Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechanik
  • Kwalifikacja: MEC.08 - Wykonywanie i naprawa elementów maszyn, urządzeń i narzędzi
  • Data rozpoczęcia: 17 grudnia 2025 12:33
  • Data zakończenia: 17 grudnia 2025 12:36

Egzamin niezdany

Wynik: 10/40 punktów (25,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Z jakiego materiału nie produkuje się narzędzi do obróbki skrawaniem?

A. Polichlorku winylu
B. Węglika krzemu
C. Diamentu
D. Azotku boru
Polichlorek winylu (PVC) jest materiałem, który nie jest stosowany do produkcji narzędzi skrawających, ponieważ jego właściwości mechaniczne oraz termiczne nie są odpowiednie do tak wymagających aplikacji. Narzędzia skrawające muszą charakteryzować się dużą twardością, odpornością na ścieranie oraz stabilnością w wysokich temperaturach, co jest kluczowe w procesach obróbczych. PVC, będąc tworzywem sztucznym, ma niską twardość i nie wytrzymuje wysokich temperatur, co sprawia, że nie może być używane w zastosowaniach, gdzie wymagana jest wydajność skrawania metali czy innych twardych materiałów. Przykładem odpowiednich materiałów do wytwarzania narzędzi skrawających są diamenty, które dzięki swojej ekstremalnej twardości są wykorzystywane w narzędziach do cięcia twardych materiałów, takich jak ceramika czy kompozyty. Azotek boru i węglik krzemu również są stosowane w narzędziach skrawających ze względu na swoje korzystne właściwości, oferując odporność na wysokie temperatury i ścieranie, co jest kluczowe w przemyśle obróbczy.

Pytanie 2

Na rysunku pokazano czynność sprawdzania płaskości powierzchni z zastosowaniem

Ilustracja do pytania
A. pryzmy traserskiej.
B. usztywnionego płaskownika.
C. przymiaru kreskowego.
D. liniału krawędziowego.
Liniał krawędziowy jest narzędziem o kluczowym znaczeniu w procesie weryfikacji płaskości powierzchni. Jego główną zaletą jest wyjątkowo prosta i gładka krawędź, co sprawia, że idealnie nadaje się do tego typu pomiarów. Użycie liniału krawędziowego pozwala na szybkie i precyzyjne sprawdzenie, czy dana powierzchnia nie odbiega od normy pod względem płaskości. W praktyce, narzędzie to stosuje się w wielu dziedzinach, w tym w inżynierii mechanicznej, budownictwie oraz w obróbce materiałów. Na przykład, przed wykonaniem montażu dużych konstrukcji stalowych, ważne jest, aby wszystkie elementy były dokładnie sprawdzone pod kątem płaskości, co zapobiega późniejszym problemom związanym z ustawieniem czy stabilnością. Ponadto, zgodnie z normami ISO, pomiar płaskości przy użyciu odpowiednich narzędzi, jak liniał krawędziowy, jest kluczowy w zapewnieniu wysokiej jakości produkcji i zgodności z wymaganiami technicznymi.

Pytanie 3

Jakim narzędziem dokonuje się pomiaru wysokości zęba koła zębatego?

A. suwmiarki o regulowanej długości.
B. przyrządu mikrometryczno-czujnikowego.
C. suwmiarki modułowej.
D. wzornika ogólnego.
Pomiar głowy zęba koła zębatego za pomocą suwmiarki modułowej jest najwłaściwszym wyborem, ponieważ ten typ przyrządu pomiarowego został zaprojektowany specjalnie do precyzyjnych pomiarów, takich jak wymiary zębów w mechanizmach zębatych. Suwmiarka modułowa umożliwia pomiar zarówno zewnętrznych, jak i wewnętrznych wymiarów zębów, co jest kluczowe dla zapewnienia prawidłowego ustawienia i współpracy kół zębatych w danej aplikacji. Standardy branżowe, takie jak normy ISO 9001, podkreślają znaczenie dokładnych pomiarów w procesie produkcyjnym, co wpływa na jakość i trwałość produktów. Przykładowo, w przemyśle motoryzacyjnym, precyzyjne pomiary zębów kół zębatych są fundamentalne dla zapewnienia ich efektywności i bezpieczeństwa w działaniu. Użycie suwmiarki modułowej pozwala na osiągnięcie wymaganej dokładności, co jest istotne dla uzyskania optymalnych wyników operacyjnych oraz długotrwałej wydajności mechanizmów.

Pytanie 4

Czym jest proces piaskowania?

A. usunięcie zanieczyszczeń z powierzchni materiału
B. produkcja tarcz ściernych poprzez wtłaczanie ścierniwa w metal
C. aplikacja powłoki ochronnej na materiał
D. modyfikacja struktury krystalicznej metali
Proces piaskowania jest techniką obróbcza, której celem jest usunięcie zanieczyszczeń oraz nadanie odpowiedniej tekstury powierzchni materiału. Wykorzystuje się w nim ścierniwo, które jest przyspieszane za pomocą strumienia powietrza pod wysokim ciśnieniem. Dzięki temu można skutecznie usunąć rdze, farby, resztki smarów, a także inne zanieczyszczenia, które mogą wpłynąć na dalszą obróbkę materiału, na przykład malowanie lub spawanie. Przykładem zastosowania piaskowania jest przygotowanie podłoża przed malowaniem konstrukcji stalowych, gdzie czystość powierzchni jest kluczowa dla trwałości powłok. Standardy branżowe, takie jak ISO 8501, podkreślają znaczenie odpowiedniego przygotowania powierzchni, co w praktyce oznacza użycie piaskowania jako jednego z kluczowych etapów. Dodatkowo, piaskowanie jest także stosowane w przemyśle lotniczym, gdzie precyzyjne usunięcie wszelkich zanieczyszczeń jest niezbędne dla bezpieczeństwa i wydajności maszyn.

Pytanie 5

Nie można uznać za przyczynę uszkodzeń w trakcie produkcji

A. nieprzestrzegania cyklu napraw
B. błędów użytkownika
C. braku konserwacji
D. symetrycznego oświetlenia
Symetryczne oświetlenie jest istotnym elementem w procesach produkcyjnych, a jego brak może prowadzić do problemów w weryfikacji jakości, jednak samo w sobie nie jest bezpośrednią przyczyną uszkodzeń. W dobrych praktykach przemysłowych, symetryczne oświetlenie jest zalecane, aby zapewnić równomierne warunki pracy, co wpływa na wydajność i dokładność działań operacyjnych, ale nie prowadzi do uszkodzeń materiałów czy produktów. Na przykład, w halach produkcyjnych, odpowiednie oświetlenie pozwala pracownikom na dokładne monitorowanie detali, co może zmniejszać ryzyko błędów. Kiedy jednak mówimy o uszkodzeniach, to bardziej wpływ mają takie czynniki jak brak konserwacji maszyn, błędy ludzkie czy nieprzestrzeganie procedur naprawczych. Dlatego symetryczne oświetlenie, choć ważne, nie jest przyczyną uszkodzeń, co czyni tę odpowiedź poprawną.

Pytanie 6

Na ilustracji przedstawiono wykonywanie gwintów w procesie

Ilustracja do pytania
A. toczenia.
B. walcowania.
C. tłoczenia.
D. frezowania.
Wybór walcowania jako poprawnej odpowiedzi jest uzasadniony, ponieważ proces ten polega na formowaniu gwintów poprzez plastyczne odkształcenie materiału za pomocą specjalnych rolek. Walcowanie gwintów jest techniką stosowaną w przemyśle do produkcji elementów o wysokiej wytrzymałości, co jest kluczowe w zastosowaniach, gdzie obciążenia są znaczące, np. w przemyśle motoryzacyjnym czy lotniczym. Dzięki walcowaniu, materiał nie jest usuwany, co skutkuje większą integralnością strukturalną gwintu w porównaniu do procesów takich jak frezowanie czy toczenie, które polegają na usuwaniu materiału. Dodatkowo, walcowanie sprzyja poprawie wytrzymałości zmęczeniowej gwintów, co jest istotne w przypadku elementów, które będą poddawane cyklicznym obciążeniom. Stosowanie odpowiednich maszyn walcujących oraz przestrzeganie norm dotyczących parametrów procesu, takich jak prędkość obrotowa i siła nacisku, pozwala na uzyskanie wysokiej precyzji i powtarzalności produkcji. Warto zwrócić uwagę, że walcowanie gwintów stanowi jedną z najlepszych praktyk w obróbce skrawaniem, co jest uznawane przez profesjonalistów w branży.

Pytanie 7

Pokazane na ilustracji łączenie odbywa się techniką

Ilustracja do pytania
A. spawania gazowego.
B. spawania elektrycznego.
C. zgrzewania punktowego.
D. zgrzewania liniowego.
Spawanie gazowe, które jest odpowiedzią na to pytanie, to technika łączenia metali wykorzystująca palnik gazowy do wytworzenia płomienia. Palnik ten stopniowo podgrzewa metal w miejscu łączenia, co pozwala na jego spawanie. Jest to technika szeroko stosowana w przemyśle, szczególnie w pracach konserwacyjnych i naprawczych, gdzie dostęp do złącza może być ograniczony. Spawanie gazowe często wykorzystywane jest w sytuacjach, gdzie mobilność i elastyczność są kluczowe, na przykład w pracach w terenie. Technika ta jest zgodna z normami PN-EN ISO 3834, które określają wymagania dotyczące jakości w procesach spawania metali. W praktyce, spawanie gazowe może być stosowane do różnych materiałów, takich jak stal, miedź czy aluminium, co czyni je wszechstronnym narzędziem w arsenale spawalniczym. Warto również zauważyć, że spawanie gazowe może być używane w połączeniu z innymi metodami, co zwiększa jego funkcjonalność.

Pytanie 8

Rozwiercanie stosuje się w celu

A. poprawy precyzji wymiarowej otworów po procesie wiercenia
B. zwiększenia szorstkości powierzchni otworów wierconych
C. zmniejszenia precyzji wymiarowej otworów nawiercanych
D. umożliwienia wykorzystania docieraków płaskich w otworach
Rozwiercanie to zaawansowany proces obróbczy, który ma na celu poprawę dokładności wymiarowej otworów po wcześniejszym wierceniu. Technika ta polega na używaniu narzędzi o odpowiedniej geometrii, które umożliwiają precyzyjne usunięcie materiału, co przekłada się na osiągnięcie wymaganych tolerancji wymiarowych. W praktyce, rozwiercanie jest często stosowane w produkcji komponentów, gdzie kluczowe są dokładne wymiary, na przykład w branży motoryzacyjnej, lotniczej czy w przemyśle maszynowym. Dzięki rozwiercaniu, otwory mogą być doprowadzone do bardzo wąskich tolerancji, co jest niezbędne w aplikacjach wymagających dużej precyzji, takich jak montaż elementów z dużą dokładnością. Dodatkowo, proces ten wpływa pozytywnie na jakość powierzchni otworów, co zwiększa ich trwałość i funkcjonalność. Stosując rozwiercanie, inżynierowie mogą zapewnić, że komponenty będą działać zgodnie z wymaganiami norm ISO oraz innych standardów branżowych, co w dłuższej perspektywie prowadzi do zmniejszenia kosztów produkcji i poprawy efektywności operacyjnej.

Pytanie 9

Na podstawie rysunku wskaż wynik pomiaru wykonanego za pomocą mikrometru.

Ilustracja do pytania
A. 84,82 mm
B. 80,32 mm
C. 81,30 mm
D. 84,32 mm
Dobra robota! 84,82 mm to poprawny wynik. To efekt dokładnego odczytu z mikrometru, gdzie musisz spojrzeć na obie skale: główną i pomocniczą. W skali głównej widzisz 84 mm, co pokazuje, że krawędź bębna jest pomiędzy 80 a 85 mm. Potem, żeby dostać dokładniejszy wynik, sprawdź skalę pomocniczą, która daje nam 0,82 mm. Odczytanie tej wartości jest ważne, bo pokazuje, jak dokładnie używamy mikrometru. Te narzędzia są szeroko stosowane w warsztatach czy laboratoriach, bo precyzyjny pomiar jest kluczowy dla jakości produktów. Przypominają mi, że jeśli coś jest źle odczytane, to później może być problem w produkcji. Także dobrze znać zasady prawidłowego odczytu, bo to naprawdę ma znaczenie, żeby wszystko działało jak należy. Nie zapominaj, że te odczyty są też ważne, bo związane z normami ISO, które określają, jak dokładne muszą być pomiary. Po prostu pamiętaj, że to nie jest takie trudne, ale wymaga skupienia i uwagi.

Pytanie 10

Podczas wykonania klucza oczkowego, pokazanego na ilustracji, zastosowano procesy

Ilustracja do pytania
A. tłoczenia i przepychania.
B. kucia swobodnego i frezowania.
C. dłutowania i frezowania.
D. kucia matrycowego i przeciągania.
Klucz oczkowy, jak przedstawiono na ilustracji, jest doskonałym przykładem zastosowania kucia matrycowego i przeciągania w procesie produkcji narzędzi. Kucie matrycowe pozwala na uzyskanie wysoce precyzyjnych kształtów, co jest kluczowe w przypadku narzędzi, które muszą sprostać dużym obciążeniom i wymogom wytrzymałościowym. W tym procesie metal jest umieszczany w formie matrycowej i poddawany dużym siłom, co skutkuje uformowaniem dokładnego kształtu klucza. Po tym etapie, przeciąganie, które jest procesem obróbczo-plastycznym, jest wykorzystywane do dalszej obróbki powierzchniowej, co zwiększa odporność na zużycie i poprawia właściwości mechaniczne klucza. Dobrym przykładem zastosowania tego rodzaju procesów w przemyśle jest produkcja narzędzi do pracy w trudnych warunkach, gdzie precyzja oraz wytrzymałość są kluczowe. Przykłady obejmują klucze do maszyn przemysłowych czy narzędzia używane w budownictwie, gdzie komfort i efektywność pracy są niezbędne. Wybór odpowiednich technologii produkcji jest istotny i powinien opierać się na standardach branżowych, które zapewniają wysoką jakość wyrobów końcowych.

Pytanie 11

Strzałką na przedstawionej ilustracji wskazano elementy czopa wału, które zostały wykonane w operacji

Ilustracja do pytania
A. radełkowania.
B. piłowania.
C. toczenia.
D. frezowania.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'frezowania' jest poprawna, ponieważ strzałka na ilustracji wskazuje na charakterystyczne rowki, które powstają właśnie w wyniku tego procesu obróbczyczego. Frezowanie to operacja, w której narzędzie obrotowe, zwane frezem, przemieszcza się w płaszczyźnie, tworząc na obrabianym elemencie precyzyjne kształty i rowki. Jest to jedna z najczęściej stosowanych metod obróbczych w przemyśle, szczególnie gdy wymagane są wysokie standardy dokładności i jakości powierzchni. Przykładem zastosowania frezowania może być produkcja elementów maszyn, przekładni czy też skomplikowanych kształtów, gdzie precyzyjne rowki są kluczowe dla ich funkcjonowania. W kontekście standardów branżowych, frezowanie jest zgodne z normami ISO dotyczącymi obróbki skrawaniem, co potwierdza jego uniwersalność i zastosowanie w różnych gałęziach przemysłu. Warto również zrozumieć, że frezowanie jest często preferowane ze względu na możliwość obróbki materiałów o różnej twardości oraz uzyskiwania gładkich powierzchni.

Pytanie 12

Aby właściwie ustawić urządzenie na stanowisku pracy, konieczne jest użycie

A. mikrometru wewnętrznego
B. poziomnicy maszynowej
C. średnicówki dwupunktowej
D. macek zewnętrznych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poziomnica maszynowa to narzędzie niezbędne do prawidłowego ustawienia maszyn na stanowisku roboczym. Jej głównym zadaniem jest pomiar poziomu, co jest kluczowe dla zapewnienia stabilności i precyzji pracy maszyn. Wiele maszyn wymaga idealnego poziomowania, aby zminimalizować zużycie elementów oraz poprawić dokładność wykonywanych operacji. Użycie poziomnicy maszynowej pozwala na szybkie i dokładne ustalenie, czy maszyna jest ustawiona w sposób zapewniający jej prawidłowe działanie. Przykładowo, przy ustawianiu tokarek, frezarek czy wiertarek, niewłaściwe poziomowanie może prowadzić do poważnych błędów w obróbce, a także do przyspieszonego zużycia narzędzi. Poziomnice maszynowe są standardem w branży, ponieważ ich zastosowanie przyczynia się do podniesienia efektywności produkcji oraz jakości końcowego wyrobu. Dzięki ich pomiarom można także uniknąć niebezpieczeństw związanych z przechyłami maszyn, co jest kluczowe z punktu widzenia bezpieczeństwa użytkowników.

Pytanie 13

W jakich obrabiarkach wykorzystuje się stół obrotowo-podziałowy?

A. W walcarkach
B. W ciągarkach
C. We frezarkach
D. W wytłaczarkach

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "We frezarkach" jest poprawna, ponieważ stół obrotowo-podziałowy jest kluczowym elementem w obrabiarkach, które wykonują skomplikowane operacje frezarskie. Stół ten umożliwia precyzyjne ustawienie detalu w różnych pozycjach, co jest szczególnie istotne przy wieloaspektowym frezowaniu. Użycie stołu obrotowo-podziałowego pozwala na wykonywanie cięć w różnych płaszczyznach, co zwiększa dokładność i efektywność procesów produkcyjnych. Przykładem zastosowania może być obróbka elementów maszyn, które wymagają skomplikowanych kształtów i otworów. W branży inżynieryjnej oraz produkcyjnej stosuje się standardy takie jak ISO 9001, które podkreślają znaczenie precyzji obróbczej, a wykorzystanie stołów obrotowo-podziałowych w frezarkach wpisuje się w te normy, zapewniając wysoką jakość wytwarzanych produktów. Dzięki tej technologii, operatorzy mają możliwość zwiększenia wydajności oraz redukcji czasu cyklu produkcyjnego, co jest istotne w kontekście konkurencyjności na rynku.

Pytanie 14

Na podstawie fragmentu dokumentacji szlifierki taśmowej odczytaj długość taśmy szlifierskiej.

ModelMMF 75-200-2
Artykuł3922075
Dane techniczne
Szerokość szlifu75 mm
Szybkość taśmy14,5 / 29 m/s
Moc silnika1,5 / 2,2 kW
Podłączenie elektryczne400 V / 50 Hz
Wymiary taśmy szlifierskiej75 x 2000 mm
Ø koła kontaktowego200 mm
Ø króćca odsysającego100 mm
Wymiary w mm (dł. x szer. x wys.)1070 x 340 x 950
Ciężar72 kg
A. 2 000 mm
B. 75 mm
C. 100 mm
D. 1 070 mm

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 2 000 mm jest poprawna, ponieważ zgodnie z dokumentacją szlifierki taśmowej, długość taśmy szlifierskiej wynosi właśnie 2000 mm. Informacja ta znajduje się w sekcji "Wymiary taśmy szlifierskiej", co jest istotne dla prawidłowego doboru materiałów eksploatacyjnych oraz parametrów roboczych urządzenia. Długość taśmy ma kluczowe znaczenie w kontekście wydajności pracy szlifierki. Wybór odpowiedniej długości taśmy wpływa nie tylko na efektywność szlifowania, ale również na bezpieczeństwo użytkowania maszyny. Zastosowanie taśmy o niewłaściwych wymiarach może prowadzić do jej uszkodzenia, co w konsekwencji zwiększa koszty eksploatacji. W przemyśle, gdzie szlifierki taśmowe są powszechnie używane, zgodność z podanymi wymiarami jest fundamentem efektywnego zarządzania procesem produkcyjnym. Warto również pamiętać, że dobór odpowiedniej długości taśmy powinien być zgodny z normami branżowymi, które regulują parametry techniczne dla tego typu urządzeń.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

W procesie wykorzystywane są farby proszkowe

A. miedziowania
B. anodowania
C. cynkowania
D. napylania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Farby proszkowe są kluczowym elementem w procesie napylania, który jest często stosowany w branży przemysłowej do pokrywania różnorodnych powierzchni. Proces ten polega na aplikacji suchych cząsteczek farby proszkowej na powierzchnię przy użyciu elektrostatyki, co zapewnia równomierne pokrycie oraz wysoką przyczepność. Po nałożeniu farby, elementy są podgrzewane w piecu, co prowadzi do stopienia proszku i utworzenia trwałej powłoki. Przykłady zastosowań obejmują malowanie części samochodowych, mebli oraz elementów elektrycznych. Dzięki swojej odporności na zarysowania, korozję i działanie chemikaliów, farby proszkowe cieszą się rosnącą popularnością. Warto również zauważyć, że stosowanie farb proszkowych jest zgodne z normami ochrony środowiska, ponieważ w procesie tym nie wykorzystuje się rozpuszczalników, a nadmiar farby można odzyskać i ponownie wykorzystać, co zmniejsza odpady oraz zanieczyszczenie. Standardy takie jak ISO 9001 i ISO 14001 często obejmują procesy związane z używaniem farb proszkowych, co podkreśla ich znaczenie w nowoczesnej produkcji.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Jakie narzędzie służy do wykonywania zgrubnych pomiarów gorących detali podczas ręcznego kucia?

A. przymiaru kreskowego
B. macek
C. taśmy pomiarowej
D. suwmiarki

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Macek jest narzędziem, które doskonale sprawdza się w pomiarze gorących elementów podczas kucia ręcznego. Główną zaletą macek jest ich zdolność do pomiaru temperatury materiałów metalowych, które mogą być zbyt gorące dla innych narzędzi pomiarowych, takich jak suwmiarki czy taśmy miernicze, które mogą ulec uszkodzeniu. Macek, zwykle wykonany z materiałów odpornych na wysokie temperatury, pozwala na szybkie i niezawodne określenie wymiarów w warunkach, gdzie inne metody byłyby niepraktyczne. Przykładem zastosowania jest pomiar długości elementów metalowych w trakcie procesu kucia, co jest kluczowe dla zapewnienia precyzyjnych wymiarów gotowego wyrobu. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie dokładności pomiarów w procesach produkcyjnych, co czyni macek niezastąpionym narzędziem w warsztatach rzemieślniczych oraz w dużych zakładach przemysłowych. Dzięki swoim właściwościom, macki są preferowanym wyborem dla specjalistów zajmujących się obróbką cieplną metali, co potwierdza ich istotność w procesie kucia.

Pytanie 19

Na ilustracji przedstawiono obcinak stosowany w cięciu

Ilustracja do pytania
A. płyt wiórowych.
B. blach stalowych.
C. prętów niklowych.
D. rur miedzianych.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Obcinak do rur, przedstawiony na ilustracji, jest narzędziem dedykowanym do cięcia rur miedzianych. Jego konstrukcja pozwala na osiągnięcie precyzyjnych i czystych cięć, co jest kluczowe w branży hydraulicznej oraz grzewczej. Miedź jest materiałem powszechnie stosowanym w instalacjach, ponieważ charakteryzuje się doskonałymi właściwościami przewodzenia ciepła oraz odpornością na korozję. Użycie odpowiednich narzędzi, takich jak obcinak do rur, pozwala na szybkie i efektywne wykonanie prac montażowych. Warto również zaznaczyć, że cięcie rur miedzianych wymaga dbałości o szczegóły, aby nie uszkodzić krawędzi, co mogłoby prowadzić do nieszczelności w instalacji. Dobre praktyki obejmują również odpowiednie przygotowanie miejsca pracy oraz stosowanie ochrony osobistej, np. okularów ochronnych, co zwiększa bezpieczeństwo podczas wykonywania prac.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Koła zębate powstają w procesie toczenia oraz

A. kalandrowania i szlifowania
B. tłoczenia i przeciągania
C. frezowania i dłutowania
D. wytłaczania i frezowania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Frezowanie i dłutowanie to kluczowe procesy obróbcze stosowane w produkcji kół zębatych. Frezowanie polega na usuwaniu materiału za pomocą narzędzia skrawającego, które obraca się wokół własnej osi. Dzięki tej metodzie można osiągnąć wysoką precyzję w formowaniu zębatek, co jest istotne dla prawidłowego funkcjonowania mechanizmów przekładniowych. Dłutowanie z kolei jest procesem, który umożliwia uzyskanie kształtów zewnętrznych oraz wewnętrznych detali, idealnych do produkcji kół zębatych o złożonej geometrii. Przykładem zastosowania tych technologii jest produkcja kół zębatych do przekładni w samochodach, gdzie precyzyjny kształt zębów ma kluczowe znaczenie dla ich wydajności i trwałości. W branży inżynieryjnej obowiązują normy ISO dotyczące tolerancji wymiarowych, które są przestrzegane podczas obróbki kół zębatych, co zapewnia ich niezawodność i kompatybilność z innymi komponentami.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Do elementów diagnozowania maszyn i urządzeń nie należy badanie

A. liczby wyłączeń maszyny.
B. hałasu oraz drgań.
C. szczelności.
D. stanu powierzchni.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Liczba wyłączeń maszyny nie jest bezpośrednim elementem diagnostyki, ale raczej wskaźnikiem jej wydajności lub awaryjności. Diagnostyka maszyn i urządzeń jak najbardziej koncentruje się na ocenie ich stanu technicznego, co obejmuje m.in. badanie stanu powierzchni, monitorowanie hałasu i drgań oraz kontrolę szczelności. Te aspekty są kluczowe dla zapewnienia ich prawidłowego funkcjonowania. Na przykład, badania drgań mogą ujawnić problemy z łożyskami lub niewyważeniem, a analiza hałasu może wskazać na zużycie elementów mechanicznych. W praktyce, regularne przeprowadzanie takich badań pomaga w optymalizacji procesów produkcyjnych oraz w planowaniu działań konserwacyjnych, co z kolei przyczynia się do zmniejszenia kosztów eksploatacyjnych i zwiększenia niezawodności maszyn. Warto przy tym pamiętać o standardach takich jak ISO 10816, które dostarczają wytycznych dotyczących oceny drgań maszyn.

Pytanie 24

Kawitacja to zjawisko, które zachodzi w trakcie pracy

A. pompy
B. przekładni
C. podnośnika
D. sprzęgła

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kawitacja to zjawisko, które najczęściej występuje w pompach, szczególnie w przypadku pomp wodnych, które są powszechnie stosowane w różnych aplikacjach inżynieryjnych. Kawitacja zachodzi, gdy miejscowe ciśnienie płynu spada poniżej ciśnienia parowania, co prowadzi do powstawania pęcherzyków pary. Gdy te pęcherzyki przemieszcza się do obszarów o wyższym ciśnieniu, gwałtownie implodują, co może prowadzić do poważnych uszkodzeń komponentów pompy, takich jak wirniki i obudowy. Przykładowo, w systemach hydraulicznych i układach chłodzenia, zjawisko kawitacji może prowadzić do obniżenia wydajności i zwiększenia kosztów konserwacji. W celu zminimalizowania ryzyka kawitacji, stosuje się różne techniki, takie jak dobór odpowiednich parametrów pracy pompy, kontrola ciśnienia ssawnego oraz zastosowanie wirników o zoptymalizowanym kształcie. Dobre praktyki w zakresie projektowania systemów hydraulicznych oraz regularne przeglądy techniczne pozwalają na utrzymanie wysokiej efektywności pomp oraz długowieczności ich komponentów.

Pytanie 25

W którym procesie obróbki stosowane jest narzędzie przedstawione na ilustracji?

Ilustracja do pytania
A. Radełkowania powierzchni.
B. Ciągnienia drutów.
C. Wykrawania otworów.
D. Szlifowania wałków.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'Ciągnienia drutów' jest poprawna, ponieważ narzędzie przedstawione na ilustracji to ciągadło, które jest kluczowym elementem w procesu ciągnienia. Ciągnienie drutów to metoda obróbcza, w której materiał, zazwyczaj metalowy, jest przeciągany przez otwór o określonej średnicy. Dzięki temu procesowi zmniejsza się średnica drutu, a jednocześnie zwiększa jego długość, co jest niezbędne w produkcji elementów takich jak druty, pręty czy rury, stosowanych w różnych branżach, w tym budownictwie i motoryzacji. Stosowanie ciągadła pozwala na uzyskanie drutów o bardzo precyzyjnych wymiarach oraz wysokiej jakości powierzchni, co jest zgodne z najlepszymi praktykami w zakresie obróbki metali. Proces ten jest również powszechnie wykorzystywany w przemyśle elektrotechnicznym, gdzie wymagane są druty o dużej wytrzymałości na rozciąganie. Dobrze zrealizowane ciągnienie drutów przyczynia się do efektywności produkcji oraz redukcji odpadów materiałowych, co jest istotne z perspektywy zrównoważonego rozwoju.

Pytanie 26

Otwory w kształcie kwadratu są tworzone w procesie

A. anodowania
B. lutowania
C. przeciągania
D. zgrzewania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Otwory przelotowe o przekroju kwadratowym są często wykonywane w procesie przeciągania, który jest szeroko stosowany w obróbce metali i materiałów kompozytowych. Proces przeciągania polega na przesuwaniu materiału przez formę o określonym kształcie, co umożliwia uzyskanie pożądanych wymiarów i jakości powierzchni. Dzięki przeciąganiu możliwe jest tworzenie otworów o precyzyjnych wymiarach, co jest kluczowe w wielu zastosowaniach inżynieryjnych, takich jak produkcja elementów maszyn, konstrukcji budowlanych czy części pojazdów. Przeciąganie jest szczególnie cenione za swoją zdolność do wytwarzania wymiarów o dużej dokładności oraz gładkości powierzchni, co może znacząco wpływać na właściwości wytrzymałościowe i estetyczne finalnych produktów. W praktyce, otwory przelotowe wykonane w procesie przeciągania są stosowane w komponentach, gdzie istotna jest optymalizacja masy i wytrzymałości, np. w lekkich konstrukcjach lotniczych, gdzie każdy gram ma znaczenie. W branży metalowej proces ten spełnia także normy ISO związane z jakością obróbki, co podkreśla jego znaczenie w przemyśle.

Pytanie 27

Środkownik pozwala na określenie

A. średnicy rowków wewnętrznych
B. płaskości powierzchni
C. środka płaskich powierzchni czołowych przedmiotów walcowych
D. długości powierzchni cylindrycznych wałków

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Środkownik to narzędzie wykorzystywane w obróbce skrawaniem, które umożliwia precyzyjne wyznaczanie środka płaskich powierzchni czołowych przedmiotów walcowych. Dzięki zastosowaniu środkownika, operatorzy maszyn mogą skutecznie określić centralny punkt na takich powierzchniach, co jest kluczowe w procesach takich jak wiercenie, frezowanie czy toczenie. Przykładowo, w tokarstwie, idealne umiejscowienie narzędzia skrawającego w osi obrotu przedmiotu obrabianego jest istotne dla zapewnienia symetrii oraz estetyki finalnego produktu. W standardach przemysłowych, takich jak ISO 2768, podkreśla się znaczenie precyzyjnego wyznaczania środków w kontekście tolerancji wymiarowych. W praktyce, wykorzystanie środkownika pozwala na uzyskanie wyższej jakości obróbki oraz minimalizację odchyleń, co bezpośrednio wpływa na wydajność produkcji oraz redukcję kosztów materiałowych.

Pytanie 28

Który element wiertarki kolumnowej oznaczono na ilustracji strzałką?

Ilustracja do pytania
A. Kolumnę.
B. Wrzeciennik.
C. Stół.
D. Pokrętło.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Stół" jest poprawna, ponieważ na ilustracji wiertarki kolumnowej strzałka wskazuje na poziomą powierzchnię roboczą, która jest kluczowym elementem w procesie obróbki materiałów. Stół wiertarki kolumnowej służy do stabilnego podparcia obrabianego elementu, co jest niezbędne dla uzyskania precyzyjnych wyników. W praktyce, odpowiednia regulacja wysokości stołu umożliwia dostosowanie go do różnych rodzajów materiałów oraz głębokości wiercenia, co jest zgodne z najlepszymi praktykami w obróbce skrawaniem. Zastosowanie stołu wiertarki kolumnowej jest szczególnie istotne w branżach takich jak stolarka, metalurgia czy inżynieria mechaniczna, gdzie precyzja i stabilność są kluczowe. Właściwie użytkowany stół pozwala na efektywne i bezpieczne wykonywanie operacji wiertarskich, minimalizując ryzyko uszkodzeń zarówno obrabianego materiału, jak i samego narzędzia skrawającego. Warto również pamiętać o regularnych kontrolach stanu technicznego stołu, co jest zgodne z normami BHP i pozwala na zachowanie wysokiej efektywności pracy.

Pytanie 29

Aby umożliwić użytkowanie przyrządu pomiarowego, konieczne jest jego

A. kalibracja
B. normalizacja
C. regulowanie
D. konserwacja

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kalibracja to naprawdę ważny proces, jeśli chodzi o dokładność pomiarów przyrządów. Chodzi o to, że musimy porównać, co pokazuje nasz przyrząd, z wartościami, które są uznawane za wzorcowe. Jeśli coś nie chce wskazywać prawidłowo, to się to dostosowuje, żeby wszystko się zgadzało z rzeczywistością. Na przykład, w chemii to jest mega istotne, żeby wagi czy pipety były kalibrowane, bo to wpływa na wyniki. Są normy, jak na przykład ISO 17025, które mówią, co i jak powinno być robione. Regularna kalibracja nie tylko sprawia, że pomiary są dokładniejsze, ale także pozwala spełniać różne normy i przepisy, co jest ważne podczas audytów. Można powiedzieć, że bez kalibracji nie ma mowy o dobrych wynikach w laboratorium.

Pytanie 30

Które narzędzie zastosowano do obróbki otworu pokazanego na rysunku?

Ilustracja do pytania
A. Skrobak.
B. Frez.
C. Docierak.
D. Narzynkę.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Frez to narzędzie, które jest powszechnie stosowane w obróbce skrawaniem, szczególnie do frezowania otworów, rowków oraz kształtów w różnych materiałach, takich jak metal, drewno czy tworzywa sztuczne. Frezowanie jest procesem, w którym narzędzie obrotowe, czyli frez, usuwa materiał z przedmiotu obrabianego poprzez kontakt z jego powierzchnią. Frezy mogą mieć różne kształty i rozmiary, co pozwala na dostosowanie ich do specyficznych wymagań obróbczych danego projektu. W przemyśle często stosuje się frezy cylindryczne, tarczowe czy kątowe, w zależności od pożądanej geometrii otworów lub rowków. Oprócz tego, frezowanie pozwala na uzyskanie wysokiej precyzji wymiarowej oraz dobrej jakości powierzchni, co jest kluczowe w wielu zastosowaniach inżynieryjnych. Warto również wspomnieć, że właściwe ustawienie parametrów obróbczych, takich jak prędkość skrawania czy posuw, ma ogromny wpływ na efektywność procesu i żywotność narzędzia.

Pytanie 31

Do czego służy średnicówka mikrometryczna?

A. Pomiar kątów między powierzchniami
B. Pomiar długości całkowitej przedmiotów
C. Pomiar średnic zewnętrznych
D. Pomiar głębokości otworów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Średnicówka mikrometryczna to narzędzie pomiarowe, które jest powszechnie stosowane w przemyśle do dokładnego mierzenia średnic zewnętrznych elementów. Jej konstrukcja opiera się na mechanizmie mikrometrycznym, co pozwala na uzyskanie bardzo precyzyjnych wyników pomiarów, często z dokładnością do setnych części milimetra. W praktyce przemysłowej, szczególnie w obróbce skrawaniem, dokładność pomiaru jest kluczowa, ponieważ nawet niewielkie odchylenia mogą wpływać na jakość montowanych części. Średnicówki mikrometryczne są używane do kontrolowania jakości wykonanych elementów, takich jak wałki, tuleje czy inne cylindryczne części, zapewniając zgodność z wymaganiami technicznymi. Dzięki możliwości szybkiego i precyzyjnego pomiaru, narzędzie to znajduje zastosowanie w wielu branżach, od motoryzacji po produkcję maszyn, gdzie precyzja i jakość są priorytetem. Dobre praktyki branżowe zalecają regularną kalibrację średnicówek, aby utrzymać ich dokładność na najwyższym poziomie.

Pytanie 32

Rysunek przedstawia element stosowany w połączeniu

Ilustracja do pytania
A. wpustowym.
B. kołnierzowym.
C. kołkowym.
D. śrubowym.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to "wpustowym", ponieważ na rysunku przedstawiony jest element wpustu, który jest kluczowy w połączeniach wpustowych. Wpusty to elementy mechaniczne, które umożliwiają przenoszenie momentu obrotowego z wału na piastę, co jest istotne w wielu zastosowaniach inżynieryjnych, takich jak silniki, przekładnie czy systemy przeniesienia napędu. Ich charakterystyczny kształt prostokątny z zaokrąglonymi końcami zapewnia odpowiednie dopasowanie i minimalizuje ryzyko wystąpienia luzów, co z kolei zwiększa efektywność przenoszenia mocy. W praktyce wpusty są szeroko stosowane w budowie maszyn, co jest zgodne z normami ISO 8765, które określają standardy dla tych elementów. Właściwe zastosowanie wpustów zapewnia nie tylko efektywność, ale także bezpieczeństwo operacyjne, eliminując możliwość niekontrolowanego poślizgu elementów połączenia. Dlatego wiedza na temat wpustów oraz ich właściwości jest niezbędna dla inżynierów i projektantów.

Pytanie 33

Wybierz metodę, która umożliwia połączenie drewna z materiałem sztucznym.

A. Zgrzewanie
B. Spawanie
C. Lutowanie
D. Klejenie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Klejenie drewna z tworzywem sztucznym to jedna z najczęściej stosowanych metod łączenia tych dwóch materiałów, ze względu na jej prostotę oraz efektywność. Kleje, takie jak kleje epoksydowe czy poliuretanowe, oferują doskonałe właściwości adhezyjne, które mogą skutecznie łączyć powierzchnie o różnych właściwościach fizycznych i chemicznych. W praktyce, klejenie jest szeroko stosowane w branży meblarskiej, budowlanej oraz w produkcji elementów dekoracyjnych, gdzie estetyka i funkcjonalność mają kluczowe znaczenie. Dobrze dobrany klej oraz odpowiednie przygotowanie powierzchni (np. szlifowanie, odtłuszczanie) mogą znacząco wpłynąć na jakość połączenia. Warto również zwrócić uwagę na normy, takie jak PN-EN 204, które określają klasyfikację klejów do użytku w budownictwie i meblarstwie. Zastosowanie klejenia pozwala również na uzyskanie połączeń, które są odporne na zmiany temperatury i wilgotności, co jest istotne w wielu zastosowaniach przemysłowych.

Pytanie 34

Gumowe łączniki jako elementy elastyczne są wykorzystywane w celu

A. ograniczenia drgań przekazywanych pomiędzy elementami maszyn
B. zwielokrotnienia drgań przenoszonych wewnątrz obudów maszyn
C. powiększenia amplitudy drgań komponentów maszyn oraz ich struktur nośnych
D. wzmocnienia amplitudy drgań przenoszonych wewnątrz urządzeń

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Łączniki gumowe odgrywają kluczową rolę w ograniczaniu drgań przekazywanych pomiędzy częściami maszyn, co jest istotne dla zachowania ich sprawności oraz wydajności. Działając jako elementy izolujące, łączniki te skutecznie tłumią drgania, co pozwala na zmniejszenie uszkodzeń mechanicznych oraz wydłużenie żywotności urządzeń. Przykładowo, w przypadku silników elektrycznych, zastosowanie łączników gumowych zmniejsza przenoszenie drgań na ramę maszyny, co ogranicza hałas oraz wibracje. W przemyśle motoryzacyjnym, łączniki te są używane w układach zawieszenia, aby poprawić komfort jazdy poprzez tłumienie drgań pochodzących z nawierzchni drogi. Zgodnie z normami ISO i dobrymi praktykami inżynieryjnymi, stosowanie łączników gumowych jest zalecane w projektowaniu maszyn, aby zapewnić ich stabilność i niezawodność w działaniu, co wpływa na bezpieczeństwo oraz efektywność operacyjną.

Pytanie 35

Który z poniższych materiałów jest najczęściej stosowany do produkcji narzędzi o dużej odporności na ścieranie?

A. Miedź
B. Stal szybkotnąca
C. Aluminium
D. Stal ocynkowana

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Stal szybkotnąca, znana również jako HSS (High-Speed Steel), jest bardzo popularnym materiałem w produkcji narzędzi skrawających, takich jak wiertła, frezy, piły i noże tokarskie. Charakteryzuje się wyjątkową odpornością na wysoką temperaturę oraz ścieranie, co czyni ją idealną do obróbki metali. Dzięki zawartości pierwiastków stopowych, takich jak wolfram, molibden, wanad czy chrom, stal szybkotnąca zachowuje swoje właściwości nawet w bardzo trudnych warunkach. Co więcej, jest w stanie utrzymać ostrość krawędzi tnącej przy dużych prędkościach obróbczych, co zwiększa efektywność procesów skrawania. W przemyśle narzędziowym stal szybkotnąca jest standardem, zwłaszcza tam, gdzie wymagana jest precyzja i trwałość. Jej zastosowanie w praktyce można zaobserwować w warsztatach mechanicznych, fabrykach oraz na liniach produkcyjnych, gdzie niezawodność i długowieczność narzędzi są kluczowe. Moim zdaniem, stal szybkotnąca jest nieodzownym elementem każdej profesjonalnej pracowni.

Pytanie 36

Przy naprawie uszkodzonego gwintu w otworze, najczęściej stosuje się

A. rozszerzanie otworu
B. klejenie na zimno
C. spawanie łukowe
D. wstawki gwintowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Stosowanie wstawek gwintowych jest jednym z najczęściej używanych i najbardziej efektywnych sposobów naprawy uszkodzonych gwintów. Wstawki te, często nazywane helicoilami, są specjalnie zaprojektowanymi spiralnymi elementami, które wprowadza się do uszkodzonego otworu w celu odtworzenia jego gwintu. Metoda ta jest nie tylko ekonomiczna, ale również bardzo skuteczna, ponieważ wstawki zwiększają wytrzymałość gwintu, a także poprawiają jego trwałość. W praktyce, wstawki gwintowe są szeroko stosowane w przemyśle motoryzacyjnym, lotniczym i maszynowym, gdzie zachowanie precyzyjnych wymiarów i wytrzymałości ma kluczowe znaczenie. Proces instalacji wstawki gwintowej obejmuje kilka etapów, począwszy od rozwiercenia uszkodzonego otworu, poprzez nacięcie nowego gwintu, aż do wprowadzenia wstawki. To podejście jest zgodne z dobrą praktyką inżynierską, ponieważ minimalizuje potrzebę wymiany całego elementu, co mogłoby być kosztowne i czasochłonne. Dlatego właśnie wstawki gwintowe są preferowaną metodą w naprawie uszkodzonych gwintów.

Pytanie 37

Jakie elementy maszyn można naprawić, wykorzystując procesy strugania, szlifowania oraz skrobania?

A. Łożyska
B. Zawory
C. Prowadnice
D. Wałki

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prowadnice w maszynach są kluczowymi elementami, które mają na celu zapewnienie wysokiej precyzji ruchu komponentów. Procesy strugania, szlifowania i skrobania są istotne w obróbce prowadnic, ponieważ pozwalają na uzyskanie odpowiednich tolerancji wymiarowych oraz gładkości powierzchni. Struganie jest często stosowane do wstępnej obróbki prowadnic, gdzie usuwana jest nadmiarowa materia, a następnie szlifowanie precyzyjnie dopasowuje wymiary i kształt. Skrobanie jest zaś techniką, która ma na celu poprawę jakości powierzchni oraz usunięcie ewentualnych niedoskonałości, co jest kluczowe dla zapewnienia niskiego tarcia i długiej żywotności prowadnic. Standardy branżowe, takie jak ISO 2768, określają tolerancje wymiarowe i wymagania jakości powierzchni, które powinny być spełniane podczas obróbki prowadnic, co podkreśla znaczenie tych procesów w praktyce inżynieryjnej.

Pytanie 38

W oparciu o dane w tabeli dobierz rodzaj kleju do wykonania połączeń stalowych elementów korpusu, narażonego na wibracje i pracującego w środowisku wilgotnym.

KlejOpisZastosowanieUwagi
CyjanoakrylowyPrzeznaczone specjalnie do naprawPrzedmioty z porcelany, ceramiki, metali, plastików, skóry, kauczuku, drewna, kartonu, papieruDo łączenia niewielkich powierzchni, przy których wymagana jest duża odporność na odrywanie.
DyspersyjnyPrzeznaczone do łączenia elementówKlejenie parkietów, paneli, drewna. Można stosować do luster, do niektórych plastików narażonych na stąpanie, do styropianuDo łączenia dużych powierzchni.
NeoprenowyPrzeznaczone są do naprawiania, łączenia przedmiotówPraktycznie wszystkie materiałyDo powierzchni z naprężeniami. Sklejenia mogą być poddawane skręcaniu, wibracjom, uderzeniom.
EpoksydowyPrzeznaczone do łączenia elementówDo większości materiałówDo wypełnienia niewielkich pęknięć, ubytków. Połączenia mogą być poddawane skręceniom, wibracji, uderzeniom, są też odporne na wilgoć.
A. Epoksydowy.
B. Neoprenowy.
C. Cyjanokrylowy.
D. Dyspersyjny.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Klej epoksydowy jest odpowiedni do łączenia elementów stalowych, szczególnie w warunkach, gdzie występują wibracje oraz wilgoć. Jego unikalna formuła chemiczna pozwala na tworzenie mocnych połączeń, które są odporne na różne obciążenia mechaniczne, takie jak skręcanie i uderzenia. W praktyce, kleje epoksydowe są szeroko stosowane w branży budowlanej i motoryzacyjnej, gdzie trwałość oraz odporność na czynniki zewnętrzne są kluczowe. Dodatkowo, kleje te mogą być stosowane w różnych aplikacjach, takich jak naprawy elementów metalowych w maszynach, spoiny w konstrukcjach stalowych, a także w produkcji sprzętu elektronicznego. W kontekście standardów branżowych, kleje epoksydowe spełniają wymogi norm ISO, co czyni je bezpiecznym wyborem w aplikacjach, gdzie wymagane jest wysokie bezpieczeństwo i trwałość. Warto również zaznaczyć, że przed zastosowaniem kleju epoksydowego, zaleca się odpowiednie przygotowanie powierzchni, co zwiększa jego skuteczność.

Pytanie 39

Aby przeciąć elementy miedziane, należy zastosować przecinak o odpowiednim kącie ostrza

A. β = 65÷70°
B. β = 45÷50°
C. β = 75÷80°
D. β = 55÷60°

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź β = 45÷50° jest w porządku! Kąt ostrza przy przecinaniu miedzi powinien być właśnie w tym zakresie. To ma duże znaczenie, bo kąt wpływa na to, jak dobrze tniemy i jak ładnie wygląda końcowy efekt. Miedź jest dość miękka, więc trzymanie się kąta między 45 a 50° to dobry sposób na to, żeby łatwo ciąć i jednocześnie mieć precyzyjne krawędzie. Na przykład, gdy będziemy ciąć rury miedziane, narzędzia z takim kątem pomogą nam uzyskać gładkie krawędzie, co jest ważne przy lutowaniu czy montażu. Warto też pamiętać, że trzymajcie się tego kąta, bo minimalizuje odkształcenia materiału, co jest istotne w hydraulice czy elektryce, gdzie miedź odgrywa dużą rolę. Producentom też na tym zależy, dlatego takie narzędzia są standardem w branży.

Pytanie 40

Realizacja rowka wpustowego w wale odbywa się w trakcie

A. frezowania
B. ciągnienia
C. walcowania
D. wtryskiwania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Frezowanie to proces obróbczy, w którym narzędzie skrawające wykonuje ruch obrotowy, a materiał obrabiany porusza się w kierunku narzędzia. Wykonanie rowka wpustowego w wałku jest zatem naturalnym zastosowaniem frezowania, ponieważ pozwala na precyzyjne usunięcie materiału wzdłuż wałka, tworząc otwór o wymaganym kształcie i głębokości. Frezowanie rowków wpustowych jest niezwykle istotne w inżynierii mechanicznej, ponieważ te rowki często służą do umiejscowienia elementów mocujących, takich jak śruby czy kołki. Dobre praktyki w obróbce polegają na zastosowaniu odpowiednich narzędzi skrawających oraz dostosowaniu parametrów obróbczych, takich jak prędkość obrotowa czy posuw, co znacząco wpływa na jakość wykończenia powierzchni oraz dokładność wymiarową. Frezowanie umożliwia także obrabianie różnych rodzajów materiałów, od metali po tworzywa sztuczne, co czyni je uniwersalnym procesem w produkcji elementów mechanicznych.