Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 25 stycznia 2026 12:15
  • Data zakończenia: 25 stycznia 2026 12:36

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jeśli na tłok siłownika o powierzchni S = 0,003 m2 działa ciśnienie czynnika wynoszące 2 MPa, to jaka jest siła działająca na tłok?

A. 9 kN
B. 12 kN
C. 6 kN
D. 2 kN
Aby obliczyć siłę naporu działającą na tłok siłownika, należy skorzystać ze wzoru F = p * S, gdzie F to siła, p to ciśnienie, a S to powierzchnia przekroju tłoka. W naszym przypadku ciśnienie p wynosi 2 MPa, co należy przeliczyć na pascale: 2 MPa = 2 * 10^6 Pa. Powierzchnia S wynosi 0,003 m². Podstawiając wartości do wzoru, otrzymujemy F = 2 * 10^6 Pa * 0,003 m² = 6000 N, co jest równoważne 6 kN. Zrozumienie tego działania ma fundamentalne znaczenie w hydraulice, gdzie siły generowane przez ciśnienie są kluczowe dla działania maszyn i systemów. Na przykład w układach hydraulicznych w samochodach, takich jak hamulce czy podnośniki, prawidłowe obliczenie siły pozwala na efektywne i bezpieczne działanie tych mechanizmów. Zastosowanie ciśnienia i przekroju tłoka jest również istotne przy projektowaniu urządzeń takich jak prasy hydrauliczne czy siłowniki, gdzie precyzyjna manipulacja siłą jest niezbędna.

Pytanie 2

Do montażu zaworu przedstawionego na rysunku należy zastosować klucz

Ilustracja do pytania
A. płaski.
B. oczkowy.
C. imbusowy.
D. nasadowy.
Klucz płaski to narzędzie, które idealnie nadaje się do montażu zaworów z sześciokątnymi nakrętkami, co wynika z jego konstrukcji. Jego szczęki przylegają do krawędzi nakrętki, co zapewnia pewny chwyt i minimalizuje ryzyko jej uszkodzenia. Używając klucza płaskiego, możemy również precyzyjnie kontrolować moment obrotowy, co jest kluczowe podczas montażu zaworów, aby uniknąć ich zbyt mocnego dokręcenia, co mogłoby prowadzić do awarii uszczelek lub uszkodzenia gwintów. W praktyce, klucz płaski jest preferowany w wielu aplikacjach przemysłowych, gdzie precyzyjne połączenia są niezbędne. Warto również wspomnieć, że w odpowiednich standardach związanych z montażem zaworów, klucz płaski jest często rekomendowany jako najbardziej odpowiednie narzędzie do obsługi tego typu elementów złącznych. Przy odpowiednim doborze narzędzi zwiększamy efektywność pracy oraz bezpieczeństwo całego systemu. Zastosowanie kluczy innych typów, jak nasadowe czy oczkowe, może prowadzić do niepożądanych skutków, takich jak słabsze dokręcenie lub uszkodzenie nakrętki.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Przedstawione na rysunkach elementy wykorzystuje się do łączenia przewodów

Ilustracja do pytania
A. wieloparowych.
B. uziemiających.
C. koncentrycznych.
D. światłowodowych.
Odpowiedź "koncentrycznych" jest poprawna, ponieważ złącza typu F, które zostały przedstawione na rysunkach, są szczególnie przystosowane do współpracy z przewodami koncentrycznymi. Te przewody, wykorzystywane najczęściej w instalacjach telewizyjnych, internetowych oraz w systemach antenowych, mają konstrukcję składającą się z centralnej żyły przewodzącej, otoczonej warstwą dielektryka oraz ekranem, co umożliwia minimalizację strat sygnału. Złącza te zapewniają stabilne połączenie, które jest kluczowe dla jakości przesyłanego sygnału. W praktyce, zastosowanie złącz typu F w instalacjach telewizyjnych pozwala na łatwe łączenie kabli, co przyspiesza proces montażu i konserwacji systemów antenowych. Ponadto, stosowanie standardowych złącz koncentrycznych jest zgodne z najlepszymi praktykami branżowymi, co gwarantuje wysoką jakość i niezawodność instalacji.

Pytanie 5

Którą technikę łączenia materiałów przedstawiono na rysunku?

Ilustracja do pytania
A. Klejenia.
B. Lutowania miękkiego.
C. Zgrzewania.
D. Lutowania twardego.
Lutowanie twarde jest jedną z kluczowych technik łączenia materiałów, wykorzystywaną w branży metalowej. W odróżnieniu od lutowania miękkiego, które stosuje spoiwa o niższej temperaturze topnienia, lutowanie twarde wykorzystuje materiały, których temperatura topnienia przekracza 450°C. Dzięki temu uzyskuje się znacznie mocniejsze i bardziej trwałe połączenia, co jest istotne w aplikacjach wymagających wysokiej wytrzymałości, takich jak w przemyśle motoryzacyjnym czy lotniczym. Technika ta jest szczególnie cenna w przypadku łączenia różnych metali, w tym stopów metali nieżelaznych. Przykłady zastosowania lutowania twardego obejmują produkcję elementów chłodniczych, rur instalacyjnych oraz komponentów elektronicznych, gdzie trwałość połączenia ma kluczowe znaczenie. Przemysłowe standardy, takie jak ISO 9453, określają wymagania dotyczące spoiw do lutowania twardego, co zapewnia wysoką jakość i niezawodność tych połączeń.

Pytanie 6

Na schemacie przedstawionym na rysunku element opisany D5 jest diodą

Ilustracja do pytania
A. prostowniczą.
B. Zenera.
C. tunelową.
D. pojemnościową.
Element D5 na schemacie jest diodą Zenera, co można zidentyfikować poprzez charakterystyczny symbol tej diody, gdzie linia równoległa do strzałki wskazuje kierunek przewodzenia. Dioda Zenera jest używana do stabilizacji napięcia w obwodach elektronicznych, co czyni ją niezwykle użytecznym komponentem w aplikacjach wymagających precyzyjnego zarządzania napięciem. Działa ona zarówno w kierunku przewodzenia, jak i zaporowym, co pozwala na utrzymanie stałego poziomu napięcia po przekroczeniu tzw. napięcia Zenera. W praktyce, diody Zenera są powszechnie stosowane w zasilaczach stabilizowanych, gdzie pomagają w eliminacji szumów oraz zapewniają stabilność napięcia, co jest kluczowe w wielu zastosowaniach, jak na przykład w sprzęcie audio czy komputerach. Zastosowanie diod Zenera w układach regulacji napięcia jest zgodne z dobrymi praktykami inżynierskimi, gdzie niezawodność i stabilność są priorytetami.

Pytanie 7

Określ prawidłową kolejność dokręcania śrub lub nakrętek części podzespołu, przedstawionej na rysunku.

Ilustracja do pytania
A. A, F, B, C, D, E
B. F, B, D, C, E, A
C. B, E, C, F, D, A
D. F, C, A, D, B, E
Wybór nieprawidłowej kolejności dokręcania śrub naraża podzespół na szereg potencjalnych problemów. Odpowiedzi takie jak A, F, B, C, D, E oraz F, C, A, D, B, E, oraz inne nie uwzględniają zasady krzyżowego dokręcania, a to prowadzi do niejednorodnego rozkładu sił. Stosując błędną kolejność, siły mogą kumulować się w jednym obszarze, co zwiększa ryzyko lokalnych odkształceń, pęknięć czy nawet całkowitego zniszczenia podzespołu. Często popełnianym błędem w takich zadaniach jest brak zrozumienia wpływu sił działających na materiał w momencie dokręcania. W odpowiedziach, które omijają krzyżowe dokręcanie, zaniedbuje się także kwestie związane z tzw. 'przeładowaniem' śrub, co może prowadzić do ich uszkodzenia oraz osłabienia całej konstrukcji. W praktyce, inżynierowie często odwołują się do standardów, takich jak ISO, które jasno określają zasady dokręcania. Ignorowanie tych zasad podczas montażu części mechanicznych prowadzi do nieefektywności i wyższych kosztów związanych z serwisowaniem i naprawą. Dlatego kluczowe jest, aby przy podejmowaniu decyzji o kolejności dokręcania śrub kierować się nie tylko intuicją, ale także sprawdzonymi metodami i zaleceniami branżowymi.

Pytanie 8

Którego z narzędzi przedstawionych na ilustracjach należy zastosować do cięcia przewodów miedzianych, wykorzystanych do budowy instalacji hydraulicznej?

Ilustracja do pytania
A. Narzędzia 2.
B. Narzędzia 4.
C. Narzędzia 1.
D. Narzędzia 3.
Narzędzie 4, czyli obcinak do rur, jest specjalistycznym narzędziem przeznaczonym do precyzyjnego cięcia przewodów miedzianych, które są powszechnie stosowane w instalacjach hydraulicznych. Obcinaki do rur charakteryzują się ostrzami, które zapewniają gładkie cięcie bez uszkodzenia krawędzi materiału, co jest istotne w kontekście cięcia przewodów miedzianych, które są wrażliwe na deformacje. Ponadto, stosowanie obcinaka do rur zgodnie z normami branżowymi, takimi jak PN-EN 1057, gwarantuje, że cięcie odbywa się w sposób kontrolowany, co z kolei wpływa na trwałość i szczelność połączeń hydraulicznych. Dzięki ergonomicznemu designowi obcinaków można wykonywać cięcia w trudno dostępnych miejscach, co znacznie ułatwia prace instalacyjne. W praktyce, użycie odpowiedniego narzędzia, jakim jest obcinak do rur, pozwala na oszczędność czasu i zwiększenie efektywności pracy.

Pytanie 9

Jakie jest przeznaczenie przedstawionego na rysunku zbiornika rozdzielonego elastyczną membraną, w którym jedna komora przeznaczona jest na ciecz pod ciśnieniem, a druga na gaz?

Ilustracja do pytania
A. Chłodzenie cieczy.
B. Naolejanie powietrza.
C. Gromadzenie oleju transformatorowego.
D. Magazynowanie energii hydraulicznej.
Wybór odpowiedzi, która sugeruje chłodzenie cieczy, wskazuje na pewne nieporozumienie dotyczące funkcji zbiorników z membraną. Zbiorniki te nie są zaprojektowane do chłodzenia, ponieważ ich głównym celem jest akumulowanie energii hydraulicznej, a nie regulowanie temperatury cieczy. Chłodzenie cieczy odbywa się zazwyczaj w dedykowanych układach chłodzenia z wymiennikami ciepła, a nie w zbiornikach akumulacyjnych. Podobnie, odpowiedź dotycząca gromadzenia oleju transformatorowego nie odpowiada funkcji opisanego zbiornika. Olej transformatorowy jest wykorzystywany w urządzeniach elektrycznych, a nie w hydraulice, gdzie zbiorniki z membraną są stosowane do przechowywania płynów hydraulicznych. Z kolei naolejanie powietrza jest procesem, który odnosi się do systemów pneumatycznych i nie ma bezpośredniego związku z funkcją akumulatora hydraulicznego. W konsekwencji, odpowiedzi te nie uwzględniają kluczowych właściwości i zastosowań systemów hydraulicznych, co może prowadzić do mylnych interpretacji ich funkcjonowania. W inżynierii hydraulicznej akumulatory są niezbędne do zapewnienia stabilności i efektywności systemu, a ich niewłaściwe zrozumienie prowadzi do niepoprawnych wniosków i projektów.

Pytanie 10

Jakim przyrządem pomiarowym można zmierzyć wartość napięcia zasilającego cewkę elektrozaworu?

A. Miernik oporności
B. Miernik mocy
C. Miernik prądu
D. Woltomierz
Omomierz jest urządzeniem służącym do pomiaru oporu elektrycznego, co oznacza, że jego zastosowanie w kontekście pomiaru napięcia zasilającego cewkę elektrozaworu jest nieadekwatne. Używając omomierza, można jedynie określić opór cewki, co dostarcza informacji o jej stanie, ale nie o napięciu, które jest na nią podawane. Amperomierz, z drugiej strony, mierzy natężenie prądu, który przepływa przez obwód, co również nie pozwala na bezpośrednie zmierzenie napięcia. Aby uzyskać wartość napięcia, musielibyśmy znać dodatkowo wartość oporu, co komplikuje pomiar i wprowadza możliwość błędu. Watomierz to narzędzie stosowane do pomiaru mocy, co również nie jest przydatne w kontekście bezpośredniego pomiaru napięcia. Często zdarza się, że osoby, które nie mają wystarczającej wiedzy na temat funkcji poszczególnych przyrządów, mogą pomylić ich zastosowanie, co prowadzi do nieprawidłowego diagnozowania problemów w obwodach elektrycznych. W kontekście elektrozaworów, zrozumienie roli napięcia jest kluczowe, ponieważ zbyt niskie lub zbyt wysokie napięcie może prowadzić do nieprawidłowego działania systemu, a w konsekwencji do awarii całego urządzenia. Dlatego kluczowe jest stosowanie odpowiednich przyrządów pomiarowych, takich jak woltomierz, aby zapewnić prawidłowe funkcjonowanie systemów elektrycznych.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Który rodzaj prądów i napięć można zmierzyć miernikiem przedstawionym na rysunku?

Ilustracja do pytania
A. Prąd stały i zmienny, napięcia stałe i zmienne.
B. Prąd stały i zmienny, napięcia tylko zmienne.
C. Prąd tylko zmienny, napięcia tylko zmienne.
D. Prąd tylko zmienny, napięcia stałe i zmienne.
Patrząc na inne odpowiedzi, widać, że pojawiły się pewne nieporozumienia co do funkcji miernika. Niektóre opcje mówią, że miernik potrafi mierzyć prąd stały, ale to nie jest prawda, bo cęgowe mierniki prądu, jak ten w zdjęciu, są głównie do pomiaru prądu zmiennego. Wiele osób myli pomiar prądu stałego z pomiarem napięcia, co prowadzi do niepoprawnych wniosków. A jeszcze niektóre odpowiedzi twierdzą, że miernik działa tylko z napięciem zmiennym, co też jest błędne, bo on umie zmierzyć także napięcie stałe. Te błędne interpretacje wynikają często z braku zrozumienia różnicy między prądami i napięciami oraz z niewystarczającej wiedzy o działaniu cęgów. Wszyscy powinni wiedzieć, że wybór odpowiedniego narzędzia pomiarowego jest mega ważny, bo każdy przyrząd ma swoje zastosowanie i ograniczenia. Edukacja na temat różnych typów mierników i ich właściwego użycia może naprawdę pomóc w poprawie jakości pomiarów i bezpieczeństwa pracy.

Pytanie 13

Która metoda regulacji prędkości obrotowej silnika obcowzbudnego prądu stałego umożliwi efektywną regulację w szerokim zakresie od 0 do nn?

A. Napięciem przyłożonym do obwodu wzbudzenia
B. Rezystancją w obwodzie wzbudzenia
C. Napięciem przyłożonym do obwodu twornika
D. Rezystancją w obwodzie twornika
Rezystancja w obwodzie wzbudzenia silnika obcowzbudnego prądu stałego wpływa na siłę pola magnetycznego, co z kolei oddziałuje na moment obrotowy silnika. Zwiększenie rezystancji w tym obwodzie prowadzi do zmniejszenia prądu wzbudzenia, co skutkuje osłabieniem pola magnetycznego i może prowadzić do obniżenia momentu obrotowego przy danej wartości napięcia. Takie podejście może być stosowane w niektórych sytuacjach, ale nie zapewnia efektywnej regulacji prędkości w szerokim zakresie. Zwiększenie rezystancji w obwodzie twornika również nie jest właściwym rozwiązaniem, ponieważ prowadzi do strat mocy oraz obniżenia sprawności energetycznej silnika. Działania te mogą prowadzić do nieefektywnego działania, zwłaszcza w aplikacjach wymagających dynamicznej regulacji prędkości. Warto zwrócić uwagę, że stosowanie napięcia przyłożonego do obwodu wzbudzenia może wprowadzać dodatkowe problemy, takie jak trudności w uzyskaniu stabilnej pracy silnika w niższych prędkościach, co czyni tę metodę niepraktyczną. W kontekście najlepszych praktyk inżynieryjnych, należy unikać podejść, które nie gwarantują pełnej kontroli nad parametrami pracy silnika, a także mogą prowadzić do nadmiernych strat energetycznych i złożoności w implementacji systemu. Ostatecznie, wybór odpowiedniej metody regulacji prędkości powinien być oparty na analizie wymagań aplikacji oraz efektywności energetycznej.

Pytanie 14

Tachogenerator przy obrotach 1000 obr./min. wytwarza napięcie 30 V. Jaką wartość napięcia wygeneruje ten tachogenerator przy prędkości obrotowej 200 obr./min?

A. 15 V
B. 6 V
C. 5 V
D. 3 V
Prądnica tachometryczna działa na zasadzie generowania napięcia proporcjonalnego do prędkości obrotowej. W tym przypadku, przy prędkości obrotowej 1000 obr./min, prądnica generuje napięcie wynoszące 30 V. Możemy obliczyć napięcie przy niższej prędkości obrotowej, stosując proporcję. Zauważmy, że 200 obr./min to 20% 1000 obr./min. Jeśli napięcie jest proporcjonalne do prędkości, to przy 200 obr./min prądnica wygeneruje 20% z 30 V, co daje 6 V. Tego rodzaju obliczenia są powszechnie stosowane w inżynierii, szczególnie w systemach automatyki, gdzie precyzyjne pomiary napięcia są kluczowe dla prawidłowego działania urządzeń. Przykładowo, w systemach pomiarowych oraz w kontrolach zadań w automatyce przemysłowej, znajomość zależności między prędkością a generowanym napięciem pozwala na optymalizację procesów oraz zwiększenie efektywności energetycznej.

Pytanie 15

Która budowa siłownika hydraulicznego umożliwia uzyskanie największego skoku przy niewielkiej długości cylindra?

A. Nurnikowa
B. Teleskopowa
C. Tłokowa z jednostronnym tłoczyskiem
D. Tłokowa z dwustronnym tłoczyskiem
Nurnikowe siłowniki hydrauliczne, w odróżnieniu od teleskopowych, mają jedną, prostą konstrukcję z jednym cylindrem, co ogranicza ich zdolność do osiągania dużych skoków przy małych długościach. Ich konstrukcja jest prostsza, co może prowadzić do błędnych wniosków, że są bardziej efektywne w każdym zastosowaniu. W rzeczywistości, ich zastosowanie jest ograniczone do sytuacji, gdzie skok nie jest kluczowy, a siła działania jest priorytetem. Tłokowa konstrukcja z dwustronnym tłoczyskiem również nie jest optymalna, gdyż wymaga znacznej długości cylindra, aby osiągnąć duży skok, co czyni ją nieodpowiednią w prostych przestrzeniach. Z kolei tłokowa konstrukcja z jednostronnym tłoczyskiem, pomimo że może być bardziej kompaktowa, również nie osiąga skoku porównywalnego z teleskopowym rozwiązaniem. Często występuje mylne przekonanie, że każda konstrukcja może być używana zamiennie, co prowadzi do błędnych decyzji w doborze siłowników do konkretnego zastosowania. W przemyśle hydrauliki, dobrą praktyką jest zawsze analizowanie specyfikacji i potrzeb danego projektu, co pozwala na skuteczne dopasowanie siłowników do wymagań.

Pytanie 16

Chłodzenie powietrza przy użyciu agregatu chłodniczego do ciśnienia punktu rosy na poziomie +2 °C ma na celu

A. usunięcie zanieczyszczeń
B. zwiększenie ciśnienia
C. nasycenie powietrza parą wodną
D. osuszenie powietrza
Odpowiedź 'osuszenie powietrza' jest prawidłowa, ponieważ oziębianie powietrza za pomocą agregatu chłodniczego prowadzi do zmniejszenia jego zdolności do utrzymywania pary wodnej. Gdy powietrze jest schładzane do temperatury punktu rosy, nadmiar wilgoci kondensuje się, co skutkuje usunięciem wody z powietrza. Przykładem zastosowania tej technologii jest klimatyzacja w budynkach, gdzie odpowiednia kontrola wilgotności jest kluczowa dla komfortu mieszkańców oraz ochrony materiałów budowlanych przed wilgocią. Dobre praktyki w branży HVAC (ogrzewanie, wentylacja, klimatyzacja) zakładają, że optymalny poziom wilgotności w pomieszczeniach powinien wynosić od 30% do 50%. Dlatego agregaty chłodnicze, które działają na zasadzie osuszania, są kluczowe w zapewnieniu komfortu oraz efektywności energetycznej w różnych zastosowaniach, w tym w procesach przemysłowych oraz w serwerowniach, gdzie wilgoć może prowadzić do uszkodzeń sprzętu elektronicznego.

Pytanie 17

Który adres IP ma urządzenie służące do wizualizacji procesu sterowania systemem mechatronicznym, obsługiwanym przez sterowniki PLC, pracujące w sieci Ethernet, której strukturę przedstawiono na rysunku.

Ilustracja do pytania
A. 192.168.0.50
B. 192.168.0.1
C. 192.168.0.55
D. 192.168.0.45
Poprawna odpowiedź to 192.168.0.50, ponieważ według rysunku przedstawiającego strukturę sieci Ethernet, adres ten jest przypisany do urządzenia HMI (Human-Machine Interface), które służy do wizualizacji i sterowania procesem w systemie mechatronicznym. W kontekście systemów automatyki, HMI odgrywa kluczową rolę w interakcji użytkownika z maszynami i procesami, umożliwiając monitorowanie, kontrolowanie oraz zarządzanie danymi w czasie rzeczywistym. Zastosowanie właściwego adresu IP w sieci Ethernet jest fundamentalne dla zapewnienia komunikacji pomiędzy różnymi komponentami systemu, w tym kontrolerami PLC i serwerami. Zasadniczo, przyporządkowanie adresów IP do urządzeń powinno być zgodne z zasadami planowania adresacji w sieciach komputerowych, co obejmuje eliminowanie konfliktów adresowych oraz zapewnienie odpowiedniej struktury logicznej. W praktyce, znajomość odpowiednich adresów IP jest niezbędna dla inżynierów automatyki i techników, aby efektywnie diagnozować problemy i konfigurować systemy. Wiedza ta jest szczególnie ważna w kontekście integracji systemów, gdzie błędne przypisanie adresów może prowadzić do poważnych zakłóceń w pracy całego systemu.

Pytanie 18

Jakiego koloru powinna być izolacja przewodu PE?

A. Zielony.
B. Niebieski.
C. Żółto-zielony.
D. Brązowy.
Przewód PE, czyli Protective Earth, powinien być w kolorze żółto-zielonym. To jest standard, który obowiązuje w normie IEC 60446 i w innych przepisach dotyczących instalacji elektrycznych. Przewód PE jest naprawdę ważny, bo chroni nas przed porażeniem prądem. Dlatego jasne oznaczenie tego przewodu jest kluczowe dla bezpieczeństwa ludzi i urządzeń. Dzięki żółto-zielonemu kolorowi elektrycy od razu wiedzą, jaka jest jego funkcja, co ułatwia pracę i sprawia, że wszystko jest zgodne z międzynarodowymi standardami. Kiedy coś się dzieje i awaria występuje, ten przewód powinien odprowadzać nadmiar prądu do ziemi, zmniejszając ryzyko porażenia lub uszkodzenia sprzętu. Oznaczenie w odpowiednim kolorze pozwala na szybkie zidentyfikowanie przewodów, co jest niezbędne podczas montażu czy serwisu. Właściwe oznaczenie to też kwestia ważna, bo prawo wymaga, żeby projektanci i wykonawcy przestrzegali tych norm.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

W sieci TN - C doszło do przerwania przewodu PEN. Jakie są tego konsekwencje?

A. spadkiem napięcia zasilającego do 0,5 UN
B. przepaleniem bezpieczników w obwodzie
C. pojawieniem się napięcia na obudowie urządzeń podłączonych do gniazda z bolcem ochronnym
D. brakiem zasilania dla wszystkich odbiorników
Odpowiedź jest prawidłowa, ponieważ przerwanie przewodu PEN w sieci TN-C prowadzi do sytuacji, w której obudowy urządzeń podłączonych do gniazd z bolcem ochronnym mogą stać się naładowane. Przewód PEN pełni rolę zarówno przewodu neutralnego, jak i ochronnego, dlatego jego przerwanie wprowadza ryzyko wystąpienia napięcia na obudowach urządzeń. W przypadku braku przewodu ochronnego, prąd zwarciowy nie ma drogi do ziemi, co może skutkować niebezpiecznym wzrostem napięcia na obudowach urządzeń. W praktyce, takie zjawisko może wystąpić w instalacjach, gdzie nie zastosowano odpowiednich środków ochrony, takich jak wyłączniki różnicowoprądowe. Zgodnie z normą PN-IEC 60364, w przypadku sieci TN-C konieczne jest zachowanie szczególnej ostrożności i regularne wykonywanie pomiarów, aby zapewnić bezpieczeństwo użytkowników. Wszelkie nieprawidłowości w funkcjonowaniu sieci powinny być bezzwłocznie usuwane, aby zminimalizować ryzyko porażenia prądem elektrycznym.

Pytanie 21

Jaką wartość można zarejestrować korzystając z enkodera absolutnego jednoobrotowego?

A. Ciśnienie
B. Moment obrotowy
C. Przesunięcie kątowe
D. Przyspieszenie
Enkoder absolutny jednoobrotowy służy do pomiaru przesunięcia kątowego, co oznacza, że pozwala na określenie dokładnej pozycji obiektu w zakresie jednego obrotu. Działa na zasadzie rejestrowania unikalnej wartości kodu dla każdej pozycji kątowej, co sprawia, że jest niezwykle precyzyjny. Zastosowanie tego typu enkodera w aplikacjach takich jak robotyka, automatyka przemysłowa czy mechatronika jest powszechne, gdyż pozwala na dokładne określenie położenia elementów ruchomych. Przykładem zastosowania może być kontrola położenia silnika krokowego, gdzie dokładne informacje o kącie obrotu są kluczowe dla precyzyjnego sterowania ruchem. Enkodery absolutne jednoobrotowe są również zgodne z normami branżowymi, takimi jak IEC 61131, co zapewnia ich wysoką jakość i niezawodność. Dzięki swojej konstrukcji, eliminują problem utraty pozycji po wyłączeniu zasilania, co jest istotne w wielu aplikacjach przemysłowych.

Pytanie 22

Na której ilustracji przedstawiono prawidłowe ułożenie przewodu hydraulicznego?

Ilustracja do pytania
A. Na ilustracji 4.
B. Na ilustracji 1.
C. Na ilustracji 2.
D. Na ilustracji 3.
Ilustracja 2 przedstawia prawidłowe ułożenie przewodu hydraulicznego, które jest zgodne z zasadami ergonomii i bezpieczeństwa w systemach hydraulicznych. Prawidłowe ułożenie przewodu zapewnia, że jego naturalne zakrzywienia nie powodują nadmiernych naprężeń oraz uszkodzeń materiału. W praktyce, prawidłowe ułożenie przewodów hydraulicznych jest kluczowe dla zapewnienia ich długowieczności i niezawodności. Przewody powinny być instalowane w taki sposób, aby unikać ostrych kątów, które mogą prowadzić do pęknięć lub zgięć, a także do zwiększenia ryzyka awarii systemu. W branży hydraulicznej stosuje się różne normy, takie jak ISO 4413, które określają wymagania dotyczące systemów hydraulicznych, w tym właściwego ułożenia przewodów. Dodatkowo, zgodność z zasadami montażu, takimi jak odpowiednia długość przewodu oraz jego mocowanie, są niezbędne do optymalizacji działania całego systemu. Dobre praktyki w tej dziedzinie obejmują również regularne inspekcje oraz konserwację, co pozwala na wcześniejsze wykrywanie potencjalnych problemów i minimalizację ryzyka awarii.

Pytanie 23

Potrojenie natężenia prądu przepływającego przez rezystor o niezmiennej rezystancji spowoduje, że ilość ciepła wydzielającego się w nim wzrośnie

A. trzykrotnie
B. dwukrotnie
C. sześciokrotnie
D. dziewięciokrotnie
Wybór odpowiedzi, która zakłada trzykrotny, sześciokrotny lub dwukrotny wzrost wydzielającego się ciepła w wyniku trzykrotnego zwiększenia natężenia prądu, opiera się na błędnym zrozumieniu zależności między mocą, natężeniem prądu a rezystancją. Warto pamiętać, że zgodnie z prawem Joule'a, moc wydzielająca się w rezystorze jest proporcjonalna do kwadratu natężenia prądu. Jeśli ktoś uważa, że moc wzrasta tylko trzykrotnie, myli się, ponieważ moc nie jest liniowo związana z natężeniem prądu. Dla natężenia prądu wynoszącego "I", moc wynosi P = I²R, a dla natężenia "3I", moc wynosi P' = (3I)²R = 9I²R. To oznacza, że moc wzrasta dziewięciokrotnie, a nie trzykrotnie, jak sugeruje błędne odpowiedzi. W praktyce, takie nieporozumienia mogą prowadzić do niewłaściwego projektowania obwodów elektrycznych, co z kolei może prowadzić do przegrzewania się komponentów i ich uszkodzeń. Zrozumienie tych kluczowych zasad jest niezbędne dla inżynierów i techników pracujących z urządzeniami elektrycznymi. Warto podkreślić, że ignorowanie takich relacji między parametrami obwodów może skutkować niebezpiecznymi sytuacjami oraz zwiększeniem kosztów eksploatacji związanych z koniecznością naprawy lub wymiany uszkodzonych elementów.

Pytanie 24

Do sprawdzenia wymiaru ϕ40 należy użyć

Ilustracja do pytania
A. liniału krawędziowego.
B. średnicówki mikrometrycznej.
C. mikrometru zewnętrznego.
D. suwmiarki ślusarskiej.
Odpowiedź suwmiarka ślusarska jako narzędzie do pomiaru wymiaru φ40 jest prawidłowa z kilku powodów. Suwmiarka ślusarska to wszechstronne narzędzie pomiarowe, które umożliwia dokładne mierzenie średnic zewnętrznych, wewnętrznych oraz głębokości elementów. Jej zakres pomiarowy, często obejmujący od 0 do 150 mm lub większy, sprawia, że idealnie nadaje się do pomiaru średnicy 40 mm. Suwmiarki są powszechnie stosowane w warsztatach oraz laboratoriach metrologicznych, co czyni je standardem w branży. Dzięki zastosowaniu suwmiarki, można szybko i precyzyjnie ocenić wymiary detali, co jest kluczowe w procesach produkcji oraz kontroli jakości. Przykładem zastosowania suwmiarki w praktyce może być pomiar komponentów w przemyśle motoryzacyjnym, gdzie precyzja wymiarowa ma kluczowe znaczenie dla bezpieczeństwa i funkcjonalności pojazdów. Dodatkowo, w przypadku elementów cylindrycznych, jak wały czy tuleje, suwmiarka zapewnia łatwość w pomiarach, eliminując błędy, jakie mogą wystąpić przy użyciu mniej precyzyjnych narzędzi. Warto również nadmienić, że w metrologii obowiązują standardy, takie jak ISO 13385, które określają wymagania dotyczące narzędzi pomiarowych, w tym suwmiarki, a ich przestrzeganie jest niezbędne dla uzyskania wiarygodnych wyników.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Aby z dużą precyzją identyfikować jedynie obiekty metalowe w odległości do 5 mm, należy zastosować czujnik

A. ultradźwiękowy
B. mechaniczny
C. indukcyjny
D. temperatury
Czujniki indukcyjne są idealnym rozwiązaniem do wykrywania obiektów metalowych, zwłaszcza w bardzo małych odległościach, takich jak 5 mm. Działają na zasadzie indukcji elektromagnetycznej, co pozwala im na detekcję zmian w polu elektromagnetycznym wywołanych obecnością metalu. Dzięki swojej wysokiej czułości i precyzji, czujniki te są szeroko stosowane w automatyce przemysłowej, na przykład w aplikacjach związanych z detekcją obecności części metalowych na liniach montażowych, a także w systemach zabezpieczeń. Standardy branżowe zalecają stosowanie czujników indukcyjnych w sytuacjach, gdzie wymagane jest szybkie i niezawodne wykrywanie metalowych obiektów, co jest szczególnie istotne w środowiskach produkcyjnych. Ich odporność na zanieczyszczenia i działanie czynników zewnętrznych czyni je idealnym wyborem w trudnych warunkach przemysłowych. Ponadto, czujniki te charakteryzują się długą żywotnością oraz niskimi kosztami eksploatacyjnymi, co czyni je bardzo efektywnym rozwiązaniem.

Pytanie 29

Do działań wstępnych, które pozwolą na prawidłowy montaż nowego paska klinowego w przekładni pasowej, nie należy zaliczać

A. sprawdzenia wymiarów
B. weryfikacji czystości paska
C. analizy stopnia zużycia
D. oceny stopnia naprężenia
Wszystkie wymienione czynności, z wyjątkiem sprawdzenia stopnia naprężenia, są istotnymi operacjami przygotowawczymi, które należy wykonać przed montażem nowego paska klinowego. Weryfikacja wymiarów jest kluczowym krokiem, ponieważ właściwe dopasowanie paska do przekładni pasowej zapewnia jego prawidłowe działanie. W przeciwnym razie, jeśli pasek będzie za długi lub za krótki, może prowadzić do nadmiernego zużycia, a nawet uszkodzenia innych elementów układu napędowego. Kontrola czystości paska oraz otoczenia montażowego również nie może być pomijana. Zanieczyszczenia mogą prowadzić do niewłaściwego osadzenia paska, co z kolei może skutkować awariami. Ocena stopnia zużycia jest równie ważna, gdyż pozwala na identyfikację, czy wymiana paska jest rzeczywiście konieczna. Typowym błędem myślowym jest przekonanie, że sprawdzenie naprężenia można wykonać przed montażem paska. Jednakże naprężenie dotyczy już zamontowanego paska, dlatego nie jest to czynność przygotowawcza. Właściwe zrozumienie procesu montażu paska klinowego i związanych z nim operacji przygotowawczych jest kluczowe dla zapewnienia długotrwałego i niezawodnego działania układów napędowych.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

W układzie do przygotowania sprężonego powietrza, reduktor ciśnienia

A. generuje mgłę olejową
B. łączy sprężone powietrze z mgłą olejową
C. zapewnia stałe ciśnienie robocze
D. zmniejsza ilość zanieczyszczeń w sprężonym powietrzu
Reduktor ciśnienia w zespole przygotowania sprężonego powietrza pełni kluczową rolę w utrzymaniu stałego ciśnienia roboczego, co jest niezbędne do prawidłowego funkcjonowania urządzeń pneumatycznych. Dzięki zastosowaniu reduktora, można dostosować ciśnienie powietrza do wymagań konkretnego procesu technologicznego, co przekłada się na poprawę efektywności energetycznej i wydajności systemu. Przykładem zastosowania reduktorów ciśnienia może być linia produkcyjna, gdzie różne maszyny wymagają różnych poziomów ciśnienia, a reduktor umożliwia ich optymalne zasilanie. W standardach branżowych, takich jak ISO 8573, podkreśla się znaczenie kontrolowania parametrów sprężonego powietrza, a właściwe ustawienie i konserwacja reduktorów ciśnienia są kluczowe dla zminimalizowania ryzyka awarii oraz zapewnienia jakości wykorzystywanego medium. Dodatkowo, stałe ciśnienie robocze pozwala na przewidywalność działania systemów, co jest istotne w kontekście bezpieczeństwa operacji przemysłowych.

Pytanie 32

Jakie urządzenie jest używane do mierzenia prędkości obrotowej wału silnika?

A. prądnica tachometryczna
B. mostek tensometryczny
C. potencjometr obrotowy
D. czujnik termoelektryczny
Czujnik termoelektryczny, mostek tensometryczny oraz potencjometr obrotowy, mimo że są to urządzenia pomiarowe, nie są przeznaczone do pomiaru prędkości obrotowej wału silnika. Czujniki termoelektryczne, takie jak termopary, służą do pomiaru temperatury, a ich zasada działania opiera się na efekcie Seebecka, gdzie różnica temperatury generuje napięcie. W kontekście pomiaru prędkości obrotowej, zastosowanie czujników termoelektrycznych jest niewłaściwe, ponieważ nie są one w stanie dokładnie rejestrować zmian w szybkości obrotu. Mostki tensometryczne są używane do pomiaru naprężeń i deformacji materiałów, co również nie jest związane z pomiarem prędkości obrotowej. Ich działanie bazuje na zjawisku zmiany oporu elektrycznego pod wpływem deformacji, co jest zupełnie innym rodzajem pomiaru. Potencjometry obrotowe, chociaż mogą być używane do pomiaru kątów obrotu, nie dostarczają informacji o prędkości obrotowej, ponieważ mierzą jedynie położenie wału w danym momencie, a nie jego szybkość obrotu. Typowym błędem myślowym jest mylenie pomiaru położenia z pomiarem prędkości, co prowadzi do nieporozumień w doborze odpowiednich narzędzi pomiarowych. Dlatego, aby prawidłowo zmierzyć prędkość obrotową, kluczowe jest stosowanie właściwych urządzeń, takich jak prądnice tachometryczne.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

W instalacjach niskonapięciowych (systemach TN) jako elementy zabezpieczające mogą być wykorzystywane

A. wyłączniki różnicowoprądowe
B. dławiki blokujące
C. izolatory długiej osi
D. wyłączniki montażowe
Wyłączniki różnicowoprądowe, znane także jako RCD (Residual Current Devices), odgrywają kluczową rolę w systemach niskiego napięcia, zwłaszcza w układach TN. Ich głównym zadaniem jest ochrona ludzi przed porażeniem prądem elektrycznym oraz zapobieganie pożarom, które mogą być spowodowane upływem prądu do ziemi. Działają na zasadzie wykrywania różnicy prądów między przewodami fazowymi a neutralnym. W przypadku wykrycia takiej różnicy, wyłącznik natychmiast odłącza zasilanie, co może uratować życie w sytuacji zagrożenia. W praktyce, wyłączniki różnicowoprądowe są stosowane w domach, biurach i obiektach przemysłowych, gdzie istnieje ryzyko kontaktu z wodą lub innymi czynnikami, które mogą zwiększyć ryzyko porażenia prądem. Standardy takie jak PN-EN 61008 i PN-EN 61009 określają wymagania dotyczące tych urządzeń, co sprawia, że ich stosowanie jest nie tylko zalecane, ale często obowiązkowe w nowych instalacjach elektrycznych. Ponadto, regularne testowanie wyłączników różnicowoprądowych jest niezbędne dla zapewnienia ich prawidłowego funkcjonowania.

Pytanie 35

Na której ilustracji przedstawiono zawór odcinający?

Ilustracja do pytania
A. Na ilustracji 1.
B. Na ilustracji 4.
C. Na ilustracji 3.
D. Na ilustracji 2.
Ilustracja 1 przedstawia zawór odcinający, który jest niezbędnym elementem w wielu systemach inżynieryjnych. Zawory odcinające służą do całkowitego zatrzymywania lub umożliwiania przepływu medium, takiego jak woda, gaz czy olej. Dzięki swojej konstrukcji, pozwalają na szybkie i efektywne zamknięcie przepływu, co jest kluczowe w sytuacjach awaryjnych, gdzie może być konieczne natychmiastowe odcięcie zasilania lub przepływu. W praktyce stosuje się je w instalacjach wodociągowych, przemysłowych systemach hydraulicznych oraz w instalacjach gazowych. Ważne jest, aby wybrać odpowiedni rodzaj zaworu odcinającego, dostosowany do specyfiki medium oraz warunków pracy. Zawory te powinny spełniać normy branżowe, takie jak PN-EN 13774, które określają wymagania dla zaworów używanych w systemach instalacyjnych. W kontekście bezpieczeństwa, zawory odcinające są często elementem systemów zabezpieczających, co podkreśla ich istotną rolę w inżynierii i technice.

Pytanie 36

Stal używana do wytwarzania zbiorników ciśnieniowych oznaczana jest w symbolu głównym literą

A. L
B. E
C. S
D. P
Wybór litery 'P' jako symbolu głównego dla stali przeznaczonej do produkcji zbiorników ciśnieniowych jest zgodny z normą PN-EN 10028. Ta norma klasyfikuje materiały do zastosowania w konstrukcjach ciśnieniowych, gdzie stal musi spełniać określone wymagania wytrzymałościowe i odporności na korozję. Stal oznaczona literą 'P' jest stosowana w aplikacjach, gdzie występuje wysokie ciśnienie, jak w zbiornikach gazów i cieczy. Przykładem zastosowania stali 'P' mogą być zbiorniki używane w przemyśle petrochemicznym, które muszą wytrzymać ekstremalne warunki operacyjne. Dodatkowo, procesy produkcyjne i kontrola jakości tych materiałów są ściśle regulowane, aby zapewnić ich bezpieczeństwo i niezawodność. W praktyce, wybór odpowiedniej stali jest kluczowy dla zapewnienia trwałości i wydajności zbiorników ciśnieniowych, co ma bezpośredni wpływ na bezpieczeństwo operacyjne oraz efektywność procesów przemysłowych.

Pytanie 37

Którym z wymienionych mediów zasilany jest siłownik przedstawiony na rysunku?

Ilustracja do pytania
A. Energią elektryczną.
B. Olejem hydraulicznym.
C. Sprężonym powietrzem.
D. Roztworem poliglikolu.
Sprężone powietrze jest powszechnie stosowanym medium zasilającym siłowniki pneumatyczne. Na zdjęciu widoczny jest siłownik pneumatyczny, co można rozpoznać dzięki obecności niebieskich węży, charakterystycznych dla systemów pneumatycznych. Siłowniki te są wykorzystywane w wielu aplikacjach przemysłowych, takich jak automatyka, robotyka, czy maszyny pakujące. Ich główną zaletą jest szybkość działania oraz łatwość w regulacji siły i prędkości ruchu. Ponadto, stosowanie siłowników pneumatycznych pozwala na osiągnięcie wysokich prędkości cyklu pracy, a także na ich łatwą integrację w systemach zautomatyzowanych. W kontekście standardów, siłowniki pneumatyczne są zgodne z normami ISO, co zapewnia ich wszechstronność i niezawodność w różnych zastosowaniach. Warto również podkreślić, że wykorzystanie sprężonego powietrza jako medium zasilającego jest zgodne z zasadami ochrony środowiska, gdyż w porównaniu do innych mediów, takich jak olej hydrauliczny, sprężone powietrze nie stwarza ryzyka zanieczyszczenia.

Pytanie 38

Określ liczbę wejść i wyjść binarnych przedstawionego na rysunku sterownika PLC zastosowanego w urządzeniu mechatronicznym.

Ilustracja do pytania
A. 6 wejść i 3 wyjścia.
B. 6 wejść i 4 wyjścia.
C. 5 wejść i 3 wyjścia.
D. 5 wejść i 4 wyjścia.
Poprawna odpowiedź to 6 wejść i 4 wyjścia, co zostało potwierdzone przez analizę zdjęcia sterownika PLC. W kontekście zastosowań przemysłowych, liczba wejść i wyjść binarnych ma kluczowe znaczenie dla efektywności i elastyczności systemu automatyki. W przypadku tego konkretnego sterownika, 6 wejść pozwala na podłączenie różnorodnych czujników, takich jak czujniki temperatury, ciśnienia czy detektory obecności, co zwiększa możliwości zbierania danych o stanie systemu. Z kolei 4 wyjścia mogą być używane do sterowania elementami wykonawczymi, takimi jak siłowniki, zawory czy przełączniki. W praktyce oznacza to, że taki sterownik może obsługiwać bardziej złożone procesy, co jest zgodne z najlepszymi praktykami w inżynierii systemów mechatronicznych. Warto również zauważyć, że zgodnie z normami IEC 61131-3 dotyczącymi programowania PLC, dostosowanie liczby wejść i wyjść do specyfikacji projektu jest kluczowym elementem w procesie projektowania systemów automatyki.

Pytanie 39

Dławienie zaworów dławiąco-zwrotnych przedstawionych na schemacie ustawiono odpowiednio
1V1 – 50% i 1V2 - 100%. Określ prędkość wysuwania tłoczyska A1 przyjmując, że 0% oznacza całkowite dławienie, 100% oznacza brak dławienia.

Ilustracja do pytania
A. Dwa razy mniejsza niż wsuwania.
B. Cztery razy większa niż wsuwania.
C. Równa prędkości wsuwania.
D. Dwa razy większa niż wsuwania.
Wiele osób może błędnie sądzić, że prędkość wysuwania tłoczyska jest równa prędkości wsuwania lub, że jest mniejsza niż ta prędkość. To wynik niepełnego zrozumienia działania zaworów dławiających oraz ich wpływu na przepływ oleju. Odpowiedzi sugerujące, że prędkość wysuwania jest równa prędkości wsuwania, ignorują fakt, że podczas wsuwania tłoczyska zawór 1V1 dławienie ogranicza przepływ oleju o 50%. To ograniczenie skutkuje wolniejszym ruchem tłoczyska. Podobnie, twierdzenie, że prędkość wysuwania jest mniejsza niż prędkość wsuwania, jest rażącym błędem, ponieważ w rzeczywistości, z uwagi na pełny przepływ oleju podczas wysuwania (brak dławienia w zaworze 1V2), tłoczysko będzie poruszać się szybciej. Typowym błędem myślowym jest pomijanie wpływu ustawień zaworów na dynamikę systemu hydraulicznego. Dlatego tak ważne jest, aby dokładnie analizować każdy składnik systemu hydraulicznego oraz jego ustawienia, aby móc prawidłowo ocenić ich wpływ na efektywność działania całości. Wiedza ta jest fundamentalna w kontekście projektowania i eksploatacji systemów hydraulicznych, a niepoprawne interpretacje mogą prowadzić do poważnych błędów w praktyce inżynieryjnej.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.