Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 14 lutego 2026 02:31
  • Data zakończenia: 14 lutego 2026 02:50

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na którym rysunku przedstawiono prawidłowy schemat sterowania oświetleniem z dwóch niezależnych miejsc?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Rysunek D przedstawia prawidłowy schemat sterowania oświetleniem z dwóch niezależnych miejsc, który jest kluczowym rozwiązaniem w systemach oświetleniowych w budynkach mieszkalnych oraz użyteczności publicznej. W tym schemacie zastosowano dwa przełączniki krzyżowe, co pozwala na kontrolowanie jednego źródła światła z różnych lokalizacji. Dzięki takiemu rozwiązaniu użytkownicy mogą włączać i wyłączać oświetlenie, na przykład z dwóch końców korytarza, co zwiększa komfort i funkcjonalność przestrzeni. Zastosowanie przełączników krzyżowych jest zgodne z normami instalacji elektrycznych, które zalecają takie podejście w celu zapewnienia łatwego dostępu do sterowania oświetleniem. W praktyce, stosowanie tego typu schematów nie tylko poprawia estetykę wnętrza, eliminując konieczność użycia długich kabli, ale także zwiększa bezpieczeństwo, minimalizując ryzyko potknięcia się o przewody. Warto również zaznaczyć, że oprócz wygody, takie rozwiązania przyczyniają się do oszczędności energii, gdyż umożliwiają wyłączanie świateł w miejscach, gdzie nie są potrzebne.

Pytanie 2

Jakim z podanych rodzajów przewodów powinno się zasilić jednofazowy ruchomy odbiornik?

A. LGu 3×1,5 mm2
B. OMYp 3×1,5 mm2
C. YDYt 3×1,5 mm2
D. YDY 3×1,5 mm2
YDYt 3×1,5 mm2, YDY 3×1,5 mm2 oraz LGu 3×1,5 mm2 to inne typy przewodów, które mają różne zastosowania, lecz nie są odpowiednie do zasilania jednofazowego odbiornika ruchomego. Przewód YDYt, będący wersją przewodu YDY z dodatkowym ekranem, przeznaczony jest głównie do instalacji stałych i nie jest przystosowany do dużych ruchów oraz narażeń mechanicznych. Stosowanie go w aplikacjach ruchomych może prowadzić do uszkodzeń mechanicznych, co z czasem może skutkować awarią lub zagrożeniem bezpieczeństwa. Podobnie, przewód YDY, mimo że jest powszechnie używany w instalacjach elektrycznych, nie zapewnia elastyczności wymaganej w przypadku przewodów zasilających mobilne urządzenia. Z kolei przewód LGu, który jest przeznaczony do instalacji wewnętrznych oraz jako przewód sygnałowy, nie spełnia standardów dotyczących zasilania urządzeń, które są narażone na ruch i zmienne warunki pracy. Użycie tych typów przewodów w aplikacjach, które wymagają mobilności, może prowadzić do ich uszkodzenia, a w konsekwencji do problemów z bezpieczeństwem i niezawodnością zasilania. Wybór niewłaściwego typu przewodu w obszarze zasilania ruchomych odbiorników elektrycznych jest typowym błędem, który wynika z braku zrozumienia różnic pomiędzy przewodami przeznaczonymi do instalacji stałych i mobilnych.

Pytanie 3

Który element stosowany w instalacjach mieszkaniowych przedstawiono na rysunku?

Ilustracja do pytania
A. Przekaźnik bistabilny.
B. Regulator oświetlenia.
C. Przekaźnik priorytetowy.
D. Regulator temperatury.
Ten przekaźnik bistabilny, który widzisz na rysunku, to naprawdę przydatne urządzenie w elektryce. Ma super fajną funkcję – potrafi zapamiętać, jaki miał stan nawet po odłączeniu zasilania. To oznaczenie 'BIS-403' i ten schemat wyraźnie pokazują, że działa na zasadzie przełączania między dwoma stanami, które mogą sobie być niezależnie od prądu. Takie przekaźniki są często używane w automatyce budynkowej, na przykład przy oświetleniu, które powinno działać, nawet jak prąd jest wyłączony. To jest naprawdę dobre rozwiązanie, bo zmniejsza zużycie energii – nie potrzebują ciągłego prądu, żeby pamiętać swój stan. A to, moim zdaniem, jest ważne w kontekście ekologii i oszczędności energii. Warto o tym wiedzieć, planując nowe instalacje.

Pytanie 4

Po zmianie podłączenia do budynku zauważono, że trójfazowy silnik napędzający hydrofor kręci się w przeciwną stronę niż przed wymianą podłączenia. Co jest przyczyną takiego działania silnika?

A. zamiana jednej fazy z przewodem neutralnym
B. brak podłączenia dwóch faz
C. brak podłączenia jednej fazy
D. zamiana dwóch faz miejscami
Zamiana dwóch faz między sobą jest kluczowym zjawiskiem w trójfazowych układach zasilania, które wpływa na kierunek obrotów silników asynchronicznych. W przypadku silników trójfazowych, kierunek ich obrotów można zmieniać poprzez zamianę miejscami dwóch dowolnych faz zasilających. W praktyce, jeśli podłączymy fazy w inny sposób, silnik zacznie obracać się w przeciwną stronę, co można zaobserwować w przypadku hydroforów, które są często używane do pompowania wody w różnych aplikacjach domowych. W takiej sytuacji, ważne jest, aby zwracać uwagę na prawidłowe oznaczenia faz oraz standardy instalacyjne, które powinny być przestrzegane dla zapewnienia prawidłowego działania urządzeń. Przykładem zastosowania tej wiedzy jest również sytuacja, gdy wykonujemy konserwację instalacji elektrycznej, w której zmieniamy przyłącze, co może prowadzić do niezamierzonych skutków, takich jak zmiana kierunku obrotów silnika. Dlatego ważne jest, aby zawsze upewnić się, że połączenia faz są zgodne z dokumentacją oraz zaleceniami producentów urządzeń.

Pytanie 5

Na którym rysunku zamieszczono gniazdo wtyczkowe bryzgoszczelne?

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Gniazdo wtyczkowe bryzgoszczelne, które widzisz na zdjęciu C, zostało zaprojektowane tak, żeby dobrze chronić przed wilgocią i wodą. To znaczy, że nadaje się do miejsc, gdzie warunki atmosferyczne mogą być naprawdę trudne. Jest zgodne z normami PN-EN 60670-1, które mówią, jakie powinny być wymagania dla takich gniazd. Często mają dodatkowe uszczelki i osłony, które blokują wodę przed dostaniem się do wnętrza połączenia elektrycznego. W praktyce, gniazda bryzgoszczelne stosuje się w ogrodach, na tarasach albo w pobliżu basenów, gdzie zwykłe gniazda mogłyby się łatwo zepsuć. Fajnie jest też zwracać uwagę na oznaczenia IP, które mówią, jak to gniazdo jest chronione przed wodą i pyłem. Używanie takich gniazd to lepsze bezpieczeństwo dla użytkowników i dłuższa żywotność naszej instalacji elektrycznej.

Pytanie 6

Jaką funkcję w wyłączniku nadprądowym pełni element wskazany na rysunku czerwoną strzałką?

Ilustracja do pytania
A. Styku ruchomego.
B. Wyzwalacza przeciążeniowego.
C. Wyzwalacza zwarciowego.
D. Komory łukowej.
Element wskazany na rysunku czerwoną strzałką to wyzwalacz zwarciowy, który odgrywa kluczową rolę w działaniu wyłącznika nadprądowego. Jego podstawowym zadaniem jest szybkie reagowanie na sytuacje zwarciowe, co jest niezbędne dla zapewnienia bezpieczeństwa instalacji elektrycznej. W momencie wystąpienia zwarcia, następuje gwałtowny wzrost prądu, który wyzwalacz wykrywa i natychmiast przerywa obwód elektryczny. To działanie zapobiega uszkodzeniom przewodów oraz innych elementów instalacji, a także minimalizuje ryzyko pożaru. W praktyce, zastosowanie wyzwalacza zwarciowego jest normą w instalacjach elektrycznych, a jego obecność jest zgodna z normami takimi jak PN-EN 60947-2, które regulują kwestie bezpieczeństwa urządzeń elektrycznych. Dzięki zastosowaniu wyzwalaczy zwarciowych, użytkownicy mogą mieć pewność, że ich instalacja będzie chroniona przed niebezpiecznymi skutkami awarii. Dodatkowo, w wielu systemach automatyki budynkowej wyzwalacze te mogą być integrowane z systemami monitoringu, co zwiększa poziom ochrony.

Pytanie 7

W instalacjach elektrycznych w budynkach mieszkalnych o napięciu 230 V nie wolno używać opraw oświetleniowych zrealizowanych w klasie ochrony

A. I
B. 0
C. III
D. II
Odpowiedź 0 jest prawidłowa, ponieważ oprawy oświetleniowe w klasie ochronności 0 nie mają żadnego zabezpieczenia przed porażeniem elektrycznym. W instalacjach elektrycznych o napięciu 230 V, które są powszechnie stosowane w mieszkaniach, użycie opraw klasy 0 stwarza poważne ryzyko dla użytkowników. Oprawy te nie są wyposażone w żadne izolacje ani mechanizmy, które mogłyby zapobiec kontaktowi z częściami naładowanymi prądem. Przykładem zastosowania standardów bezpieczeństwa jest norma PN-HD 60364, która określa wymagania dotyczące ochrony przed porażeniem elektrycznym oraz klasyfikację urządzeń. W codziennym użytkowaniu, stosowanie opraw oświetleniowych klasy II, które posiadają dodatkowe źródła izolacji, jest kluczowe, aby zapewnić bezpieczeństwo w przypadku awarii. Właściwe dobieranie opraw oświetleniowych zgodnie z ich klasą ochronności ma na celu minimalizację ryzyka porażenia elektrycznego oraz poprawę ogólnego bezpieczeństwa instalacji elektrycznej w budynkach mieszkalnych.

Pytanie 8

Jaki zakres pomiarowy oraz rodzaj napięcia trzeba ustawić na woltomierzu, aby zmierzyć napięcie zasilające obwód gniazd wtyczkowych w budynku mieszkalnym?

A. 200 V AC
B. 500 V AC
C. 200 V DC
D. 500 V DC
Odpowiedź 500 V AC jest prawidłowa, ponieważ w budynkach mieszkalnych napięcie zasilające gniazdka wtyczkowe wynosi zazwyczaj 230 V w systemie prądu przemiennego (AC). Ustawienie woltomierza na zakres 500 V AC umożliwia pomiar napięcia z dużym marginesem bezpieczeństwa, co jest zgodne z dobrymi praktykami pomiarowymi. Użycie takiego zakresu zapewnia dokładne i bezpieczne pomiary bez ryzyka uszkodzenia urządzenia. Warto zauważyć, że pomiar napięcia AC jest istotny, gdyż instalacje elektryczne w budynkach mieszkalnych są projektowane na prąd przemienny, a nie stały (DC). W praktyce, przed rozpoczęciem pomiarów, zawsze należy upewnić się, że woltomierz jest odpowiednio skalibrowany i spełnia normy bezpieczeństwa, takie jak IEC 61010, które dotyczą sprzętu pomiarowego w obszarze niskiego napięcia.

Pytanie 9

Jakiego koloru jest wskaźnik wkładki topikowej o nominalnym natężeniu prądu wynoszącym 6 A?

A. zielony
B. żółty
C. szary
D. niebieski
Wybór niewłaściwego koloru wkładki topikowej może prowadzić do poważnych problemów w instalacjach elektrycznych. Odpowiedzi wskazujące na niebieski, szary, czy żółty kolor są nieprawidłowe, co wynika z nieznajomości standardów dotyczących oznaczeń wkładek topikowych. Niebieski kolor najczęściej kojarzony jest z wkładkami o prądzie znamionowym 10 A, co czyni go niewłaściwym dla wartości 6 A. Kolor szary z reguły odnosi się do wkładek o większym prądzie, a żółty często oznacza wkładki o wartości 16 A. Tego typu błędy wskazują na nieprawidłowe postrzeganie systemu kolorów, co może być efektem braku znajomości norm IEC 60127 oraz ogólnych zasad doboru elementów zabezpieczających w instalacjach elektrycznych. Właściwe oznaczenia kolorystyczne mają kluczowe znaczenie dla bezpieczeństwa, ponieważ niewłaściwie dobrana wkładka może nie zadziałać w przypadku przeciążenia, co prowadzi do ryzyka uszkodzenia urządzeń lub pożaru. Dlatego tak ważne jest, aby zapoznać się z obowiązującymi standardami i praktykami, aby uniknąć takich typowych błędów myślowych, które mogą mieć poważne konsekwencje w rzeczywistych warunkach operacyjnych.

Pytanie 10

Jakie oznaczenia oraz jaka minimalna wartość prądu znamionowego powinna mieć wkładka topikowa do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego grzejnika rezystancyjnego o danych znamionowych: Pₙ = 3 kW, Uₙ = 230 V?

A. aM 20 A
B. gG 16 A
C. gB 20 A
D. aR 16 A
Wkładka topikowa gG 16 A jest odpowiednia dla obwodu jednofazowego grzejnika rezystancyjnego o mocy 3 kW przy napięciu znamionowym 230 V. Obliczając wartość prądu znamionowego, stosujemy wzór: I = P / U, gdzie P to moc, a U to napięcie. W tym przypadku: I = 3000 W / 230 V ≈ 13 A. Wybór wkładki gG 16 A jest uzasadniony, ponieważ jest ona przeznaczona do zabezpieczania obwodów przed przeciążeniem oraz zwarciem, a jej wartość znamionowa (16 A) zapewnia odpowiednią margines dla ewentualnych chwilowych wzrostów prądu, które mogą wystąpić przy rozruchu grzejnika. Zastosowanie wkładek gG w instalacjach domowych jest zgodne z normami IEC 60269, które podkreślają ich właściwości ochronne i dostosowanie do obciążeń rezystancyjnych. W praktyce wkładki gG są często stosowane w systemach zasilania urządzeń grzewczych, co czyni je idealnym wyborem w tym przypadku.

Pytanie 11

Którego z elektronarzędzi należy użyć do wycinania bruzd pod przewody instalacji podtynkowej?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Frezerka do bruzd, czyli narzędzie oznaczone jako D, jest najbardziej odpowiednim elektronarzędziem do wycinania bruzd pod przewody instalacji podtynkowej. Dzięki swojej konstrukcji umożliwia precyzyjne cięcie w twardych materiałach, takich jak beton czy cegła, co jest kluczowe dla prawidłowego montażu instalacji elektrycznych. Narzędzie to posiada regulację głębokości cięcia, co pozwala na dostosowanie do różnych grubości przewodów oraz zapewnia estetyczne i schludne wykonanie rowków. W praktyce, operatorzy frezerek do bruzd często wykorzystują je do tworzenia kanałów, w których umieszczane są przewody, co pozwala na estetyczne ukrycie instalacji. Zgodnie z najlepszymi praktykami branżowymi, stosowanie tego narzędzia zapewnia nie tylko efektywność pracy, ale także bezpieczeństwo, eliminując ryzyko uszkodzenia instalacji oraz minimalizując ilość pyłów i odpadów materiałowych.

Pytanie 12

Korzystając z tabeli obciążalności prądowej przewodów, dobierz przewód o najmniejszym przekroju żył miedzianych do wykonania trójfazowej instalacji wtynkowej, która jest zabezpieczona wyłącznikiem instalacyjnym z oznaczeniem B20.

Tabela obciążalności prądowej przewodów
Przekrój przewodu mm2Jeden lub kilka kabli 1-żyłowych ułożonych w rurzeKilka kabli np.: przewody płaszczowe, rurowe, wtynkowePojedynczy w powietrzu, przy czym odstęp odpowiada przynajmniej średnicy kabla
Żyła Cu, AŻyła Al, AŻyła Cu, AŻyła Al, AŻyła Cu, AŻyła Al, A
0,75--12-15-
1,011-15-19-
1,515-18-24-
2,5201526203226
4252034274233
A. YADY 5x4 mm2
B. YADY 5x6 mm2
C. YDY 5x2,5 mm2
D. YDY 5x1,5 mm2
Wybór przewodów jak YADY 5x6 mm2, YDY 5x1,5 mm2 czy YADY 5x4 mm2 nie jest najlepszym pomysłem dla B20. Przewód YADY 5x6 mm2, choć ma dużą średnicę, jest za gruby na to zabezpieczenie, co prowadzi do nieefektywnego użycia materiałów i wyższych kosztów. YDY 5x1,5 mm2, z obciążalnością tylko 16A, to niewystarczająco, co zwiększa ryzyko przeciążenia i uszkodzeń. A YADY 5x4 mm2, nawet jeśli ma podobną obciążalność, to może nie dać wystarczającego marginesu bezpieczeństwa, zwłaszcza przy większym obciążeniu. Często ludzie popełniają błąd, nie myśląc o realnych obciążeniach, które przewody będą musiały wytrzymać, albo nie znają wymogów i norm. Z mojego doświadczenia, każda instalacja powinna być dostosowana do konkretnych warunków, nie tylko obciążeń, ale i innych czynników jak temperatura czy ułożenie. Wdrażanie norm, takich jak PN-IEC 60364, jest mega istotne, żeby wszystko działało sprawnie i bezpiecznie.

Pytanie 13

W obwodzie odbiorczym zastosowano wyłącznik typu CLS6 o prądzie znamionowym 13 A i charakterystyce B. Jaki najmniejszy prąd znamionowy powinna mieć wkładka bezpiecznikowa typu gL/gG w zabezpieczeniu poprzedzającym wyłącznik, jeżeli prąd zwarcia jest nie większy niż 1 kA?

Ilustracja do pytania
A. 35 A
B. 16 A
C. 20 A
D. 25 A
Odpowiedzi 20 A, 25 A i 16 A nie są odpowiednie, ponieważ nie spełniają kryteriów selektywności w kontekście podanego wyłącznika CLS6. Wybierając niższy prąd znamionowy, taki jak 20 A czy 16 A, ryzykuje się, że w przypadku zwarcia zadziała wkładka bezpiecznikowa zamiast wyłącznika, co może prowadzić do wyłączenia całego obwodu zamiast jedynie usunięcia awarii. Taka sytuacja jest niepożądana, zwłaszcza w instalacjach, w których ciągłość zasilania jest kluczowa. Z kolei wybór 25 A również jest niewłaściwy, ponieważ jest to wartość zbyt bliska prądu znamionowego wyłącznika, co skutkowałoby problemami z selektywnością. W praktyce, warto stosować wkładki bezpiecznikowe o znacznie wyższym prądzie znamionowym niż prąd znamionowy wyłącznika, aby zapewnić, że w przypadku zwarcia najpierw reaguje wyłącznik, co jest zgodne z zasadą selektywności przyjętą w standardach branżowych. Wybór niewłaściwego prądu znamionowego może również prowadzić do zwiększonego ryzyka uszkodzenia urządzeń, co w dłuższej perspektywie pociąga za sobą straty finansowe związane z naprawami oraz przestojami produkcyjnymi.

Pytanie 14

Jak należy interpretować przedstawiony na zdjęciu wynik pomiaru rezystancji izolacji przewodu o napięciu znamionowym 300 V/300 V wykonany miernikiem MIC-2 ustawionym na zakres 500 V?

Ilustracja do pytania
A. Miernik ma rozładowaną baterię.
B. Miernik jest uszkodzony.
C. Rezystancja izolacji przewodu jest wystarczająca.
D. Zbyt mała rezystancja izolacji przewodu.
Odpowiedź, że rezystancja izolacji przewodu jest wystarczająca, jest prawidłowa, ponieważ wynik pomiaru na wyświetlaczu miernika MIC-2 wynosi '>999MΩ'. To oznacza, że miernik nie zdołał zmierzyć wartości rezystancji, ponieważ jest ona znacznie wyższa niż maksymalny zakres, co wskazuje na doskonały stan izolacji przewodu. Dla przewodów o napięciu znamionowym 300 V/300 V, zgodnie z normami bezpieczeństwa (np. PN-EN 60204-1), minimalna rezystancja izolacji powinna wynosić co najmniej 1 MΩ. Przy wartości '>999MΩ' jest to więcej niż wystarczające, co świadczy o braku potencjalnych zagrożeń dla użytkowników i sprzętu. W praktyce, w przypadku instalacji elektrycznych, regularne pomiary rezystancji izolacji są niezbędne do zapewnienia bezpieczeństwa i niezawodności systemów elektrycznych. Odpowiednia rezystancja izolacji zmniejsza ryzyko zwarcia oraz uszkodzenia urządzeń, co jest kluczowe w kontekście ochrony przed porażeniem elektrycznym oraz poprawnego funkcjonowania instalacji.

Pytanie 15

Który z poniższych przewodów powinien być użyty do zasilania ruchomego odbiornika w II klasie ochronności z sieci jednofazowej?

A. H03VV-F 3×0,75
B. H03VVH2-F 2×0,75
C. H05VV-U 2×1,5
D. H05VV-K 3×1,5
Wybór przewodów H03VV-F 3×0,75, H05VV-K 3×1,5 oraz H05VV-U 2×1,5 do zasilenia ruchomego odbiornika wykonane w II klasie ochronności nie jest odpowiedni z kilku powodów. Przewód H03VV-F, chociaż elastyczny, jest przewodem o trzech żyłach, co sugeruje możliwość uziemienia, co nie jest zgodne z zasadami dotyczącymi urządzeń w II klasie ochronności. II klasa nie wymaga dodatkowej żyły uziemiającej, a zatem użycie przewodu z uziemieniem może prowadzić do niepotrzebnych komplikacji w instalacji elektrycznej. Przewód H05VV-K, pomimo że oferuje dobry poziom elastyczności, ma również dodatkową żyłę, co jest zbędne dla urządzeń tej klasy ochronności. Zastosowanie przewodów z uziemieniem w przypadkach, gdzie nie jest to wymagane, może prowadzić do nieprawidłowego podłączenia oraz zwiększać ryzyko uszkodzenia sprzętu. Natomiast H05VV-U, będący przewodem sztywnym, nie jest zalecany do aplikacji ruchomych, ponieważ jego konstrukcja ogranicza elastyczność, co jest kluczowe w przypadku sprzętu, który może być często przestawiany. Wybór niewłaściwego przewodu do zasilania ruchomych odbiorników może skutkować nieefektywną pracą urządzenia, a w najgorszym przypadku stwarzać zagrożenie dla użytkownika oraz dla samego sprzętu, gdyż niektóre przewody mogą nie wytrzymać obciążeń mechanicznych czy niekorzystnych warunków środowiskowych.

Pytanie 16

W oprawie oświetleniowej pokazanej na zdjęciu została zamontowana żarówka

Ilustracja do pytania
A. sodowa.
B. żarowa.
C. rtęciowa.
D. halogenowa.
Żarówka halogenowa, którą rozpoznajemy na zdjęciu, charakteryzuje się specyficzną budową i właściwościami, które czynią ją popularnym wyborem w oświetleniu. Jej mała bańka zawiera gaz halogenowy, który zwiększa efektywność energetyczną źródła światła oraz wydłuża jego żywotność w porównaniu do tradycyjnych żarówek żarowych. Warto zauważyć, że halogeny emitują światło o wysokiej jakości, co sprawia, że są często stosowane w zastosowaniach wymagających precyzyjnego oświetlenia, takich jak oświetlenie wystawowe czy architektoniczne. Ponadto, ich zdolność do renderowania kolorów oraz natychmiastowego osiągania pełnej jasności sprawia, że są idealnym rozwiązaniem dla pomieszczeń, które potrzebują szybkiej zmiany oświetlenia. W branży oświetleniowej halogeny rekomendowane są zgodnie z normami EN 60598, które definiują bezpieczne użytkowanie i właściwe zastosowanie tych źródeł światła.

Pytanie 17

Jaka maksymalna wartość impedancji pętli zwarcia jest dopuszczalna w trójfazowym obwodzie elektrycznym o napięciu nominalnym 230/400 V, aby zapewnić skuteczną ochronę przed porażeniem w przypadku uszkodzenia izolacji, jeżeli wiadomo, że zasilanie tego obwodu ma odłączyć instalacyjny wyłącznik nadprądowy B20?

A. 2,3 Ω
B. 6,6 Ω
C. 4,0 Ω
D. 3,8 Ω
Odpowiedź 2,3 Ω jest prawidłowa, ponieważ w trójfazowym obwodzie elektrycznym o napięciu 230/400 V ochrona przeciwporażeniowa polega na szybkim wyłączeniu zasilania w przypadku uszkodzenia izolacji. Zgodnie z normą PN-EN 61140, maksymalna wartość impedancji pętli zwarcia, przy której może działać wyłącznik nadprądowy B20, wynosi 2,3 Ω. Wyłącznik B20 w typowych zastosowaniach ma czas zadziałania do 0,4 sekundy w przypadku zwarcia doziemnego, co oznacza, że impedancja pętli zwarcia nie powinna przekraczać tej wartości, aby zapewnić wystarczająco szybkie wyłączenie zasilania. W praktyce, aby system ochrony był skuteczny, wartość ta jest kluczowa, gdyż wpływa na bezpieczeństwo osób oraz urządzeń. Przykładowo, w instalacjach budowlanych i przemysłowych, pomiar impedancji pętli zwarcia powinien być regularnie wykonywany, aby upewnić się, że nie przekracza dopuszczalnych norm, co pomoże uniknąć niebezpiecznych sytuacji związanych z porażeniem prądem. Dodatkowo, przestrzeganie norm i wytycznych ochrony przeciwporażeniowej jest niezbędne do zapewnienia bezpieczeństwa użytkowników systemów elektrycznych.

Pytanie 18

Jaki błąd został popełniony podczas pomiaru rezystancji izolacji instalacji elektrycznej, której schemat przedstawiono na rysunku?

Ilustracja do pytania
A. Przewód ochronny powinien być odłączony.
B. Zabezpieczenie silnika powinno być otwarte.
C. Zabezpieczenie główne powinno być zamknięte.
D. Wyłącznik główny powinien być zamknięty.
Kiedy mierzysz rezystancję izolacji w instalacji elektrycznej, na pewno ważne jest, żeby wszystko, co może wpłynąć na wynik, było odłączone. Przy silnikach elektrycznych, jeżeli ich zabezpieczenie jest zamknięte, to ich wewnętrzna rezystancja może podać ci błędne informacje o stanie izolacji. Dlatego warto, żeby zabezpieczenie silnika było otwarte. Moim zdaniem, aby uzyskać naprawdę rzetelne wyniki pomiarów, trzeba trzymać się norm, takich jak PN-EN 61557, które mówią, jak to wszystko powinno wyglądać. Dobre przygotowanie do pomiaru, z wymienionymi urządzeniami, daje pewność, że wynik pokaże prawdziwą rezystancję izolacji. A to jest przecież kluczem do bezpiecznej i niezawodnej instalacji elektrycznej.

Pytanie 19

Wyznacz całkowity względny błąd pomiarowy rezystancji izolacyjnej przewodów, jeśli wskazania miernika wyniosły 200,0 MΩ, a jego niepewność to ± (3% w.w. + 8 cyfr)?

A. 6,8%
B. 8,3%
C. 3,4%
D. 3,0%
Wiele osób może pomylić pojęcie błędu pomiarowego, nie dostrzegając, jak ważne jest zrozumienie różnorodnych źródeł niedokładności. Odpowiedzi 3,0% oraz 6,8% mogą wydawać się kuszące, ponieważ mogą wynikać z niepoprawnych założeń dotyczących obliczenia błędów. W przypadku błędu 3,0%, można błędnie założyć, że tylko błąd procentowy jest istotny, podczas gdy nie uwzględnia się wpływu cyfr, co prowadzi do zaniżenia rzeczywistego błędu. Z kolei odpowiedź 6,8% może sugerować, że błąd wyrażony w cyfrach jest tak samo istotny jak błąd procentowy, co jest mylnym podejściem. W rzeczywistości, aby uzyskać całkowity względny błąd, musimy zrozumieć, że oba te błędy mają różne jednostki i nie można ich po prostu dodać. Dodatkowo, należy pamiętać, że przy pomiarach elektrycznych, takich jak rezystancja, ważne jest, aby znać granice dokładności urządzeń pomiarowych oraz ich wpływ na ostateczne wyniki. Przy pomiarach dużych wartości, jak w tym przypadku 200,0 MΩ, błąd wyrażony w cyfrach jest znacząco mniejszy niż błąd procentowy, co wskazuje na konieczność dokładnej analizy sytuacji. Z takich powodów, pomiar rezystancji izolacji wymaga staranności i przestrzegania norm metrologicznych, aby uzyskać wiarygodne wyniki.

Pytanie 20

Jaką rolę odgrywa uzwojenie biegunów komutacyjnych w urządzeniach prądu stałego?

A. Redukuje hałas podczas eksploatacji
B. Kompensuje SEM samoindukcji, co eliminuje iskrzenie na szczotkach
C. Tworzy nieruchome, stałe pole magnetyczne
D. Generuje moment magnetyczny o stałym kierunku
W odpowiedziach, które nie są poprawne, pojawiają się koncepcje, które mylnie opisują funkcję uzwojenia biegunów komutacyjnych. Na przykład, generowanie jednokierunkowego momentu magnetycznego nie jest właściwym opisem roli tego uzwojenia. Moment magnetyczny w maszynach prądu stałego jest kształtowany głównie przez uzwojenia wirnika i pola magnetyczne wytwarzane przez magnesy lub uzwojenia stojana. Wytwarzanie nieruchomego, stałego pola magnetycznego to również mylne podejście, ponieważ uzwojenie biegunów komutacyjnych nie tworzy statycznego pola, lecz dynamicznie reaguje na zmiany prądu, co ma na celu ułatwienie komutacji. Ponadto, zredukowanie hałasu podczas pracy nie jest celem uzwojenia komutacyjnego, ale może być efektem ubocznym prawidłowego działania całego systemu, związanego z efektywnym komutowaniem prądu. W kontekście projektowania maszyn prądu stałego, nieprawidłowe rozumienie roli uzwojenia biegunów komutacyjnych może prowadzić do problemów z wydajnością energetyczną oraz trwałością komponentów, dlatego kluczowe jest zrozumienie jego rzeczywistej funkcji w konstrukcji maszyny.

Pytanie 21

Ile wynosi skuteczność świetlna źródła światła o etykiecie przedstawionej na ilustracji?

Ilustracja do pytania
A. 206,9 lm/W
B. 81,4 lm/W
C. 1 180,0 lm/W
D. 14,5 lm/W
Nieprawidłowe odpowiedzi często wynikają z nieporozumień związanych z efektywnością świetlną. Często ludzie mylą lumeny z watami, co prowadzi do pomyłek. Na przykład, jeśli ktoś odpowiedział 14,5 lm/W, to pewnie myślał, że moc żarówki to jej skuteczność, co całkowicie mija się z prawdą. Moc w watach mówi nam, ile energii żarówka zużywa, a nie jak dobrze świeci. Inny błąd to podawanie złych danych, jak 1 180,0 lm/W – to jest fizycznie niemożliwe dla normalnych źródeł światła. Czasem zapominamy także o kontekście, w jakim używamy źródeł światła, co prowadzi do błędnych wyników. Trzeba pamiętać, że skuteczność świetlna to liczby, które trzeba dobrze zrozumieć i podliczyć, bazując na danych o strumieniu świetlnym i mocy, co jest współczesnym krokiem w stronę lepszej efektywności energetycznej oraz ekologii.

Pytanie 22

Które z poniższych wskazówek nie dotyczy przeprowadzania nowych instalacji elektrycznych w lokalach mieszkalnych?

A. Oddzielić obwody oświetleniowe od obwodów gniazd wtyczkowych
B. Gniazda wtyczkowe w każdym pomieszczeniu powinny być zasilane z osobnego obwodu
C. Gniazda wtyczkowe w kuchni zasilane muszą być z oddzielnego obwodu
D. Odbiorniki o dużej mocy należy zasilać z wyodrębnionych obwodów
Odpowiedź dotycząca zasilania gniazd wtyczkowych każdego pomieszczenia z osobnego obwodu jest prawidłowa, ponieważ takie podejście nie jest zgodne z zaleceniami w zakresie projektowania instalacji elektrycznych w budynkach mieszkalnych. W praktyce, stosowanie osobnych obwodów dla każdego pomieszczenia może prowadzić do nadmiernych kosztów i skomplikowania instalacji. Zgodnie z Polską Normą PN-IEC 60364-1, obwody powinny być projektowane w taki sposób, aby zapewnić bezpieczeństwo i funkcjonalność, a nie każdy obwód powinien być dedykowany dla jednego pomieszczenia. W standardowych rozwiązaniach gniazda wtyczkowe w poszczególnych pomieszczeniach, jak kuchnia czy salon, mogą być podłączane do wspólnych obwodów, co jest bardziej efektywne, a także ułatwia ewentualne naprawy czy modernizacje. Przykładowo, w kuchni, gdzie występuje wiele odbiorników, stosuje się osobny obwód, ale gniazda w innych pomieszczeniach mogą być zasilane z jednego wspólnego obwodu, co zmniejsza ilość potrzebnych przewodów oraz urządzeń zabezpieczających.

Pytanie 23

Symbol graficzny urządzenia AGD - suszarki, przedstawiono na rysunku

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Odpowiedzi A, B i C odnoszą się do innych urządzeń AGD, co może prowadzić do nieporozumień przy identyfikacji symboli graficznych. Symbol A, przedstawiający zmywarkę do naczyń, jest często mylony z oznaczeniem suszarki, szczególnie przez osoby, które nie są zaznajomione z różnicami w symbolice. Zmywarka ma charakterystyczny symbol przedstawiający naczynia, co jest istotne w kontekście jej funkcji, ale nie ma nic wspólnego z obróbką tkanin. Symbol B, dotyczący kuchenki elektrycznej, również nie ma związku z suszarką, co może wynikać z niepoprawnego wnioskowania o podobieństwie kształtów czy form. Brak zrozumienia podstawowych różnic między tymi urządzeniami może prowadzić do błędnych wniosków. Przykładem może być mylenie funkcji kuchenki, która jest przeznaczona do gotowania, z suszarką, która służy do suszenia odzieży. Ostatecznie, symbol C przedstawia pralkę elektryczną, co także jest innym rodzajem urządzenia, które choć może mieć podobieństwo do suszarki, pełni zupełnie różne zadania w gospodarstwie domowym. Typowe błędy, które prowadzą do takich niepoprawnych wyborów, to ignorowanie kontekstu funkcjonalnego urządzenia, a także brak znajomości powszechnie stosowanych oznaczeń w branży AGD. Warto zapoznać się z tymi symbolami i ich znaczeniem, aby uniknąć nieporozumień w przyszłości.

Pytanie 24

Jakie gniazdo instalacyjne oznacza się na schematach symbolem graficznym przedstawionym na rysunku?

Ilustracja do pytania
A. Z wyłącznikiem.
B. Telekomunikacyjne.
C. Z transformatorem separacyjnym.
D. Ze stykiem ochronnym.
Gniazdo instalacyjne ze stykiem ochronnym, które zostało przedstawione na rysunku, jest kluczowym elementem w zapewnieniu bezpieczeństwa w instalacjach elektrycznych. Styk ochronny jest zaprojektowany w celu minimalizacji ryzyka porażenia prądem elektrycznym, a jego obecność w gniazdach jest zgodna z normami bezpieczeństwa, takimi jak PN-EN 60309. Dzięki zastosowaniu gniazd ze stykiem ochronnym, użytkownicy mogą korzystać z urządzeń elektrycznych z większym poczuciem bezpieczeństwa, szczególnie w środowiskach, gdzie istnieje ryzyko kontaktu z wodą lub mokrymi powierzchniami, na przykład w łazienkach czy kuchniach. W praktyce, gniazda te są powszechnie stosowane w obiektach komercyjnych i przemysłowych, gdzie stosowane są maszyny i urządzenia wymagające dużej mocy, co czyni je niezbędnym elementem w każdej instalacji elektrycznej. Warto również zwrócić uwagę na to, że gniazda ze stykiem ochronnym są często stosowane z przedłużaczami i innymi urządzeniami, co przyczynia się do ich większej uniwersalności i funkcjonalności w różnych zastosowaniach elektrycznych.

Pytanie 25

Który układ połączeń watomierza jest zgodny z przedstawionym schematem pomiarowym?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Odpowiedź C jest dobra, bo pokazuje, jak dobrze podpiąć watomierz w obwodzie elektrycznym. W tym układzie przewód L (fazowy) jest podłączony do prądowego zacisku watomierza, co pozwala na zmierzenie prądu, a przewód N (neutralny) do zacisku napięciowego, co z kolei umożliwia pomiar napięcia. Dzięki temu nasz watomierz może obliczyć moc czynną, co jest mega ważne, gdy chcemy śledzić zużycie energii. Według normy PN-EN 62053-21, odpowiednie połączenie urządzeń pomiarowych to podstawa, żeby pomiary były dokładne. W praktyce, kiedy robimy coś jak analiza efektywności energetycznej czy audyt instalacji, prawidłowe podłączenie watomierza jest kluczowe, żeby uzyskać rzetelne dane. Jeśli coś jest źle podłączone, to może prowadzić do błędnych odczytów, co wpłynie na decyzje o zarządzaniu energią i efektywności działań.

Pytanie 26

Jaki przewód na schemacie montażowym instalacji elektrycznej oznacza się symbolem przedstawionym na rysunku?

Ilustracja do pytania
A. Ochronny.
B. Wyrównawczy.
C. Uziemiający.
D. Neutralny.
Odpowiedź "Ochronny" jest prawidłowa, ponieważ symbol przedstawiony na rysunku odnosi się do przewodu ochronnego PE (Protective Earth). Przewód ten jest kluczowym elementem instalacji elektrycznej, mającym na celu zabezpieczenie użytkowników przed porażeniem prądem elektrycznym. W sytuacji awaryjnej, przewód ochronny odprowadza niebezpieczne napięcie do ziemi, co znacząco zmniejsza ryzyko porażenia. W standardach, takich jak Polska Norma PN-IEC 60445:2017, przewód ten powinien być jednoznacznie oznaczony w schematach montażowych, co ułatwia identyfikację i prawidłowy montaż instalacji. Przykładowo, w przypadku uszkodzenia izolacji urządzenia elektrycznego, prawidłowe podłączenie przewodu ochronnego zapewnia, że prąd nie przepłynie przez ciało użytkownika, lecz zostanie skierowany do ziemi. Dzięki temu, stosowanie przewodów ochronnych zgodnie z normami jest fundamentem bezpieczeństwa w każdej instalacji elektrycznej.

Pytanie 27

Elementy którego silnika elektrycznego przedstawiono na rysunku?

Ilustracja do pytania
A. Komutatorowego prądu stałego.
B. Indukcyjnego pierścieniowego.
C. Jednofazowego z kondensatorem pracy.
D. Indukcyjnego klatkowego.
Odpowiedź wskazująca na silnik indukcyjny klatkowy jest poprawna, ponieważ na przedstawionym rysunku można zauważyć charakterystyczne cechy tego typu silnika. Wirnik klatkowy, który jest kluczowym elementem konstrukcyjnym, składa się z aluminiowych lub miedzianych prętów, które są połączone na obu końcach pierścieniami. Silniki indukcyjne klatkowe są powszechnie stosowane w przemyśle ze względu na swoją prostotę, trwałość oraz efektywność. Na przykład, znajdują zastosowanie w napędach mechanicznych, takich jak pompy, wentylatory czy taśmociągi. Ich zalety to niskie koszty eksploatacji i minimalna potrzeba konserwacji, co jest zgodne z najlepszymi praktykami w inżynierii elektrycznej, gdzie preferuje się rozwiązania wymagające jak najmniej interwencji serwisowych. Warto również zaznaczyć, że silniki te działają na zasadzie indukcji elektromagnetycznej, co czyni je bezpiecznymi oraz zdolnymi do pracy w różnych warunkach środowiskowych.

Pytanie 28

Jakie czynności kontrolne nie są zaliczane do oględzin urządzeń napędowych podczas ich pracy?

A. Kontrola zabezpieczeń i stanu osłon części wirujących
B. Weryfikacja stanu przewodów ochronnych oraz ich połączeń
C. Ocena poziomu drgań oraz funkcjonowania układu chłodzenia
D. Sprawdzenie stanu łożysk i przeprowadzenie pomiarów elektrycznych
Odpowiedź "Sprawdzenie stanu łożysk i pomiary elektryczne" jest poprawna, ponieważ te czynności kontrolne są zazwyczaj przeprowadzane w trakcie przeglądów technicznych, a nie podczas bieżącej eksploatacji urządzeń napędowych. W czasie ruchu maszyny, kluczowe jest monitorowanie parametrów operacyjnych, takich jak poziom drgań, ponieważ mogą one wskazywać na potencjalne problemy z wydajnością lub uszkodzenia. Kontrola poziomu drgań i działania układu chłodzenia pozwala na szybką identyfikację nieprawidłowości, które mogą prowadzić do poważnych awarii. Ochrona przewodów i odpowiednie osłony części wirujących są również istotnymi aspektami bezpieczeństwa w czasie pracy urządzenia. Zgodnie z normami, takimi jak ISO 9001, monitoring w czasie rzeczywistym oraz regularne kontrole stanu technicznego są kluczowe dla zapewnienia efektywności i bezpieczeństwa operacji. Przykładem praktycznym może być zastosowanie systemów monitorowania drgań, które w czasie rzeczywistym informują operatorów o konieczności interwencji, co pozwala na minimalizację ryzyka awarii.

Pytanie 29

W pomieszczeniu przyłączowym budynku sprawdzono ciągłość głównego połączenia wyrównawczego między główną szyną wyrównawczą a czterema punktami, jak na rysunku. Który pomiar powinien wykazać brak ciągłości połączenia?

Ilustracja do pytania
A. 1
B. 3
C. 2
D. 4
Wybór odpowiedzi 1, 2 lub 3 może wydawać się logiczny, jednak opiera się na błędnym założeniu, że wszystkie punkty będą przewodzić prąd bez względu na ich połączenia. Punkty 1, 2 i 3 są podłączone do elementów metalowych, które powinny zapewniać ciągłość połączenia wyrównawczego. Kluczowym aspektem, który jest często mylnie rozumiany, jest zrozumienie, że izolacyjne materiały, takie jak plastik, nie przewodzą prądu. W przypadku punktu 4, jeśli rura gazowa jest wykonana z materiału nieprzewodzącego, to naturalnym jest, że nie może ona zapewnić ciągłości połączenia. Nieprzewodzące materiały nie mogą być używane jako część systemu wyrównawczego, co często prowadzi do błędnych interpretacji i wyborów. Przykładem błędnych wniosków może być przypuszczenie, że każda rura metalowa, niezależnie od połączeń, zawsze zapewnia ciągłość. Niezrozumienie zasady, według której materiał ma kluczowe znaczenie dla właściwego działania instalacji, może prowadzić do poważnych konsekwencji w instalacjach elektrycznych. W branży elektrycznej standardy, takie jak PN-EN 61439, podkreślają znaczenie prawidłowego doboru materiałów oraz sprawowania nad nimi kontroli, co ma istotny wpływ na bezpieczeństwo systemów elektrycznych.

Pytanie 30

Którą z funkcji w obwodzie prądu stałego pełni układ przedstawiony na schemacie?

Ilustracja do pytania
A. Wzmacnia sygnały wejściowe.
B. Filtruje przebiegi odkształcone.
C. Prostuje napięcie.
D. Stabilizuje napięcie.
Na rysunku widać prosty układ z rezystorem szeregowym i diodą Zenera włączoną równolegle do wyjścia. Podstawowa funkcja takiego układu to stabilizacja napięcia stałego, a nie filtrowanie, wzmacnianie czy prostowanie. Dobrze jest rozdzielić sobie w głowie te pojęcia, bo w praktyce warsztatowej często się je myli. Filtracja przebiegów odkształconych, czy ogólnie wygładzanie tętnień, kojarzy się raczej z elementami biernymi typu kondensatory, dławiki, ewentualnie układami RC, LC, czasem aktywnymi filtrami z wzmacniaczami operacyjnymi. Dioda Zenera z rezystorem nie tworzą filtru w sensie częstotliwościowym – ich zachowanie nie polega na selekcji pasma, tylko na utrzymaniu mniej więcej stałej wartości napięcia. Oczywiście w pewnym zakresie mogą „przytłumić” krótkotrwałe skoki, ale to jest efekt uboczny stabilizacji, a nie pełnoprawny filtr sygnałowy. Wzmacnianie sygnałów wejściowych z kolei wymaga elementu aktywnego zdolnego do dostarczenia większej mocy na wyjściu niż na wejściu: tranzystora, wzmacniacza operacyjnego, układu scalonego. Tutaj nic się nie wzmacnia – napięcie jest raczej ograniczane, a część energii tracona na rezystorze i w diodzie w postaci ciepła. To układ typowo stratny, bez dodatniego wzmocnienia. Częsty błąd myślowy polega na tym, że skoro układ ma diodę, to „na pewno prostuje”. Prostowanie jednak dotyczy zamiany prądu przemiennego na jednokierunkowy, najczęściej w mostkach Graetza lub układach jednopołówkowych. W pokazanym schemacie nie ma ani źródła AC, ani typowego połączenia prostowniczego. Dioda Zenera pracuje w kierunku zaporowym w stanie przebicia Zenera, a to zupełnie inny tryb niż w klasycznym prostowniku. W praktyce dobrze jest kojarzyć ten konkretny symbol i konfigurację właśnie z prostym stabilizatorem napięcia DC, często stosowanym zaraz za prostownikiem i kondensatorem filtrującym, a nie z samym procesem prostowania czy filtracji.

Pytanie 31

Strzałką oznaczono na rysunku

Ilustracja do pytania
A. przycisk rozwierny.
B. styk pomocniczy zwiemy.
C. styk pomocniczy rozwierny.
D. przycisk zwiemy.
Przycisk rozwierny, nazywany również przyciskiem otwierającym, jest kluczowym elementem w wielu zastosowaniach elektrycznych oraz automatyce. W stanie spoczynku przycisk ten zapewnia przepływ prądu, co oznacza, że obwód jest zamknięty. Po jego aktywowaniu, czyli wciśnięciu, obwód zostaje otwarty, co przerywa przepływ prądu. Tego typu przyciski są powszechnie stosowane w różnych urządzeniach, takich jak dzwonki, alarmy czy systemy automatyki budynkowej. Ich działanie opiera się na zasadzie, że w momencie wciśnięcia przycisku, dochodzi do przełączenia stanu obwodu – z zamkniętego na otwarty. Zastosowanie przycisku rozwiernego jest zgodne z dobrymi praktykami w inżynierii elektrycznej, gdzie kluczowe jest zapewnienie bezpieczeństwa użytkowników. Przykładem może być system alarmowy, gdzie przycisk rozwierny umożliwia wyłączenie alarmu przez użytkownika, co jest istotne w sytuacjach awaryjnych. Ponadto, standardy IEC 60947-5-1 definiują wymagania dotyczące bezpiecznego użytkowania i montażu takich elementów, co czyni je niezawodnymi w codziennym użytkowaniu.

Pytanie 32

W jaki sposób realizowana jest ochrona przed porażeniem elektrycznym poprzez dotyk pośredni w oprawie oświetleniowej drugiej klasy ochronności działającej w sieci TN-S?

A. Zastosowanie podwójnej warstwy izolacji
B. Połączenie obudowy z przewodem ochronnym sieci
C. Zasilanie z transformatora izolacyjnego
D. Użycie napięcia zasilania o zmniejszonej wartości
W kontekście ochrony przed dotykiem pośrednim, wiele podejść może wydawać się atrakcyjnych, jednak nie są one wystarczające do zapewnienia właściwego poziomu bezpieczeństwa. Zastosowanie napięcia zasilającego o obniżonej wartości, choć teoretycznie może zredukować ryzyko porażenia, nie eliminuje go całkowicie, ponieważ w przypadku awarii izolacji nadal może wystąpić ryzyko niebezpiecznego napięcia. Zasilanie z transformatora separacyjnego również nie stanowi pełnej odpowiedzi na problem, gdyż chociaż transformator ten ogranicza ryzyko porażenia, to nie jest to rozwiązanie wystarczające w przypadku urządzeń, które nie są dostatecznie izolowane. Połączenie obudowy z przewodem ochronnym sieci jest bardziej charakterystyczne dla urządzeń klasy I, gdzie niezbędne jest uziemienie, natomiast w oprawach klasy II, które są projektowane bez przewodu ochronnego, takie podejście jest nieadekwatne. Te nieprawidłowe koncepcje często wynikają z braku zrozumienia zasad klasyfikacji sprzętu elektrycznego oraz norm bezpieczeństwa, takich jak IEC 61140, które jasno definiują wymagania dotyczące ochrony przeciwporażeniowej. Właściwe zrozumienie i zastosowanie zasad dotyczących izolacji oraz konstrukcji sprzętu jest kluczowe dla zapewnienia bezpieczeństwa użytkowników, co jest często pomijane w praktycznych zastosowaniach.

Pytanie 33

Rodzaj której maszyny wirującej przedstawiono na ilustracji?

Ilustracja do pytania
A. Komutatorowej prądu przemiennego.
B. Synchronicznej.
C. Indukcyjnej pierścieniowej.
D. Indukcyjnej klatkowej.
Wybrane przez Ciebie odpowiedzi dotyczą różnych typów maszyn wirujących, jednak żadna z nich nie opisuje maszyny synchronicznej, która jest poprawną odpowiedzią. Maszyny indukcyjne, zarówno pierścieniowe, jak i klatkowe, działają na zasadzie indukcji elektromagnetycznej, gdzie prędkość wirnika nie jest zsynchronizowana z częstotliwością prądu. W przypadku maszyny indukcyjnej klatkowej, wirnik składa się z aluminiowych lub miedzianych prętów, co prowadzi do powstawania momentu obrotowego gdy wirnik porusza się w polu magnetycznym wytworzonym przez uzwojenia stojana. Maszyna komutatorowa prądu przemiennego natomiast, łączy elementy zarówno maszyn prądu stałego, jak i przemiennego, co czyni ją bardziej skomplikowaną, a jej działanie opiera się na mechanizmie komutacji, który nie jest typowy dla maszyn synchronicznych. Wybierając błędne odpowiedzi, można popaść w pułapkę myślenia, że wszystkie maszyny wirujące działają w sposób zbliżony, co jest nieprawidłowe. Kluczowe różnice między tymi typami maszyn dotyczą zasad ich działania oraz konstrukcji, co wpływa na ich zastosowania w praktyce. Zrozumienie tych różnic jest istotne dla inżynierów i techników, aby mogli skutecznie dobierać maszyny do konkretnych zastosowań w przemyśle.

Pytanie 34

Pomiar którego parametru wyłącznika różnicowoprądowego przedstawiono na rysunku?

Ilustracja do pytania
A. Rzeczywistego prądu zadziałania.
B. Czasu zadziałania.
C. Prądu obciążenia.
D. Rezystancji izolacji.
Zrozumienie działania wyłączników różnicowoprądowych i ich pomiarów jest kluczowe dla bezpieczeństwa instalacji. Odpowiedzi dotyczące rezystancji izolacji, czasu zadziałania oraz prądu obciążenia wskazują na typowe nieporozumienia związane z funkcjonowaniem tych urządzeń. Rezystancja izolacji nie jest parametrem, który wpływa na działanie wyłącznika różnicowoprądowego, lecz na jego bezpieczeństwo względem przebicia do ziemi oraz inne aspekty dotyczące izolacji. Czas zadziałania odnosi się do momentu, w którym urządzenie zareaguje na określony poziom prądu różnicowego, ale nie jest to tożsame z pomiarem rzeczywistego prądu zadziałania, który jest kluczowy dla zabezpieczeń. Z kolei prąd obciążenia odnosi się do wartości prądu płynącego przez obciążenie, a nie do prądu różnicowego, który jest kluczowym czynnikiem dla zadziałania wyłącznika. Ważne jest, aby w kontekście pomiarów, takich jak te dotyczące wyłączników różnicowoprądowych, mieć na uwadze różnice między różnymi typami prądów oraz ich znaczeniem dla bezpieczeństwa. Typowe błędy myślowe mogą prowadzić do mylnego rozumienia, że wszystkie te parametry są równoważne, podczas gdy każdy z nich pełni inną rolę w ocenie bezpieczeństwa i skuteczności instalacji elektrycznej. Właściwe zrozumienie tych różnic jest kluczowe dla prawidłowego stosowania wyłączników i zapewnienia ich efektywności w ochronie przed zagrożeniami elektrycznymi.

Pytanie 35

Na którym rysunku przedstawiono schemat montażowy poprawnie działającego układu, połączonego zgodnie z pokazanym schematem ideowym i zasadami montażu obwodów oświetleniowych?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Analizując błędne odpowiedzi, można dostrzec szereg nieprawidłowości, które mogą prowadzić do problemów w działaniu układu oświetleniowego. W przypadku połączeń, które nie są zgodne z zasadami montażu, jak w odpowiedzi A i C, występuje problem z podłączeniem przewodu neutralnego, co jest kluczowe dla prawidłowego funkcjonowania całego systemu. Przewód neutralny musi być podłączony właściwie, aby zapewnić powrót prądu z urządzenia do źródła zasilania. Niepoprawne połączenia mogą skutkować nieprawidłowym działaniem łączników, a nawet uszkodzeniem elementów instalacji. W odpowiedzi B zauważamy błąd w połączeniu ostatniego łącznika, co nie tylko uniemożliwia działanie układu, ale także stwarza ryzyko dla bezpieczeństwa, gdyż może prowadzić do niekontrolowanych wyładowań elektrycznych. W praktyce każdy element instalacji elektrycznej musi być starannie przemyślany i spełniać określone normy, aby zminimalizować ryzyko awarii. Często popełniane błędy myślowe polegają na niepełnym zrozumieniu zasad działania obwodów oświetleniowych oraz ignorowaniu standardów dotyczących instalacji elektrycznych. Zrozumienie fundamentalnych zasad dotyczących obwodów oraz ich prawidłowych połączeń jest niezbędne dla zachowania bezpieczeństwa i efektywności energetycznej w instalacjach elektrycznych.

Pytanie 36

W jakiej kolejności nastąpi zadziałanie styczników i przekaźników podczas rozruchu silnika pierścieniowego w układzie, którego schemat połączeń przedstawiono na rysunkach, po załączeniu wyłączników Q i Q1 oraz przycisku sterującego S1?

Ilustracja do pytania
A. K1, K5, K4, K6, K3, K7, K2
B. K1, K5, K4, K6, K3, K2, K7
C. K1, K2, K3, K4, K5, K6, K7
D. K7, K2, K3, K6, K4, K5, K1
Odpowiedź K1, K5, K4, K6, K3, K7, K2 jest poprawna, ponieważ kolejność załączania styczników odzwierciedla logiczny przepływ energii w układzie rozruchowym silnika pierścieniowego. Po załączeniu wyłączników Q i Q1 oraz przycisku S1, stycznik K1, jako pierwszy w obwodzie, zostaje aktywowany, co jest zgodne z zasadami działania obwodów elektrycznych. Zamykanie styków K1 (13-14) uruchamia stycznik K5, który jest kluczowy w kolejnych etapach rozruchu. Następnie, przez zamknięcie styków K5, do akcji wchodzi K4, a następnie K6, które są połączone szeregowo, co jest typowe dla układów rozruchowych silników. Ważne jest, aby zrozumieć znaczenie takiej kolejności: każdy stycznik aktywuje kolejne elementy układu, co pozwala na kontrolowany i bezpieczny rozruch silnika. Zasady te są zgodne z normami IEC 60947 dotyczącymi aparatury łączycej. W praktyce, taka sekwencja działania jest nie tylko efektywna, ale także minimalizuje ryzyko przeciążenia, co jest kluczowe w projektowaniu systemów automatyki przemysłowej.

Pytanie 37

Przy jakiej wartości prądu różnicowego zmiennego sinusoidalnie nie powinien zadziałać sprawny wyłącznik różnicowoprądowy typu AC o prądzie IΔN = 30 mA?

A. IΔ = 10 mA
B. IΔ = 30 mA
C. IΔ = 20 mA
D. IΔ = 40 mA
Odpowiedź IΔ = 10 mA jest poprawna, ponieważ sprawny wyłącznik różnicowoprądowy typu AC o prądzie IΔN = 30 mA nie powinien zadziałać przy prądzie różnicowym mniejszym od jego nominalnej wartości. Wartości prądu różnicowego, które są poniżej tego poziomu, nie powinny aktywować mechanizmu wyłączającego. Na przykład, jeżeli w instalacji elektrycznej wystąpi niewielki prąd upływowy spowodowany np. wilgocią lub wadliwym urządzeniem, to przy prądzie 10 mA wyłącznik nie zareaguje, co oznacza, że urządzenie może dalej działać. Wyłączniki różnicowoprądowe są kluczowym elementem w systemach zabezpieczeń, a zgodnie z normami IEC 61008-1, powinny być stosowane w instalacjach, aby zapewnić bezpieczeństwo użytkowników przed porażeniem prądem elektrycznym. Odpowiednia konfiguracja takich wyłączników jest istotna w kontekście ochrony zdrowia i życia, a ich prawidłowe działanie powinno być regularnie kontrolowane.

Pytanie 38

Jakie uszkodzenie mogło wystąpić w instalacji elektrycznej, dla której wyniki pomiarów rezystancji izolacji przedstawiono w tabeli?

Rezystancja izolacji, MΩ
Zmierzona międzyWymagana
L1–L2L2–L3L1–L3L1–PENL2–PENL3–PEN
2,101,051,101,401,300,991,00
A. Zawilgocenie izolacji jednej z faz.
B. Zwarcie międzyfazowe.
C. Jednofazowe zwarcie doziemne.
D. Przeciążenie jednej z faz.
Przeciążenie jednej z faz, mimo że jest to problem, który może wystąpić w instalacjach elektrycznych, nie jest odpowiedzią w tym przypadku. Przeciążenie związane jest z nadmiernym przepływem prądu przez przewody, co prowadzi do ich nagrzewania się. W tej sytuacji jednak, wyniki pomiarów rezystancji izolacji wykazują, że wszystkie fazy mają wartości powyżej 1 MΩ, co wyklucza obecność przeciążenia. Przeciążenie fazy charakteryzuje się innymi objawami, takimi jak wzrost temperatury przewodów czy wyłączanie się zabezpieczeń, co nie jest zgodne z danymi z tabeli. Z kolei zwarcie międzyfazowe również nie znajduje potwierdzenia w wynikach pomiarów, ponieważ wymagałoby niskich rezystancji międzyfazowych, co w tym przypadku nie ma miejsca. Warto pamiętać, że zwarcie międzyfazowe najczęściej prowadzi do natychmiastowego wyłączenia zabezpieczeń, a nieprawidłowe wartości rezystancji nie są jedynym objawem tego zjawiska. Jednofazowe zwarcie doziemne, mimo że może wpływać na rezystancję L3 do PEN, nie byłoby jedynym czynnikiem mającym wpływ na pozostałe fazy, które w tym przypadku wykazywały poprawne wartości. Kluczowe jest, aby podczas analizy wyników pomiarów izolacji brać pod uwagę wszystkie aspekty, a nie jedynie pojedyncze parametry, co pozwala na trafną diagnozę stanu instalacji elektrycznej.

Pytanie 39

Na którym rysunku przedstawiono przewód spawalniczy OnS-1?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Odpowiedź B jest poprawna, ponieważ przewód spawalniczy OnS-1 charakteryzuje się specyficzną konstrukcją, która jest dostosowana do spawania łukowego. Składa się z wielu cienkich drutów miedzianych, które są skręcone w pęczki, co zapewnia doskonałe przewodnictwo elektryczne oraz elastyczność. Tego typu przewody są szeroko stosowane w przemyśle spawalniczym, gdzie kluczowe jest utrzymanie wysokiej jakości połączeń oraz efektywności procesów spawania. W praktyce, wybór odpowiedniego przewodu spawalniczego ma bezpośredni wpływ na jakość realizowanych zadań oraz trwałość spoin. Ponadto, przewody takie jak OnS-1 spełniają normy IEC 60228 oraz EN 50525, które określają wymagania dotyczące przewodów elektrycznych, co czyni je niezawodnym wyborem dla profesjonalnych spawaczy. Zrozumienie konstrukcji i zastosowania przewodów spawalniczych jest kluczowe, aby uniknąć problemów związanych z wydajnością i bezpieczeństwem podczas pracy.

Pytanie 40

Który aparat przedstawiony jest na rysunku?

Ilustracja do pytania
A. Rozłącznik izolacyjny.
B. Selektywny wyłącznik nadprądowy.
C. Ogranicznik przepięć.
D. Wyłącznik nadmiarowo-prądowy.
Wyłącznik nadmiarowo-prądowy jest niezwykle ważnym elementem w ochronie instalacji elektrycznych. Jego głównym zadaniem jest automatyczne przerywanie obwodu w momencie, gdy natężenie prądu przekroczy ustalony bezpieczny poziom. Dzięki temu urządzeniu możliwe jest zabezpieczenie przed skutkami przeciążeń, które mogą prowadzić do uszkodzeń instalacji lub pożarów. W praktyce wyłączniki nadmiarowo-prądowe są wykorzystywane w różnorodnych aplikacjach, zarówno w domowych instalacjach elektrycznych, jak i w przemysłowych systemach zasilania. Kluczowe jest, aby dobierać odpowiednie urządzenia zgodnie z normami EN 60898, które definiują wymagania dotyczące wyłączników nadprądowych. Dobre praktyki wskazują na regularne testowanie tych urządzeń, co pozwala na upewnienie się, że działają one zgodnie z oczekiwaniami i są w stanie skutecznie chronić instalację przed przeciążeniami i zwarciami.