Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 13:56
  • Data zakończenia: 17 grudnia 2025 14:27

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie powinno być maksymalne natężenie prądu, które może zmierzyć amperomierz w instalacji zasilanej napięciem 230/400 V, o częstotliwości 50 Hz, obciążonej jednofazowym silnikiem elektrycznym o parametrach: P = 0,55 kW, η = 70%, cosα = 0,96?

A. 3 A
B. 1 A
C. 4 A
D. 2 A
Wybór niewłaściwego zakresu pomiarowego amperomierza może wynikać z kilku błędnych założeń. Przede wszystkim, niektóre odpowiedzi mogą sugerować, że natężenie prądu będzie znacznie niższe niż w rzeczywistości, co jest wynikiem nieprawidłowego zrozumienia wzorów związanych z mocą oraz współczynnikiem mocy. Na przykład, wybierając zakres 1 A lub 2 A, można zakładać, że wyniki pomiarów będą dostateczne, jednak w praktyce taki amperomierz mógłby ulec uszkodzeniu w przypadku przekroczenia jego maksymalnych wartości. Należy też pamiętać, że obliczana moc bierna, związana z parametrem cosα, wpływa na całkowity prąd pobierany przez silnik. Przy obliczeniu prądu, istotne jest uwzględnienie rzeczywistej mocy czynnej oraz sprawności silnika, co może prowadzić do błędnych wniosków, jeśli te wartości nie zostaną prawidłowo zaimplementowane w obliczeniach. W każdym przypadku przed dokonaniem wyboru sprzętu pomiarowego, warto zapoznać się z wytycznymi dotyczącymi doboru przyrządów, które zalecają wybór urządzeń z odpowiednim marginesem bezpieczeństwa. Aby uzyskać pełen obraz sytuacji, warto również zwrócić uwagę na rzeczywiste warunki pracy silnika oraz charakterystykę obciążenia, które mogą dodatkowo wpływać na wartość prądu. Dobre praktyki wymagają, aby przy doborze amperomierza brać pod uwagę rzeczywiste zastosowanie oraz możliwe zmiany w obciążeniu, co w przypadku silników elektrycznych bywa dość istotne.

Pytanie 2

Kontrolę instalacji elektrycznej, znajdującej się w pomieszczeniach o wysokiej wilgotności (75÷100%), w zakresie efektywności ochrony przed porażeniem elektrycznym należy przeprowadzać co najmniej raz na

A. 4 lata
B. 1 rok
C. 3 lata
D. 2 lata
Instalacje elektryczne w pomieszczeniach wilgotnych, takich jak łazienki czy piwnice, wymagają szczególnej uwagi w kontekście ochrony przeciwporażeniowej. Wilgotność powietrza w takich miejscach może prowadzić do zwiększonego ryzyka porażenia prądem, dlatego też zgodnie z obowiązującymi normami i zaleceniami, takie instalacje powinny być poddawane kontroli co najmniej raz w roku. Regularne przeglądy pozwalają na wczesne wykrywanie potencjalnych usterek, takich jak uszkodzenia izolacji, niewłaściwe zabezpieczenia czy korozja elementów instalacji. Przykładem może być kontrola stanu gniazdek elektrycznych, które w miejscach o wysokiej wilgotności narażone są na działanie wody, co może prowadzić do zwarć. Warto również zwrócić uwagę na zastosowanie odpowiednich zabezpieczeń, takich jak różnicowoprądowe wyłączniki zabezpieczające (RCD), które mogą istotnie zwiększyć poziom bezpieczeństwa. Przestrzeganie tych zasad jest zgodne z normami, takimi jak PN-IEC 60364, które określają wymagania dotyczące instalacji elektrycznych w miejscach narażonych na wilgoć.

Pytanie 3

Jaką wkładkę topikową bezpiecznikową powinno się wykorzystać do ochrony silnika indukcyjnego przed skutkami zwarć?

A. WT-2gTr
B. WT/NH DC
C. WT/NHaM
D. WT-00 gF
Wybór nieodpowiedniej wkładki topikowej do zabezpieczenia silnika indukcyjnego może prowadzić do poważnych skutków, w tym uszkodzenia silnika lub awarii całego systemu. Wybrane opcje, takie jak WT/NH DC, WT-2gTr oraz WT-00 gF, nie są optymalne w kontekście ochrony silników indukcyjnych. Wkładka WT/NH DC, przeznaczona głównie do systemów prądu stałego, nie jest przystosowana do warunków pracy, w jakich funkcjonują silniki indukcyjne zasilane prądem zmiennym, co może prowadzić do niewłaściwej reakcji na zwarcia. Z kolei WT-2gTr nie jest odpowiednia ze względu na swoje ograniczenia w obszarze prądów zwarciowych, mogących być znacznie wyższe w przypadku silników indukcyjnych. Wkładka WT-00 gF, mimo że może znaleźć zastosowanie w innych obszarach, również nie jest dedykowana do ochrony silników, bowiem nie zapewnia wymaganej charakterystyki prądowej oraz czasowej reakcji. Typowe błędy myślowe związane z tymi odpowiedziami mogą obejmować nieprawidłowe założenie, że każda wkładka bezpiecznikowa jest uniwersalna, co jest sprzeczne z zasadami inżynierii elektrycznej. Właściwy dobór ochrony nadprądowej powinien opierać się na specyfikacjach danego urządzenia oraz warunkach jego pracy, aby zapewnić maksymalną efektywność ochrony.

Pytanie 4

Jaką czynność powinno się wykonać w trakcie oględzin urządzenia napędowego z silnikiem pierścieniowym podczas jego pracy?

A. Ocena stanu szczotek i szczotkotrzymaczy
B. Ocena stanu pierścieni ślizgowych
C. Sprawdzenie poziomu drgań
D. Sprawdzenie połączeń elementów urządzenia
Ocena stanu pierścieni ślizgowych, stanu szczotek i szczotkotrzymaczy oraz sprawdzenie połączeń elementów urządzenia są ważnymi czynnościami konserwacyjnymi, jednak nie są kluczowe do oceny stanu w czasie rzeczywistym podczas ruchu urządzenia napędowego. Stan pierścieni ślizgowych jest istotny, ale ich ocena wymaga zatrzymania maszyny, co nie pozwala na przeprowadzenie oceny w czasie rzeczywistym. Analogicznie, stan szczotek i szczotkotrzymaczy wpływa na efektywność silnika, ale ich monitoring powinien być częścią rutynowych przeglądów, a nie czynności wykonywanych podczas normalnej pracy. Sprawdzenie połączeń elementów urządzenia, choć istotne z punktu widzenia bezpieczeństwa i funkcjonalności, również nie jest typowym zadaniem, które można wykonać w trakcie ruchu, ponieważ wymaga to szczegółowej inspekcji wizualnej, której nie można przeprowadzić, gdy urządzenie jest w ruchu. Często występującą pomyłką jest myślenie, że wszystkie te czynności można wykonywać jednocześnie z oceną drgań, co jest nieprawidłowe. W rzeczywistości, monitorowanie drgań jest najskuteczniejszym sposobem na bieżąco oceniać stan urządzenia podczas jego pracy, co pozwala na szybką reakcję w przypadku wystąpienia problemów. Dlatego w czasie ruchu urządzenia kluczowe jest skupić się na aspektach, które można ocenić bez zatrzymywania maszyny, co w przypadku pierścieni, szczotek i połączeń nie jest możliwe.

Pytanie 5

Obwód typu SELV powinien być zasilany z sieci energetycznej poprzez

A. transformator bezpieczeństwa
B. rezystor w układzie szeregowym
C. autotransformator
D. dzielnik napięcia
Dzielnik napięcia nie jest odpowiednim rozwiązaniem do zasilania obwodów SELV, ponieważ jego działanie polega na dzieleniu napięcia zgodnie z określonym stosunkiem rezystancji. W przypadku awarii jednego z elementów, napięcie wyjściowe może wzrosnąć do wartości niebezpiecznych, co zagraża bezpieczeństwu użytkowników. Podobnie autotransformator, który wykorzystuje wspólny uzwojenie do przekształcania napięcia, nie zapewnia wymaganej separacji galwanicznej i może wprowadzać niebezpieczne napięcia do obwodu niskonapięciowego. Rezystor szeregowy, z kolei, służy do ograniczania prądu w obwodzie, ale nie dostarcza izolacji, co jest kluczowe w systemach SELV. W przypadku systemów zasilania niskonapięciowego kluczowe jest zapewnienie, że napięcie nie przekroczy 50 V AC lub 120 V DC, a transformator bezpieczeństwa spełnia te wymagania, zapewniając odpowiednią izolację. Typowe błędy myślowe to mylne przekonanie, że można stosować elementy, które nie spełniają norm bezpieczeństwa, co może prowadzić do niebezpiecznych sytuacji w instalacjach elektrycznych.

Pytanie 6

Osoby zajmujące się naprawą instalacji elektrycznych w budynkach mieszkalnych powinny posiadać

A. pisemne zezwolenie na pracę od kierownika robót
B. uprawnienie potwierdzone odpowiednim świadectwem kwalifikacyjnym
C. zaświadczenie o przeszkoleniu wystawione przez osobę mającą uprawnienia
D. zaświadczenie o przeszkoleniu wydane przez administratora budynku
Odpowiedź "uprawnienie potwierdzone odpowiednim świadectwem kwalifikacyjnym" jest prawidłowa, ponieważ zgodnie z obowiązującymi przepisami prawa budowlanego oraz normami dotyczącymi bezpieczeństwa pracy, osoby zajmujące się instalacjami elektrycznymi muszą posiadać odpowiednie kwalifikacje, które są dokumentowane przez świadectwa kwalifikacyjne. Tego typu świadectwa są wydawane na podstawie ukończenia specjalistycznych szkoleń oraz zdania egzaminów, które potwierdzają znajomość przepisów, norm i standardów dotyczących instalacji elektrycznych. Przykładem może być świadectwo wydawane przez Urząd Dozoru Technicznego, które jest wymagane do przeprowadzania prac w obiektach, gdzie stosuje się urządzenia elektryczne pod napięciem. Dzięki posiadaniu takich uprawnień, technicy elektrycy zapewniają bezpieczeństwo nie tylko sobie, ale również użytkownikom budynków. Posiadanie świadectwa kwalifikacyjnego jest zatem kluczowe dla profesjonalizmu w branży oraz zgodności z obowiązującym prawem, co przekłada się na bezpieczne i efektywne wykonywanie zadań w zakresie instalacji i konserwacji systemów elektrycznych.

Pytanie 7

Który z podanych przewodów elektrycznych powinno się zastosować do wykonania przyłącza elektrycznego ziemnego budynku jednorodzinnego z napowietrzną linią 230/400 V?

A. AAFLwsXSn 50
B. AsXS 4×70
C. YAKY 4×10
D. AFL 6 120
Wybór przewodu YAKY 4×10 jako odpowiedniego do wykonania przyłącza elektrycznego ziemnego budynku jednorodzinnego z linią napowietrzną 230/400 V jest właściwy z kilku powodów. Przewód YAKY to przewód aluminiowy, który charakteryzuje się wysoką odpornością na czynniki zewnętrzne oraz niską wagą, co ułatwia jego montaż. Zastosowanie przewodu 4×10 oznacza, że ma on cztery żyły, z czego trzy są fazowe, a jedna to żyła neutralna, co jest standardem w instalacjach jednofazowych i trójfazowych. W przypadku przyłącza ziemnego, przewód ten powinien być również osłonięty, co zapewnia bezpieczeństwo użytkowania. YAKY 4×10 spełnia normy PN-EN 60502-1, co czyni go odpowiednim wyborem z punktu widzenia przepisów i dobrych praktyk. Przykładem zastosowania YAKY 4×10 jest przyłącze do domów jednorodzinnych, gdzie przewód ten może być układany w ziemi, zapewniając odpowiednią odporność na uszkodzenia i długowieczność. Warto również zauważyć, że ze względu na stosunkowo niską wartość oporu przewodzenia, przewód ten pozwala na efektywne przesyłanie energii elektrycznej przy minimalnych stratach.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

W instalacji elektrycznej w celu stwierdzenia skuteczności ochrony przeciwporażeniowej dokonano pomiarów i otrzymano wartości napięcia fazowego oraz impedancji pętli zwarcia wskazywane przez zamieszczony na rysunku miernik MZC-304. Które z zabezpieczeń nadprądowych przy tym stanie technicznym instalacji spełni warunek samoczynnego wyłączenia zasilania?

Ilustracja do pytania
A. D25
B. C32
C. C25
D. D32
Zabezpieczenie nadprądowe C25 jest w porządku w tej sytuacji, bo jego maksymalny prąd wyzwalania to 250A. Jakby doszło do zwarcia w instalacji, to prąd zwarcia wynosi około 315A, a to już więcej niż C25 może znieść. To zabezpieczenie działa tak, że automatycznie odłącza zasilanie, a to jest naprawdę ważne dla bezpieczeństwa, żeby uniknąć porażenia. W praktyce, takie zabezpieczenia z charakterystyką C są często stosowane tam, gdzie mamy duże obciążenia, które przy zwarciu mogą dawać spore prądy. Różne normy, jak PN-IEC 60364-4-41, mówią o tym, jak ważne jest dobranie odpowiednich zabezpieczeń. Dlatego użycie C25 w tym przypadku jest zgodne z tym, co mówią te normy i daje większą pewność, jeśli chodzi o bezpieczeństwo użytkowników instalacji.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Należy kontrolować instalację elektryczną w obiektach o wysokiej wilgotności (75-100%) pod kątem efektywności ochrony przed porażeniem nie rzadziej niż co

A. 2 lata
B. 4 lata
C. 3 lata
D. 1 rok
Sprawdzenie instalacji elektrycznej przynajmniej raz do roku w wilgotnych pomieszczeniach to naprawdę ważna sprawa. Jest to zgodne z zasadami bezpieczeństwa i ochrony przed porażeniem prądem. Jeśli wilgotność w pomieszczeniu wynosi od 75% do 100%, ryzyko porażenia wzrasta, więc warto, żebyśmy zajmowali się tym regularniej. Dobrze jest przeprowadzać inspekcje urządzeń i instalacji, żeby upewnić się, że nic nie zagraża bezpieczeństwu. Do takiej kontroli należy sprawdzić stan przewodów, działanie wyłączników różnicowoprądowych oraz ogólny stan instalacji. Na przykład, w łazience, gdzie wilgotność jest wysoka, regularne kontrole oświetlenia są kluczowe. Dzięki odpowiednim testom i konserwacji można uniknąć niebezpiecznych sytuacji. Warto też pamiętać o normie PN-EN 61140, która wskazuje na potrzebę regularnych przeglądów w takich warunkach.

Pytanie 12

Przed rozpoczęciem wymiany uszkodzonych części instalacji elektrycznej do 1 kV, należy najpierw odłączyć napięcie, a następnie stosować się do zasad bezpieczeństwa w poniższej kolejności:

A. zabezpieczyć przed ponownym załączeniem, potwierdzić brak napięcia, uziemić instalację elektryczną
B. potwierdzić brak napięcia, uziemić instalację elektryczną, zabezpieczyć przed ponownym załączeniem
C. zabezpieczyć przed ponownym załączeniem, uziemić instalację elektryczną, potwierdzić brak napięcia
D. potwierdzić brak napięcia, zabezpieczyć przed ponownym załączeniem, uziemić instalację elektryczną
Przed przystąpieniem do wymiany uszkodzonych elementów instalacji elektrycznej do 1 kV, kluczowe jest przestrzeganie ustalonej procedury bezpieczeństwa. Po pierwsze, zabezpieczenie przed powtórnym załączeniem oznacza zastosowanie odpowiednich blokad lub zamknięć, które uniemożliwiają przypadkowe przywrócenie zasilania podczas prac. Po tym etapie, potwierdzenie braku napięcia jest niezbędne, aby upewnić się, że instalacja faktycznie jest de-energizowana. Można to osiągnąć za pomocą odpowiednich przyrządów pomiarowych, takich jak wskaźniki napięcia, które powinny być używane przez wykwalifikowany personel. Uziemienie instalacji elektrycznej jest kolejnym krokiem, który zapewnia, że wszelkie pozostałe ładunki elektryczne są bezpiecznie odprowadzane do ziemi, co minimalizuje ryzyko porażenia prądem. Cała ta procedura jest zgodna z normami bezpieczeństwa, takimi jak PN-EN 50110-1, które określają zasady dotyczące eksploatacji instalacji elektrycznych.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Do nawinięcia stojana w trójfazowym silniku indukcyjnym o mocy 7,5 kW nie stosuje się

A. lakieru izolacyjnego
B. drutu nawojowego
C. izolacji żłobkowej
D. pierścienia zwierającego
Pierścień zwierający nie jest stosowany w przezwojeniu stojana trójfazowego silnika indukcyjnego o mocy 7,5 kW, ponieważ jego konstrukcja opiera się na rdzeniu stalowym, w którym uzwojenia są umieszczone w żłobkach. Pierścienie zwierające są używane głównie w silnikach z wirnikami klatkowym, gdzie zapewniają zamknięcie obwodu wirnika. W przypadku silników indukcyjnych z uzwojeniem stojana, kluczowe komponenty to drut nawojowy, izolacja żłobkowa oraz lakier izolacyjny. Drut nawojowy, wykonany z miedzi, jest niezbędny do utworzenia uzwojeń, które generują pole magnetyczne. Izolacja żłobkowa oraz lakier izolacyjny chronią drut przed zwarciem oraz uszkodzeniami mechanicznymi, a także zapewniają odpowiednią wydajność cieplną. Dobrze przeprowadzone przezwojenie zwiększa efektywność silnika, co jest istotne w kontekście obciążenia i żywotności maszyny.

Pytanie 15

Jaki sprzęt gaśniczy powinien zostać użyty do gaszenia pożaru w rozdzielnicy elektrycznej, której nie można odłączyć od zasilania?

A. Gaśnicę płynową
B. Hydronetkę
C. Gaśnicę proszkową
D. Tłumicę
Gaśnica proszkowa jest najskuteczniejszym narzędziem do gaszenia pożarów, które mają miejsce w obszarze rozdzielnic elektrycznych, zwłaszcza gdy nie można ich wyłączyć spod napięcia. Działa na zasadzie przerwania reakcji chemicznej, a jej proszek gaśniczy skutecznie tłumi ogień, nie przewodząc prądu elektrycznego. W przypadku pożaru rozdzielnicy elektrycznej, klasyfikowanego jako pożar klasy C, gaśnice proszkowe są rekomendowane przez normy PN-EN 2 oraz PN-EN 3, które określają środki gaśnicze odpowiednie do różnych rodzajów pożarów. Użycie gaśnicy proszkowej nie tylko minimalizuje ryzyko porażenia prądem, ale także nie powoduje uszkodzeń sprzętu elektrycznego, co jest kluczowe w przypadkach, gdy urządzenia muszą pozostać w ruchu. Przykłady zastosowania obejmują sytuacje w zakładach przemysłowych, gdzie pożar rozdzielnicy może prowadzić do poważnych strat materialnych, a zastosowanie odpowiednich środków gaśniczych jest kluczowe dla szybkiej reakcji oraz minimalizacji strat.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Który z wymienionych czynników nie wpływa na dopuszczalne obciążenie długotrwałe przewodów stosowanych w instalacji elektrycznej?

A. Metoda ułożenia przewodów.
B. Długość ułożonych przewodów.
C. Przekrój poprzeczny żył.
D. Rodzaj materiału izolacyjnego.
Wszystkie wymienione parametry mają istotny wpływ na dopuszczalną obciążalność długotrwałą przewodów elektrycznych, co jest kluczowe dla zapewnienia bezpieczeństwa i efektywności instalacji. Przekrój poprzeczny żył przewodów wpływa na ich oporność, co z kolei determinuje ilość wydzielającego się ciepła podczas przepływu prądu. Zbyt mały przekrój może prowadzić do nadmiernego nagrzewania się przewodów, co w najgorszym przypadku skutkuje pożarem. Rodzaj materiału izolacji jest równie ważny, ponieważ różne materiały mają różne właściwości, takie jak odporność na wysoką temperaturę. Na przykład, materiały takie jak PVC mogą mieć ograniczoną odporność na wysokie temperatury, co w sytuacji długotrwałego obciążenia może prowadzić do uszkodzenia izolacji. Sposób ułożenia przewodów również ma kluczowe znaczenie: przewody ułożone blisko siebie mogą mieć ograniczone możliwości odprowadzania ciepła, co przekłada się na wyższą temperaturę pracy. Długość przewodów, chociaż nie wpływa bezpośrednio na obciążalność, może wpływać na spadki napięcia, co również jest istotne podczas projektowania instalacji. W efekcie, ignorowanie tych parametrów może prowadzić do poważnych problemów w instalacjach elektrycznych, od ich niewłaściwego działania po uszkodzenia, a nawet zagrożenia dla bezpieczeństwa użytkowników. Dlatego należy zawsze zwracać uwagę na wszystkie wymienione czynniki i stosować praktyki zgodne z obowiązującymi normami.

Pytanie 18

W tabeli przedstawiono wyniki pomiarów napięć między przewodami w sieci typu TN-C-S. Jakie uszkodzenie występuje w instalacji?

L1-N240 V
L2-N240 V
L3-N240 V
PEN-N0 V
PEN-PE10 V
A. Zwarcie między fazami L1-L2
B. Brak ciągłości przewodu PE
C. Przebicie izolacji między L1-N
D. Uszkodzenie przewodu N
Brak ciągłości przewodu PE w instalacjach TN-C-S jest kluczowym problemem, który może prowadzić do poważnych zagrożeń dla bezpieczeństwa. W sieci TN-C-S przewód PEN pełni podwójną rolę: przewodu neutralnego oraz ochronnego. Przykładowo, w sytuacji, gdy napięcie między przewodem PEN a PE wynosi 10 V, wskazuje to na brak ciągłości w przewodzie PE. W idealnych warunkach napięcie to powinno wynosić 0 V, co oznacza, że przewód ochronny jest prawidłowo uziemiony i pełni swoją funkcję zabezpieczającą. W przypadku braku ciągłości przewodu PE, istnieje ryzyko, że metalowe obudowy urządzeń mogą stać się naładowane, co stwarza niebezpieczeństwo porażenia prądem. W praktyce, wszelkie prace w instalacjach elektrycznych powinny być prowadzone zgodnie z normami, takimi jak PN-IEC 60364, które podkreślają znaczenie prawidłowego uziemienia i ochrony przeciwporażeniowej. Regularne pomiary i inspekcje mogą pomóc w identyfikacji takich problemów, co jest zgodne z zaleceniami zawartymi w dokumentach branżowych.

Pytanie 19

Które z podanych wskazówek nie odnosi się do projektanta oraz wykonawcy nowej instalacji elektrycznej w lokalu mieszkalnym?

A. Odbiorniki o dużej mocy, które są zainstalowane na stałe, powinny być zasilane z wydzielonych obwodów
B. Oddzielić obwody oświetlenia od obwodów z gniazdami wtykowymi
C. Gniazda wtykowe w kuchni należy zasilać z oddzielnego obwodu
D. Gniazda wtykowe w każdym pomieszczeniu zasilane powinny być z oddzielnego obwodu
Zalecenia dotyczące projektowania instalacji elektrycznych obejmują wiele praktycznych aspektów, które mają na celu zarówno bezpieczeństwo, jak i efektywność energetyczną. Rozdzielanie obwodów oświetleniowych od obwodów gniazd wtykowych jest standardową praktyką, która pomaga w zarządzaniu obciążeniem elektrycznym oraz zapewnia łatwiejszą diagnostykę w razie awarii. Takie rozdzielenie pozwala na niezależne wyłączanie oświetlenia, co jest szczególnie istotne w przypadku awarii obwodów gniazd. Z kolei zasilać gniazda wtykowe w kuchni z osobnego obwodu to również właściwe zalecenie, z uwagi na większe obciążenie związane z urządzeniami AGD. Zasilanie urządzeń o dużej mocy z wydzielonych obwodów jest praktyką, która chroni inne obwody przed przeciążeniem oraz zabezpiecza przed ryzykiem uszkodzenia urządzeń oraz pożaru."

Pytanie 20

Podczas badania transformatora średniej mocy stwierdzono, że jego temperatura wzrosła ponad normę. Co może być tego przyczyną?

A. Przerwa w uzwojeniu
B. Przeciążenie transformatora
C. Zwarcie międzyzwojowe
D. Uszkodzenie rdzenia
Uszkodzenie rdzenia transformatora może wprawdzie prowadzić do problemów z przenoszeniem mocy, ale nie jest bezpośrednią przyczyną wzrostu temperatury ponad normę. Rdzeń, zbudowany z cienkich, izolowanych blach, jest zaprojektowany tak, aby minimalizować straty mocy i uniknąć przegrzewania. Jeśli jednak rdzeń jest uszkodzony, np. przez mechaniczne zniekształcenia lub korozję, może to wpływać na sprawność transformatora, ale zwykle nie powoduje natychmiastowego wzrostu temperatury. Przerwa w uzwojeniu z kolei skutkuje całkowitym brakiem przepływu prądu przez uszkodzone uzwojenie, co zazwyczaj prowadzi do wyłączenia transformatora. W takim przypadku transformator nie będzie pracował prawidłowo, ale samo uszkodzenie nie podnosi jego temperatury. Zwarcie międzyzwojowe w uzwojeniach transformatora jest poważnym problemem, który może prowadzić do lokalnego wzrostu temperatury. Jednakże, w porównaniu do przeciążenia całego transformatora, zwarcie międzyzwojowe zwykle prowadzi do szybkiego uszkodzenia i wyłączenia się transformatora z eksploatacji. Jest to bardziej katastrofalne uszkodzenie wymagające natychmiastowej naprawy. Warto pamiętać, że wszystkie te problemy wymagają regularnych przeglądów technicznych, aby w porę wykrywać potencjalne usterki i zapobiegać poważnym awariom.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Zamieszczone w tabeli wyniki pomiarów rezystancji izolacji uzwojeń trójfazowego silnika asynchronicznego o napięciu Un = 400 V i prądzie In = 20 A świadczą o uszkodzeniu izolacji

UzwojenieRezystancja izolacji między uzwojeniem a obudową
U1-U24 000
V1-V26 000
W1-W28 000
A. uzwojenia V1-V2.
B. uzwojeń U1-U2 i W1-W2.
C. uzwojeń U1-U2 i V1-V2.
D. uzwojenia U1-U2.
Odpowiedzi, które wskazują na uzwojenia V1-V2, W1-W2 oraz kombinacje tych uzwojeń, nie uwzględniają kluczowego elementu analizy rezystancji izolacji. Uzwojenia V1-V2 i W1-W2 mają znacznie wyższe wartości rezystancji izolacji wynoszące odpowiednio 6000 kΩ i 8000 kΩ, co sugeruje, że ich izolacja jest w dobrym stanie. To błędne podejście może wynikać z niepełnego zrozumienia zasadności norm dotyczących rezystancji izolacji, które jasno wskazują, że niższa wartość rezystancji wskazuje na potencjalne uszkodzenie. Wybierając uzwojenia na podstawie wyższej wartości rezystancji, można dojść do mylnego wniosku, że są one bardziej narażone na uszkodzenia. Może to prowadzić do nieuzasadnionych działań naprawczych, które nie rozwiązują rzeczywistego problemu, a jednocześnie generują dodatkowe koszty. W praktyce, zrozumienie i umiejętność interpretacji wyników pomiarów rezystancji izolacji jest kluczowe dla oceny stanu technicznego silników, co ma bezpośrednie przełożenie na bezpieczeństwo i efektywność operacyjną instalacji. Ignorowanie tego aspektu może prowadzić do poważnych awarii i zagrożenia dla bezpieczeństwa użytkowników oraz sprzętu.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

W jakim zakresie powinien znajdować się zmierzony rzeczywisty prąd różnicowy IΔN wyłącznika różnicowoprądowego typu AC w odniesieniu do jego wartości znamionowej, aby mógł być dopuszczony do użytkowania?

A. Od 0,3 IΔN do 1,0 IΔN
B. Od 0,5 IΔN do 1,2 IΔN
C. Od 0,5 IΔN do 1,0 IΔN
D. Od 0,3 IΔN do 0,8 IΔN
Odpowiedź "Od 0,5 IΔN do 1,0 IΔN" jest jak najbardziej ok, bo mówi o zakresie prądu różnicowego, który wyłączniki różnicowoprądowe typu AC powinny mieć. Z normami, takimi jak PN-EN 61008-1, mamy pewność, że wyłącznik nie zareaguje zbyt szybko w normalnych warunkach, a jednocześnie ochrona przed porażeniem prądem jest na dobrym poziomie. Wiesz, gdyby ten prąd był za mały, to mogą pojawić się problemy z izolacją. Z kolei zbyt wysoka wartość mogłaby wyłączyć urządzenie przez zakłócenia, co jest niebezpieczne. Dlatego ważne, żeby przed włączeniem wyłącznika upewnić się, że prąd mieści się w tym zakresie. Dobrym przykładem jest wyłącznik w domu, który daje dodatkową ochronę dla domowników.

Pytanie 25

Kto jest uprawniony do przeprowadzenia konserwacji silnika tokarki TUE-35 w zakładzie elektromechanicznym?

A. Osoba, która posiada odpowiednie przeszkolenie i uprawnienia
B. Operator tej maszyny
C. Każdy pracownik na pisemne zlecenie pracodawcy
D. Kierownik grupy mechaników
Odpowiedź, że konserwację silnika tokarki TUE-35 może przeprowadzić osoba przeszkolona i uprawniona, jest prawidłowa ze względu na konieczność przestrzegania standardów bezpieczeństwa oraz eksploatacji maszyn. W branży mechanicznej i elektromechanicznej, konserwacja urządzeń mechanicznych, takich jak tokarki, wymaga specjalistycznej wiedzy oraz umiejętności, które zdobywa się podczas szkoleń. Tylko wykwalifikowany personel ma odpowiednie kompetencje do zdiagnozowania potencjalnych problemów, dokonywania niezbędnych napraw oraz przeprowadzania regularnych przeglądów technicznych, co zapobiega dalszym uszkodzeniom maszyny. Przykładem może być sytuacja, w której nieprzeszkolona osoba próbuje wymienić uszczelnienia w silniku, co może prowadzić do jego awarii lub nawet zagrożenia dla zdrowia pracowników. Warto zauważyć, że w wielu zakładach przemysłowych obowiązują określone normy, takie jak ISO 9001, które wymagają, aby wszystkie prace konserwacyjne były przeprowadzane przez wykwalifikowany personel, co podkreśla znaczenie odpowiednich uprawnień.

Pytanie 26

Podczas inspekcji silnika indukcyjnego klatkowego o mocy 11 kW, który działa bez obciążenia, można usłyszeć głośne stuki dochodzące z wnętrza urządzenia. Jaką przyczynę tej usterki można uznać za najbardziej prawdopodobną?

A. Niestabilne przymocowanie silnika do podłoża
B. Zanik napięcia w jednej z faz
C. Zużyte łożyska kulkowe na wale silnika
D. Zbyt wysoka temperatura urządzenia
Zużyte łożyska kulkowe w silniku to często powód, dla którego zaczyna on głośno stukać. Kiedy silnik pracuje bez obciążenia, wirnik kręci się szybko, co zwiększa napięcie na łożyskach. Z czasem te łożyska się zużywają, co prowadzi do luzów, a to z kolei skutkuje nieprzyjemnymi wibracjami i hałasami. Warto pamiętać, że jeśli łożyska są uszkodzone, ich wymiana to coś, co trzeba zrobić jak najszybciej, żeby nie narobić jeszcze większych szkód, jak na przykład uszkodzenie wirnika czy wału silnika. Regularne sprawdzanie stanu łożysk, a także dbanie o odpowiednie smarowanie, to kluczowe sprawy, o których nie można zapominać. Gdy usłyszysz głośne stukanie, zrób dokładną inspekcję łożysk. To zgodne z zasadami dobrego utrzymania urządzeń. Można też pomyśleć o czujnikach wibracji, które mogą pomóc w wychwyceniu problemów zanim będzie za późno.

Pytanie 27

Oceń oraz uzasadnij stan techniczny transformatora jednofazowego UN = 230/115 V, który pracuje z prądem znamionowym, gdy podłączenie dodatkowego odbiornika doprowadziło do podwyższenia napięcia po stronie wtórnej o 5%, przy jednoczesnym obniżeniu prądu pobieranego z sieci o 3%?

A. Transformator jest uszkodzony, a przyczyną uszkodzenia jest przerwa po stronie wtórnej
B. Transformator działa poprawnie, a powodem zmian prądu i napięcia jest pojemnościowy charakter dołączonego odbiornika
C. Transformator jest uszkodzony, a przyczyną uszkodzenia jest zwarcie międzyzwojowe po stronie wtórnej
D. Transformator działa prawidłowo, a przyczyną zmian prądu i napięcia odbiornika jest obniżenie napięcia zasilającego
Transformator jednofazowy, który podałeś, wykazuje charakterystykę sprawności operacyjnej wskazującą na pojemnościowy charakter dołączonego odbiornika. Wzrost napięcia po stronie wtórnej o 5% oraz zmniejszenie prądu pobieranego z sieci o 3% mogą być efektem obecności elementów pojemnościowych w obciążeniu, takich jak kondensatory, które mogą powodować zwiększenie napięcia w warunkach małego obciążenia. W praktyce, takie zjawisko może występować, gdy do obwodu dołączane są urządzenia o dużej pojemności, co prowadzi do przesunięcia fazowego pomiędzy napięciem a prądem. Warto również zaznaczyć, że zgodnie z normami IEC oraz dokumentami technicznymi dotyczącymi transformatorów, takie zmiany w napięciach i prądach powinny być regularnie monitorowane, aby zapewnić prawidłowe działanie systemu zasilania. Zrozumienie tych zjawisk jest kluczowe dla inżynierów odpowiedzialnych za analizę i diagnostykę systemów elektroenergetycznych, co pozwala na wcześniejsze wykrywanie ewentualnych problemów oraz ich skuteczne eliminowanie.

Pytanie 28

Zabezpieczenie bezpiecznej pracy grzejnika trójfazowego zapewnia

A. regulacja mocy grzejnej
B. wyprowadzenie punktu neutralnego elementów grzejnych
C. osłona elementów grzejnych
D. wymuszony obieg powietrza
Osłona elementów grzejnych jest kluczowym elementem zapewniającym bezpieczną eksploatację grzejnika trójfazowego. Tego rodzaju osłona chroni użytkowników przed bezpośrednim kontaktem z elementami grzejnymi, które mogą osiągać wysokie temperatury. W praktyce, stosowanie osłon jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 60335, które regulują wymagania dotyczące bezpieczeństwa urządzeń elektrycznych. Osłony mogą być wykonane z materiałów odpornych na działanie wysokiej temperatury i powinny być zamocowane w sposób uniemożliwiający ich przypadkowe zdjęcie. Dobrze zaprojektowana osłona nie tylko chroni przed poparzeniami, ale także minimalizuje ryzyko pożaru. Przykładem zastosowania osłon mogą być grzejniki stosowane w domach, które często wyposażane są w dodatkowe elementy zabezpieczające, aby zminimalizować ryzyko wypadków. Oprócz osłon, ważne jest również regularne sprawdzanie stanu technicznego urządzenia oraz jego instalacji, co jest podstawą odpowiedzialnej eksploatacji grzejników.

Pytanie 29

Na podstawie zamieszczonych w tabeli danych łożysk dobierz łożysko do silnika o średnicy wału d = 12 mm i szerokości tarczy łożyskowej B = 12 mm.

SymbolWymiary podstawowe
d [mm]D [mm]B [mm]r [mm]
6700101530,1
62003090,6
6001122880,3
630137121
A. 6200
B. 6700
C. 6001
D. 6301
Odpowiedź 6301 jest poprawna, ponieważ spełnia wszystkie wymagania dotyczące wymiarów łożyska do silnika o średnicy wału 12 mm oraz szerokości tarczy łożyskowej 12 mm. Łożyska 6301 mają średnicę wewnętrzną 12 mm, co jest idealne do mocowania na wale silnika, oraz standardową szerokość 12 mm, która odpowiada wymaganym parametrom. Wybór odpowiedniego łożyska jest kluczowy dla zapewnienia efektywności i trwałości pracy silnika. Stosowanie łożysk o nieodpowiednich wymiarach może prowadzić do ich przedwczesnego zużycia, zwiększonego tarcia oraz potencjalnych awarii. W praktyce, łożyska serii 6300 są powszechnie stosowane w różnych aplikacjach, w tym w silnikach elektrycznych, przekładniach oraz w układach napędowych. Ich wybór powinien opierać się na dokładnej analizie wymagań technicznych, a także na znajomości standardów branżowych, takich jak normy ISO dotyczące łożysk. Wiedza na temat doboru łożysk jest niezbędna dla inżynierów i techników, aby zapewnić optymalną wydajność i niezawodność maszyn.

Pytanie 30

Przygotowując miejsce do przeprowadzenia badań odbiorczych trójfazowego silnika indukcyjnego o parametrach: UN = 230/400 V, PN = 4 kW, należy, oprócz inspekcji oraz oceny stanu izolacji uzwojeń, uwzględnić między innymi wykonanie pomiarów

A. izolacji łożysk
B. drgań
C. rezystancji uzwojeń
D. charakterystyki stanu jałowego
Oceniając inne proponowane odpowiedzi, warto zauważyć, że pomiar izolacji łożysk, mimo że istotny, nie jest bezpośrednio związany z oceną stanu uzwojeń silnika. Izolacja łożysk dotyczy głównie układów smarowania oraz zapobiegania zwarciom elektrycznym, co nie jest kluczowym wskaźnikiem pracy uzwojeń. Z kolei pomiar drgań przeprowadza się zazwyczaj w kontekście analizy stanu pracy silnika, a nie jego izolacji elektrycznej. Drgania mogą wskazywać na problemy z mocowaniem, wyważeniem lub zużyciem łożysk, ale samo ich pomiar nie dostarczy informacji o kondycji uzwojeń. Charakterystyka stanu jałowego jest również ważna, ale odnosi się do analizy pracy silnika w stanie bez obciążenia, a nie do jego parametrów izolacyjnych czy oporowych. Zrozumienie, dlaczego pomiar rezystancji uzwojeń jest kluczowy, a inne metody mogą być pomocne, ale niekonieczne w kontekście tego badania, jest istotne dla efektywnego zarządzania konserwacją silników. Właściwe podejście do diagnostyki silnika powinno uwzględniać wielowymiarową analizę, co oznacza, że pomiar rezystancji uzwojeń powinien być częścią szerszej procedury diagnostycznej.

Pytanie 31

Jakie numery wskazano na schemacie z dokumentacji techniczno-ruchowej elementów zamiennych, które są częścią silnika szlifierki?

A. Od 47 do 52
B. Od 1 do 6
C. Od 19 do 26
D. Od 7 do 14
Wybór odpowiedzi związanej z innymi zakresami (np. od 47 do 52, od 1 do 6 czy od 19 do 26) świadczy o małym nieporozumieniu z identyfikacją komponentów silnika szlifierki. Te numery dotyczą różnych części, które nie są kluczowe dla samego działania silnika, co może sprawić, że serwisowanie stanie się mniej efektywne. Na przykład, numery od 1 do 6 mogą obejmować części, które tak naprawdę nie wpłyną na wydajność silnika. Jak się pomylisz z ich identyfikacją, to naprawa może się wydłużyć. Numery od 47 do 52 to z kolei mogą być jakieś osłony, które też nie są bezpośrednio związane z napędem. Takie błędy najczęściej wynikają z braku znajomości dokumentacji oraz braku zrozumienia, jak różne elementy działają razem. Dobrze jest posiedzieć nad dokumentacją i ogarnąć, jak poszczególne części wpływają na całość maszyny, bo to przekłada się na lepszą obsługę i konserwację. Im lepsza znajomość identyfikacji części, tym szybciej uda się naprawić sprzęt, a dla operatorów będzie to też bezpieczniejsze.

Pytanie 32

Zatrzymanie pracy grzejnika skutkuje natychmiastowym działaniem zabezpieczenia nadprądowego. Co to sugeruje?

A. zwarcie przewodu ochronnego z obudową
B. uszkodzenie w przewodzie fazowym
C. zwarcie przewodu fazowego oraz neutralnego
D. uszkodzenie w grzałce
W przypadku innych odpowiedzi, które mogłyby być uznane za poprawne, jak przerwa w przewodzie fazowym, zwarcie przewodu ochronnego do obudowy czy zwarcie przewodu fazowego i neutralnego, warto wskazać na ich merytoryczne błędy. Przerwa w przewodzie fazowym nie mogłaby skutkować natychmiastowym działaniem zabezpieczenia nadprądowego, ponieważ w takim przypadku prąd nie popłynąłby w ogóle, co nie aktywuje zabezpieczeń. Zwarcie przewodu ochronnego do obudowy z kolei powinno wywołać reakcję wyłącznika różnicowoprądowego, a nie nadprądowego, jako że jest to zupełnie inny mechanizm zabezpieczający, który odpowiada za ochronę przed porażeniem prądem. Natomiast zwarcie przewodu fazowego i neutralnego zazwyczaj prowadzi do sytuacji nadmiernego przepływu prądu, co również spowodowałoby zadziałanie zabezpieczenia nadprądowego, ale w inny sposób i z innymi konsekwencjami. Niekiedy błędne wnioski płyną z niepełnego zrozumienia zasad działania zabezpieczeń oraz ich różnic, co prowadzi do pomyłek. Wiedza na temat tego, jak i dlaczego zabezpieczenia działają w dany sposób, jest kluczowa dla bezpieczeństwa instalacji elektrycznych i ich użytkowników. Dlatego zawsze należy dokładnie analizować przyczyny działania zabezpieczeń w kontekście konkretnego problemu.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Przy eksploatacji odbiornika, oznaczonego przedstawionym symbolem, przewód zasilający

Ilustracja do pytania
A. musi mieć wtyczkę ze stykiem ochronnym.
B. musi mieć żyły ekranowane.
C. powinien mieć żyłę PE.
D. nie musi mieć żyły PE.
Odpowiedzi, które sugerują, że przewód zasilający musi mieć żyły ekranowane lub musi mieć żyłę PE, są nieprawidłowe, ponieważ w przypadku urządzeń klasy ochronności II nie ma takiej potrzeby. Koncepcje związane z koniecznością posiadania przewodu z żyłą PE wynikają z błędnego zrozumienia klasyfikacji sprzętu elektrycznego. Często mylnie zakłada się, że każde urządzenie elektryczne musi być uziemione dla zachowania bezpieczeństwa, jednak urządzenia klasy II są projektowane w sposób, który eliminuje ryzyko porażenia prądem elektrycznym bez potrzeby stosowania przewodu ochronnego. Pomocne może być przywołanie normy IEC 61140, która określa zasady ochrony przed porażeniem prądem elektrycznym. Zastosowanie żyły PE ma znaczenie głównie w urządzeniach klasy I, które nie są izolowane podwójnie i mogą stanowić ryzyko w przypadku awarii izolacji. Dlatego, stwierdzając, że przewód musi mieć żyłę PE, ignorujemy podstawowe zasady dotyczące klasyfikacji urządzeń i ich ochronności, co może prowadzić do nieprawidłowych praktyk w zakresie instalacji elektrycznych.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Istotnym czynnikiem wpływającym na skuteczność chłodzenia indukcyjnego silnika elektrycznego jest

A. koło pasowe
B. wlot powietrza
C. czujnik temperatury
D. klatka wirnika
Wlot powietrza odgrywa kluczową rolę w efektywności chłodzenia indukcyjnego silnika elektrycznego. Odpowiednia wentylacja jest niezbędna do odprowadzania ciepła generowanego podczas pracy silnika, co wpływa na jego wydajność i żywotność. Wlot powietrza umożliwia cyrkulację chłodnego powietrza do wnętrza silnika, co przyczynia się do obniżenia temperatury komponentów, takich jak stator i wirnik. Zastosowanie odpowiednio zaprojektowanych kanałów wentylacyjnych, zgodnych z normami IEC 60034, pozwala na optymalne chłodzenie silnika, minimalizując ryzyko przegrzania. W praktyce, wloty powietrza powinny być regularnie kontrolowane oraz wentylowane, aby zapewnić właściwe odprowadzanie ciepła. Przykładem skutecznego zastosowania jest użycie wentylatorów chłodzących, które wspomagają naturalną cyrkulację powietrza w silnikach o dużej mocy, co znacząco poprawia ich efektywność energetyczną i wydajność operacyjną.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Który z podanych przewodów nie jest stosowany jako przewód fazowy w instalacjach trójfazowych?

A. Przewód L1
B. Przewód N
C. Przewód L2
D. Przewód L3
W instalacjach trójfazowych przewód neutralny (N) pełni kluczową rolę w zrównoważeniu obciążenia i zapewnieniu stabilności systemu. Przewód neutralny jest odpowiedzialny za powrót prądu do źródła i wyrównanie potencjałów między fazami. W standardowych systemach trójfazowych, oznaczonych jako L1, L2, L3, przewody te są wykorzystywane jako przewody fazowe, które prowadzą prąd do odbiorników. Przewód neutralny nie przenosi prądu w sposób ciągły, ale umożliwia jego powrót w sytuacjach asymetrii obciążenia. Może być też wykorzystywany do podłączenia niektórych urządzeń jednofazowych w instalacjach trójfazowych. Dzięki temu system całkowicie funkcjonuje stabilnie, a użytkownicy mogą korzystać z zasilania w sposób bezpieczny i efektywny. Zrozumienie funkcji przewodu neutralnego jest kluczowe dla prawidłowej eksploatacji i konserwacji systemów elektrycznych, co jest niezbędne dla każdego technika elektryka.

Pytanie 39

Jak często powinno się wykonywać przeglądy instalacji elektrycznej w obiektach o napięciu znamionowym 230/400 V?

A. Nie rzadziej niż co 10 lat
B. Tylko po przeprowadzonym remoncie budynku
C. Nie rzadziej niż co 5 lat
D. Tylko po wymianie elementów instalacji
Odpowiedź 'Nie rzadziej niż co 5 lat' jest całkiem zgodna z tym, co mówi prawo i zalecenia dotyczące bezpieczeństwa instalacji elektrycznych, jak normy PN-IEC 60364. Regularne przeglądy instalacji elektrycznej są mega ważne, bo pozwalają upewnić się, że wszystko działa jak należy i że użytkownicy są bezpieczni. Jak robi się inspekcje co 5 lat, można wcześniej wychwycić jakieś awarie czy zużycie materiałów, które mogą potem przynieść poważne kłopoty, jak pożar. Na przykład, wyłączniki różnicowoprądowe mogą z wiekiem przestać działać właściwie przez różne uszkodzenia. Dodatkowo, regularne kontrole pozwalają też dostosować instalacje do nowszych wymagań technologicznych, co jest szczególnie ważne teraz, gdy jest coraz więcej urządzeń elektrycznych w domach. Dlatego dbanie o te przeglądy to nie tylko kwestia prawa, ale też racjonalne podejście do bezpieczeństwa i efektywności budynku.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.