Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 9 grudnia 2025 12:05
  • Data zakończenia: 9 grudnia 2025 12:20

Egzamin zdany!

Wynik: 34/40 punktów (85,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jak silne zachmurzenie wpływa na działanie odbiorników GPS?

A. Poprawia warunki funkcjonowania odbiornika.
B. Modyfikuje zakres częstotliwości filtra w.cz.
C. Aktywuje filtr fal odbitych w odbiorniku.
D. Pogarsza warunki pracy odbiornika.
Duże zachmurzenie ma negatywny wpływ na pracę odbiorników GPS, ponieważ sygnały satelitarne są osłabiane przez warstwy chmur oraz związane z nimi czynniki atmosferyczne. Gdy sygnał GPS przemieszcza się przez atmosferę, odbija się od cząsteczek wody w chmurach, co prowadzi do opóźnień i zniekształceń. Jak pokazują badania, w przypadku intensywnego zachmurzenia, zwłaszcza w chmurach deszczowych, jakość sygnału może ulec znacznemu pogorszeniu. Przykładem zastosowania tej wiedzy jest planowanie misji lotniczych lub morskich, gdzie precyzyjne wskazania GPS są kluczowe. Odbiorniki GPS mogą również korzystać z technik takich jak różnicowanie sygnału (DGPS), aby zwiększyć dokładność położenia pomimo zakłóceń spowodowanych atmosferą. W praktyce operatorzy powinni być świadomi, że w trudnych warunkach pogodowych, jak zachmurzenie, mogą wystąpić większe błędy w pomiarach, co powinno być uwzględnione w analizach ryzyka i podczas podejmowania decyzji operacyjnych. Ponadto, zgodnie z wytycznymi organizacji zajmujących się nawigacją satelitarną, istotne jest monitorowanie warunków atmosferycznych w celu optymalizacji pracy systemów GPS.

Pytanie 2

Jak powinna wyglądać prawidłowa sekwencja działań przy konserwacji systemu automatyki przemysłowej?

A. Przeprowadzenie pomiarów elektrycznych instalacji, kontrola przewodów ciśnieniowych, zapoznanie się z dokumentacją techniczną instalacji, dokręcenie styków zaciskowych
B. Zapoznanie się z dokumentacją techniczną instalacji, dokręcenie styków zaciskowych, przeprowadzenie pomiarów elektrycznych instalacji, kontrola przewodów ciśnieniowych
C. Kontrola przewodów ciśnieniowych, przeprowadzenie pomiarów elektrycznych instalacji, zapoznanie się z dokumentacją techniczną instalacji, dokręcenie styków zaciskowych
D. Dokręcenie styków zaciskowych, kontrola przewodów ciśnieniowych, przeprowadzenie pomiarów elektrycznych instalacji, zapoznanie się z dokumentacją techniczną instalacji
Prawidłowa kolejność czynności konserwacyjnych w instalacji automatyki przemysłowej rozpoczyna się od zapoznania się z dokumentacją techniczną. Jest to kluczowy krok, który umożliwia zrozumienie specyfiki instalacji, funkcji poszczególnych komponentów oraz zależności pomiędzy nimi. Następnie, dokręcenie styków zaciskowych jest niezwykle istotne, ponieważ luźne połączenia mogą prowadzić do awarii, przepięć czy strat energii. Po tych działaniach przeprowadza się pomiary elektryczne, które pozwalają na ocenę stanu technicznego instalacji oraz identyfikację potencjalnych problemów, takich jak zwarcia czy niskie napięcia. Na końcu sprawdzane są przewody ciśnieniowe, co jest niezbędne dla zapewnienia bezpieczeństwa i funkcjonalności systemu. Taka kolejność gwarantuje, że wszystkie działania są wykonywane w sposób przemyślany i efektywny, zgodnie z najlepszymi praktykami branżowymi, a także normami bezpieczeństwa, co przyczynia się do długotrwałej i bezawaryjnej pracy instalacji.

Pytanie 3

Technologia umożliwiająca bezprzewodową komunikację na krótkim zasięgu pomiędzy różnymi urządzeniami elektronicznymi to

A. GPRS
B. WiMAX
C. BLUETOOTH
D. FIREWIRE
Bluetooth to technologia bezprzewodowa, która umożliwia komunikację na krótkie odległości pomiędzy różnymi urządzeniami elektronicznymi, takimi jak telefony, głośniki, słuchawki, a także komputery i urządzenia IoT. Działa w paśmie częstotliwości 2.4 GHz i jest skonstruowana w taki sposób, aby minimalizować zakłócenia z innych urządzeń. Standard Bluetooth został zaprojektowany z myślą o energooszczędności, co pozwala na długotrwałe użytkowanie urządzeń przenośnych. Przykłady zastosowania Bluetooth obejmują bezprzewodowe przesyłanie danych, podłączanie zestawów słuchawkowych do telefonów, a także synchronizację urządzeń, takich jak smartfony z komputerami. Warto również zaznaczyć, że Bluetooth implementuje mechanizmy zabezpieczeń, takie jak szyfrowanie, co czyni go bezpiecznym rozwiązaniem do przesyłania poufnych informacji. Standard Bluetooth przeszedł wiele ewolucji, a jego najnowsze wersje oferują większą przepustowość oraz zasięg, co czyni go jeszcze bardziej wszechstronnym rozwiązaniem w dziedzinie komunikacji bezprzewodowej.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

W każdej linii kodu, oprócz mnemonika instrukcji, można dodać po średniku sekwencję znaków, która zostanie zignorowana przez asembler. Co to jest?

A. komentarz.
B. instrukcja.
C. argumenty.
D. znamie.
Komentarze w kodzie asemblera są niezwykle istotne, ponieważ pozwalają programistom na dodawanie notatek i wyjaśnień, które ułatwiają zrozumienie działania programu. W asemblerze, ciąg znaków umieszczony po średniku nie wpływa na wykonywanie programu – jest ignorowany przez asembler. Na przykład, w linii kodu 'MOV AX, BX ; Przesunięcie wartości z rejestru BX do AX', wszystko, co znajduje się po średniku, jest traktowane jako komentarz. Tego typu praktyka sprzyja lepszej organizacji kodu oraz umożliwia innym programistom szybkie zrozumienie założeń i celów poszczególnych fragmentów kodu. Standardy programowania, takie jak PEP 8 w Pythonie, podkreślają znaczenie komentarzy i dokumentacji w kodzie, co jest również ważne w kontekście programowania w asemblerze, szczególnie w projektach zespołowych, gdzie przejrzystość kodu jest kluczowa. Dobrą praktyką jest umieszczanie komentarzy nie tylko na początku skomplikowanych bloków kodu, ale również przy każdej istotnej instrukcji, aby zwiększyć czytelność i ułatwić przyszłe modyfikacje.

Pytanie 9

Przedstawiona specyfikacja techniczna dotyczy

Specyfikacja techniczna
Tryb pracypentaplex
Liczba wejść video8 BNC
Liczba wyjść video1x BNC, 1x VGA, 1x HDMI
Liczba wejść/wyjść audio1/1 RCA
Prędkość zapisu200kl/s (D1), 200kl/s (CIF/QCIF)
Rozdzielczość1920x1080, 1280x1024, 1024x768
Kompresja videoH.264
Kompresja audioG.711
SterowanieRS485
Archiwizacja1x HDD Sata III max. 4TB
Tryb zapisumanualny, ciągły, alarmowy, detekcja
Obudowawolnostojąca
Wymiary325x245x45 mm (1U)
A. manipulatora.
B. rejestratora.
C. modulatora.
D. sterownika.
Rejestrator wideo, do którego odnosi się przedstawiona specyfikacja techniczna, jest kluczowym elementem systemów monitoringu wizyjnego. W dokumentacji można zauważyć szczegółowe informacje o liczbie wejść i wyjść wideo, co jest istotne dla określenia, ile kamer może współpracować z danym urządzeniem. Rozdzielczość obrazu oraz rodzaj kompresji wideo i audio również mają fundamentalne znaczenie, gdyż wpływają na jakość przechwytywanego materiału oraz efektywność jego archiwizacji. Sterowanie RS485 to standard w komunikacji z urządzeniami peryferyjnymi, umożliwiający zdalne zarządzanie rejestratorem. Zastosowanie takiego sprzętu w praktyce obejmuje zarówno monitorowanie obiektów komercyjnych, jak i zastosowania domowe. Standardowe wymiary 1U wskazują na możliwość montażu w szafie rackowej, co jest korzystne w kontekście organizacji przestrzeni serwerowej. Warto również zaznaczyć, że rejestratory wideo powinny być zgodne z wytycznymi dotyczącymi ochrony danych osobowych, co stanowi istotny aspekt podczas projektowania systemów monitorujących.

Pytanie 10

System RDS (Radio Data System) pozwala na

A. zdalne włączanie i wyłączanie odbiornika radiowego
B. transmisję informacji tekstowych przez emisję UKF FM
C. odbiór cyfrowych danych poprzez emisję UKF FM
D. odsłuch z zaawansowanym efektem przestrzennym stereo
Odpowiedź dotycząca odbioru cyfrowych informacji za pośrednictwem emisji UKF FM jest prawidłowa, ponieważ system RDS (Radio Data System) został zaprojektowany do przesyłania dodatkowych informacji w formie cyfrowej, które mogą być odbierane przez radioodbiorniki wyposażone w tę funkcjonalność. RDS umożliwia nadawanie takich informacji jak nazwa stacji radiowej, tytuł utworu, informacje o ruchu drogowym (TP), a także inne usługi, takie jak Radio Text (RT). Dzięki RDS, słuchacze mogą cieszyć się bardziej interaktywnym doświadczeniem słuchania radia, na przykład widząc na wyświetlaczu radia tytuł piosenki oraz nazwisko wykonawcy. Zastosowanie RDS w standardzie UKF FM znacząco poprawia jakość doświadczeń radiofonicznych, co jest zgodne z ogólnymi trendami w branży mediów, w których wartość dodana dla użytkowników jest kluczowym czynnikiem konkurencyjności. RDS stał się standardem w nowoczesnych systemach radiowych, co podkreśla jego użyteczność i popularność wśród słuchaczy.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Przedstawione na fotografii zaproponowane przez firmę Intel - AGP gniazdo rozszerzeń służy do podłączenia

Ilustracja do pytania
A. pamięci RAM.
B. karty graficznej.
C. karty muzycznej.
D. pamięci ROM.
Gniazdo AGP (Accelerated Graphics Port) to standard, który został zaprojektowany z myślą o wydajnym podłączaniu kart graficznych do płyty głównej komputerów. Jego głównym celem była zapewnienie szybszego transferu danych pomiędzy kartą graficzną a procesorem w porównaniu do starszych standardów, takich jak PCI, co miało kluczowe znaczenie dla osiągów graficznych w grach i aplikacjach multimedialnych. AGP umożliwia dedykowaną linię komunikacyjną, co pozwala na korzystanie z większej przepustowości i zmniejszenie opóźnień. W praktyce, karty graficzne podłączane do złącza AGP mogły wykorzystywać pełny potencjał modernizacji technologii graficznych, co przełożyło się na lepszą jakość obrazu oraz szybszą obsługę 3D. Użyteczność gniazda AGP w systemach komputerowych była widoczna w latach 90. i na początku XXI wieku, kiedy to gry komputerowe i programy graficzne wymagały coraz większych zasobów. W miarę rozwoju technologii, AGP został w końcu zastąpiony przez PCI Express, który oferuje jeszcze wyższe prędkości transferu.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Termin "adres MAC" odnosi się do adresu

A. serwera DHCP.
B. bramy domowej.
C. karty sieciowej przypisanego przez producenta urządzenia.
D. komputera przydzielonego przez serwer DHCP.
Adres MAC (Media Access Control) to unikalny identyfikator przypisany do interfejsu sieciowego urządzenia, takiego jak karta sieciowa, przez producenta. Składa się z 48-bitowej liczby, zazwyczaj zapisywanej w postaci sześciu grup po dwa znaki szesnastkowe. Adresy MAC są używane w warstwie łącza danych modelu OSI do identyfikacji urządzeń w sieci lokalnej. Dzięki unikalności adresu MAC, urządzenia mogą komunikować się bez konfliktów. Przykładowo, router w sieci lokalnej używa adresów MAC do kierowania pakietów do właściwych odbiorców. Warto zauważyć, że adresy MAC są kluczowe w protokołach takich jak Ethernet i Wi-Fi, gdzie identyfikacja urządzeń jest niezbędna do prawidłowego funkcjonowania sieci. Standard IEEE 802.3 dla Ethernetu oraz IEEE 802.11 dla Wi-Fi jasno określają, jak adresy MAC są tworzone i używane. W praktyce, znajomość adresów MAC jest niezbędna przy konfigurowaniu zabezpieczeń w sieci, takich jak filtrowanie MAC, które pozwala administratorom na ograniczenie dostępu do sieci tylko do autoryzowanych urządzeń.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Jakie urządzenie elektroniczne przedstawiono na rysunku?

Ilustracja do pytania
A. Wzmacniacz antenowy
B. Odbiornik AM
C. Wyłącznik różnicowo prądowy
D. Sterownik PLC
Sterownik PLC (Programmable Logic Controller) to urządzenie, które odgrywa istotną rolę w automatyzacji procesów przemysłowych. Na zdjęciu widoczny jest typowy wygląd tego urządzenia, które wyposażone jest w porty komunikacyjne oraz zaciski umożliwiające podłączenie różnych komponentów systemu automatyki. Sterowniki PLC są w stanie przetwarzać dane w czasie rzeczywistym, co pozwala na efektywną kontrolę maszyn i procesów produkcyjnych. Przykładowo, w zakładach przemysłowych sterowniki te mogą być używane do zarządzania linią produkcyjną, monitorowania parametrów pracy oraz integrowania różnych systemów automatyki. Dzięki możliwości programowania sterowników PLC, inżynierowie mogą dostosować działanie urządzeń do specyficznych wymagań produkcyjnych, co zwiększa elastyczność i wydajność procesów. Warto również wspomnieć, że stosowanie standardów takich jak IEC 61131-3 w zakresie programowania i funkcjonalności sterowników PLC zapewnia kompatybilność i interoperacyjność z innymi urządzeniami, co jest kluczowe w nowoczesnych systemach automatyzacji.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Schemat, którego generatora przedstawiono na rysunku?

Ilustracja do pytania
A. Hartleya w konfiguracji wspólny emiter.
B. Meissnera w konfiguracji wspólna baza.
C. Hartleya w konfiguracji wspólna baza.
D. Meissnera w konfiguracji wspólny emiter.
Generator Hartleya, który został przedstawiony w schemacie, jest jednym z popularnych typów generatorów sinusoidalnych. Kluczowym elementem jego konstrukcji jest cewka z odczepem, co można zauważyć w układzie L2 i L3. Te odczepy pozwalają na uzyskanie odpowiednich warunków rezonansowych, co jest niezbędne dla stabilności generowanego sygnału. W konfiguracji wspólny emiter połączenie emitera tranzystora z masą przez rezystor RE oraz kondensator CE jest charakterystyczne dla tego typu układów, co pozwala na uzyskanie wysokiej wydajności i amplitudy sygnału. W praktyce, generatory Hartleya są wykorzystywane w różnych aplikacjach, takich jak oscylatory w radiotechnice, generatory sygnałów w systemach komunikacyjnych oraz w układach automatyki. Zastosowanie takiego generatora pozwala na generację stabilnych sygnałów o określonej częstotliwości, co jest kluczowe w wielu dziedzinach inżynierii elektronicznej. Dodatkowo, ze względu na prostotę konstrukcji, generatory te są często wykorzystywane w projektach edukacyjnych, gdzie studenci mogą zrozumieć zasady działania układów rezonansowych i podstawowych elementów elektronicznych.

Pytanie 20

Czy światło słoneczne może doprowadzić do utraty danych w pamięci rodzaju

A. SDRAM
B. EPROM
C. EEPROM
D. DRAM
EPROM (Erasable Programmable Read-Only Memory) to rodzaj pamięci, która może być programowana oraz kasowana za pomocą światła ultrafioletowego. W przeciwieństwie do pamięci EEPROM czy DRAM, EPROM jest pamięcią nieulotną, co oznacza, że zachowuje swoje dane nawet po odłączeniu zasilania. Jednakże, jej zawartość można usunąć poprzez wystawienie na działanie promieniowania UV. To sprawia, że EPROM jest stosunkowo łatwa do kasowania i programowania, co jest przydatne w aplikacjach, gdzie dane muszą być często aktualizowane, ale również wymagają długoterminowego przechowywania. Przykład zastosowania EPROM to w systemach wbudowanych, gdzie może być używana do przechowywania oprogramowania, które wymaga aktualizacji. W branży elektronicznej, standardy zalecają stosowanie pamięci EPROM w urządzeniach, które nie wymagają częstej wymiany danych, ale potrzebują elastyczności w programowaniu. Cały proces programowania i kasowania jest zgodny z dobrymi praktykami inżynierskimi, zapewniając długowieczność i niezawodność sprzętu.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Aby poprawić jakość obrazu w trudnych warunkach oświetleniowych, należy zwiększyć odstęp S/N generowany przez układy elektroniczne kamery?

A. zmniejszyć
B. wyrównać
C. wyzerować
D. zwiększyć
Aby poprawić jakość obrazu w słabych warunkach oświetleniowych, kluczowe jest zwiększenie odstępu sygnału do szumu (S/N) wytwarzanego przez układy elektroniczne kamery. Wysoki stosunek S/N oznacza, że sygnał, który jest istotny dla reprodukcji obrazu, jest znacznie silniejszy od szumów, które mogą wprowadzać zakłócenia. Przykładowo, w zastosowaniach takich jak monitoring nocny, zwiększenie czułości matrycy kamery pozwala na uzyskanie lepszej jakości w trudnych warunkach oświetleniowych. W praktyce można to osiągnąć poprzez zastosowanie większych pikseli matrycy, co zwiększa zbieranie światła, lub przez poprawę algorytmów redukcji szumów. Standardy branżowe, takie jak ISO w fotografii, wskazują, że wyższe wartości ISO, które często towarzyszą poprawionemu S/N, mogą doprowadzić do jaśniejszego obrazu w ciemności, choć mogą także wprowadzać szumy. Dlatego ważne jest, aby znaleźć równowagę pomiędzy czułością a jakością obrazu, co jest kluczowe dla uzyskania zadowalających rezultatów.

Pytanie 24

Przedstawione elementy w układach automatyki przemysłowej służą do

Ilustracja do pytania
A. łączenia światłowodów.
B. zabezpieczenia światłowodów.
C. łączenia przewodów elektrycznych.
D. zabezpieczenia przewodów elektrycznych.
Odpowiedź "łączenia przewodów elektrycznych" jest prawidłowa, ponieważ na zdjęciu widać listwy zaciskowe, które są kluczowymi elementami w systemach automatyki przemysłowej. Listwy te umożliwiają efektywne łączenie przewodów, co jest niezbędne do stworzenia stabilnych i niezawodnych połączeń elektrycznych między różnymi komponentami systemu. W praktyce, listwy zaciskowe stosuje się w różnych aplikacjach, takich jak instalacje w rozdzielnicach elektrycznych czy w panelach sterujących. Standardy branżowe, takie jak IEC 60947, określają wymagania dotyczące bezpieczeństwa i niezawodności takich połączeń. Właściwe podłączenie przewodów jest kluczowe dla zapewnienia ciągłości pracy urządzeń oraz ich ochrony przed uszkodzeniami. Listwy zaciskowe są także projektowane z myślą o prostocie montażu i konserwacji, co czyni je idealnym rozwiązaniem w środowisku przemysłowym. Wiedza na temat ich zastosowania jest niezbędna dla każdego inżyniera automatyków.

Pytanie 25

Skrót SNR odnosi się do

A. współczynnika błędów modulacji
B. bitowej stopy błędów
C. stosunku sygnału do szumu
D. współczynnika zniekształceń nieliniowych
Skrót SNR (Signal-to-Noise Ratio) oznacza stosunek sygnału do szumu, co jest kluczowym parametrem w wielu dziedzinach inżynierii, w tym telekomunikacji, przetwarzaniu sygnałów oraz audio. SNR mierzy, jak silny jest sygnał w porównaniu do poziomu szumu, który zawsze jest obecny w systemach komunikacyjnych. Wysoki SNR wskazuje na czystszy sygnał, co przekłada się na lepszą jakość transmisji danych. Przykładem zastosowania SNR jest analiza jakości połączeń w systemach bezprzewodowych, gdzie poprawny odbiór sygnału jest kluczowy dla zminimalizowania błędów transmisji. Zgodnie z najlepszymi praktykami, SNR powinien wynosić co najmniej 20 dB, aby zapewnić akceptowalny poziom jakości sygnału w aplikacjach audio. Wartości SNR można również obliczać w systemach wideo, gdzie wpływa to na jakość obrazu. Dobre praktyki obejmują monitoring SNR w czasie rzeczywistym, aby móc szybko reagować na problemy w transmisji.

Pytanie 26

Urządzenie przedstawione na rysunku to

Ilustracja do pytania
A. programator pamięci EEPROM
B. konwerter RJ45/RS232
C. programowalny wyłącznik czasowy na szynę DIN
D. tester sieci LAN
Programator EEPROM to naprawdę ważne urządzenie w elektronice, ponieważ pozwala na zapis i odczyt danych z pamięci EEPROM. Widzisz, to, co jest na zdjęciu, to typowy programator – ma gniazdo do układów scalonych i różne wskaźniki LED, które pokazują, co się dzieje, jak np. 'POWER' i 'BUSY'. W praktyce te urządzenia są super przydatne, szczególnie w produkcji i naprawie elektroniki. Często potrzebujemy zmieniać dane w pamięci, więc programator robi dobrą robotę. Dzięki portowi USB można szybko przesyłać dane z komputera, co naprawdę ułatwia pracę. Warto też znać standardy takie jak JEDEC czy I2C, bo to pomaga w programowaniu i komunikacji z tymi pamięciami.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Podwyższenie dobroci Q filtru RLC w selektywnym wzmacniaczu doprowadzi do

A. spadku częstotliwości środkowej fo
B. wzrostu współczynnika prostokątności
C. wzrostu częstotliwości środkowej fo
D. spadku współczynnika prostokątności
Zwiększenie dobroci Q filtru RLC we wzmacniaczu selektywnym prowadzi do zwiększenia współczynnika prostokątności, co ma kluczowe znaczenie dla charakterystyki częstotliwościowej systemu. Wartość Q określa, jak 'ostro' filtr reaguje na częstotliwości bliskie częstotliwości środkowej f0. Wyższa wartość Q oznacza węższy pasmo przenoszenia, co skutkuje lepszą selektywnością filtru. W praktyce może to być użyteczne w zastosowaniach, gdzie istotne jest precyzyjne wyłapywanie sygnałów o określonych częstotliwościach, na przykład w telekomunikacji czy audiofilskim sprzęcie audio. Wartości Q są często dostosowywane do potrzeb konkretnego zastosowania, aby osiągnąć optymalną jakość sygnału. W branży wykorzystuje się standardy, takie jak IEEE 802.11, które uwzględniają parametry filtrów w kontekście transmisji danych. Zrozumienie tej zasady jest kluczowe w projektowaniu układów elektronicznych, gdzie precyzyjność parametrów filtrów ma fundamentalne znaczenie dla jakości sygnału.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Licznik modulo 10 jest uszkodzony i zlicza do 16. Jaka jest przyczyna wadliwej pracy licznika?

Ilustracja do pytania
A. Przerwa w obwodzie QD - we 2.
B. Przerwa w obwodzie QB - we 1.
C. Zwarcie wyjścia bramki do masy.
D. Przerwa w obwodzie C - wy.
Rozważając inne możliwe przyczyny niewłaściwego działania licznika, przerwa w obwodzie QB - we 1, przerwa w obwodzie QD - we 2 oraz zwarcie wyjścia bramki do masy, możemy zauważyć, że nie mają one bezpośredniego wpływu na funkcję zerowania licznika. Przerwa w obwodzie QB - we 1 nie wpływa na sygnały potrzebne do resetowania licznika, a jedynie na logikę zliczania. Podobnie, przerwa w obwodzie QD - we 2 nie dotyczy bezpośrednio obwodów, które są odpowiedzialne za zerowanie licznika. Zwarcie wyjścia bramki do masy może prowadzić do niepożądanych stanów logicznych, ale także nie jest przyczyną opisanego problemu. Zrozumienie działania liczników i ich elementów składowych, takich jak przerzutniki i bramki logiczne, jest kluczowe dla skutecznej diagnostyki usterek. W praktyce, często pojawiają się błędy w analizie przyczyn, kiedy nie uwzględnia się, który sygnał jest krytyczny dla konkretnego działania, co prowadzi do mylnych wniosków. Kiedy pojawiają się problemy z licznikami, ważne jest, aby przeanalizować schematy obwodów oraz zrozumieć, które komponenty są ze sobą powiązane, aby prawidłowo zidentyfikować źródło usterki.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Czym jest watchdog?

A. system bezpośredniego dostępu do pamięci mikroprocesora
B. typ licznika rejestrującego impulsy zewnętrzne
C. rodzaj timera kontrolującego działanie mikroprocesora
D. system bezpośredniego dostępu do portów I/O mikroprocesora
Watchdog to kluczowy element w systemach mikroprocesorowych, który działa jako rodzaj timera nadzorującego ich pracę. Jego głównym zadaniem jest monitorowanie stanu pracy systemu i wykrywanie potencjalnych awarii. W momencie, gdy system przestaje odpowiadać lub wchodzi w stan zawieszenia, watchdog resetuje mikroprocesor, co pozwala na przywrócenie jego prawidłowego działania. Przykłady zastosowania zegarów watchdog są widoczne w systemach krytycznych, takich jak urządzenia medyczne czy systemy wbudowane w lotnictwie, gdzie niezawodność i ciągłość działania są kluczowe. Wdrażając watchdogi w projektach, inżynierowie stosują standardy, takie jak IEC 61508, które zapewniają odpowiedni poziom bezpieczeństwa w systemach elektronicznych. To podejście jest zgodne z najlepszymi praktykami branżowymi, które zalecają implementację mechanizmów nadzorujących, aby minimalizować ryzyko awarii systemów oraz zapewnić ich ciągłe działanie.

Pytanie 35

Na podstawie dołączonej tabeli błędów testu POST BIOS-u firmy AMI określ, który element uniemożliwia uruchomienie komputera, jeżeli wydaje on 3 krótkie sygnały dźwiękowe.

Kod dźwiękowyZnaczenie
1 krótkibłąd odświeżania pamięci RAM
2 krótkiebłąd parzystości pamięci RAM
3 krótkiebłąd pierwszych 64 kB pamięci RAM
4 krótkiebłąd zegara systemowego
5 krótkichbłąd procesora
6 krótkichbłąd kontrolera klawiatury
7 krótkichbłąd trybu wirtualnego procesora
8 krótkichbłąd wejścia/wyjścia pamięci karty graficznej
9 krótkichbłąd sumy kontrolnej biosu
10 krótkichbłąd pamięci CMOS
11 krótkichbłąd pamięci podręcznej cache procesora
1 długi, 2 krótkiebłąd karty graficznej
1 długi, 3 krótkiebłąd pamięci RAM
1 długi, 8 krótkichproblem z wyświetlaniem obrazów przez kartę graficzną
ciągły sygnałbrak pamięci w bankach lub brak podłączonej karty graficznej
1 długizakończony pomyślnie test post
A. Zegar systemowy.
B. Karta sieciowa.
C. Pamięć operacyjna.
D. Karta graficzna.
Odpowiedź "Pamięć operacyjna" jest poprawna, ponieważ zgodnie z dokumentacją BIOS-u AMI, trzy krótkie sygnały dźwiękowe oznaczają problem z pamięcią RAM, konkretnie z pierwszymi 64 kB tej pamięci. To krytyczny obszar, który jest niezbędny do podstawowej funkcjonalności systemu operacyjnego oraz uruchomienia samego komputera. W praktyce, jeśli komputer nie może uzyskać dostępu do pamięci operacyjnej w tej części, nie jest w stanie zainicjować systemu ani wykonywać żadnych innych operacji. Diagnostyka błędów pamięci RAM jest istotnym krokiem przy uruchamianiu nowych systemów, a także przy naprawie istniejących. Dlatego ważne jest, aby regularnie monitorować stan pamięci RAM, stosując odpowiednie narzędzia diagnostyczne, które mogą pomóc w identyfikacji problemów przed ich eskalacją. Zrozumienie tego błędu jest kluczowe, aby uniknąć potencjalnych przestojów i kosztownych napraw.

Pytanie 36

Jaką liczbę wyjść ma konwerter TWIN?

A. dwa wyjścia
B. osiem wyjść
C. jedno wyjście
D. cztery wyjścia
Konwerter TWIN to urządzenie, które zapewnia dwa wyjścia, co jest istotne w kontekście jego zastosowania w systemach automatyki oraz w rozdzielniach elektrycznych. Posiadanie dwóch wyjść pozwala na jednoczesne zasilanie dwóch różnych obwodów, co zwiększa elastyczność w projektowaniu instalacji. Na przykład, w przypadku systemów zasilania awaryjnego, jedno wyjście może być przeznaczone do zasilania krytycznych obciążeń, a drugie do mniej istotnych urządzeń. Dzięki takiemu rozwiązaniu możliwe jest zoptymalizowanie zużycia energii oraz minimalizacja ryzyka przeciążeń. W praktyce, konwertery tego typu są wykorzystywane w różnorodnych aplikacjach, takich jak zasilanie systemów oświetleniowych, urządzeń HVAC, a także w automatyce przemysłowej. Dobrą praktyką jest również regularne monitorowanie parametrów pracy konwertera, co umożliwia wczesne wykrywanie potencjalnych usterek i zapewnia niezawodność systemu elektrycznego.

Pytanie 37

Poniżej przedstawiona jest funkcja logiczna opisująca układ przełączający. Dla której kombinacji sygnałów a, b, c wartość tej funkcji będzie wynosiła "1"?

F(abc)= a·b̅+c
abc
A.011
B.010
C.110
D.101
A. D.
B. C.
C. B.
D. A.
Wybór innej opcji jako odpowiedzi na to pytanie może wynikać z niepoprawnego zrozumienia zasad działania funkcji logicznych oraz ich zastosowania w praktycznych sytuacjach. Funkcje te opierają się na podstawowych zasadach algebraicznych, gdzie każda zmienna (sygnał) może przyjąć wartość "0" lub "1", a ich kombinacje determinują końcowy wynik. Często zdarza się, że błędne odpowiedzi są efektem mylenia sygnałów negowanych z ich rzeczywistymi wartościami. Na przykład, niektóre opcje mogły zostać wybrane, ponieważ zawierały wartości "1" dla sygnałów, które w danej funkcji wymagają wartości "0". Taki błąd logiczny może wynikać z typowych nieporozumień dotyczących negacji sygnałów, co prowadzi do fałszywych wniosków. Ważne jest, aby zwracać uwagę na każdy element funkcji przy ustalaniu, które wartości spełniają wymagania. Ponadto, w praktyce inżynierskiej, znajomość operacji logicznych i umiejętność ich stosowania jest kluczowa w projektowaniu systemów, które muszą działać zgodnie z określonymi zasadami. Używanie diagramów prawdy oraz metod analizy może znacząco zwiększyć skuteczność w zrozumieniu i zastosowaniu tych koncepcji w praktyce. Dlatego też zrozumienie i poprawne zastosowanie zasad logiki cyfrowej jest fundamentem dla efektywnego projektowania układów elektronicznych.

Pytanie 38

Układy PLD to cyfrowe urządzenia logiczne, które tworzą kategorię układów

A. programowalnych
B. czasowych
C. pamięci dynamicznych
D. pamięci statycznych
Układy PLD, czyli programowalne układy logiczne, to coś, co daje nam spore możliwości. Można je konfigurować do różnych zadań, co jest super, bo dzięki temu mamy większą elastyczność w projektowaniu obwodów cyfrowych. Inżynierowie mogą dostosować te układy do konkretnych potrzeb, co w elektronice i automatyce ma duże znaczenie. PLD znajdują zastosowanie w różnych miejscach, jak na przykład w układach sterujących w systemach wbudowanych, w projektowaniu procesorów sygnałowych czy w interfejsach. To naprawdę przyspiesza cały proces prototypowania i testowania nowych rozwiązań. Programowanie takich układów w językach jak VHDL czy Verilog staje się coraz bardziej dostępne, co sprawia, że są popularniejsze w przemyśle elektronicznym. Dzięki PLD możemy szybciej wprowadzać nowe produkty na rynek i lepiej zarządzać ich efektywnością energetyczną, a co najważniejsze, możemy je łatwo modyfikować w trakcie użytkowania.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Jaki element elektroniczny przedstawiony jest na zdjęciu?

Ilustracja do pytania
A. Jednostka ALU.
B. Komparator.
C. Pamięć RAM.
D. Procesor.
Odpowiedź 'Procesor' jest prawidłowa, ponieważ na zdjęciu widoczny jest kluczowy element elektroniczny, który pełni funkcję centralnej jednostki obliczeniowej. Procesory, znane również jako CPU (Central Processing Unit), są odpowiedzialne za wykonywanie instrukcji z programów komputerowych, co czyni je niezbędnymi w każdym systemie komputerowym. Ich budowa składa się z rdzeni, które realizują obliczenia, oraz z jednostek wykonawczych, które przetwarzają dane. Ważnym aspektem jest również architektura procesora, która może być oparta na różnych standardach, takich jak x86 lub ARM, co wpływa na jego wydajność i zastosowanie. Procesory znajdują zastosowanie nie tylko w komputerach, ale także w smartfonach, serwerach, a także w systemach wbudowanych. Wiedza na temat procesorów jest kluczowa w kontekście projektowania systemów elektronicznych oraz optymalizacji ich wydajności. Zrozumienie działania procesora pozwala na skuteczniejsze programowanie oraz rozwijanie aplikacji, które w pełni wykorzystują jego możliwości.