanych w nowoczesnych systemach automatyki oraz technologii detekcji. Jego działanie opiera się na emisji i detekcji światła, co czyni go niezwykle efektywnym narzędziem do pomiarów i detekcji. Schemat z diodą LED oraz fototranzystorem jest typowy dla czujników optycznych, które znajdują zastosowanie w różnych branżach, takich jak przemysł motoryzacyjny, automatyka przemysłowa czy systemy bezpieczeństwa. Przykłady zastosowania obejmują detekcję obecności obiektów, zliczanie przedmiotów na taśmach produkcyjnych oraz pomiar odległości. Warto zwrócić uwagę na standardy branżowe, takie jak IEC 60947, które definiują wymagania dotyczące bezpieczeństwa i niezawodności czujników. Współczesne czujniki optyczne charakteryzują się dużą precyzją oraz szybką reakcją, co czyni je niezastąpionymi w aplikacjach wymagających wysokiej dokładności.