Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 18 grudnia 2025 00:25
  • Data zakończenia: 18 grudnia 2025 00:46

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Rysunek przedstawia mury i ściany

Ilustracja do pytania
A. przeznaczone do wyburzenia.
B. wyburzone.
C. istniejące.
D. projektowane.
Odpowiedź "przeznaczone do wyburzenia" jest prawidłowa, ponieważ na rysunku znajdują się krzyżyki na linii, co zgodnie z normą PN-70/B-01025 "Oznaczenia graficzne na rysunkach architektoniczno-budowlanych" jednoznacznie wskazuje na elementy, które mają być usunięte. Tego typu oznaczenia są kluczowe w procesie projektowania i realizacji budowy, ponieważ pozwalają na odpowiednie planowanie prac budowlanych i zabezpieczenie pozostałych elementów konstrukcyjnych. Zastosowanie takich standardów ułatwia komunikację pomiędzy projektantami, wykonawcami a inwestorami. Przykładowo, podczas prac remontowych w obiektach zabytkowych, precyzyjne oznaczenie elementów do usunięcia jest niezbędne, aby uniknąć uszkodzeń cennych struktur. Umiejętność prawidłowego interpretowania rysunków architektonicznych jest istotna dla każdego profesjonalisty w branży budowlanej, co bezpośrednio wpływa na efektywność całego procesu budowlanego.

Pytanie 2

Na rysunku przedstawiono fragment stropu

Ilustracja do pytania
A. Teriva.
B. DZ.
C. Akermana.
D. Fert.
Wybór odpowiedzi związanych z innymi typami stropów, jak Akerman, Teriva czy DZ, wskazuje na pewne błędy w zrozumieniu konstrukcji stropowych. Stropy Akermana wyróżniają się użyciem prefabrykowanych belek teowych oraz pustaków betonowych, które są umieszczane w formie bloków. Taki typ stropu, choć popularny w Polsce, nie jest przedstawiony na rysunku. Problemy z identyfikacją stropu Teriva mogą wynikać z jego charakterystyki, która jest oparta na pustakach ceramicznych, ale różni się od Fert pod względem używanych belek i ogólnej konstrukcji. Stropy DZ, choć użyteczne, są stosowane w zupełnie innych kontekstach, często jako stropy monolityczne, co również nie znajduje odzwierciedlenia na przedstawionym rysunku. Typowe błędy myślowe w wyborze błędnych odpowiedzi dotyczą m.in. utożsamienia pustaków ceramicznych z danym typem stropu bez uwzględnienia, jakie belki są używane w danej konstrukcji. Każdy z wymienionych typów stropów ma swoje specyficzne zastosowania i parametry, które decydują o ich użyteczności w różnych projektach budowlanych. Zrozumienie tych różnic jest kluczowe dla podejmowania właściwych decyzji projektowych oraz zgodności z obowiązującymi normami budowlanymi.

Pytanie 3

Na podstawie fragmentu specyfikacji technicznej określ, w których miejscach na elewacji budynku, nie należy wykonywać przerw technologicznych podczas wykonywania tynków mozaikowych.

n n nn n nn
n Specyfikacja techniczna wykonania i odbioru robót budowlanych
n Wykonanie tynków mozaikowych
n (fragment)n
n „(...) Materiał należy nakładać metodą „mokre na mokre", nie dopuszczając do zaschnięcia zatartej partii przed nałożeniem kolejnej. W przeciwnym razie miejsce tego połączenia będzie widoczne. Przerwy technologiczne należy z góry zaplanować na przykład: w narożnikach i załamaniach budynku, pod rurami spustowymi, na styku kolorów itp. Czas wysychania tynku zależnie od podłoża, temperatury i wilgotności względnej powietrza wynosi od ok. 12 do 48 godzin. W warunkach podwyższonej wilgotności i temperatury około +5°C czas wiązania tynku może być wydłużony. Podczas wykonywania i wysychania tynku min. temperatura otoczenia powinna wynosić +5°C, a max. +25°C.(...)"
A. Na środku ściany.
B. W narożnikach budynku.
C. W załamaniach budynku.
D. Na styku kolorów.
Odpowiedź "Na środku ściany" jest prawidłowa, ponieważ zgodnie z fragmentem specyfikacji technicznej, przerwy technologiczne powinny być planowane w miejscach, które są naturalnymi punktami podziału tynku, takimi jak narożniki budynków, załamania, odprowadzanie wody czy styki kolorów. Przerwy te są niezbędne, aby uniknąć pęknięć i deformacji, które mogą pojawić się w wyniku różnic w rozszerzalności termicznej oraz osiadania budynku. Na środku ściany, tworzenie przerw technologicznych może prowadzić do nieestetycznych połączeń i widocznych linii, które negatywnie wpływają na estetykę elewacji. W praktyce architektonicznej i budowlanej, ważne jest, aby przerwy były umieszczane w tak zwanych punktach krytycznych, które mogą zminimalizować ryzyko uszkodzeń tynku. Warto również zwrócić uwagę na zalecane praktyki, takie jak stosowanie odpowiednich materiałów do wypełnienia przerw, co zapewnia długowieczność i odporność na czynniki atmosferyczne.

Pytanie 4

W ścianie zewnętrznej klatki schodowej remontowanego budynku zaprojektowano wykonanie nowego otworu okiennego, zgodnie z rzutem przedstawionym na rysunku. Szerokość tego otworu w świetle ościeży będzie wynosić

Ilustracja do pytania
A. 146 cm
B. 95 cm
C. 63 cm
D. 144 cm
Wybór nieprawidłowej odpowiedzi może wynikać z nieporozumienia dotyczącego wymiarów otworów okiennych i ich interpretacji w kontekście projektu budowlanego. Na przykład, wskazanie szerokości 95 cm lub 63 cm może sugerować, że osoba odpowiadająca nie uwzględniła właściwych norm dotyczących wymiarów otworów w ścianach zewnętrznych. Przy projektowaniu otworów okiennych ważne jest, aby zrozumieć, że ich szerokość musi być dostosowana do zarówno estetyki, jak i funkcjonalności budynku. Zmniejszone wymiary mogą prowadzić do ograniczenia naturalnego światła i wentylacji, co negatywnie wpływa na komfort mieszkańców. Ponadto, wybór wartości 144 cm również jest mylny, ponieważ nie odpowiada rzeczywistym wymiarom przedstawionym na rysunku. W praktyce istotne jest, aby projektanci i wykonawcy zawsze odnosili się do rysunków technicznych oraz specyfikacji budowlanych, aby uniknąć takich nieporozumień. Dodatkowo, w kontekście budowy, nieprawidłowe wymiary mogą prowadzić do problemów konstrukcyjnych, w tym niewłaściwej integracji okien z konstrukcją budynku, co może skutkować problemami z izolacją termiczną oraz akustyczną. Z tego powodu, dokładne zrozumienie wymagań dotyczących wymiarów otworów okiennych jest kluczowe w procesie projektowania i wykonawstwa budynków.

Pytanie 5

Do jakich zastosowań należy używać zapraw szamotowych?

A. do realizacji tynków w pomieszczeniach sanitarnych
B. do łączenia ceramicznych elementów palenisk
C. do wykonywania posadzek na gruncie
D. do mocowania izolacji termicznych w ścianach
Wybór innych odpowiedzi może wynikać z niepełnego zrozumienia specyfiki zapraw szamotowych oraz ich zastosowań. Zaprawy stosowane do mocowania izolacji termicznych ścian nie są odpowiednie, gdyż do tych celów stosuje się materiały o innych właściwościach, takie jak zaprawy cementowe lub specjalistyczne kleje, które zapewniają dobrą przyczepność i odpowiednią izolacyjność. Co więcej, wykonywanie posadzek na gruncie wymaga zastosowania zapraw, które zapewniają wytrzymałość obciążeniową i odporność na wilgoć. Zaprawy szamotowe nie spełniają tych wymagań, gdyż ich główną funkcją jest łączenie elementów narażonych na wysokie temperatury, a nie typowe zastosowania budowlane. Z kolei stosowanie zapraw szamotowych do tynków w pomieszczeniach sanitarnych jest niewłaściwe, ponieważ w takich warunkach mamy do czynienia z wymogami dotyczącymi odporności na wilgoć, pleśnie i grzyby, co wymaga zastosowania tynków przeznaczonych do użytku w wilgotnych pomieszczeniach. Użycie zaprawy szamotowej w takich zastosowaniach byłoby nieefektywne i mogłoby prowadzić do uszkodzeń strukturalnych oraz obniżenia funkcjonalności pomieszczenia. W związku z tym, kluczowe jest, aby znać i stosować odpowiednie materiały budowlane zgodnie z ich przeznaczeniem oraz wymaganiami technicznymi, co zapewnia długowieczność i stabilność konstrukcji.

Pytanie 6

Warstwa styropianu umieszczona w wieńcach oraz nadprożach ścian zewnętrznych ma za zadanie izolację

A. akustyczną
B. ciepłochronnej
C. paroszczelnej
D. wodoszczelnej
Odpowiedź dotycząca funkcji ciepłochronnej warstwy styropianu w wieńcach i nadprożach ścian zewnętrznych jest prawidłowa, ponieważ styropian jest materiałem o niskiej przewodności cieplnej, co czyni go doskonałym izolatorem termicznym. Jego zastosowanie w budownictwie jest powszechne, szczególnie w kontekście minimalizacji strat ciepła w budynkach. Przykładowo, w budynkach energooszczędnych, dobrze zaizolowane wieńce i nadproża z użyciem styropianu mogą znacząco poprawić efektywność energetyczną budynku, co jest zgodne z normami budowlanymi i standardami takimi jak NF40 oraz NF15. Poza tym, stosowanie styropianu w tych elementach konstrukcyjnych przyczynia się do komfortu cieplnego mieszkańców, redukując koszty ogrzewania. Warto również pamiętać, że odpowiednia izolacja termiczna jest kluczowym elementem projektów budowlanych, zwłaszcza w kontekście rosnących wymagań dotyczących efektywności energetycznej w budownictwie. Zastosowanie materiałów izolacyjnych, takich jak styropian, w wieńcach i nadprożach przyczynia się do osiągnięcia lepszej klasy energetycznej budynku oraz spełnienia warunków określonych w Dyrektywie Unii Europejskiej w sprawie efektywności energetycznej budynków.

Pytanie 7

Kolejność technologiczna działań na pierwszym etapie prac rozbiórkowych budynku przy użyciu metod ręcznych przedstawia się następująco:

A. rozbiórka dachu, demontaż okien, demontaż instalacji budowlanych
B. demontaż instalacji budowlanych, demontaż okien i drzwi, rozbiórka ścianek działowych
C. rozbiórka dachu, rozbiórka ścianek działowych, demontaż instalacji budowlanych
D. demontaż okien, rozbiórka ścianek działowych, demontaż instalacji budowlanych
Poprawna odpowiedź wskazuje na odpowiednią kolejność prac w procesie rozbiórkowym, która jest zgodna z ogólnie przyjętymi standardami branżowymi. Na początku należy zdemontować instalacje budowlane, takie jak wodociągi, instalacje elektryczne oraz systemy grzewcze, aby uniknąć ewentualnych uszkodzeń lub zagrożeń bezpieczeństwa podczas dalszych prac. Następnie przystępuje się do demontażu okien i drzwi, co pozwala na swobodny dostęp do wnętrza budynku i minimalizuje ryzyko niekontrolowanego opadania elementów konstrukcyjnych. Ostatnim krokiem jest rozbiórka ścianek działowych, co pozwala na jednoczesne prowadzenie prac porządkowych po wcześniejszych etapach. Taki porządek prac jest zgodny z zaleceniami Krajowych Standardów Rozbiórek, które podkreślają znaczenie planowania i bezpieczeństwa w procesach budowlanych. Praktyczne przykłady zastosowania takiej kolejności można zaobserwować na placach budowy, gdzie przestrzeganie tych zasad zwiększa efektywność oraz bezpieczeństwo pracy.

Pytanie 8

Zgodnie z zasadami przedmiarowania robót murarskich od powierzchni ścian należy odjąć powierzchnie otworów większych od 0,5 m2. Oblicz powierzchnię ściany murowanej pokazanej na rysunku.

Ilustracja do pytania
A. 14,80 m2
B. 13,80 m2
C. 14,16 m2
D. 16,16 m2
Wybierając niepoprawną odpowiedź, można wpaść w typowe pułapki myślowe związane z obliczaniem powierzchni. Wiele osób może zignorować zasady przedmiarowania robót murarskich, skupiając się wyłącznie na całkowitej powierzchni ściany, zamiast uwzględniać otwory. Na przykład, jeśli ktoś obliczył powierzchnię ściany bez odejmowania otworów, mógłby uzyskać wartość 16,8 m2 i nie zwróciłby uwagi na fakt, że istotne jest pominięcie otworów o powierzchni większej niż 0,5 m2. Taki błąd może wynikać z braku znajomości zasad obliczeń w budownictwie, co jest kluczowe w kontekście kosztorysowania i zarządzania projektem. Ponadto, stosowanie niewłaściwych wzorów lub brak uwzględnienia wszystkich elementów konstrukcyjnych może prowadzić do dalszych nieścisłości w ostatecznych wynikach. Ważne jest, by zawsze przestrzegać ustalonych norm i standardów, aby uniknąć nieporozumień oraz błędów kosztorysowych, które mogą wpłynąć na przyszłe etapy realizacji projektu budowlanego.

Pytanie 9

Do mineralnych spoiw hydraulicznych zalicza się

A. cement hutniczy i pucolanowy
B. wapno dolomitowe i pokarbidowe
C. wapno hydratyzowane i palone
D. gips szpachlowy i autoklawizowany
Wybór wapna hydratyzowanego i palonego jako spoiwa mineralnego hydraulicznego jest błędny, ponieważ te materiały nie mają zdolności do wiązania w obecności wody w takim samym stopniu jak cement hutniczy czy pucolany. Wapno hydratyzowane, po rozpuszczeniu w wodzie, prowadzi do hydratacji, jednak nie tworzy trwałych połączeń w warunkach wilgotnych, co ogranicza jego zastosowanie w konstrukcjach narażonych na działanie wody. Wapno palone, z kolei, wykazuje dużą reaktywność chemiczną, ale podobnie jak wapno hydratyzowane, nie zachowuje właściwości hydraulicznych. Gips szpachlowy i autoklawizowany również nie są klasyfikowane jako spoiwa mineralne hydrauliczne, ponieważ gips wiąże się na drodze procesów gipsowych i nie ma zdolności do wiązania w warunkach mokrych. Wapno dolomitowe i pokarbidowe również nie spełniają kryteriów hydraulicznych, co prowadzi do błędnych wniosków odnośnie ich funkcji w budownictwie. Te materiały są często mylone z cementami hydraulicznymi z powodu ich zastosowania w różnych aspektach budowy, jednak nie wykazują one wymaganych właściwości do efektywnego wiązania w obecności wody, co jest kluczowe dla zapewnienia trwałości i bezpieczeństwa konstrukcji. Należy pamiętać, że zgodność z normami budowlanymi oraz dobrymi praktykami jest istotna dla osiągnięcia optymalnych efektów w użyciu spoiw w budownictwie.

Pytanie 10

Przy ręcznym sporządzaniu zaprawy cementowo-wapiennej z wykorzystaniem wapna hydratyzowanego, należy łączyć poszczególne składniki w następującym porządku:

A. woda + cement + wapno + piasek
B. wapno + woda + piasek + cement
C. piasek + cement + woda + wapno
D. piasek + cement + wapno + woda
Kolejność składników w przygotowywaniu zaprawy cementowo-wapiennej jest kluczowa, a nieprawidłowe podejścia mogą prowadzić do poważnych problemów. Dodawanie piasku jako pierwszego składnika, jak sugeruje jedna z odpowiedzi, może skutkować niejednolitym wymieszaniem materiałów i obniżeniem jakości zaprawy. Piasek, jako materiał sypki, wymaga dokładnego połączenia z innymi składnikami, co jest trudne do osiągnięcia, jeśli nie są one odpowiednio rozpuszczone w wodzie. Z kolei dodanie wapna przed cementem może zakłócić proces hydratacji, gdyż wapno nie wchodzi w reakcję z wodą tak efektywnie, jak cement. Ważne jest, aby zrozumieć, że cement jest odpowiedzialny za uzyskanie twardości zaprawy, a woda działa jako aktywator tego procesu. Złe proporcje lub niewłaściwa kolejność mogą prowadzić do pęknięć, zmniejszenia przyczepności oraz długoterminowych uszkodzeń strukturalnych. Takie błędy są często wynikiem niepełnej wiedzy na temat chemii materiałów budowlanych, dlatego kluczowe jest przestrzeganie standardów budowlanych oraz praktyk zalecanych przez specjalistów, aby osiągnąć optymalne wyniki w budownictwie. Właściwe przygotowanie zaprawy cementowo-wapiennej wpływa na jej funkcjonalność i trwałość, co ma bezpośredni wpływ na niezawodność całego obiektu budowlanego.

Pytanie 11

Zgodnie z zasadami przedmiarowania robót murarskich ilość ścian oblicza się w metrach kwadratowych ich powierzchni. Od powierzchni ścian należy odejmować powierzchnie projektowanych otworów okiennych i drzwiowych większych od 0,5 m2.
Oblicz wartość przedmiaru robót związanych z wykonaniem ściany z cegły ceramicznej pełnej, której widok przedstawiono na rysunku.

Ilustracja do pytania
A. 23,55 m2
B. 22,11 m2
C. 25,60 m2
D. 21,75 m2
Wybór niewłaściwej odpowiedzi wskazuje na błędne zrozumienie zasad przedmiarowania robót murarskich. Kluczowym zagadnieniem jest umiejętność prawidłowego obliczenia powierzchni ścian, co wymaga odejmowania powierzchni otworów okiennych i drzwiowych większych od 0,5 m2. Wiele osób mylnie uznaje całkowitą powierzchnię ściany za ostateczną wartość, nie uwzględniając faktu, że otwory w ścianie wpływają na efektywną powierzchnię do wykonania. W tym przypadku, całkowita powierzchnia wynosi 25,60 m2, ale po odjęciu 3,85 m2 powierzchni otworów, otrzymujemy 21,75 m2, co jest kluczowe dla precyzyjnego obliczenia ilości materiałów. Często występującym błędem jest także niedokładne pomiarowanie lub pomijanie otworów, co prowadzi do przekroczenia budżetu lub opóźnień w realizacji budowy. Warto zaznaczyć, że precyzyjne przedmiarowanie to element, który nie tylko wpływa na koszty, ale również na jakość całego projektu budowlanego, co jest zgodne z najlepszymi praktykami w branży budowlanej. Zrozumienie tego procesu jest niezbędne do efektywnego zarządzania projektami budowlanymi.

Pytanie 12

W trakcie prac remontowych, które obejmują wykonanie otworu dla przełożenia instalacji centralnego ogrzewania w betonie, powinno się wykorzystać

A. młota udarowego
B. piły tarczowej
C. wiertarki o niskich obrotach
D. piły łańcuchowej
Wykorzystanie młota udarowego do wykonania otworu w ścianie betonowej jest najlepszym wyborem w tym przypadku. Młot udarowy łączy w sobie funkcję wiercenia i udaru, co pozwala na skuteczne wnikanie w twarde materiały, takie jak beton. Dzięki zastosowanej technologii, narzędzie to generuje silne uderzenia, które rozbijają beton, co znacząco ułatwia pracę w porównaniu do innych urządzeń. Na przykład, używając młota udarowego, można szybko i efektywnie przebić się przez grube ściany, co jest niezbędne podczas instalacji rur centralnego ogrzewania. W standardach budowlanych oraz w branżowych praktykach remontowych, młot udarowy jest rekomendowany do tego typu zadań, ponieważ zapewnia szybkość oraz precyzję, minimalizując ryzyko uszkodzenia otaczających struktur. Dodatkowo, przy stosowaniu młota udarowego warto pamiętać o odpowiednich środkach ochrony osobistej, takich jak okulary ochronne i nauszniki, ponieważ praca z tym narzędziem generuje znaczny hałas oraz odpryski materiału.

Pytanie 13

Jaką ilość cementu i piasku trzeba przygotować do sporządzenia zaprawy cementowo-wapiennej w proporcji 1:3:12, jeśli użyto 6 pojemników wapna?

A. 2 pojemniki cementu i 24 pojemniki piasku
B. 3 pojemniki cementu i 24 pojemniki piasku
C. 2 pojemniki cementu i 36 pojemników piasku
D. 3 pojemniki cementu i 36 pojemników piasku
Wiele osób może błędnie interpretować proporcje składników zaprawy cementowo-wapiennej, co prowadzi do niepoprawnych wniosków. W odpowiedziach, które podają 3 pojemniki cementu oraz 36 pojemników piasku, istnieje niewłaściwe pomnożenie ilości wapna przez niewłaściwe wartości proporcji. W sytuacji, gdy przyjmuje się, że wymagana ilość wapna wynosi 6 pojemników, nie można przedstawić 3 pojemników cementu, ponieważ według proporcji 1:3:12 wymagałoby to większej ilości wapna. Obliczenia powinny opierać się na logicznej analizie stosunku między elementami. Ponadto, w przypadku propozycji 3 pojemników cementu i 24 pojemników piasku, również występuje wprowadzenie w błąd, gdyż proporcja piasku do wapna wynosi 12:3. To oznacza, że dla 6 pojemników wapna powinniśmy uzyskać 24 pojemniki piasku, ale nie 3 pojemniki cementu, co jest zgodne z zasadą proporcjonalnego mnożenia. Typowe błędy w obliczeniach wynikają z nieprawidłowego zrozumienia proporcji, co podkreśla konieczność gruntownego zrozumienia tematu oraz solidnych podstaw teoretycznych w dziedzinie budownictwa. Praktyczne umiejętności w obliczaniu składników zaprawy są niezbędne do osiągnięcia wysokiej jakości robót budowlanych oraz zgodności ze standardami branżowymi.

Pytanie 14

W przypadku tynków z klasy II i III maksymalne odchylenie promieni krzywizny powierzchni wnęki od zaplanowanego promienia nie może przekraczać

A. 7 mm
B. 30 mm
C. 10 mm
D. 5 mm
Wybór odpowiedzi 30 mm, 5 mm lub 10 mm jest niewłaściwy, ponieważ nie spełniają one wymogów dotyczących odchyleń promieni krzywizny dla tynków kategorii II i III. Odpowiedź 30 mm wprowadza poważny błąd, gdyż tak duże odchylenie może prowadzić do znacznych zaburzeń estetycznych oraz funkcjonalnych. W praktyce budowlanej, nadmierne odchylenia mogą skutkować zbieraniem się wody w zakamarkach, co z kolei prowadzi do degradacji tynku, a nawet korozji elementów budowlanych. Odpowiedź 5 mm, mimo że jest mniejsza niż 7 mm, również nie jest odpowiednia, ponieważ nie spełnia wymogów projektowych, które zostały jasno określone dla tynków tej kategorii. Tynki muszą być aplikowane z zachowaniem precyzyjnych wymiarów, aby zapewnić trwałość oraz estetykę wykonania. Przykłady nieprawidłowych podejść w aplikacji tynków mogą prowadzić do powstawania szczelin, pęknięć oraz innych defektów, które są nieakceptowalne w kontekście standardów budowlanych. Ostatecznie, wybór odpowiednich wartości odchyleń jest kluczowy dla osiągnięcia wysokiej jakości wykończenia oraz długotrwałej użyteczności, co jest istotne dla każdego projektu budowlanego.

Pytanie 15

Na podstawie danych zawartych w tablicy 0120 z KNR oblicz, ile cegieł dziurawek potrzeba do wykonana 10 m2 ścianki pełnej o grubości 1/2 cegły.

Ilustracja do pytania
A. 481 sztuk.
B. 486 sztuk.
C. 286 sztuk.
D. 287 sztuk.
Tak, zgadza się, prawidłowa odpowiedź to 486 cegieł. To obliczenie bierze się z tablicy 0120 z KNR, gdzie normatywne zużycie cegieł dziurawek na 1 m2 wynosi 48,60 sztuk, jeśli mamy ściankę pełną o grubości 1/2 cegły. Żeby sprawdzić ile cegieł potrzeba na 10 m2, wystarczy pomnożyć 48,60 przez 10. Także 48,60 szt/m2 razy 10 m2 daje 486 sztuk. W budownictwie takie obliczenia są bardzo ważne, bo pomagają zaoszczędzić czas i pieniądze. Zawsze lepiej mieć dokładne dane, bo gdy źle oszacujesz materiał, może się to zakończyć opóźnieniami i dodatkowymi kosztami za dodatkowe cegły. Dlatego ważne jest, żeby znać te normy i przepisy – to zdecydowanie ułatwia pracę w branży budowlanej i pozwala lepiej planować budżet.

Pytanie 16

Na podstawie fragmentu opisu technicznego określ, ile pojemników cementu i wapna należy zużyć do przygotowania zaprawy, jeżeli do jej sporządzenia zaplanowano 20 pojemników piasku?

Opis techniczny
(fragment)
(...) Do wykonania ścian zewnętrznych z pustaków Max należy zastosować zaprawę cementowo-wapienną odmiany E, o proporcji objętościowej składników 1 : 0,5 : 4. (...)
A. 5 pojemników wapna i 2,5 pojemnika cementu.
B. 4 pojemniki cementu i 2 pojemniki wapna.
C. 4 pojemniki wapna i 2 pojemniki cementu.
D. 5 pojemników cementu i 2,5 pojemnika wapna.
Odpowiedź, która wskazuje na zużycie 5 pojemników cementu i 2,5 pojemnika wapna jest właściwa, ponieważ opiera się na poprawnych proporcjach składników potrzebnych do przygotowania zaprawy. W opisie technicznym podano, że proporcje objętościowe składników wynoszą 1:0,5:4, co oznacza, że na każdy 1 pojemnik cementu przypada 0,5 pojemnika wapna i 4 pojemniki piasku. Zgodnie z planowanym użyciem 20 pojemników piasku, można obliczyć ilość pozostałych składników. 20 pojemników piasku podzielone przez 4 (czwartą część proporcji) daje 5 pojemników cementu, co odpowiada proporcji 1:4. Współczynnik dla wapna wynosi 0,5, więc 5 pojemników cementu pomnożone przez 0,5 daje 2,5 pojemnika wapna. Takie podejście nie tylko zapewnia zgodność z podanymi proporcjami, ale także wpisuje się w najlepsze praktyki budowlane, które gwarantują odpowiednią wytrzymałość i trwałość zaprawy. W praktyce, stosowanie się do tych proporcji pozwala uniknąć problemów związanych z niedostatecznym wiązaniem materiałów, co ma kluczowe znaczenie dla późniejszej jakości prac budowlanych.

Pytanie 17

Jakie mury można zbudować z cegły kratówki klasy 5?

A. Kominowe
B. Piwniczne
C. Fundamentowe
D. Osłonowe
Cegła kratówka klasy 5 jest materiałem budowlanym, który charakteryzuje się wysoką wytrzymałością na ściskanie oraz korzystnymi właściwościami izolacyjnymi. Jest to materiał o dobrych parametrach mechanicznych, co sprawia, że może być stosowany do budowy murów osłonowych. Mury osłonowe pełnią kluczową rolę w ochronie budynków przed działaniem warunków atmosferycznych, a ich konstrukcja często wymaga zastosowania materiałów, które zapewniają odpowiednią trwałość i izolację. W praktyce mury osłonowe wykonane z cegły kratówki klasy 5 mogą wspierać efektywność energetyczną budynku, a także przyczyniać się do jego estetyki. Dodatkowo, przy budowie murów osłonowych należy przestrzegać norm budowlanych, takich jak PN-EN 1996, które określają wymagania dotyczące materiałów, konstrukcji i ich właściwości. Dzięki tym standardom, inwestorzy mogą mieć pewność, że ich budowle będą nie tylko estetyczne, ale także funkcjonalne i trwałe.

Pytanie 18

Jakie wiązanie cegieł w murze przedstawiono na rysunku?

Ilustracja do pytania
A. Kowadełkowe.
B. Główkowe.
C. Gotyckie.
D. Wozówkowe.
Odpowiedź "Gotyckie" jest prawidłowa, ponieważ na rysunku przedstawiono charakterystyczne dla tego typu wiązania układanie cegieł, które polega na naprzemiennym ułożeniu cegieł wzdłuż i poprzecznie. W praktyce oznacza to, że w jednej warstwie cegły są ustawione wzdłuż (zwane "wozówkami"), podczas gdy w kolejnej są one ułożone poprzecznie (nazywane "główkami"). Taki sposób układania cegieł nie tylko zwiększa stabilność konstrukcji, ale również wpływa na estetykę muru. Wiązanie gotyckie jest szeroko stosowane w architekturze gotyckiej, zwłaszcza w budowlach sakralnych, gdzie istotne są zarówno aspekty strukturalne, jak i wizualne. Użycie tego wiązania pozwala na efektywne rozprowadzenie obciążeń, co jest istotne w kontekście wysokich budowli. Dodatkowo, gotyckie wiązanie cegieł jest zgodne z aktualnymi standardami budowlanymi, które promują efektywność materiałową oraz trwałość konstrukcji.

Pytanie 19

Do realizacji tynków zewnętrznych na elewacji budynku pięciokondygnacyjnego należy zastosować rusztowanie

A. stolikowego
B. stojakowego
C. kozłowego
D. warszawskiego
Wybór nieodpowiedniego typu rusztowania może prowadzić do poważnych problemów podczas wykonywania tynków zewnętrznych. Rusztowanie kozłowe, mimo że może być użyteczne w niektórych sytuacjach, nie jest przeznaczone do pracy na większych wysokościach. Jego konstrukcja ogranicza stabilność i może stwarzać realne zagrożenie dla pracowników, zwłaszcza w przypadku 5-kondygnacyjnego budynku. Podobnie, rusztowanie stolikowe jest dostosowane do prac na poziomie podłogi, a jego zastosowanie w kontekście elewacji budynku nie tylko ogranicza mobilność, ale także nie zapewnia odpowiedniego wsparcia dla materiałów i narzędzi. Co więcej, rusztowanie warszawskie, choć popularne w niektórych aplikacjach, nie spełnia wymagań dla złożonych prac budowlanych, zwłaszcza na wysokości, gdzie kluczowe jest zapewnienie bezpieczeństwa. W praktyce, decyzja o wyborze rusztowania powinna być oparta na analizie jego przeznaczenia oraz zgodności z normami i regulacjami. Wybranie niewłaściwego rozwiązania nie tylko zwiększa ryzyko wypadków, ale również może prowadzić do opóźnień w realizacji projektu z powodu konieczności wprowadzenia zmian w organizacji pracy. W związku z tym kluczowe jest, aby osoby odpowiedzialne za organizację tynkowania miały jasną wiedzę na temat specyfiki różnych typów rusztowań oraz ich zastosowania, co jest niezbędne do zapewnienia efektywności i bezpieczeństwa pracy na budowie.

Pytanie 20

Na podstawie fragmentu instrukcji producenta oblicz, ile 25-kilogramowych worków suchej zaprawy murarskiej potrzeba do wymurowania trzech ścian o długości 5 m, wysokości 3 m i grubości 25 cm każda.

Fragment instrukcji producenta
Grubość ściany
(z cegły pełnej)
Zużycie suchej zaprawy murarskiej
przy grubości spoiny ok. 1 cm
½ c75 kg/m²
1 c150 kg/m²
1½ c225 kg/m²
2 c300 kg/m²
A. 405 worków
B. 270 worków
C. 540 worków
D. 135 worków
Aby obliczyć ilość worków suchej zaprawy murarskiej potrzebnej do wymurowania trzech ścian, należy najpierw obliczyć objętość muru. Ściany mają wymiary: długość 5 m, wysokość 3 m oraz grubość 0,25 m. Obliczamy objętość jednej ściany: 5 m x 3 m x 0,25 m = 3,75 m³. Ponieważ mamy trzy ściany, całkowita objętość wynosi 3 x 3,75 m³ = 11,25 m³. Standardowa zaprawa murarska ma gęstość około 1,6 t/m³, co oznacza, że do wymurowania 11,25 m³ zaprawy potrzebujemy: 11,25 m³ x 1,6 t/m³ = 18 t. Każdy worek ma masę 25 kg, więc ilość worków wynosi: 18 t / 0,025 t/worek = 720 worków. Jednakże, zakładając, że zaprawa straci część objętości podczas mieszania i aplikacji, przyjmuje się pewien margines, co pozwala na uzyskanie końcowego wyniku około 270 worków. Takie podejście uwzględnia praktyki branżowe dotyczące strat materiałowych.

Pytanie 21

Wszystkie techniczne wymagania związane z realizacją i odbiorem prac tynkarskich znajdują się w

A. specyfikacji technicznej
B. projekcie architektonicznym
C. dzienniku budowy
D. kosztorysie ofertowym
Specyfikacja techniczna to kluczowy dokument w procesie budowlanym, który określa wszystkie wymagania dotyczące wykonania i odbioru robót, w tym robót tynkarskich. Zawiera szczegółowe informacje o materiałach, technologiach, standardach jakości oraz metodach wykonania. Przykładowo, w specyfikacji technicznej dotyczącej tynków mogą być opisane wymagania dotyczące grubości tynku, rodzaju zastosowanych materiałów, a także procedury odbioru robót. Zgodnie z normami PN-EN 13914-1, specyfikacja powinna również zawierać zalecenia dotyczące warunków atmosferycznych, w jakich prace mogą być prowadzone, co jest kluczowe dla osiągnięcia trwałości i estetyki tynków. Tylko dobrze opracowana specyfikacja techniczna gwarantuje, że wykonawcy będą przestrzegać standardów branżowych, co w efekcie przyczynia się do wysokiej jakości realizacji inwestycji.

Pytanie 22

Z jakiego surowca wykonane są komponenty systemu YTONG?

A. Z gipsobetonowej masy
B. Z betonu komórkowego
C. Z żelbetonu
D. Z polistyrenu
Elementy systemu YTONG są wykonane z betonu komórkowego, znanego również jako beton porowaty. Ten materiał charakteryzuje się niską gęstością oraz dobrą izolacyjnością termiczną, co czyni go idealnym do zastosowań budowlanych, zwłaszcza w konstrukcjach ścian zewnętrznych i wewnętrznych. Beton komórkowy wykazuje również wysoką odporność na ogień oraz dobra akustykę, co przyczynia się do komfortu mieszkańców. Dzięki swojej strukturze, materiały YTONG są łatwe w obróbce, co umożliwia szybką i efektywną budowę. W praktyce, elementy YTONG są szeroko stosowane w budownictwie jednorodzinnym oraz wielorodzinnym, co potwierdzają liczne projekty budowlane, które spełniają normy europejskie dotyczące efektywności energetycznej. Dodatkowo, system YTONG wspiera ekologiczne podejście do budownictwa, dzięki możliwości recyklingu oraz niskiej emisji CO2 podczas produkcji.

Pytanie 23

Jaką technikę powinno się zastosować do murowania na puste spoiny?

A. Na docisk zaprawy kielnią
B. Na wycisk zaprawy cegłą
C. Na wycisk z podcięciem zaprawy kielnią
D. Z nakładaniem zaprawy na całą powierzchnię cegły
Murowanie na puste spoiny za pomocą wycisku zaprawy cegłą jest uznaną metodą w budownictwie, szczególnie w przypadku murowania konstrukcji nośnych. Technika ta gwarantuje, że zaprawa jest równomiernie rozmieszczona, co pozwala na osiągnięcie lepszej przyczepności między cegłami oraz zapewnia odpowiednią stabilność całej konstrukcji. W praktyce, wycisk zaprawy cegłą polega na tym, że murarz używa samej cegły do naniesienia zaprawy, co pozwala na osadzenie jej w sposób, który wypełnia puste spoiny w sposób skuteczny i trwały. Wykorzystywanie tej metody jest zgodne z normami budowlanymi, które zalecają unikanie nadmiaru zaprawy w spoinach, co może prowadzić do osłabienia konstrukcji. Zastosowanie tej techniki wpływa także na estetykę muru, gdyż zapewnia równą powierzchnię bez zbędnych nierówności. Warto również dodać, że właściwe przygotowanie zaprawy oraz jej konsystencja są kluczowe dla efektywności tej metody, co podkreślają najlepsi praktycy w branży budowlanej.

Pytanie 24

Przedstawioną na ilustracji łatę tynkarską typu H stosuje się do

Ilustracja do pytania
A. wyrównywania tynku po lekkim związaniu.
B. nakładania poszczególnych warstw tynku.
C. wyznaczania powierzchni tynku.
D. zaciągania tynku bezpośrednio po nałożeniu zaprawy.
Wybór odpowiedzi dotyczącej nakładania poszczególnych warstw tynku jest mylny, ponieważ łata tynkarska nie jest narzędziem używanym do tego celu. Nakładanie tynku polega na precyzyjnym rozkładaniu zaprawy na powierzchni, a łata służy raczej do wygładzania i zaciągania już nałożonego tynku. Podobnie, odpowiedź dotycząca wyrównywania tynku po lekkim związaniu jest nieprecyzyjna, ponieważ łata tynkarska jest stosowana w momencie, gdy zaprawa jest jeszcze świeża, co pozwala na uzyskanie odpowiedniej gładkości. Jeśli tynk jest już związany, to jego wygładzanie wymaga innych narzędzi i technik, które nie zapewnią właściwego efektu. Co więcej, wyznaczanie powierzchni tynku to czynność, która nie jest bezpośrednio związana z funkcją łaty tynkarskiej tego typu. Może to prowadzić do typowych błędów w myśleniu, gdzie użytkownicy mylą różne etapy procesu tynkarskiego, nie doceniając znaczenia odpowiednich narzędzi i ich zastosowania w określonych momentach pracy. Właściwe zrozumienie tych różnic jest kluczowe dla wykonawców, aby uniknąć nieefektywności, błędów w aplikacji tynku oraz uzyskać pożądane efekty estetyczne i funkcjonalne w budownictwie.

Pytanie 25

Na ilustracjach przedstawiono kolejne etapy murowania ściany metodą

Ilustracja do pytania
A. na wycisk z podcięciem kielnią.
B. na puste spoiny.
C. na docisk z kielnią.
D. na cienkie spoiny.
Murowanie 'na puste spoiny' oraz 'na cienkie spoiny' to techniki, które w praktyce charakteryzują się istotnymi ograniczeniami. Murowanie na puste spoiny polega na pozostawieniu znacznej ilości powietrza w spoinach, co w praktyce prowadzi do obniżenia wytrzymałości muru oraz zwiększa ryzyko pojawienia się pęknięć i osiadania. Takie podejście jest niezgodne z obowiązującymi normami, które zalecają minimalizację pustek w strukturze. Z kolei murowanie na cienkie spoiny, mimo że może wydawać się estetyczne, często nie zapewnia odpowiedniej przyczepności zaprawy, co prowadzi do problemów z nośnością muru. Tego typu podejścia są szczególnie niebezpieczne w kontekście ścian nośnych, gdzie każdy detal ma kluczowe znaczenie dla bezpieczeństwa całej konstrukcji. Technika 'na wycisk z podcięciem kielnią' również nie znajduje uzasadnienia w standardach budowlanych, gdyż może prowadzić do niewłaściwego ułożenia zaprawy, co z kolei skutkuje słabą stabilnością i trwałością wykonanej konstrukcji. W każdym przypadku dobór odpowiedniej metody murowania powinien być oparty na analizie wymagań projektowych oraz zastosowania materiałów budowlanych, aby zminimalizować ryzyko błędów wykonawczych.

Pytanie 26

Aby naprawić pęknięcie zwykłego tynku o głębokości przekraczającej 0,5 cm, należy poszerzyć rysę i nawilżyć ją wodą, a następnie

A. wypełnić dwiema warstwami zaprawy, z której tynk został wykonany
B. wypełnić dwiema warstwami gipsowego zaczynu
C. zatarć gęstoplastyczną zaprawą gipsową
D. zatarć gęstoplastyczną zaprawą cementową
Odpowiedź dotycząca wypełnienia pęknięcia dwiema warstwami zaprawy, z której wykonano tynk, jest prawidłowa, ponieważ zapewnia ona najlepszą zgodność z istniejącą strukturalną i estetyczną charakterystyką tynku. Proces naprawy pęknięcia powinien rozpocząć się od starannego poszerzenia rysy, co umożliwia lepszą przyczepność materiałów naprawczych. Następnie, po zwilżeniu rysy wodą, ważne jest, aby zastosować zaprawę, która jest zgodna z oryginalnym materiałem tynku. Wypełniając pęknięcie dwiema warstwami zaprawy, która była użyta do wykonania tynku, zapewniamy jednolitość w składzie chemicznym oraz w strukturze materiału, co zmniejsza ryzyko wystąpienia dalszych pęknięć. Praktyka ta jest szeroko stosowana w budownictwie, gdyż umożliwia uzyskanie lepszej trwałości i estetyki naprawy. Ponadto, przy użyciu odpowiednich technik aplikacji, takich jak zatarcie, można uzyskać równą powierzchnię, co jest istotne dla zachowania estetyki i funkcjonalności ściany.

Pytanie 27

Szerokość filarka międzyokiennego na fragmencie rzutu kondygnacji wynosi

Ilustracja do pytania
A. 90 cm
B. 130 cm
C. 50 cm
D. 110 cm
Szerokość filarka międzyokiennego to bardzo ważny element, który nie tylko wpływa na stabilność całej budowli, ale też na to, jak wygląda przestrzeń wewnętrzna. W tym przypadku, jak pokazał rysunek, dobra szerokość filarka to 50 cm. To jest zgodne z powszechnymi normami budowlanymi, które mówią, że filarki powinny mieć minimum 50 cm, żeby dobrze trzymały całość i były trwałe. Właściwa szerokość filarka jest kluczowa, bo jak będzie za wąski, to możemy mieć problemy z obciążeniem, co nie jest bez znaczenia dla bezpieczeństwa. Myślę, że w pracy architekta czy inżyniera trzeba mieć na uwadze takie szczegóły jak ta szerokość filarka, bo to wpływa na jakość i estetykę budynków, które projektujemy. Jeśli nie będziemy przestrzegać tych norm, to możemy spotkać się z trudnościami. Dlatego warto to mieć na uwadze.

Pytanie 28

Ścianę nośną w piwnicy powinno się wymurować z

A. cegieł kratówek
B. bloczków z betonu komórkowego
C. cegieł dziurawek
D. bloczków z betonu zwykłego
Ściany nośne kondygnacji piwnicznej powinny być wymurowane z bloczków z betonu zwykłego z kilku powodów. Po pierwsze, beton zwykły charakteryzuje się wysoką nośnością, co jest niezbędne w przypadku ścian, które muszą przenosić obciążenia z wyższych kondygnacji budynku. Ponadto, bloczki te są odporne na wilgoć, co jest kluczowe w przypadku piwnic, gdzie istnieje ryzyko podciągania wilgoci z gruntu. W praktyce, zastosowanie bloczków z betonu zwykłego pozwala na uzyskanie solidnej i trwałej konstrukcji, która spełnia wymagania norm budowlanych, takich jak PN-EN 1992-1-1 dotycząca projektowania konstrukcji betonowych. Dodatkowo, bloczki te są stosunkowo łatwe w obróbce i montażu, co przyspiesza proces budowy. W kontekście praktycznych zastosowań, wiele nowoczesnych budynków mieszkalnych i komercyjnych opiera swoje fundamenty na solidnych ścianach piwnicznych wykonanych z bloczków z betonu zwykłego, co potwierdza ich efektywność i niezawodność w długoterminowym użytkowaniu.

Pytanie 29

Jaką ilość zaprawy tynkarskiej trzeba przygotować do nałożenia tynku o grubości 15 mm na powierzchni 20 m2, wiedząc, że norma zużycia wynosi 5 kg/m2?

A. 100 kg
B. 50 kg
C. 30 kg
D. 15 kg
Aby obliczyć ilość zaprawy tynkarskiej potrzebnej do wykonania tynku o grubości 15 mm na powierzchni 20 m2, należy zastosować normę zużycia, która wynosi 5 kg/m2. Obliczenia można przeprowadzić w następujący sposób: mnożymy powierzchnię 20 m2 przez normę zużycia 5 kg/m2. To daje nam 20 m2 * 5 kg/m2 = 100 kg. W praktyce, znajomość norm zużycia jest kluczowa dla wykonawców, gdyż pozwala na precyzyjne zaplanowanie ilości materiałów, co minimalizuje ryzyko niedoborów lub nadmiaru materiałów na placu budowy. Dobrze jest także uwzględnić ewentualne straty materiałowe, które mogą wystąpić podczas nakładania zaprawy. Z tego powodu, w standardach budowlanych zaleca się uwzględnienie dodatkowego zapasu materiału, co może być przydatne w przypadku nieprzewidzianych okoliczności. Warto również pamiętać, że grubość tynku wpływa na ogólną estetykę i funkcjonalność wykończenia, dlatego ważne jest, aby stosować się do wskazanych norm.

Pytanie 30

Wyznacz wydatki na beton towarowy potrzebny do uformowania warstwy nadbetonu o grubości 15 cm dla stropu Filigran o wymiarach 8 m × 5 m, jeśli cena 1 m3 betonu wynosi 280,00 zł?

A. 168 000,00 zł
B. 1 680,00 zł
C. 33 600,00 zł
D. 11 200,00 zł
Prawidłowa odpowiedź na to pytanie to 1 680,00 zł. Aby obliczyć koszt betonu towarowego na warstwę nadbetonu, należy najpierw obliczyć objętość betonu wymaganej do wykonania nakładki o grubości 15 cm na stropie o wymiarach 8 m x 5 m. Obliczamy objętość według wzoru: V = długość × szerokość × wysokość. W naszym przypadku wygląda to następująco: V = 8 m × 5 m × 0,15 m = 6 m³. Następnie, znając cenę za 1 m³ betonu, która wynosi 280,00 zł, możemy obliczyć całkowity koszt: 6 m³ × 280,00 zł = 1 680,00 zł. Takie obliczenia są kluczowe w branży budowlanej, ponieważ pozwalają na precyzyjne oszacowanie kosztów materiałów oraz efektywne planowanie budżetu. Warto również pamiętać o standardach jakości betonu oraz o konieczności uwzględniania strat podczas transportu i pomieszczenia, co może wpłynąć na ostateczną ilość betonu zamówionego.

Pytanie 31

Narzędzie przedstawione na rysunku należy zastosować do

Ilustracja do pytania
A. wyznaczenia powierzchni tynku.
B. narzucania tynku,
C. wyrównywania tynku,
D. zacierania tynku.
Wybór odpowiedzi "wyrównywania tynku" jest na miejscu, bo to właśnie łata tynkarska, którą widać na rysunku, jest kluczowym narzędziem używanym do wyrównania powierzchni. Ta łata, najczęściej z drewna albo metalu, pomaga równo rozprowadzić tynk na ścianie, co w efekcie daje ładną, gładką powierzchnię. Wyrównywanie tynku to ważny krok podczas końcowych prac, bo to zapewnia dobrą przyczepność dla farby czy tapety. Jeśli używasz łaty, to dobrze jest robić ruchy wzdłuż i wszerz, żeby równomiernie pozbyć się nadmiaru tynku. W budowlance to się stosuje i jest zgodne z najlepszymi praktykami, bo precyzyjne wyrównanie naprawdę robi różnicę w trwałości i estetyce końcowego efektu.

Pytanie 32

Na ilustracji przedstawiono fragment powierzchni tynku

Ilustracja do pytania
A. ciągnionego.
B. strukturalnego.
C. zacieranego.
D. mozaikowego.
Tynk mozaikowy, który został przedstawiony na ilustracji, charakteryzuje się unikalną, dekoracyjną strukturą, składającą się z różnokolorowych fragmentów, które są równomiernie rozłożone na powierzchni. Ta technika tynkarska jest powszechnie stosowana w architekturze i budownictwie, ponieważ nie tylko poprawia estetykę budynku, ale także zwiększa jego odporność na czynniki atmosferyczne. Tynki mozaikowe mogą być wykonane z różnych materiałów, takich jak drobne kamienie, kolorowy piasek, a nawet szkło, co daje ogromne możliwości stylizacyjne. Ze względu na swoją trwałość, są one często wykorzystywane w obiektach użyteczności publicznej, takich jak szkoły czy centra handlowe, gdzie odporność na uszkodzenia mechaniczne jest istotna. Ponadto, zgodnie z normami budowlanymi, tynki mozaikowe mogą być stosowane zarówno wewnątrz, jak i na zewnątrz budynków, co czyni je uniwersalnym rozwiązaniem w nowoczesnym budownictwie.

Pytanie 33

Materiał przedstawiony na rysunku jest używany do izolacji

Ilustracja do pytania
A. termicznych fundamentów.
B. przeciwwilgociowych dachów.
C. przeciwwilgociowych fundamentów.
D. termicznych dachów.
Folia fundamentowa, która jest przedstawiona na zdjęciu, jest kluczowym materiałem stosowanym do izolacji przeciwwilgociowej fundamentów budynków. Jej głównym zadaniem jest ochrona konstrukcji przed wilgocią pochodzącą z gruntu, co jest niezbędne dla zapewnienia trwałości i stabilności budynku. Izolacja przeciwwilgociowa fundamentów jest standardem w budownictwie, a dobrym przykładem jej zastosowania jest budowa domów jednorodzinnych na terenach o wysokim poziomie wód gruntowych. Zastosowanie odpowiedniej folii fundamentowej pozwala na uniknięcie problemów z wilgocią, takich jak pleśń czy osłabienie struktury budynku. Warto również zaznaczyć, że zgodnie z normami budowlanymi, izolacje przeciwwilgociowe powinny być wykonane zgodnie z projektem budowlanym oraz wytycznymi producenta materiałów budowlanych, co zapewnia ich skuteczność i trwałość przez wiele lat.

Pytanie 34

Na podstawie informacji podanych w tabeli oblicz, ile kilogramów masy tynkarskiej MAJSTERTYNK AKRYLOWY KORNIK 2,0 należy zakupić, aby pokryć tynkiem prostokątną ścianę szczytową budynku o wymiarach 6 x 11 m.

Wyciąg z opisu stosowania masy tynkarskiej
L.p.Rodzaj masy tynkarskiejMinimalna grubość
wyprawy [mm]
Orientacyjne zużycie
na 1 m² wyprawy [kg]
1234
1.MAJSTERTYNK AKRYLOWY BARANEK
odmiany
1,01,01,9
1,51,52,6
2,02,03,0
2,52,53,6
2.MAJSTERTYNK AKRYLOWY KORNIK
odmiany
za1,52,6
2,02,03,0
2,52,53,7
3,03,04,2
3.MAJSTERTYNK MOZAIKOWY
odmiany:
drobnoziarnisty2,03,0
średnioziarnisty3,04,0
gruboziarnisty4,05,0
A. 264,0
B. 171,6
C. 125,4
D. 198,0
Odpowiedź 198,0 kg jest poprawna, ponieważ aby obliczyć potrzebną ilość masy tynkarskiej do pokrycia ściany o wymiarach 6 x 11 m, należy najpierw obliczyć powierzchnię tej ściany. Powierzchnia wynosi 66 m² (6 m x 11 m). Znając orientacyjne zużycie masy tynkarskiej MAJSTERTYNK AKRYLOWY KORNIK 2,0, które wynosi 3 kg/m², możemy obliczyć całkowitą ilość potrzebnej masy. Mnożymy powierzchnię przez zużycie: 66 m² x 3 kg/m² = 198 kg. Prawidłowe obliczenia są kluczowe w praktyce budowlanej, ponieważ pozwalają na prawidłowe oszacowanie kosztów materiałów oraz ich zużycia. Wdrażanie dobrych praktyk w obliczeniach materiałów budowlanych może znacznie zredukować marnotrawstwo i zwiększyć efektywność projektów budowlanych.

Pytanie 35

Jakim narzędziem należy oceniać konsystencję zapraw budowlanych?

A. stożkiem pomiarowym
B. czerpakiem murarskim
C. aparatem Vicata
D. młotkiem Szmidta
Stożek pomiarowy jest standardowym narzędziem używanym do oceny konsystencji zapraw budowlanych, takich jak zaprawy cementowe czy tynki. Metoda ta polega na wypełnieniu stożka zaprawą i następnie podniesieniu go, co powoduje, że materiał osiada. Głębokość osiadania zaprawy pozwala na ocenę jej płynności i konsystencji. Zgodnie z normami, takimi jak PN-EN 1015-3, właściwa konsystencja zaprawy ma kluczowe znaczenie dla trwałości budowli oraz jakości wykonania. W praktyce, pomiar konsystencji wykonuje się przed aplikacją zaprawy, co umożliwia dostosowanie proporcji składników, jeśli okazuje się, że materiał jest zbyt suchy lub zbyt płynny. Przykładowo, w przypadku tynków zewnętrznych, odpowiednia konsystencja jest niezbędna, aby zapewnić ich przyczepność oraz odporność na warunki atmosferyczne.

Pytanie 36

Na ilustracji przedstawiono fragment naroża ściany

Ilustracja do pytania
A. dwuwarstwowej.
B. szczelinowej.
C. jednowarstwowej.
D. trójwarstwowej.
Wybór odpowiedzi związanych z konstrukcją trójwarstwową, dwuwarstwową czy szczelinową jest nieprawidłowy ze względu na charakterystykę przedstawionej ściany. Ściany trójwarstwowe składają się z trzech odrębnych warstw: wewnętrznej, izolacyjnej oraz elewacyjnej, co nie znajduje odzwierciedlenia w widocznych elementach na zdjęciu, gdzie brak jest dodatkowych warstw. Z kolei dwuwarstwowe konstrukcje angażują dwa różne materiały, z których jedna warstwa pełni rolę nośną, a druga izolacyjną, co również nie ma miejsca w analizowanym przypadku. Odpowiedź "szczelinowa" może wprowadzać w błąd, gdyż odnosi się do specyficznych konstrukcji z przestrzeniami powietrznymi, które mają na celu poprawę izolacji akustycznej lub termicznej, co nie jest zgodne z przedstawionym materiałem. Te błędne odpowiedzi wskazują na typowe nieporozumienia związane z różnicowaniem typów konstrukcji ścian, gdzie kluczem jest zrozumienie, że jednowarstwowe ściany wznoszone z odpowiednich materiałów mogą spełniać zarówno zadania nośne, jak i izolacyjne, eliminując konieczność stosowania bardziej skomplikowanych rozwiązań w wielu zastosowaniach budowlanych.

Pytanie 37

Który etap wykonania ocieplenia ścian budynku metodą lekką mokrą przedstawiono na ilustracji?

Ilustracja do pytania
A. Montaż listwy startowej.
B. Wtapianie siatki zbrojącej.
C. Nakładanie zaprawy klejowej.
D. Uzupełnianie ubytków pianką.
Montaż listwy startowej to kluczowy etap w procesie ocieplania budynków metodą lekką mokrą. Na ilustracji widoczni są pracownicy, którzy precyzyjnie umieszczają metalową listwę na dolnej krawędzi ściany, co zapewnia stabilną bazę dla dalszych prac. Listwa startowa pełni istotną rolę w estetycznym i technicznym wykonaniu systemu ociepleniowego, ponieważ jej właściwe zamontowanie umożliwia równomierne ułożenie materiału izolacyjnego. Zgodnie z obowiązującymi standardami budowlanymi, stosowanie listwy startowej zapobiega problemom związanym z mechanizmami wchłaniania wody oraz ewentualnym uszkodzeniom dolnej krawędzi izolacji. Dodatkowo, jej obecność jest kluczowa do zachowania odpowiednich kątów i linii prostych, co przekłada się na końcową jakość i trwałość ocieplenia. W praktyce, zastosowanie listw startowych przyczynia się do wydłużenia żywotności systemów ociepleniowych, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 38

Na podstawie fragmentu instrukcji producenta oblicz, ile palet pustaków potrzeba do wymurowania dwóch ścian wysokości 4 m, długości 8,5 m i grubości 19 cm każda.

Fragment instrukcji producenta
Wymiary pustaka250×188×220 mm
Masa pustakaok. 8,5 kg
Zużyciegrubość ściany - 25 cm22 szt/m²
grubość ściany - 19 cm17 szt./m²
Liczba pustaków na palecie120 szt.
A. 9 palet
B. 10 palet
C. 13 palet
D. 12 palet
Odpowiedź 10 palet jest poprawna, ponieważ wymagała od nas precyzyjnego obliczenia całkowitej powierzchni dwóch ścian, co stanowi kluczowy element w procesie budowlanym. Obliczając powierzchnię jednej ściany o wysokości 4 m i długości 8,5 m, otrzymujemy 34 m². Dla dwóch ścian daje to łącznie 68 m². Następnie, biorąc pod uwagę, że grubość każdej ściany wynosi 19 cm, musimy uwzględnić odpowiednią ilość pustaków, które potrzebujemy na każdy metr kwadratowy. Przyjmując standardową wartość zużycia pustaków, powinniśmy obliczyć całkowitą liczbę pustaków potrzebnych do wymurowania ścian. Po podzieleniu tej liczby przez ilość pustaków na palecie (zwykle około 6-7 pustaków na paletę), otrzymujemy wynik około 9,63 palety, który zaokrąglamy do 10. Takie podejście zgodne jest z praktykami branżowymi, które podkreślają znaczenie precyzyjnych obliczeń w planowaniu materiałów budowlanych, co pozwala uniknąć niedoborów i opóźnień w realizacji projektu budowlanego.

Pytanie 39

Nierównomierne osiadanie budynków może prowadzić do

A. zawilgocenia murów
B. korozji murów
C. erozji fundamentów
D. pęknięcia murów
Odpowiedzi "korozja murów", "erozja fundamentów" oraz "zawilgocenie murów" są wynikiem niepełnego zrozumienia procesów związanych z osiadaniem budynków. Korozja murów odnosi się do chemicznych procesów degradacji materiału budowlanego, które są zazwyczaj efektem działania wody, wilgoci czy też zanieczyszczeń chemicznych, a nie bezpośrednio związane z nierównomiernym osiadaniem. Erozja fundamentów z kolei dotyczy procesów hydrologicznych, które mogą występować w wyniku działania wody gruntowej lub deszczowej, lecz nie są efektem osiadania budynków. Zawilgocenie murów jest problemem, który zazwyczaj wiąże się z wadliwą izolacją przeciwwilgociową czy zbyt dużą wilgotnością w otoczeniu, jednak nie jest to bezpośredni skutek nierównomiernego osiadania. W praktyce zdarza się, że nieprawidłowa interpretacja objawów może prowadzić do błędnych decyzji dotyczących konserwacji i napraw budynków. Należy pamiętać, że każde zjawisko w budownictwie ma swoje specyficzne przyczyny i skutki, a znajomość tych procesów jest kluczowa dla prawidłowego projektowania i utrzymania obiektów budowlanych. Stosowanie odpowiednich badań, takich jak analiza gruntów oraz monitorowanie osiadania, jest niezbędne dla zapobiegania problemom związanym z konstrukcją budynków.

Pytanie 40

Analizę odchylenia tynku oraz jego brzegów od poziomu i pionu wykonuje się w tynkach klasy

A. 0
B. Ia
C. I
D. II
Badanie odchylenia powierzchni tynku i jego krawędzi od kierunku poziomego i pionowego jest kluczowe w tynkach kategorii II. Tynki te charakteryzują się większymi wymaganiami w zakresie estetyki i jakości wykonania, co wiąże się z koniecznością zachowania precyzyjnych wymiarów i kątów. W praktyce, podczas realizacji prac wykończeniowych, istotne jest, aby powierzchnie były idealnie równe oraz aby krawędzie były prawidłowo ustawione względem poziomu i pionu. W przypadku tynków kategorii II, tolerancje odchylenia są znacznie mniejsze niż w innych kategoriach, co oznacza, że ekipy budowlane muszą wykorzystywać narzędzia pomiarowe o wysokiej precyzji, takie jak poziomice laserowe czy tachymetry. Przykładem zastosowania tej wiedzy jest kontrola jakości tynków w budynkach użyteczności publicznej, gdzie estetyka ma kluczowe znaczenie dla odbioru wnętrz przez użytkowników. Dobre praktyki w branży budowlanej zalecają regularne przeprowadzanie pomiarów oraz wdrażanie procedur kontroli jakości, aby zminimalizować błędy wykonawcze i zapewnić trwałość oraz atrakcyjność wykończeń.