Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 16 lutego 2026 17:33
  • Data zakończenia: 16 lutego 2026 17:57

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Zwiększenie liczby kabli umieszczonych w jednej rurze instalacyjnej spowoduje

A. zmniejszenie wartości obliczeniowej rezystancji żył pojedynczego kabla
B. zwiększenie dozwolonej wartości spadku napięcia na kablach
C. wydłużenie czasu osiągania granicznej temperatury izolacji kabli
D. zmniejszenie dopuszczalnego obciążenia prądem długotrwałym jednego kabla
Zwiększenie liczby przewodów ułożonych w jednej rurze instalacyjnej prowadzi do zmniejszenia dopuszczalnego obciążenia prądem długotrwałym pojedynczego przewodu. Jest to związane z zasadą, że im więcej przewodów umieszczonych w tej samej przestrzeni, tym większa emisja ciepła z tych przewodów, ponieważ nie mają one wystarczającej przestrzeni na odprowadzenie ciepła. Zgodnie z normami, takimi jak PN-IEC 60364, dopuszczalne obciążenie prądowe przewodów uzależnione jest od ich zdolności do odprowadzania ciepła, co jest kluczowe dla zachowania bezpieczeństwa instalacji. Na przykład, w przypadku układania kilku przewodów w jednej rurze, każdy z nich może nie być w stanie wytrzymać standardowych wartości obciążenia, co prowadzi do przegrzewania i potencjalnych uszkodzeń izolacji. Dlatego w praktyce, dla instalacji elektrycznych, często stosuje się ograniczenia dotyczące liczby przewodów w jednej rurze oraz jej średnicy, aby zapewnić odpowiednią wentylację i chłodzenie.

Pytanie 2

Jakie z wymienionych urządzeń, przy zastosowaniu przekaźnika termicznego oraz stycznika, umożliwia zapewnienie pełnej ochrony przed zwarciem i przeciążeniem silnika trójfazowego o parametrach: Pn = 5,5 kW, Un = 400/690 V?

A. Bezpiecznik typu aM
B. Bezpiecznik typu aR
C. Wyłącznik nadprądowy typu Z
D. Wyłącznik nadprądowy typu B
Zastosowanie wyłącznika nadprądowego typu Z, bezpiecznika typu aR czy wyłącznika nadprądowego typu B nie jest odpowiednie do zabezpieczenia silnika trójfazowego o podanych parametrach. Wyłącznik nadprądowy typu Z, mimo że jest skuteczny w ochronie przed przeciążeniem, nie oferuje optymalnej ochrony dla silników, ponieważ jego charakterystyka czasowo-prądowa jest dostosowana głównie do obwodów oświetleniowych i urządzeń elektronicznych. W przypadku silników, istotna jest możliwość tolerowania krótkotrwałych prądów startowych, a wyłącznik typu Z może wyzwolić zbyt szybko. Bezpiecznik typu aR również nie nadaje się do tego celu, gdyż jest przeznaczony do ochrony obwodów oporowych, a nie silników. Jego reakcja na przeciążenie jest zbyt szybka, co może prowadzić do niepotrzebnych wyłączeń podczas normalnej pracy silnika. Z kolei wyłącznik nadprądowy typu B, podobnie jak wyżej wymienione rozwiązania, ma ograniczoną zdolność do radzenia sobie z prądami rozruchowymi, co sprawia, że nie jest najlepszym rozwiązaniem w przypadku silników z dużymi prądami rozruchowymi. W praktyce, wybór niewłaściwego zabezpieczenia może prowadzić do uszkodzenia silnika, a także zwiększenia kosztów eksploatacji i przestojów. Dlatego ważne jest, aby przy wyborze zabezpieczeń kierować się standardami branżowymi i analizować specyfikę aplikacji, aby zapewnić odpowiednią ochronę urządzeń elektrycznych.

Pytanie 3

Który z przyrządów pomiarowych przeznaczony jest do wykonania kompletnych okresowych pomiarów eksploatacyjnych instalacji elektrycznej w budynku mieszkalnym?

Ilustracja do pytania
A. Przyrząd 4.
B. Przyrząd 1.
C. Przyrząd 3.
D. Przyrząd 2.
Przyrząd 4. to miernik wielofunkcyjny, który odgrywa kluczową rolę w wykonywaniu kompleksowych okresowych pomiarów eksploatacyjnych instalacji elektrycznych w budynkach mieszkalnych. Tego rodzaju miernik pozwala na przeprowadzenie wielu istotnych testów, takich jak pomiar rezystancji izolacji, pętli zwarcia oraz ciągłości przewodów ochronnych, co jest niezbędne dla zapewnienia bezpieczeństwa użytkowników. Dokładność i wszechstronność miernika wielofunkcyjnego sprawiają, że jest on zgodny z zaleceniami norm krajowych i międzynarodowych, takich jak norma PN-EN 61557, która dotyczy pomiarów w instalacjach elektrycznych. Użycie tego przyrządu pozwala na wczesne wykrywanie usterek oraz ocenę stanu technicznego instalacji, co przekłada się na dłuższy okres eksploatacji oraz minimalizację ryzyka wystąpienia awarii. Przykładem zastosowania może być kontrola instalacji elektrycznych w domach jednorodzinnych, gdzie regularne pomiary są zalecane co najmniej raz na pięć lat, aby zapewnić zgodność z obowiązującymi przepisami oraz bezpieczeństwo domowników.

Pytanie 4

Która z podanych przyczyn jest odpowiedzialna za ocieranie wirnika o stojan w silniku indukcyjnym klatkowym podczas jego działania?

A. Poluzowanie tabliczki zaciskowej
B. Pęknięcie pierścieni zwierających pręty wirnika
C. Nagle zwiększone napięcie zasilające
D. Nagle zmniejszone napięcie zasilające
Pęknięcie pierścieni zwierających pręty wirnika to istotny problem, który może prowadzić do ocierania wirnika o stojan w silniku indukcyjnym klatkowym. Pierścienie te mają na celu zapewnienie stabilności wirnika podczas jego obrotu, a ich integralność strukturalna jest kluczowa dla poprawnej pracy silnika. Kiedy pierścienie ulegają uszkodzeniu, wirnik może zacząć się przemieszczać zbyt blisko stojana, co doprowadza do tarcia i potencjalnych uszkodzeń obu komponentów. W kontekście praktycznym, regularne przeglądy i testy wizualne silników, w tym kontrola stanu pierścieni zwierających, są kluczowe dla zapobiegania takim awariom. Zgodnie z najlepszymi praktykami w branży, każda usterka powinna być diagnozowana i usuwana natychmiastowo, aby uniknąć dalszych uszkodzeń oraz kosztownych przestojów. Warto również zaznaczyć, że ogólny stan wirnika i jego osprzętu powinien być systematycznie monitorowany na podstawie standardów, takich jak IEC 60034, które szczegółowo określają wymagania dotyczące silników elektrycznych.

Pytanie 5

Które elementy na zamieszczonym schemacie układu prostownikowego stanowią zabezpieczenie przed przepięciami komutacyjnymi?

A. Obwody R2C2
B. Bezpieczniki F2
C. Bezpieczniki F3
D. Obwody R1C1
W prostownikach i ogólnie w układach energoelektronicznych bardzo łatwo pomylić elementy odpowiedzialne za ochronę przed przepięciami z tymi, które chronią przed zwarciem czy przeciążeniem. Na schemacie mamy kilka grup elementów: obwody R1C1, obwody R2C2 oraz bezpieczniki F2 i F3. Wszystkie wyglądają „jakieś zabezpieczenia”, ale ich funkcje są zupełnie różne. Kluczowe jest zrozumienie, czym są przepięcia komutacyjne. Pojawiają się one wtedy, gdy prąd płynący przez element indukcyjny (np. uzwojenie transformatora, dławik, silnik) jest nagle przełączany lub przerywany. Indukcyjność „broni się” przed gwałtowną zmianą prądu, generując krótkotrwałe, wysokie skoki napięcia. Te impulsy mogą przebijać izolację, niszczyć diody, tyrystory, tranzystory mocy. Do ich ograniczania stosuje się układy RC, nazywane gasikami, snubberami, które montuje się bezpośrednio tam, gdzie zachodzi komutacja. Właśnie taką rolę pełnią obwody R2C2 – są skojarzone z częścią prostownikową i ich zadaniem jest tłumienie przepięć w momencie przełączania prądów. Natomiast obwody R1C1 w wielu schematach pełnią inną funkcję: mogą służyć jako układy filtrujące, formujące napięcie sterujące, kompensujące zakłócenia o wysokiej częstotliwości po stronie sterowania czy ograniczające zakłócenia przewodzone do sieci. One też wpływają na kształt przebiegów, ale nie są typowym zabezpieczeniem przed przepięciami komutacyjnymi w obwodzie mocy. Typowy błąd myślowy polega na tym, że każdy RC w układzie traktuje się jako „zabezpieczenie przed przepięciami”, co nie zawsze jest prawdą – liczy się miejsce wpięcia i kontekst pracy. Jeszcze częściej myli się zabezpieczenia przeciwprzepięciowe z bezpiecznikami topikowymi. Bezpieczniki F2 i F3 są przeznaczone do ochrony nadprądowej: zadziałają przy zwarciu, przeciążeniu, długotrwałym zbyt dużym prądzie. Ich zadaniem jest odłączyć obwód, żeby nie doszło do przegrzania przewodów, transformatora, prostownika. Nie reagują one na krótkie impulsy napięciowe o dużej wartości, bo energia tych impulsów jest zbyt mała, żeby przepalić topik. Dlatego bezpiecznik nie „gasi” przepięć komutacyjnych, tylko chroni instalację i urządzenie przed skutkami zwarć. Z mojego doświadczenia wielu uczniów patrzy na oznaczenie F i automatycznie zakłada, że to element „od wszystkich zagrożeń”. W rzeczywistości ochrona przed przepięciami to głównie odpowiednio dobrane układy RC, warystory, diody transilowe, a ochrona nadprądowa to bezpieczniki, wyłączniki nadprądowe czy wyłączniki silnikowe. Rozróżnienie tych funkcji jest kluczowe przy analizie schematów i przy późniejszej diagnostyce uszkodzeń.

Pytanie 6

W tabeli zestawiono wyniki pomiarów rezystancji izolacji różnych instalacji elektrycznych, przeprowadzonych podczas prób odbiorczych. Która z instalacji znajduje się w złym stanie technicznym, wykluczającym jej eksploatację?

InstalacjaRezystancja izolacji, MΩ
A.SELV0,9
B.FELV0,9
C.230 V/400 V1,5
D.400 V/ 690 V1,2
A. A.
B. B.
C. D.
D. C.
Wybór innej odpowiedzi niż B może wynikać z niedostatecznego zrozumienia kryteriów oceny stanu technicznego instalacji elektrycznych. Wiele osób przypuszcza, że wszystkie wartości rezystancji izolacji są akceptowalne, jeśli mieszczą się w pewnym zakresie, co jest błędnym podejściem. Każda instalacja elektryczna ma określone normy, które muszą być przestrzegane, aby zapewnić bezpieczeństwo i niezawodność. W przypadku instalacji elektrycznych, normy takie jak IEC 60364 wyraźnie wskazują, że rezystancja izolacji poniżej 1 MΩ jest niebezpieczna. Przypuszczenie, że wartości takie jak 1 MΩ są jedynie orientacyjne, ignoruje poważne zagrożenia związane z niską rezystancją, takie jak ryzyko pożaru lub porażenia prądem. Odpowiedzi inne niż B mogą również wskazywać na mylne zrozumienie pojęcia rezystancji izolacji, gdzie sądzono, że im wyższa wartość, tym lepiej, ale bez odniesienia do kontekstu użytkowego. Ignorowanie wpływu rezystancji na bezpieczeństwo eksploatacji prowadzi do poważnych konsekwencji, dlatego tak istotne jest stosowanie się do standardów i dobrych praktyk w każdej instalacji elektrycznej. W kontekście praktycznym, brak regularnych pomiarów i konserwacji instalacji, co może być przyczyną niskiej rezystancji, jest kolejnym typowym błędem, który może prowadzić do tragedii. Utrzymanie właściwych wartości rezystancji nie tylko chroni użytkowników, ale również zapewnia długowieczność samej instalacji.

Pytanie 7

Na podstawie fragmentu tabeli obciążalności prądowej długotrwałej dobierz przekrój przewodów dla instalacji 1-fazowej prowadzonej przewodami DY w rurkach w ścianie. Obliczony prąd obciążenia Ig = 20 A.

OznaczeniaA1A2B1B2
Miejsce i sposób ułożenia przewodówW rurach i kanałach (listwach) instalacyjnych pod tynkiemW rurach i kanałach (listwach) instalacyjnych na ścianie
Przewody jednożyłowePrzewody wielożyłowePrzewody jednożyłowePrzewody wielożyłowe
Liczba przewodów obciążonych23232323
Przekrój [mm2]Idd [A]Idd [A]Idd [A]Idd [A]Idd [A]Idd [A]Idd [A]Idd [A]
1,516,514,518,51418,516,617,516
2,5211919,518,525222421
42825272434303229
63633343143384036
A. 4 mm2
B. 2,5 mm2
C. 1,5 mm2
D. 6 mm2
Wybór niewłaściwego przekroju przewodów może prowadzić do poważnych konsekwencji, które nie zawsze są oczywiste na pierwszy rzut oka. Na przykład, 1,5 mm2 jest zbyt małym przekrojem dla obciążenia 20 A. W praktyce oznacza to, że przewód ten nie spełnia wymagań dotyczących obciążalności prądowej, co może prowadzić do jego przegrzewania się i potencjalnego uszkodzenia izolacji, a w skrajnych przypadkach może być przyczyną pożaru. Zbyt małe przekroje są często wynikiem błędnego kalkulowania zapotrzebowania na prąd w instalacji, co jest typowym błędem. Z drugiej strony, wybór zbyt dużego przekroju, jak 4 mm2 czy 6 mm2, może wydawać się na pierwszy rzut oka bezpieczniejszym rozwiązaniem, jednak takie podejście nie jest uzasadnione ekonomicznie. Wiąże się to z wyższymi kosztami materiałów, a także z trudnościami w montażu i manipulacji przewodami. Ponadto, stosowanie nadmiarowych przekrojów może prowadzić do nieefektywności energetycznej, ponieważ większe przewody mają wyższe pojemności cieplne, co może wpłynąć na straty energii. Warto również podkreślić, że przy doborze przekrojów przewodów niezbędne jest uwzględnienie takich czynników jak długość przewodów, sposób ich ułożenia oraz temperatura otoczenia, a ich zaniedbanie prowadzi do błędnych decyzji projektowych. Zatem, istotne jest, aby przy doborze przewodów kierować się zarówno zasadami bezpieczeństwa, jak i dobrymi praktykami inżynieryjnymi, aby uniknąć poważnych problemów w przyszłości.

Pytanie 8

W którym wierszu tabeli protokołu ze sprawdzenia skuteczności samoczynnego wyłączenia napięcia, którego fragment przedstawiono na rysunku, należy w kolumnie "Ocena" wpisać "nie"?

Lp.Nazwa obwodu lub urządzeniaTyp zabezpieczeniaIn
A
Ia
A
Zs
Ω
Zs
Ω
tw
s
Ocena
tak/nie
parter
1tablica TO-1WT gG632690,440,785
2gniazdo 10A/ZS191 B10500,984,600,4
3gniazdo 10A/ZS191 B10508,804,600,4
4gniazdo podwójne 10A/Z bolec 1P 1210,030,03216670,2
In – prąd znamionowy urządzenia dla urządzeń RCD In = IΔn
Ia – prąd powodujący samoczynne wyłączenie: Ia = k·In, dla urządzeń RCD Ia = IΔn
k – współczynnik przeliczony z charakterystyki czasowo-prądowej badanego typu zabezpieczenia
Zs – impedancja pętli zmierzona
Zs – największa dopuszczalna impedancja pętli: Zs = Wk·U0/Ia
gdzie Wk - współczynnik korekcyjny obostrzający wartość wymaganą
tw – największy dopuszczalny czas zadziałania zabezpieczenia
A. 1
B. 2
C. 3
D. 4
Poprawna odpowiedź to 3, ponieważ wiersz ten wskazuje na zmierzoną impedancję pętli równą 8,80Ω, co znacznie przekracza maksymalną dopuszczalną wartość dla tego obwodu, wynoszącą 4,60Ω. Zgodnie z obowiązującymi normami, w tym z normą PN-EN 61008, która reguluje wymagania dotyczące urządzeń zabezpieczających, aby skutecznie zrealizować samoczynne wyłączenie napięcia, impedancja pętli musi mieścić się w określonych granicach. Jeśli wartość impedancji jest zbyt wysoka, oznacza to, że zabezpieczenie może nie zadziałać w odpowiednim czasie, co z kolei stwarza zagrożenie dla bezpieczeństwa użytkowników. Przykładowo, w instalacjach elektrycznych niskiego napięcia, przekroczenie wartości impedancji pętli może prowadzić do sytuacji, w której prąd zwarcia nie jest wystarczający, aby zadziałać wyłącznik automatyczny, co może skutkować poważnymi konsekwencjami. Dlatego ocena skuteczności samoczynnego wyłączenia napięcia w tym przypadku powinna być wpisana jako "nie".

Pytanie 9

Włączenie grzejnika skutkuje natychmiastowym działaniem zabezpieczenia nadprądowego. Co to oznacza?

A. zwarcie między przewodem fazowym a neutralnym
B. zwarcie przewodu ochronnego z obudową
C. uszkodzenie w przewodzie fazowym
D. uszkodzenie w grzałce
Zadziałanie zabezpieczenia nadprądowego przy załączeniu grzejnika wskazuje na wystąpienie zwarcia w obwodzie. W przypadku zwarcia przewodu fazowego do neutralnego, prąd przepływający przez obwód gwałtownie wzrasta, co przekracza dopuszczalne wartości dla zabezpieczeń nadprądowych, powodując ich natychmiastowe wyłączenie. Tego rodzaju sytuacje mogą wystąpić w przypadku uszkodzenia instalacji elektrycznej, co może skutkować niebezpiecznymi warunkami pracy urządzeń elektrycznych. Przykładem zastosowania tej wiedzy w praktyce jest regularna kontrola stanu instalacji elektrycznych, w tym grzejników, aby zminimalizować ryzyko zwarć. Standardy branżowe, jak PN-IEC 60364, nakładają obowiązek przeprowadzania okresowych przeglądów oraz stosowania odpowiednich zabezpieczeń, co ma na celu zapewnienie bezpieczeństwa użytkowników oraz utrzymanie sprawności systemów elektrycznych.

Pytanie 10

Którą z wymienionych wielkości można zmierzyć przyrządem pokazanym na rysunku?

Ilustracja do pytania
A. Poziom olśnienia.
B. Natężenie oświetlenia.
C. Strumień świetlny.
D. Barwę światła.
Natężenie oświetlenia jest wielkością, którą możemy zmierzyć przy pomocy luksomierza, który jest przedstawiony na powyższym zdjęciu. Przyrząd ten jest zaprojektowany do określania ilości światła docierającego do danej powierzchni, co jest kluczowe w wielu zastosowaniach, od projektowania wnętrz po inżynierię oświetleniową. Luksomierze są powszechnie wykorzystywane w branży budowlanej i architektonicznej, gdzie odpowiedni poziom oświetlenia jest istotny dla komfortu użytkowników oraz efektywności pracy. Zgodnie z normami ISO, natężenie oświetlenia powinno być dostosowane do specyficznych warunków użytkowych, co czyni pomiar luksomierzem niezbędnym narzędziem dla architektów i projektantów. Na przykład, w biurach wymagane jest natężenie oświetlenia wynoszące od 300 do 500 luksów w zależności od typu wykonywanych zadań. To pokazuje, jak ważne jest precyzyjne określenie natężenia oświetlenia, aby zapewnić odpowiednie warunki pracy.

Pytanie 11

W instalacji domowej 230/400 V obwód zasilający elektryczną kuchnię o grzaniu rezystancyjnym jest chroniony przez wyłącznik nadprądowy typu S 194 B20. Jaką największą moc może mieć kuchnia podłączona do tego obwodu?

A. 6,6 kW
B. 13,8 kW
C. 8,0 kW
D. 24,0 kW
Wybór mocy kuchni elektrycznej na poziomie 8,0 kW, 24,0 kW lub 6,6 kW nie jest właściwy z uwagi na sposób obliczania moc elektrycznych w instalacjach domowych. Przyjmując, że obwód jest zabezpieczony wyłącznikiem nadprądowym 20 A, wartość ta determinuje maksymalne natężenie prądu, które może płynąć przez obwód bez ryzyka jego przeciążenia. Obliczenia mocy dla jednostkowych urządzeń elektrycznych opierają się na napięciu zasilania oraz dopuszczalnym prądzie. Wartości 8,0 kW i 6,6 kW sugerują, że obliczenia nie uwzględniają pełnego potencjału obwodu. Natomiast 24,0 kW jest znacząco wyższe niż maksymalne obciążenie, które może być realizowane przez wyłącznik 20 A. W przypadku zasilania trójfazowego, prawidłowe obliczenia mocy powinny uwzględniać także mnożnik √3, który jest kluczowy dla prawidłowego przeliczenia z jednego systemu na drugi. Ostatecznie, wszystkie te niepoprawne odpowiedzi demonstrują brak zrozumienia zasad obliczania mocy w kontekście napięcia i prądu w instalacjach elektrycznych. Ważne jest, aby znać i rozumieć standardy instalacji elektrycznych, co pozwala na uniknięcie poważnych problemów związanych z bezpieczeństwem oraz prawidłowym działaniem urządzeń.

Pytanie 12

W instalacji trójfazowej natężenie prądu obciążenia przewodów fazowych IB wynosi 21 A, natomiast maksymalna obciążalność długotrwała tych przewodów Idd to 30 A. Który z wymienionych wyłączników nadprądowych powinien być użyty do ochrony tej instalacji przed skutkami zbyt dużego prądu?

A. B32
B. B25
C. B16
D. B20
Wyłącznik nadprądowy B25 jest odpowiedni do zabezpieczenia instalacji trójfazowej, gdyż prąd obciążenia przewodów fazowych wynosi 21 A, a obciążalność długotrwała tych przewodów to 30 A. Wyłączniki nadprądowe klasy B charakteryzują się czasem zadziałania w zależności od wartości nadmiaru prądu, co czyni je idealnymi do ochrony obwodów o obciążeniu rezystancyjnym. W tym przypadku, wyłącznik B25 posiada nominalny prąd 25 A, co zapewnia dodatkowy margines bezpieczeństwa w stosunku do rzeczywistego prądu obciążenia 21 A. Zastosowanie wyłącznika o wyższej wartości nominalnej, jak B32, mogłoby prowadzić do sytuacji, w której obwód nie byłby odpowiednio chroniony, a wyłączniki o niższej wartości, jak B20 czy B16, mogą zadziałać w sposób niepożądany w przypadku niewielkich skoków prądu. Zgodnie z zasadami projektowania instalacji elektrycznych, wyłącznik należy dobierać w taki sposób, aby jego wartość nominalna była nieco wyższa niż wartość prądu roboczego, co zwiększa niezawodność systemu oraz zapewnia bezpieczeństwo użytkowania.

Pytanie 13

Jakie z wymienionych elementów można wymieniać w instalacjach elektrycznych o napięciu 230 V bez konieczności wyłączania zasilania?

A. Wkładek bezpiecznikowych.
B. Opraw oświetleniowych.
C. Wyłączników różnicowoprądowych.
D. Elementów łącznikowych.
Wkładki bezpiecznikowe są elementami instalacji elektrycznych, które można wymieniać bez konieczności wyłączania zasilania, o ile zastosowane są odpowiednie rozwiązania technologiczne, takie jak wkładki bezpiecznikowe typu 'hot swap'. W praktyce oznacza to, że użytkownicy mogą wymieniać te elementy, aby przywrócić funkcjonalność obwodu, minimalizując ryzyko wystąpienia przerw w zasilaniu. Wkładki bezpiecznikowe mają kluczowe znaczenie dla bezpieczeństwa instalacji, ponieważ zabezpieczają obwody przed przeciążeniem i zwarciem. Prawidłowa wymiana tych wkładek, bez wyłączania zasilania, jest zgodna z normami bezpieczeństwa elektrycznego, takimi jak PN-IEC 60947, które określają wymagania dla urządzeń przeznaczonych do pracy w instalacjach elektrycznych. Przykładowo, w obiektach przemysłowych, gdzie nieprzerwane zasilanie ma kluczowe znaczenie, możliwość wymiany wkładek bezpiecznikowych w czasie pracy instalacji przyczynia się do zwiększenia efektywności operacyjnej.

Pytanie 14

Jaki stopień ochrony powinny mieć oprawy oświetleniowe w silnie zapylonych pomieszczeniach?

A. IP2X
B. IP3X
C. IP5X
D. IP4X
Stopień ochrony IP5X oznacza, że oprawa oświetleniowa jest pyłoszczelna, co jest kluczowe w pomieszczeniach mocno zapylonych. Oznaczenie IP (Ingress Protection) jest standardem międzynarodowym, który określa poziom ochrony urządzeń elektrycznych przed ciałami stałymi oraz cieczami. W przypadku IP5X urządzenie jest całkowicie chronione przed pyłem, co zapewnia jego niezawodność i długowieczność w trudnych warunkach. Przykładem zastosowania IP5X mogą być zakłady przemysłowe, magazyny, czy strefy produkcyjne, gdzie obecność pyłów może wpływać na działanie oświetlenia. Stosowanie opraw oświetleniowych z tym stopniem ochrony minimalizuje ryzyko uszkodzenia komponentów elektrycznych i zwiększa bezpieczeństwo pracy. Dodatkowo, zastosowanie opraw oświetleniowych z wysokim stopniem ochrony jest zgodne z normami takimi jak EN 60529, które regulują wymagania dotyczące stopni ochrony w sprzęcie elektrycznym. W praktyce, wybierając oświetlenie do zapylonych pomieszczeń, warto zawsze kierować się tymi standardami, aby zapewnić zarówno efektywność, jak i bezpieczeństwo działania urządzeń.

Pytanie 15

Jakie urządzenie powinno zostać użyte do zasilenia obwodu SELV z sieci 230 V, 50 Hz?

A. Transformator bezpieczeństwa
B. Autotransformator
C. Dzielnik napięcia
D. Przekładnik
Transformator bezpieczeństwa jest kluczowym urządzeniem stosowanym do zasilania obwodów SELV (Safety Extra Low Voltage) z sieci 230 V, 50 Hz. Jego główną funkcją jest zapewnienie izolacji galwanicznej pomiędzy wysokim napięciem a niskim napięciem, co znacząco minimalizuje ryzyko porażenia prądem elektrycznym. Transformator bezpieczeństwa działa na zasadzie obniżania napięcia do poziomu, który jest bezpieczny dla użytkowników. Przykładem zastosowania transformatora bezpieczeństwa może być oświetlenie w obiektach, gdzie wymagana jest szczególna ochrona przed porażeniem, takie jak baseny, łazienki czy miejsca z dużą wilgotnością. Zgodnie z normą IEC 61140, urządzenia te muszą spełniać określone wymagania dotyczące bezpieczeństwa, co czyni je niezastąpionymi w instalacjach niskonapięciowych. Transformator bezpieczeństwa, w przeciwieństwie do innych urządzeń, zapewnia nie tylko redukcję napięcia, ale i odpowiednie zabezpieczenie przed skutkami awarii, co czyni go odpowiednim wyborem w kontekście bezpieczeństwa użytkowników.

Pytanie 16

Jaką wartość powinno mieć napięcie pomiarowe przy pomiarze rezystancji izolacji kabla umieszczonego w gruncie?

A. 250 V
B. 500 V
C. 2 500 V
D. 1 000 V
Napięcia 1 000 V, 500 V i 250 V są nieodpowiednie do pomiarów rezystancji izolacji kabli ułożonych w ziemi, ponieważ są zbyt niskie, aby zapewnić dokładne i wiarygodne wyniki. Użycie napięcia 1 000 V może być stosowane w niektórych aplikacjach, jednak w przypadku kabli ułożonych w ziemi, nie dostarcza ono wystarczającej energii do identyfikacji potencjalnych uszkodzeń izolacji, które mogą być przyczyną awarii w przyszłości. Podobnie, napięcie 500 V jest zdecydowanie poniżej standardów przemysłowych dla takich zastosowań, co skutkuje brakiem możliwości wykrycia słabych punktów w izolacji. Z kolei wartość 250 V jest znacznie zbyt niska, aby jakiekolwiek pomiary miały sens w kontekście oceny stanu izolacji w trudnych warunkach gruntowych. Zastosowanie niewłaściwego napięcia podczas pomiarów może prowadzić do fałszywych wyników, co w konsekwencji prowadzi do błędnych decyzji w zakresie konserwacji i eksploatacji kabli. Kluczowe jest, aby w takich sytuacjach polegać na uznanych standardach i dobrach praktykach branżowych, które jasno wskazują, że napięcie 2 500 V powinno być stosowane w celu zapewnienia odpowiedniej dokładności pomiarów i bezpieczeństwa całej instalacji.

Pytanie 17

Jakiej informacji nie jest konieczne zawarcie w instrukcji użytkowania instalacji elektrycznych chronionych wyłącznikami nadmiarowo-prądowymi?

A. Wybory i konfiguracji urządzeń zabezpieczających
B. Terminów dotyczących prób oraz kontrolnych pomiarów
C. Zasad bezpieczeństwa przy realizacji prac eksploatacyjnych
D. Danych technicznych instalacji
Kiedy dobierasz urządzenia zabezpieczające, musisz naprawdę wiedzieć, co robisz i przeanalizować, jakie masz parametry techniczne. Instrukcja dotycząca instalacji elektrycznych, które mają wyłączniki nadmiarowo-prądowe, nie musi opisywać wszystkiego na szczegółowo, bo każdy przypadek jest inny i trzeba to dopasować do konkretnej sytuacji. W praktyce dobierasz te urządzenia na podstawie tego, jak duże masz obciążenie, jak wygląda sama instalacja i jakie są warunki pracy. Na przykład, wyłączniki nadmiarowo-prądowe powinny być wybierane zgodnie z normami PN-EN 60898. Ważne jest, żebyś wiedział, jakie są ich cechy – na przykład typ wyłącznika. Powinieneś to określić, analizując obciążenie i możliwe zagrożenia. Dlatego instrukcja eksploatacji koncentruje się na zasadach użytkowania, kontroli i konserwacji – to wszystko jest kluczowe, żeby zapewnić bezpieczeństwo i sprawność systemu.

Pytanie 18

Którymi z wymienionych aparatów można zastąpić przedstawiony na rysunku wyłącznik silnikowy w celu zabezpieczenia silnika indukcyjnego, zachowując wszystkie funkcje aparatu?

Ilustracja do pytania
A. Bezpiecznikiem, stycznikiem i wyłącznikiem.
B. Wyłącznikiem nadprądowym i przełącznikiem gwiazda-trójkąt.
C. Bezpiecznikiem, przekaźnikiem termobimetalowym i stycznikiem.
D. Wyłącznikiem nadprądowym, przekaźnikiem termicznym i wyłącznikiem.
Zastosowanie wyłącznika nadprądowego i przełącznika gwiazda-trójkąt jako alternatywy dla wyłącznika silnikowego jest nieodpowiednie, ponieważ te elementy nie są w stanie zapewnić pełnej ochrony silnika indukcyjnego. Wyłącznik nadprądowy, choć chroni przed przeciążeniem, nie jest wystarczający dla zabezpieczenia przed zwarciem. W przypadku zwarcia może nie zadziałać wystarczająco szybko, co prowadzi do uszkodzenia silnika. Przełącznik gwiazda-trójkąt jest z kolei elementem stosowanym do rozruchu silników, a nie do ich zabezpieczenia. Jego funkcja polega na zmniejszeniu prądu rozruchowego poprzez zmianę konfiguracji połączeń uzwojeń silnika, co nie ma związku z jego ochroną operacyjną. Zastosowanie tych elementów prowadzi do sytuacji, w której silnik pozostaje narażony na uszkodzenia spowodowane przeciążeniem lub zwarciem, co jest sprzeczne z dobrymi praktykami w dziedzinie zabezpieczeń silników. W kontekście norm branżowych, takie podejście nie spełnia wymagań bezpieczeństwa zawartych w IEC 60947, co może skutkować poważnymi konsekwencjami zarówno w zakresie bezpieczeństwa, jak i efektywności operacyjnej systemu. Warto także zauważyć, że niezrozumienie roli poszczególnych elementów zabezpieczających może prowadzić do błędnych decyzji projektowych, w efekcie czego systemy mogą być narażone na awarie oraz wysokie koszty napraw. Z tego powodu kluczowe jest, aby osoby odpowiedzialne za projektowanie układów elektrycznych miały wiedzę na temat właściwych elementów zabezpieczających, aby zapewnić niezawodność i bezpieczeństwo operacyjne silników indukcyjnych.

Pytanie 19

Jaką liczbę należy użyć do pomnożenia wartości znamionowego prądu silnika trójfazowego klatkowego, który napędza pompę, aby obliczyć maksymalną dopuszczalną wartość nastawy prądu na jego zabezpieczeniu termicznym?

A. 2,2
B. 1,1
C. 1,4
D. 0,8
Odpowiedź 1,1 jest poprawna, ponieważ przy obliczaniu maksymalnej dopuszczalnej wartości nastawy prądu na zabezpieczeniu termicznym silników trójfazowych, stosuje się współczynnik 1,1. Ten współczynnik uwzględnia zwiększone obciążenie silnika w przypadku jego rozruchu oraz wpływ na jego pracę w warunkach długotrwałego obciążenia. Przyjmuje się, że silniki trójfazowe mogą być obciążane do wartości 10% powyżej znamionowej przez krótki czas, co jest kluczowe dla ochrony silnika oraz zapewnienia jego efektywności. W praktyce oznacza to, że jeżeli znamionowy prąd silnika wynosi na przykład 10 A, to maksymalna wartość nastawy na zabezpieczeniu termicznym powinna wynosić 11 A. Zastosowanie tego współczynnika jest zgodne z normami IEC 60034 oraz wytycznymi producentów urządzeń, co jest kluczowe dla zabezpieczenia silników i zapewnienia ich prawidłowej pracy.

Pytanie 20

Na rysunku zamieszczono charakterystyki mechaniczne silnika asynchronicznego pierścieniowego pracującego przy stałym obciążeniu mechanicznym z regulatorem R w obwodzie wirnika. Przejście z punktu pracy 1 do punktu pracy 2 w tym układzie może nastąpić wskutek

Ilustracja do pytania
A. zwiększenia napięcia zasilającego.
B. zwiększenia rezystancji regulatora.
C. zmniejszenia rezystancji regulatora.
D. zmniejszenia napięcia zasilającego.
Zwiększenie rezystancji regulatora w obwodzie wirnika silnika asynchronicznego pierścieniowego prowadzi do zmiany charakterystyki mechanicznej silnika, co skutkuje przesunięciem punktu pracy z wyższej prędkości obrotowej (punkt 1) do niższej (punkt 2). W praktyce oznacza to, że przy stałym obciążeniu mechanicznym, silnik będzie pracował w bardziej optymalnych warunkach, co może być istotne w zastosowaniach, gdzie precyzyjna regulacja prędkości jest kluczowa, jak w napędach elektrycznych w przemyśle. Zwiększenie rezystancji pozwala na lepsze zarządzanie momentem obrotowym, co może być szczególnie przydatne w aplikacjach wymagających rozruchu z dużym obciążeniem. Przy regulacji prędkości obrotowej silników asynchronicznych ważne jest, aby zastosowane rozwiązania były zgodne z najlepszymi praktykami, a także aby operatorzy rozumieli wpływ zmian w obwodzie na parametry pracy silnika, co przyczynia się do efektywności energetycznej i dłuższej żywotności urządzeń.

Pytanie 21

Jakie zadania przy aktywnych urządzeniach elektrycznych można zrealizować bez zlecenia?

A. Dotyczące konserwacji bądź napraw urządzeń, które są całkowicie lub częściowo pod napięciem
B. Przeprowadzane przy użyciu spawania oraz wymagające pracy z otwartym źródłem ognia
C. Realizowane w sytuacjach stwarzających szczególne niebezpieczeństwo dla życia lub zdrowia osób
D. Dotyczące ratowania życia lub zdrowia osób
Odpowiedź związana z ratowaniem zdrowia lub życia ludzkiego jest poprawna, ponieważ w sytuacjach nagłych, takich jak wypadki czy inne niebezpieczeństwa, działania podejmowane w celu ochrony życia i zdrowia osób są priorytetowe. Zgodnie z przepisami prawa pracy oraz normami BHP, w przypadkach zagrożenia zdrowia lub życia ludzkiego, pracownicy mają prawo i obowiązek podejmować natychmiastowe działania ratunkowe, nawet jeśli wiąże się to z pracami przy czynnych urządzeniach elektrycznych. Na przykład, gdy osoba zostaje porażona prądem, każdy świadek zdarzenia powinien jak najszybciej odciąć zasilanie i udzielić pierwszej pomocy. Takie podejście jest zgodne z wytycznymi dotyczącymi bezpieczeństwa pracy, które nakładają na pracowników obowiązek reagowania na sytuacje kryzysowe bez czekania na formalne instrukcje. W praktyce, to może oznaczać konieczność szybkiego działania, co jest kluczowe dla zapobiegania poważnym obrażeniom lub śmierci.

Pytanie 22

Kto jest uprawniony do przeprowadzenia konserwacji silnika tokarki TUE-35 w zakładzie elektromechanicznym?

A. Operator tej maszyny
B. Osoba, która posiada odpowiednie przeszkolenie i uprawnienia
C. Każdy pracownik na pisemne zlecenie pracodawcy
D. Kierownik grupy mechaników
Odpowiedź, że konserwację silnika tokarki TUE-35 może przeprowadzić osoba przeszkolona i uprawniona, jest prawidłowa ze względu na konieczność przestrzegania standardów bezpieczeństwa oraz eksploatacji maszyn. W branży mechanicznej i elektromechanicznej, konserwacja urządzeń mechanicznych, takich jak tokarki, wymaga specjalistycznej wiedzy oraz umiejętności, które zdobywa się podczas szkoleń. Tylko wykwalifikowany personel ma odpowiednie kompetencje do zdiagnozowania potencjalnych problemów, dokonywania niezbędnych napraw oraz przeprowadzania regularnych przeglądów technicznych, co zapobiega dalszym uszkodzeniom maszyny. Przykładem może być sytuacja, w której nieprzeszkolona osoba próbuje wymienić uszczelnienia w silniku, co może prowadzić do jego awarii lub nawet zagrożenia dla zdrowia pracowników. Warto zauważyć, że w wielu zakładach przemysłowych obowiązują określone normy, takie jak ISO 9001, które wymagają, aby wszystkie prace konserwacyjne były przeprowadzane przez wykwalifikowany personel, co podkreśla znaczenie odpowiednich uprawnień.

Pytanie 23

Który symbol graficzny przedstawia wciskany przycisk bistabilny z zestykiem zwiernym?

Ilustracja do pytania
A. Symbol 4.
B. Symbol 3.
C. Symbol 1.
D. Symbol 2.
Symbol 4 jest prawidłowym przedstawieniem wciskanego przycisku bistabilnego z zestykiem zwiernym. W takim symbolu linia kontaktu jest przerywana, co wizualizuje mechanizm zmiany stanu obwodu po naciśnięciu przycisku. Zestyk zwierny, który jest aktywowany poprzez naciśnięcie przycisku, zamyka obwód, co jest kluczowe w wielu zastosowaniach w automatyce i elektronice. W praktyce, przełączniki bistabilne są powszechnie używane w różnych urządzeniach, takich jak kontrolery oświetlenia, włączniki elektryczne, a także w systemach alarmowych. Ich zaletą jest to, że po naciśnięciu pozostają w nowym stanie (włączonym lub wyłączonym), co eliminuje potrzebę ciągłego przyciskania. W kontekście norm branżowych, użycie takich symboli w schematach elektrycznych jest zgodne z wytycznymi zawartymi w normie IEC 60617, co zapewnia spójność i zrozumiałość dokumentacji technicznej.

Pytanie 24

Przekaźnik czasowy włączony do obwodu elektrycznego i nastawiony w sposób przedstawiony na ilustracji, będzie realizował funkcję cyklicznego przełączania co

Ilustracja do pytania
A. 90 minut zaczynając od wyłączenia.
B. 90 minut zaczynając od załączenia.
C. 9 minut zaczynając od załączenia.
D. 9 minut zaczynając od wyłączenia.
Odpowiedź jest prawidłowa, ponieważ przekaźnik czasowy, jak przedstawiono na ilustracji, został skonfigurowany na cykliczne przełączanie co 90 minut od momentu załączenia. W praktyce, takie przekaźniki są szeroko stosowane w automatyzacji procesów przemysłowych oraz w systemach zarządzania oświetleniem, gdzie kluczowe jest precyzyjne kontrolowanie cykli aktywności. Ustawienie na 90 minut oznacza, że po włączeniu przekaźnika, zainicjuje on cykl działania po upływie tego czasu, co jest zgodne z zasadą opóźnionego załączania. Dobrą praktyką jest stosowanie przekaźników czasowych w układach, które wymagają regularnych interwencji, na przykład w systemach wentylacji, gdzie czas pracy wentylatorów powinien być optymalizowany w zależności od potrzeb. Dzięki temu można zredukować zużycie energii oraz zwiększyć efektywność systemów. Warto również zaznaczyć, że przekaźniki czasowe spełniają normy bezpieczeństwa, co czyni je niezawodnym elementem w projektowaniu instalacji elektrycznych.

Pytanie 25

Który z przedstawionych skutków wystąpi w instalacji elektrycznej po wymianie przewodów ADY 2,5mm2 na DY 2,5mm2?

A. Zwiększenie nagrzewania się przewodu.
B. Zmniejszenie rezystancji pętli zwarciowej.
C. Zwiększenie spadku napięcia na przewodach.
D. Zmniejszenie obciążalności prądowej.
Prawidłowo wskazany skutek wynika z samej budowy przewodów. ADY to przewód aluminiowy, a DY jest miedziany. Dla tego samego przekroju 2,5 mm² miedź ma znacznie mniejszą rezystywność niż aluminium, więc opór żyły roboczej spada. A skoro spada rezystancja przewodu, to maleje też całkowita rezystancja pętli zwarciowej (L+PE lub L+N+PE – zależnie od układu sieci). To w praktyce oznacza większy prąd zwarciowy i lepsze warunki zadziałania zabezpieczeń nadprądowych czy różnicowoprądowych. Moim zdaniem to jest jedna z podstawowych zalet przechodzenia z aluminium na miedź w modernizowanych instalacjach: poprawa skuteczności ochrony przeciwporażeniowej i ogólnego bezpieczeństwa. W normach, takich jak PN-HD 60364, wyraźnie podkreśla się konieczność zapewnienia odpowiednio niskiej impedancji pętli zwarcia, żeby wyłączniki nadprądowe mogły w wymaganym czasie odciąć zasilanie przy zwarciu. Wymiana przewodów na miedziane DY 2,5 mm² ułatwia spełnienie tych wymagań, szczególnie w dłuższych obwodach gniazd wtyczkowych. W praktyce instalatorskiej często robi się po modernizacji pomiary impedancji pętli zwarcia i wtedy wyraźnie widać, że wartości Zs spadają po przejściu z aluminium na miedź. Co ważne, przy tym samym przekroju obciążalność prądowa przewodu miedzianego jest zwykle wyższa, więc nie tylko nie pogarszamy parametrów, ale je poprawiamy. Dzięki temu można bezpiecznie zasilać typowe obwody 16 A, a zabezpieczenia będą miały lepsze warunki do szybkiego zadziałania w razie uszkodzenia izolacji lub zwarcia.

Pytanie 26

Przygotowując miejsce do przeprowadzenia badań odbiorczych trójfazowego silnika indukcyjnego o parametrach: UN = 230/400 V, PN = 4 kW, należy, oprócz inspekcji oraz oceny stanu izolacji uzwojeń, uwzględnić między innymi wykonanie pomiarów

A. charakterystyki stanu jałowego
B. rezystancji uzwojeń
C. drgań
D. izolacji łożysk
Oceniając inne proponowane odpowiedzi, warto zauważyć, że pomiar izolacji łożysk, mimo że istotny, nie jest bezpośrednio związany z oceną stanu uzwojeń silnika. Izolacja łożysk dotyczy głównie układów smarowania oraz zapobiegania zwarciom elektrycznym, co nie jest kluczowym wskaźnikiem pracy uzwojeń. Z kolei pomiar drgań przeprowadza się zazwyczaj w kontekście analizy stanu pracy silnika, a nie jego izolacji elektrycznej. Drgania mogą wskazywać na problemy z mocowaniem, wyważeniem lub zużyciem łożysk, ale samo ich pomiar nie dostarczy informacji o kondycji uzwojeń. Charakterystyka stanu jałowego jest również ważna, ale odnosi się do analizy pracy silnika w stanie bez obciążenia, a nie do jego parametrów izolacyjnych czy oporowych. Zrozumienie, dlaczego pomiar rezystancji uzwojeń jest kluczowy, a inne metody mogą być pomocne, ale niekonieczne w kontekście tego badania, jest istotne dla efektywnego zarządzania konserwacją silników. Właściwe podejście do diagnostyki silnika powinno uwzględniać wielowymiarową analizę, co oznacza, że pomiar rezystancji uzwojeń powinien być częścią szerszej procedury diagnostycznej.

Pytanie 27

Jaką maksymalną wartość prądu zadziałania można ustawić na przekaźniku termobimetalowym w obwodzie zasilającym silnik asynchroniczny o parametrach UN = 400 V, PN = 0,37 kW, I = 1,05 A, n = 2710 l/min, aby zapewnić skuteczną ochronę przed przeciążeniem?

A. It=0,88 A
B. It=1,05 A
C. It=1,15 A
D. It=1,33 A
Prąd zadziałania 1,15 A na przekaźniku termobimetalowym to naprawdę dobry wybór do ochrony silnika asynchronicznego o takich danych jak U<sub>N</sub> = 400 V, P<sub>N</sub> = 0,37 kW oraz I = 1,05 A. W praktyce przekaźniki termobimetalowe ustawiamy na wartość trochę wyższą od prądu znamionowego silnika. W tym przypadku 1,15 A to dobra decyzja, bo zapewnia odpowiednią ochronę przed przeciążeniem, a jednocześnie daje trochę luzu na krótkie wzrosty prądu, które mogą wystąpić na przykład podczas rozruchu. Ta zasada jest zgodna z normą PN-EN 60204-1, która mówi o bezpieczeństwie w instalacjach elektrycznych maszyn. Dzięki temu silnik nie będzie miał problemów z uszkodzeniami spowodowanymi długotrwałym przeciążeniem, co w efekcie wydłuża jego żywotność i zwiększa niezawodność całego systemu. Na przykład, w przemyśle silnik napędzający wentylator potrzebuje odpowiednio ustawionych przekaźników, żeby wszystko działało bez zarzutu i żeby zminimalizować ryzyko awarii.

Pytanie 28

Który z przedstawionych znaków należy zastosować, aby ostrzec użytkownika urządzenia elektrycznego przed niebezpieczeństwem porażenia prądem elektrycznym?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Odpowiedź C. jest poprawna, ponieważ symbol ostrzegawczy, który przedstawia, jest uznawany za międzynarodowy standard w zakresie bezpieczeństwa urządzeń elektrycznych. Trójkąt z piorunem informuje użytkowników o potencjalnym niebezpieczeństwie porażenia prądem elektrycznym. Stosowanie tego znaku jest zgodne z normami IEC 60417, które regulują oznakowanie bezpieczeństwa w obszarze elektryczności. Przykładowo, w miejscach takich jak stacje elektroenergetyczne, rozdzielnie elektryczne czy w instalacjach przemysłowych, obecność tego znaku jest kluczowa dla zapewnienia bezpieczeństwa pracowników i osób przebywających w pobliżu. Oprócz tego, znak ten powinien być umieszczany w widocznych miejscach, aby każdy mógł go łatwo zauważyć. W przypadku pracy w warunkach wysokiego napięcia, stosowanie odpowiednich oznaczeń jest nie tylko praktyką, ale i wymogiem prawnym, co podkreśla znaczenie edukacji i świadomości w zakresie bezpieczeństwa elektrycznego.

Pytanie 29

Korzystając z przedstawionej tabeli obciążalności długotrwałej dobierz minimalny przekrój przewodów dla instalacji trójfazowej ułożonej przewodami YDY w rurze instalacyjnej na ścianie drewnianej (sposób B2).
Wartość przewidywanego prądu obciążenia instalacji wynosi 36 A.

Obciążalność prądowa długotrwała przewodów miedzianych, w amperach
Izolacja PVC, trzy żyły obciążone
Temperatura żyły: 70°C. Temperatura otoczenia: 30°C w powietrzu, 20°C w ziemi
ułożenieA1A2B1B2CD
Przekrój
żyły
4 mm2242328273231
6 mm2312936344139
10 mm2423950465752
16 mm2565268627667
A. 4 mm2
B. 16 mm2
C. 6 mm2
D. 10 mm2
Dla instalacji trójfazowej z przewodami YDY umieszczonymi w rurze instalacyjnej na ścianie drewnianej (metoda B2), minimalny przekrój przewodów wynoszący 10 mm2 jest odpowiedni dla przewidywanego prądu obciążenia wynoszącego 36 A. Ten przekrój przewodów zapewnia, że obciążalność wynosząca 50 A jest znacznie wyższa niż wymagana, co gwarantuje bezpieczeństwo i niezawodność instalacji. Zastosowanie odpowiednich przekrojów przewodów jest kluczowe, aby uniknąć przegrzania oraz potencjalnych zagrożeń pożarowych. W praktyce, wybór przekroju przewodów powinien również uwzględniać długość trasy przewodów oraz rodzaj izolacji. W standardach instalacji elektrycznych, takich jak PN-IEC 60364, podkreśla się znaczenie odpowiedniego doboru przekrojów w zależności od warunków instalacyjnych, co minimalizuje ryzyko awarii. Dla instalacji o wyższych obciążeniach, warto również rozważyć zastosowanie przewodów o większej obciążalności, aby mieć większy margines bezpieczeństwa w przypadku przyszłych zmian w obciążeniu.

Pytanie 30

Obniżenie częstotliwości napięcia zasilającego w trakcie działania silnika indukcyjnego trójfazowego spowoduje

A. utrzymanie prędkości obrotowej silnika na niezmienionym poziomie
B. wzrost prędkości obrotowej silnika
C. unieruchomienie silnika
D. spadek prędkości obrotowej silnika
Zadanie dotyczy trójfazowego silnika indukcyjnego, którego prędkość obrotowa jest ściśle związana z częstotliwością napięcia zasilającego. Zgodnie z zasadą działania silników indukcyjnych, prędkość obrotowa (n) jest proporcjonalna do częstotliwości zasilania (f) i liczby par biegunów (p), co można zapisać równaniem: n = (120 * f) / p. Zmniejszenie częstotliwości prowadzi do proporcjonalnego zmniejszenia prędkości obrotowej silnika. W praktycznych zastosowaniach, takich jak regulacja prędkości obrotowej w napędach, zmieniając częstotliwość napięcia, możemy w kontrolowany sposób dostosować prędkość silnika do wymagań procesu technologicznego, co pozwala na optymalizację zużycia energii oraz poprawę wydajności systemu. Warto również wspomnieć o zastosowaniu falowników, które umożliwiają precyzyjne sterowanie częstotliwością zasilania, co jest standardem w nowoczesnych instalacjach przemysłowych, aby dostosować prędkość do zmieniających się warunków pracy.

Pytanie 31

Jak zmienią się parametry napięcia wyjściowego prądnicy synchronicznej zasilającej oddzielną sieć energetyczną, jeśli prędkość obrotowa turbiny napędzającej tę prądnicę wzrośnie, a prąd wzbudzenia pozostanie bez zmian?

A. Wartość i częstotliwość napięcia wzrosną
B. Wartość i częstotliwość napięcia zmniejszą się
C. Wartość napięcia zmniejszy się, a częstotliwość wzrośnie
D. Wartość napięcia wzrośnie, a częstotliwość zmaleje
Wybór błędnych odpowiedzi wynika często z niepełnego zrozumienia zasad działania prądnic synchronicznych oraz ich charakterystyki. W przypadku stwierdzenia, że wartość napięcia się zmniejszy lub częstotliwość spadnie, można zauważyć typowe nieporozumienia. Zmniejszenie wartości napięcia sugerowałoby, że wzrost prędkości obrotowej turbiny jest w jakiś sposób negatywnie skorelowany z wydajnością prądnicy, co jest niezgodne z teorią i praktyką. W rzeczywistości, prądnica synchroniczna jest zaprojektowana tak, aby wydajnie przetwarzać energię mechaniczną na elektryczną, a zwiększenie obrotów wirnika powinno prowadzić do lepszej wydajności. Częstotliwość napięcia jest bezpośrednio związana z prędkością obrotową wirnika, co oznacza, że wzrost prędkości zawsze prowadzi do wzrostu częstotliwości, o ile inne parametry, takie jak prąd wzbudzenia, pozostają niezmienne. Zrozumienie tej dynamiki jest kluczowe dla inżynierów zajmujących się projektowaniem i eksploatacją systemów energetycznych, a także dla zapewnienia stabilności i niezawodności dostaw energii.

Pytanie 32

Na rysunkach przedstawiono schemat prostownika oraz przebieg czasowy napięcia wyjściowego, który świadczy o uszkodzeniu

Ilustracja do pytania
A. diody.
B. kondensatora.
C. uzwojenia wtórnego transformatora.
D. uzwojenia pierwotnego transformatora.
Wybór odpowiedzi sugerujących uszkodzenie uzwojeń transformatora lub diody nie uwzględnia podstawowych zasad działania prostownika. Uzwojenia transformatora, zarówno pierwotne, jak i wtórne, odpowiedzialne są przede wszystkim za przekształcanie napięcia z jednego poziomu na inny. Ich uszkodzenie skutkowałoby brakiem napięcia na wyjściu prostownika, co jest zupełnie innym zjawiskiem niż obecność tętnień w napięciu. Uszkodzenie diody mogłoby prowadzić do niepełnej prostacji napięcia, ale w takim przypadku również wystąpiłyby wyraźne zmiany w kształcie fali, inne niż te, które obserwujemy przy problemach z kondensatorem. Typowe błędy myślowe prowadzące do tych niepoprawnych odpowiedzi dotyczą zrozumienia funkcji poszczególnych elementów w układzie. W praktyce, aby zdiagnozować problemy w układzie prostownika, nie wystarczy tylko spojrzeć na jedną charakterystykę, jaką jest kształt napięcia wyjściowego. Właściwe podejście wymaga zrozumienia interakcji między wszystkimi komponentami oraz ich wpływu na ogólne działanie układu. Konsekwentne stosowanie dobrych praktyk w diagnostyce oraz znajomość podstawowych parametrów technicznych elementów układu jest kluczem do prawidłowego rozwiązywania problemów. Dlatego tak ważne jest zrozumienie, że kondensator to kluczowy element zapewniający stabilność napięcia w układzie prostownika, a nie transformator czy dioda.

Pytanie 33

Która z wymienionych norm elektrycznych wprowadza normę europejską?

A. PN-88/E-08501 Urządzenia elektryczne. Tablice i znaki bezpieczeństwa.
B. PN-E-05204 Ochrona przed elektrycznością statyczną instalacji i urządzeń. Wymagania.
C. PN-E 05115 Instalacje elektroenergetyczne prądu przemiennego o napięciu wyższym od 1 kV.
D. PN-EN 50160 Parametry napięcia zasilającego w publicznych sieciach elektroenergetycznych.
Poprawnie wskazana została norma PN-EN 50160. Ten zapis nie jest przypadkowy: skrót „PN” oznacza Polską Normę, a „EN” informuje, że jest to norma europejska wprowadzona do krajowego systemu normalizacji. Czyli PN-EN 50160 to europejska norma EN 50160, przyjęta i obowiązująca jako polska wersja. W praktyce, w dokumentacji projektowej, warunkach przyłączenia czy protokołach z pomiarów jakości energii, właśnie do PN-EN 50160 odwołuje się, gdy mówimy o dopuszczalnych wartościach napięcia zasilającego w publicznych sieciach elektroenergetycznych. Norma ta określa m.in. dopuszczalne odchylenia napięcia, częstotliwości, poziom zapadów, migotanie światła, zawartość wyższych harmonicznych. Moim zdaniem każdy, kto zajmuje się eksploatacją sieci, przyłączaniem odbiorców, a nawet serwisem bardziej wrażliwych urządzeń, powinien mieć chociaż podstawowe pojęcie, co tam jest zapisane. W praktyce wygląda to np. tak, że jeśli klient składa reklamację, że „prąd jest zły, bo urządzenia się wyłączają”, to zakład energetyczny porównuje wyniki pomiarów parametrów napięcia z wymaganiami PN-EN 50160. Jeżeli parametry mieszczą się w granicach tej normy, to formalnie jakość zasilania jest uznana za zgodną z europejskim standardem. W projektach technicznych i audytach jakości energii bardzo dobrze jest powoływać się właśnie na tę normę, bo jest spójna z wymaganiami obowiązującymi w innych krajach UE i ułatwia współpracę z producentami urządzeń, którzy też ją znają i stosują przy określaniu odporności swoich wyrobów.

Pytanie 34

Aby przygotować instalację elektryczną oświetlenia do przeprowadzenia pomiarów rezystancji izolacji, konieczne jest odłączenie zasilania oraz

A. otworzyć łączniki instalacyjne i wykręcić żarówki
B. zamknąć łączniki instalacyjne i wkręcić żarówki
C. otworzyć łączniki instalacyjne i wkręcić żarówki
D. zamknąć łączniki instalacyjne i wykręcić żarówki
Zamknięcie łączników i wykręcenie żarówek to naprawdę kluczowy krok przy przygotowywaniu instalacji elektrycznej do pomiarów rezystancji izolacji. Robiąc to, unikasz ryzyka przypadkowego załączenia prądu, co mogłoby narobić sporych szkód w sprzęcie pomiarowym oraz stwarzać niebezpieczeństwo dla osoby przeprowadzającej pomiary. Normy, jak PN-IEC 60364, mówią, że izolację trzeba sprawdzać przy wyłączonym zasilaniu, żeby wszystko było bezpieczne i wyniki były wiarygodne. Wykręcenie źródeł światła zmniejsza ryzyko przewodzenia prądu lub nieprzyjemnych napięć, co jest szczególnie ważne w mocnych instalacjach. Takie praktyki stosuje się np. w obiektach komercyjnych, gdzie bezpieczeństwo ludzi jest na pierwszym miejscu. Dobre przygotowanie instalacji do badań to nie tylko spełnienie przepisów, ale też sposób na to, żeby system elektryczny działał długo i bezawaryjnie.

Pytanie 35

Jakiego rodzaju zabezpieczenie powinno być zastosowane, gdy rozruch silnika indukcyjnego pierścieniowego bez urządzeń rozruchowych jest niedopuszczalny?

A. Zabezpieczenia podnapięciowego
B. Zabezpieczenia przeciążeniowego
C. Zabezpieczenia zwarciowego
D. Zabezpieczenia nadnapięciowego
Zabezpieczenie podnapięciowe w systemach rozruchu silników indukcyjnych pierścieniowych jest naprawdę istotne, jak dla ich bezpieczeństwa, tak i dla samego działania urządzenia. Działa to tak, że jak napięcie spada poniżej pewnego poziomu, to układ nie pozwala na uruchomienie silnika. Bo wiesz, w przypadku silników pierścieniowych, które często używa się tam, gdzie potrzebny jest duży moment obrotowy, jeśli nie zastosujesz dobrego zabezpieczenia, możesz doprowadzić do przeciążenia i w efekcie uszkodzenia silnika. Takie zabezpieczenie ma na celu to, żeby silnik nie wystartował, gdy napięcie jest za niskie, bo to może prowadzić do przegrzania uzwojeń i innych poważnych problemów. W przemyśle takie zabezpieczenia są standardem, bo niewłaściwa praca silnika może wywołać dodatkowe koszty i przestoje. Często też normy, jak IEC 60947-4-1, mówią, że warto mieć takie zabezpieczenia, żeby chronić silniki przed złymi warunkami zasilania, co jest zgodne z tym, jak to się robi w branży.

Pytanie 36

Przy badaniu uszkodzonego silnika trójfazowego połączonego w gwiazdę zmierzono rezystancje uzwojeń i rezystancje izolacji. Zamieszczone w tabeli wyniki pomiarów pozwalają stwierdzić, że możliwe jest

Wielkość mierzonaWartość, Ω
Rezystancja uzwojeń między zaciskami silnika:
U1 – V110,0
V1 – W1
W1 – U1
Rezystancja izolacji między zaciskami a obudową silnika:Wartość, MΩ
U1 – PE15,5
V1 – PE15,5
W1 – PE0
Ilustracja do pytania
A. przerwanie uzwojenia V1 - V2
B. odkręcenie się i dotknięcie obudowy przez przewód spod zacisku V1
C. przerwanie uzwojenia Ul - U2
D. odkręcenie się i dotknięcie obudowy przez przewód spod zacisku Wl
Odpowiedź dotycząca odkręcenia się i dotknięcia obudowy przez przewód spod zacisku W1 jest poprawna, ponieważ wyniki pomiarów rezystancji wykazują, że rezystancja izolacji między tym zaciskiem a obudową (PE) wynosi 0 MΩ. Oznacza to, że istnieje bezpośrednie połączenie między przewodem W1 a obudową, co prowadzi do zwarcia oraz ryzyka wystąpienia uszkodzenia sprzętu. W przypadku silników trójfazowych, ważne jest zachowanie odpowiednich wartości rezystancji izolacji, aby zapewnić prawidłowe działanie oraz bezpieczeństwo. Dobrą praktyką jest regularne wykonywanie pomiarów rezystancji izolacji przed uruchomieniem urządzenia, co pozwoli na wczesne wykrycie potencjalnych problemów. Ponadto, stosowanie odpowiednich zabezpieczeń, jak wyłączniki różnicowoprądowe, może pomóc w zminimalizowaniu ryzyka uszkodzenia obwodów oraz zapewnieniu bezpieczeństwa użytkowników. Warto również zaznaczyć, że w przypadku wykrycia niskiej rezystancji izolacji, należy jak najszybciej zidentyfikować i usunąć źródło problemu, aby uniknąć poważniejszych awarii.

Pytanie 37

Na podstawie wyników pomiarów rezystancji wykonanych na zaciskach L1 i N grzejnika jednofazowego, którego schemat przedstawiono na rysunku, określ stan techniczny jego grzałek.

Położenie przełącznika P1Położenie przełącznika P2Rezystancja między zaciskami L1 i N
w Ω
13
14
2344
2453
Ilustracja do pytania
A. Uszkodzona jest tylko grzałka G1.
B. Sprawna jest tylko grzałka G3.
C. Wszystkie grzałki są sprawne.
D. Wszystkie grzałki są uszkodzone.
Prawidłowa diagnoza wynika przede wszystkim z analizy wartości rezystancji dla różnych położeń przełączników. Gdy oba przełączniki są ustawione w pozycjach 1-3 i 1-4, miernik pokazuje nieskończoność (∞), co jednoznacznie wskazuje na przerwę w obwodzie. W praktyce w takich położeniach powinna być widoczna konkretna rezystancja, jeśli wszystkie grzałki są sprawne. Moim zdaniem – i niejednokrotnie widziałem to na warsztacie – najczęściej oznacza to, że jedna z grzałek jest uszkodzona (przerwa). Przy położeniach 2-3 i 2-4 pojawiają się wartości 44 i 53 Ω, czyli dwie grzałki przewodzą prąd i są sprawne. Analizując układ połączeń, łatwo dojść do wniosku, że brak przewodności w pierwszych przypadkach wynika z uszkodzenia G1 – to właśnie ta grzałka odcina całą ścieżkę prądową w tych konfiguracjach. W zawodzie elektryka podobna sytuacja często pojawia się np. przy naprawie pieców czy bojlerów – pomiar rezystancji pozwala błyskawicznie wskazać uszkodzony element bez konieczności rozkręcania całego urządzenia. Taki test to nie tylko teoria, ale bardzo praktyczna metoda, którą polecam każdemu początkującemu elektrykowi. Dobrze wykonana diagnostyka rezystancyjna to podstawa utrzymania ruchu i serwisu urządzeń grzewczych. Warto pamiętać, że zgodnie z dobrą praktyką branżową zawsze należy dokumentować wyniki pomiarów i interpretować je z uwzględnieniem schematu połączeń – to zdecydowanie skraca czas diagnozy i ogranicza ryzyko błędów.

Pytanie 38

W układzie instalacji elektrycznej budynku, której fragment schematu przedstawiono na rysunku, błędnie zainstalowano ogranicznik przepięć oznaczony cyfrą

Ilustracja do pytania
A. 2
B. 3
C. 1
D. 4
Odpowiedź 2 jest prawidłowa, ponieważ ogranicznik przepięć oznaczony tym numerem jest rzeczywiście błędnie zainstalowany. Ograniczniki przepięć powinny być podłączone zarówno do przewodu fazowego (L), jak i do przewodu ochronnego (PE), aby skutecznie chronić instalację elektryczną przed skokami napięcia, które mogą wystąpić na skutek uderzeń pioruna lub innych zakłóceń w sieci energetycznej. W przypadku, gdy ogranicznik jest podłączony tylko do jednego z tych przewodów, jego działanie jest ograniczone, a to może prowadzić do uszkodzenia urządzeń podłączonych do instalacji. Przykładowo, w nowoczesnych instalacjach, zgodnych z normą PN-EN 62305, zaleca się stosowanie ograniczników klasy I dla obiektów narażonych na uderzenia pioruna oraz klasy II dla instalacji wewnętrznych. Prawidłowe zaprojektowanie i wykonanie montażu ograniczników przepięć jest kluczowe dla zapewnienia trwałości i bezpieczeństwa całego systemu elektrycznego.

Pytanie 39

Na której fotografii pokazany jest miernik prędkości obrotowej wału silnika elektrycznego?

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Na zdjęciu C widzimy tachometr, który jest naprawdę ważnym narzędziem do sprawdzania prędkości obrotowej silników elektrycznych. Dzięki niemu można zmierzyć, jak szybko kręci się wał silnika, co jest istotne, żeby maszyna działała prawidłowo i była wydajna. W inżynierii dobre monitorowanie prędkości obrotowej pomaga nam w zauważeniu problemów, jak np. przeciążenie czy zły poziom smarowania, które mogą uszkodzić silnik. W przemyśle tachometry są wykorzystywane do automatyzacji procesów, bo ustawienie odpowiedniej prędkości jest kluczowe dla jakości produktów. Regularne kalibracje tych urządzeń, zgodnie z normami, są niezbędne, żeby utrzymać wysoką wydajność i bezpieczeństwo podczas pracy.

Pytanie 40

Na rysunku zamieszczono schemat układu pomiarowego do badania transformatora w stanie jałowym. Jakie powinny być minimalne zakresy pomiarowe woltomierzy i amperomierza, aby można było sprawdzić prąd stanu jałowego transformatora o parametrach: Sn = 920 VA, U1n = 230 V, U2n = 100 V, i0% = 10%?

V1V2A
VVA
A.30155
B.301510
C.3001500,5
D.3001502,5
Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Odpowiedź C jest prawidłowa, ponieważ uwzględnia odpowiednie zakresy pomiarowe dla woltomierzy i amperomierza, które są kluczowe w badaniu transformatora w stanie jałowym. W przypadku pomiaru prądu stanu jałowego, który wynosi 0,4 A, amperomierz powinien mieć zakres co najmniej 0,5 A. Dla woltomierza pierwszego, związane z napięciem pierwotnym, wymagany zakres to nie mniej niż 230 V, co w odpowiedzi C jest spełnione przez zakres 300 V. Dla napięcia wtórnego, które wynosi 100 V, odpowiedni zakres to 150 V. Użycie takich zakresów pomiarowych pozwala na uniknięcie uszkodzenia przyrządów oraz zapewnia komfortowe warunki pracy, co jest zgodne z najlepszymi praktykami pomiarowymi w branży elektrycznej. W kontekście standardów, parametry te są zgodne z normami IEC dotyczących pomiarów w instalacjach elektrycznych, co podkreśla ich adekwatność do profesjonalnych zastosowań.